Selected Publications

[An overview of publications can be found in the profile on google scholar (click here).]

Invited Articles (1998-2014):

  • I-24. Topical review: "Review and prospects of magnonic crystals and devices with reprogrammable band structure", M. Krawczyk and D. Grundler, J. Phys.: Cond. Matter 26, 123202 (2014), open access, free download HERE.
  • I-23. S. O. Demokritov und D. Grundler: "Maßgeschneiderte Spinwellen", Physik-Journal 03/13, Seite 37 (2013). [abstract (auf Deutsch)]
  • I-22. S. Neusser, G. Duerr, R. Huber, and D. Grundler:
    "Artificial crystals and metamaterials for spin waves from nanopatterned Ni80Fe20 antidot lattices", Chapter 14 (pp. 191 - 203) in Topics in Applied Physics: Magnonics, S.O. Demokritov, A.N. Slavin (Eds), Springer (2013).[Link to List of Contents]
  • I-21. G. Duerr, R. Huber, and D. Grundler: 
    "Enhanced functionality in magnonics by domain walls and inhomogeneous spin configurations", J. Phys.: Cond. Matter 24, 024218 (2012)FREE article for 30 days. in: Special Issue on Domain Wall Dynamics.
  • I-20. V.V. Kruglyak, M. Dvornik, R.V. Mikhaylovskiy, O. Dmytriiev, G. Gubbiotti, S. Tacchi, M. Madami, G. Carlotti, F. Montoncello, L. Giovannini, R. Zivieri, J.W. Klos, M.L. Sokolovskyy, S. Mamica, M. Krawczyk, M. Okuda, J.-C. Eloi, S. Ward Jones, W. Schwarzacher, T. Schwarze, F. Brandl, D. Grundler, D.V. Berkov, E. Semenova, and N. Gorn: 
    "Magnonic Metamaterials", in: "Metamaterial", X.-Y. Jiang (Ed.), Intech, ISBN 979-953-307-563-0. FREE ACCESS [full article (pdf): click here]  
  • I-19. R. Huber and D. Grundler:
    "Ferromagnetic nanodisks for magnonic crystals and waveguides", Proc. SPIE 8100, Spintronics IV, Henri-Jean M. Drouhin; Jean-Eric Wegrowe; Manijeh Razeghi, Editors, 81000D (2011). [full article (pdf): click here]
    © 2011 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. http://dx.doi.org/doi/10.1117/12.892168 [link: click here]
  • I-18. J. Topp, G. Duerr, K. Thurner, and D. Grundler:
    "Reprogrammable magnonic crystals formed by interacting ferromagnetic nanowires", 
    Pure Appl. Chem. 83, 1989 (2011). [full article (pdf): click here]
    © 2011 IUPAC. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. [link: click here]
  • I-17. S. Neusser, G. Duerr, F. Brandl, R. Huber, T. Schwarze, and D. Grundler: 
    “Transmission of GHz spin waves through periodically nanopatterned ferromagnets”, in: Metamaterials '2011: The Fifth International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, Metamorphose-VI, ISBN 978-952-67611-0-7, p. 922 (2011).
  • I-16. V.V. Kruglyak, S.O. Demokritov, and D. Grundler: 
    "Magnonics", 
    J. Phys. D: Applied Physics 43, 264001 (2010). [link: click here] FREE ARTICLE
  • I-15. R. Huber, P. Klemm, S. Neusser, B. Botters, A. Wittmann, M. Weiler, S.T.B. Goennenwein, C. Heyn, M. Schneider, P. Böni, and D. Grundler: 
    „Advanced techniques for all-electrical spectroscopy on spin caloric phenomena”, Solid State Communications 150, 492 (2010). [link: click here]
  • I-14. Sebastian Neusser and Dirk Grundler: 
    „Magnonics: Spin Waves on the Nanoscale”, Advanced Materials 21, 2927 - 2932 (2009). [link: click here]
  • I-13. Dirk Grundler, Fabian Giesen, and Jan Podbielski: 
    „Spin Waves in the Inhomogeneous Internal Field of Nanostructured Rings”, book article in : Spin Wave Confinement, S. Demokritov (ed.), World Scientific (2008). 
  • I-12. Dirk Grundler, Fabian Giesen, and Jan Podbielski: 
    „Tailoring spin excitations by nanolithography”, Physics in Canada 63 (Special Issue:Spintronics), 63 (2007). [full article (pdf): click here][Journal Homepage: "Physics in Canada"]
  • I-11. J. Podbielski, F. Giesen, M. Berginski, N. Hoyer, and D. Grundler: 
    „Spin configurations in nanostructured magnetic rings: from DC transport to GHz spectroscopy”, Superlattices and Microstructures 37, 341 (2005). [link: click here]
  • I-10. A. Wittmann, C. H. Möller, O. Kronenwerth, M. Holz, and D. Grundler: 
    „Hybrid ferromagnet/semiconductor nanostructures: spin-valve effect and extraordinary magnetoresistance”, J. Phys.: Condens. Matter 16, S5645 (2004). [link: click here]
  • I-9. Dirk Grundler, Thomas M. Hengstmann, and Haiko Rolff: 
    „Magnetic nanostructures for lateral spin-transport devices”, Brazilian Journal of Physics 34, no. 2A, 598 (2004). [Journal Homepage: Brazilian Journal of Physics] 
  • I-8. D. Grundler, T. Matsuyama, and C.-H. Möller: 
    „Spin injection in ferromagnet/semiconductor hybrid structures”, Festkörperprobleme, Advances in Solid State Physics 43, 443 (2003). 
  • I-7. Dirk Grundler: 
    „Ballistic electrons in ferromagnet/semiconductor hybrid structures: from nanomagnetometry to spin injection”, Acta Physica Polonica A 102, 529 (2002).
  • I-6. Dirk Grundler: 
    „Spintronics”, Physics World 15, 39 (April 2002). [full article (pdf): click here], © 2002 Physics World [Journal Homepage: Physics World]
  • I-5. Dirk Grundler: „Spins im Nadelöhr”, in Physikalische Blätter 9, 21 (2001).
  • I-4. Dirk Grundler: 
    „Spintronik”, Beitrag in „Welt der Physik”. [Homepage: Welt der Physik]
  • I-3. Guido Meier and Dirk Grundler: 
    „Rashba spin-splitting and ferromagnetic electrodes on InAs”, Festkörperprobleme, Advances in Solid State Physics 40, 295-308 (2000).
  • I-2. Dirk Grundler: 
    „Magnetization phenomena of two-dimensional electron systems in the Quantum Hall effect regime ”, Festkörperprobleme, Advances in Solid State Physics 39, 221-230 (1999).
  • I-1. I. Meinel, D. Grundler, S. Bargstädt-Franke, Ch. Heyn, and D. Heitmann: 
    „SQUID-Susceptometry up to 10 Tesla: An Improved Method for Magnetization Studies on a Two-Dimensional Electron System ”, Appl. Supercond. 5, 261-267 (1998). [link: click here]

Selected Journal Articles (1993-2014)

One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in the papers which can be downloaded for a fee or for commercial purposes, or modification of the content of the paper are prohibited. 

  • 89. "Fabrication and local laser heating of freestanding Ni80Fe20 bridges with Pt contacts displaying anisotropic magnetoresistance and anomalous Nernst effect", Florian Brandl and Dirk Grundler. The article appeared in Appl. Phys. Lett. 104, 172401 (2014) and may be found at http://scitation.aip.org/content/aip/journal/apl/104/17/10.1063/1.4874302. Copyright (2014) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. [full article (pdf): click here]
  • 88. “Enhanced quantum oscillatory magnetization and nonequilibrium currents in an interacting two-dimensional electron system in MgZnO/ZnO with repulsive scatterers”, M. Brasse, S.M. Sauther, J. Falson, Y. Kozuka, A. Tsukazaki, C. Heyn, M.A. Wilde, M. Kawasaki, and D. Grundler, Phys. Rev. B 89, 075307 (2014).
  • 87. "Omnidirectional spin-wave nanograting coupler", Haiming Yu, G. Duerr, R. Huber, M. Bahr, T. Schwarze, F. Brandl, and D. Grundler, Nature Commun. 4, 2702 (2013),  doi:10.1038/ncomms3702 [article (open access): pdf].
  • 86. "De Haas-van Alphen effect and Fermi surface properties of single crystal CrB2", M. Brasse, L. Chioncel, J. Kunes, A. Bauer, A. Regnat, C. G. F. Blum, S. Wurmehl, C. Pfleiderer, M. A. Wilde, and D. Grundler, Phys. Rev. B 88, 155138 (2013).
  • 85. "Alternative method for the quantitative determination of Rashba- and Dresselhaus spin-orbit interaction using the magnetization", M. A. Wilde and D. Grundler, New J. Phys. 15, 115013 (2013).
  • 84. R. Huber, T. Schwarze, and D. Grundler: "Nanostripe of subwavelength width as a switchable semitransparent mirror for spin waves in a magnonic crystal",  Phys. Rev. B 88, 100405(R) (2013). [full article (pdf): click here]. Copyright (2013) American Physical Society.
  • 83. J. Nagel, A. Buchter, F. Xue, O. F. Kieler, T. Weimann, J. Kohlmann, 
    A.B. Zorin, D. Rüffer, E. Russo-Averchi, R. Huber, P. Berberich, A. Fontcuberta i Morral, D. Grundler, R. Kleiner, D. Koelle, M. Poggio, and M. Kemmler:"Nanoscale multifunctional sensor formed by a Ni nanotube and a scanning Nb nanoSQUID", Phys. Rev. B 88, 064425 (2013). Editors' Suggestion [full article (pdf)].  Copyright (2013) American Physical Society.
  • 82. A. Buchter, J. Nagel, D. Rüffer, F. Xue, D. P. Weber, O. F. Kieler, T. Weimann, J. Kohlmann, A. B. Zorin, E. Russo-Averchi, R. Huber, P. Berberich, A. Fontcuberta i Morral, M. Kemmler, R. Kleiner, D. Koelle, D. Grundler, and M. Poggio: "Reversal mechanism of an individual Ni nanotube simultaneously studied by torque and SQUID magnetometry", Phys. Rev. Lett. 111, 067202 (2013). [manuscript (pdf)]
  • 81. Thomas Schwarze and Dirk Grundler: "Magnonic crystal wave guide with large spin-wave propagation velocity in CoFeB", Appl. Phys. Lett. The article appeared in Appl. Phys. Lett. 102, 222412 (2013) and may be found at http://apl.aip.org/resource/1/applab/v102/i22/p222412_s1Copyright (2013) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. [full article (pdf): click here]
  • 80. E. K. Semenova, F. Montoncello, S. Tacchi, G. Dürr, E. Sirotkin, E. Ahmad, M. Madami, G. Gubbiotti, S. Neusser, D. Grundler, F. Y. Ogrin, R. J. Hicken, V. V. Kruglyak, D.V. Berkov, N. L. Gorn, and L. Giovannini: "Magneto-dynamical response of large-area close-packed arrays of circular dots fabricated by nano-sphere lithography", Phys. Rev. B 87, 174432 (2013).
  • 79. B. Rupprecht, S. Heedt, H. Hardtdegen, Th. Schapers, Ch. Heyn, M. A. Wilde,  and D. Grundler: "Frequency anomaly in the Rashba-eff ect induced magnetization oscillations of a high-mobility two dimensional electron system", Phys. Rev. B 87, 035307 (2013). http://link.aps.org/doi/10.1103/PhysRevB.87.035307. Copyright (2013) American Physical Society.
  • 78. A. van Bieren, F. Brandl, D. Grundler, and J.-P. Ansermet: "Space- and time-resolved Seebeck and Nernst voltages in laser-heated permalloy/gold microstructures", Appl. Phys. Lett. 102, 052408 (2013).
  • 77. R. Huber, M. Krawczyk, T. Schwarze, H. Yu, G. Duerr, S. Albert, and D. Grundler: "Reciprocal Damon-Eshbach-type spin wave excitation in a magnonic crystal due to tunable magnetic symmetry". The article appeared in Appl. Phys. Lett. 102, 012403 (2013) and may be found at http://apl.aip.org/resource/1/applab/v102/i1/p012403_s1Copyright (2013) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. [full article (pdf): click here]
  • 76. D.P. Weber, D. Rüffer, A. Buchter, F. Xue, E. Russo-Averchi, R. Huber, P. Berberich, J. Arbiol, A. Fontcuberta i Morral, D. Grundler, and M. Poggio: "Cantilever Magnetometry of Individual Ni Nanotubes", Nano Lett. 12, 6139 (2012) [dx.doi.org/10.1021/nl302950u] abstract.
  • 75. S. Tacchi, G. Duerr, J.W. Klos, M. Madami, S. Neusser , G. Gubbiotti, G. Carlotti, M. Krawczyk, and D. Grundler: "Forbidden band gaps in the spin-wave spectrum of a two-dimensional bicomponent magnonic crystal", Phys. Rev. Lett. 109, 137202 (2012). [full text (pdf): click here] Copyright (2012) American Physical Society.
  • 74. S. Tacchi, B. Botters, M. Madami, J. W. Klos, M. L. Sokolovskyy, M. Krawczyk, G. Gubbiotti, G. Carlotti, A. O. Adeyeye, S. Neusser, and D. Grundler: "Mode conversion from quantized to propagating spin waves in a rhombic antidot lattice supporting spin wave nanochannels", Phys. Rev. B 86, 014417 (2012) [full article (pdf): click here]. Copyright (2012) American Physical Society.
  • 73. D. Rueffer, R. Huber, P. Berberich, S. Albert, E. Russo-Averchi, M. Heiss, J. Arbiol, A. Fontcuberta i Morral, and D. Grundler: "Magnetic states of an individual Ni nanotube probed by anisotropic magnetoresistance", Nanoscale 4, 4989 (2012). [full article (pdf) can be accessed here]
  • 72. H. Yu, R. Huber, T. Schwarze, F. Brandl, T. Rapp, P. Berberich, G. Duerr, and D. Grundler: "High propagating velocity of spin waves and temperature dependent damping in a CoFeB thin film". The article appeared in Appl. Phys. Lett. 100, 262412 (2012) and may be found at http://apl.aip.org/resource/1/applab/v100/i26/p262412_s1. Copyright (2012) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. [full article (pdf): click here]
  • 71. G. Duerr, K. Thurner, J. Topp, R. Huber, and D. Grundler: "Enhanced transmission through squeezed modes in a self-cladding magnonic waveguide", Phys. Rev. Lett. 108, 227202 (2012). [full text (pdf): click here] Copyright (2012) American Physical Society.
  • 70. T. Schwarze, R. Huber, G. Duerr, and D. Grundler: "Complete band gaps for magnetostatic forward volume waves in a two-dimensional magnonic crystal", Phys. Rev. B 85, 134448 (2012) [full article (pdf): click here]. Copyright (2012) American Physical Society.
  • 69. R. Zivieri, S. Tacchi, F. Montoncello, L. Giovannini, F. Nizzoli, M. Madami, G. Gubbiotti, G. Carlotti, S. Neusser, G. Duerr, and D. Grundler: "Bragg diffraction of spin waves from a two-dimensional antidot lattice", Phys. Rev. B 85, 012403 (2012) [full article (pdf): click here]. Copyright (2011) American Physical Society.
  • 68. J. Topp, S. Mendach, D. Heitmann, M. Kostylev, and D. Grundler: 
    "Field- and geometry-controlled avoided crossings of spin-wave modes in reprogrammable magnonic crystals ", Phys. Rev. B 84, 214413 (2011) [full article (pdf): click here]. Copyright (2011) American Physical Society.
  • 67. S. Neusser, H.G. Bauer, G. Duerr, R. Huber, S. Mamica, G. Woltersdorf, M. Krawczyk, C.H. Back, and D. Grundler: 
    "Tunable metamaterial response of a Ni80Fe20 antidot lattice for spin waves", Phys. Rev. B 84, 184411 (2011) [full article (pdf): click here]. Copyright (2011) American Physical Society. 
  • 66. G. Duerr, M. Madami, S. Neusser, S. Tacchi, G. Gubbiotti, G. Carlotti, and D. Grundler: "Spatial control of spin-wave modes in Ni80Fe20 antidot lattices by embedded Co nanodisks" [full article (pdf): click here]The article appeared in Appl. Phys. Lett. 99, 202502 (2011) and may be found at http://link.aip.org/link/?APL/99/202502. Copyright (2011) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
  • 65. R. Huber, T. Schwarze, P. Berberich, T. Rapp, and D. Grundler: 
    “Atomic layer deposition for the fabrication of magnonic metamaterials”, in: Metamaterials '2011: The Fifth International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, Metamorphose-VI, ISBN 978-952-67611-0-7, p. 588 (2011).
  • 64. T. Schwarze, R. Huber, G. Duerr, F. Brandl, S. Neusser, K. Thurner, and D. Grundler: 
    “Microwave Antennas for Broadband Spectroscopy on Magnonic Metamaterials”, in: Metamaterials '2011: The Fifth International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, Metamorphose-VI, ISBN 978-952-67611-0-7, p. 576 (2011).
  • 63. T. Schwarze, M. Okuda, R. Huber, J.-C. Eloi, F. Brandl, L. Dreher, M.S. Brandt, D. Grundler, and W. Schwarzacher: 
    “Fabrication and characterization of crystallized magnetoferritin as an artificial magnetic metamaterial”, in: Metamaterials '2011: The Fifth International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, Metamorphose-VI, ISBN 978-952-67611-0-7, p. 125 (2011).
  • 62. M. Bareiß, A. Hochmeister, G. Jegert, U. Zschieschang, H. Klauk, R. Huber, D. Grundler, W. Porod, B. Fabel, G. Scarpa, and P. Lugli: 
    "Printed array of thin-dielectric metal-oxide-metal (MOM) tunneling diodes", J. Appl. Phys. 110, 044316 (2011). [full article (pdf): click here]. © (2011) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The article appeared in J. Appl. Phys. 110, 044316 (2011) and may be found at http://jap.aip.org/resource/1/japiau/v110/i4/p044316_s1?isAuthorized=no
  • 61. S. Neusser, G. Duerr, S. Tacchi, M. Madami, M.L. Sokolovskyy, G. Gubbiotti, M. Krawczyk, and D. Grundler: "Magnonic minibands in antidot lattices with large spin-wave propagation velocities", Phys. Rev. B. 84, 094454 (2011). [full article (pdf): click here]. © (2011) by American Physical Society. This article may be downloaded for personal use only.
  • 60. S. Neusser, G. Duerr, H. G. Bauer, S. Tacchi, M. Madami, G. Woltersdorf, G. Gubbiotti, C. H. Back, and D. Grundler: "Anisotropic propagation and damping of spin waves in a nanopatterned antidot lattice", Phys. Rev. Lett. 105, 067208 (2010). [full article (pdf: click here. © American Physical Society]
  • 58. B. Rupprecht, W. Krenner, U. Wurstbauer, Ch. Heyn, T. Windisch, M. A. Wilde, W. Wegscheider, and D. Grundler:
    „Magnetism in a Mn modulation-doped InAs/InGaAs heterostructure with a two-dimensional hole system", J. Appl. Phys. 107, 093711 (2010). [link: click here]
  • 57. Silvia Tacchi, Marco Madami, Gianluca Gubbiotti, Giovanni Carlotti, Adekunle O. Adeyeye, Sebastian Neusser, Bernhard Botters, and Dirk Grundler:
    „Angular dependence of magnetic normal modes in NiFe antidot lattices with different lattice symmetry”, IEEE Trans. on Magn. 46, 1440 (2010). [link: click here]
  • 56. J. Topp, D. Heitmann, and D. Grundler: 
    „Interaction effects on microwave-assisted switching of Ni80Fe20 nanowires in densely packed arrays”, Phys. Rev. B 80, 174421 (2009). [link: click here]
  • 55. T. Windisch, X. Huang, S. Dasgupta, B. Rupprecht, C. Heyn, M. Bichler, A. Fontcuberta i Morral, M. Grayson, G. Abstreiter,  M. A. Wilde, and D. Grundler:
    „De Haas-van Alphen effect and energy gaps of a correlated two-dimensional electron system in an AlAs two-valley pseudospin system”, Phys. Rev. B 80, 205306 (2009). [link: click here]
  • 54. Silvia Tacchi, Marco Madami, Gianluca Gubbiotti, Giovanni Carlotti, Adekunle O. Adeyeye, Sebastian Neusser, Bernhard Botters, and Dirk Grundler:
    „Magnetic normal modes in squared antidot array with circular holes: a combined Brillouin light scattering and broadband ferromagnetic resonance study”, IEEE Trans. on Magn. 46, 172 (2010). [link: click here]
  • 53. N. Ruhe, G. Stracke, Ch. Heyn, D. Heitmann, H. Hardtdegen, T. Schäpers, B. Rupprecht, M. A. Wilde, and D. Grundler:
    „Origin and limiting mechanism of induced nonequilibrium currents in gated two-dimensional electron systems”, Phys. Rev. B 80, 115336 (2009). [link: click here]
  • 52. M. A. Wilde, D. Reuter, Ch. Heyn, A. D. Wieck, and D. Grundler:
    „Inversion-asymmetry-induced spin splitting observed in the quantum oscillatory magnetization of a two-dimensional electron system”, Phys. Rev. B 79, 125330 (2009). [link: click here]
  • 51. Jesco Topp, Jan Podbielski, Detlef Heitmann, and Dirk Grundler: 
    „Formation and control of internal spin-wave channels in arrays of densely packed Permalloy nanowires”, J. Appl. Phys. 105, 07D302 (2009). [link: click here]
  • 50. S. Neusser, B. Botters, M. Becherer, D. Schmitt-Landsiedel, and D. Grundler: 
    „Spin wave localization between nearest and next-nearest neighboring holes in an antidot lattice”, Appl. Phys. Lett. 93, 122501 (2008). [link: click here]
  • 49. S. Neusser, B. Botters, and D. Grundler: 
    „Localization, confinement, and field-controlled propagation of spin waves in antidot lattices”, Phys. Rev. B 78, 054406 (2008). [link: click here]
  • 48. J. Topp, J. Podbielski, D. Heitmann, and D. Grundler: 
    „Internal spin-wave confinement in magnetic nanowires due to zig-zag magnetization”, Phys. Rev. B 78, 024431 (2008). [link: click here]
  • 47. A. Brandlmaier, S. Geprägs, M. Weiler, A. Boger, M. Opel, H. Huebl, C. Bihler, M. S. Brandt, B. Botters, D. Grundler, R. Gross, and S. T. B. Goennenwein: 
    In situ manipulation of magnetic anisotropy in magnetite thin films”, Phys. Rev. B 77, 104445 (2008). [link: click here]
  • 46. E. V. Konenkova, D. Grundler, M. Morgenstern, and R. Wiesendanger: 
    „Metal–Insulator Transition in Graphite: A Comparison to Heterostructures with High Carrier Mobility”, Technical Physics Letters 34, 30 (2008) [Original Russian Text: Pis’ma v Zhurnal Tekhnicheskoi Fiziki 34, 65 (2008)]. [link: click here]
  • 45. M. A. Wilde, J. I. Springborn, O. Roesler, N. Ruhe, M. P. Schwarz, D. Heitmann, and D. Grundler:
    „Magnetometry on quantum Hall systems: Thermodynamic energy gaps and the density of states distribution”, Phys. Stat. Sol. (b) 245, 344 (2008). [link: click here]
  • 44. J. Podbielski, D. Heitmann, and D. Grundler: 
    „Microwave Assisted Switching of Microscopic Rings: Correlation between Nonlinear Spin Dynamics and Critical Microwave Fields”, Phys. Rev. Lett. 99, 207202 (2007). [link: click here]
  • 43. F. Giesen, J. Podbielski, and D. Grundler: 
    „Mode localization transition in ferromagnetic microscopic rings”, Phys. Rev. B 76, 014431 (2007). [link: click here]
  • 42. F. Giesen, J. Podbielski, B. Botters, and D. Grundler: 
    „Vortex circulation control in large arrays of asymmetric magnetic rings”, Phys. Rev. B 75, 184428 (2007). [link: click here]
  • 41. N. Ruhe, J. I. Springborn, Ch. Heyn, M. A. Wilde, and D. Grundler:
    „Simultaneous measurement of the de Haas-van Alphen and the Shubnikov-de Haas effect in a two-dimensional electron system”, Phys. Rev. B 74, 235326 (2006). [link: click here]
  • 40. Bernhard Botters, Fabian Giesen, Jan Podbielski, Peter Bach, Georg Schmidt, Laurens W. Molenkamp, and Dirk Grundler:
    „Stress dependence of ferromagnetic resonance and magnetic anisotropy in a thin NiMnSb film on InP(001)”, Appl. Phys. Lett. 89, 242505 (2006). [link: click here]
  • 39. J. Podbielski, F. Giesen, and D. Grundler:
    „Spin-Wave Interference in Microscopic Rings”, Phys. Rev. Lett. 96, 167207 (2006). [link: click here]
  • 38. Matthias Hoener, Oliver Kronenwerth, Christian Heyn, Dirk Grundler, and Matthias Holz: 
    „Geometry-enhanced magnetoresistance of narrow Au/InAs hybrid structures incorporating a two-dimensional electron system”, J. Appl. Phys. 99, 036102(R) (2006). [link: click here]
  • 37. M. A. Wilde, M. P. Schwarz, Ch. Heyn, D. Heitmann, D. Grundler, D. Reuter, and A. D. Wieck: 
    „Experimental evidence of the ideal de Haas–van Alphen effect in a two-dimensional system”, Phys. Rev. B 73, 125325 (2006). [link: click here]
  • 36. M. Holz, O. Kronenwerth, and D. Grundler: 
    „Semiconductor-metal hybrid structures as local magnetic-field probes: Magnetoresistance and spatial sensitivity profile”, Appl. Phys. Lett. 87, 172501 (2005). 
  • 35. F. Giesen, J. Podbielski, T. Korn, and D. Grundler:
    „Multiple ferromagnetic resonance in mesoscopic permalloy rings”, J. Appl. Phys. 97, 10A712 (2005). [link: click here]
  • 34. F. Giesen, J. Podbielski, T. Korn, M. Steiner, A. van Staa, and D. Grundler: 
    „Hysteresis and control of ferromagnetic resonances in rings”, Appl. Phys. Lett. 86, 112510 (2005). [link: click here]
  • 33. M. Holz, O. Kronenwerth, and D. Grundler:
    „Enhanced sensitivity due to current redistribution in the Hall effect of semiconductor-metal hybrid structures”, Appl. Phys. Lett. 86, 072513 (2005). [link: click here]
  • 32. M. A. Wilde, M. Rhode, Ch. Heyn, D. Heitmann, D. Grundler, 
    U. Zeitler, F. Schäffler, and R. J. Haug: 
    „Direct measurements of the spin and valley splittings in the magnetization of a Si/SiGe quantum well in tilted magnetic fields”, Phys. Rev. B 72, 165429 (2005). [link: click here]
  • 31. C.-H. Möller, O. Kronenwerth, Ch. Heyn, and D. Grundler:
    „Low-noise magnetic-flux sensors based on the extraordinary magnetoresistance effect”, Appl. Phys. Lett. 84, 3343 (2004). [link: click here]
  • 30. H. Rolff, W. Pfützner, Ch. Heyn, and D. Grundler:
    „Hall magnetometry on a ferromagnetic nanoring”, Journal of Magnetism and Magnetic Materials 272-276, 1623 (2004). [link: click here]
  • 29. M.A. Wilde, J.I. Springborn, Ch. Heyn, D. Heitmann, and D. Grundler: 
    „Magnetization of GaAs quantum wires with quasi-one-dimensional electron systems”, Physica E 22, 729 (2004). [link: click here]
  • 28. M. Holz, O. Kronenwerth, and D. Grundler:
    „Optimization of the extraordinary magnetoresistance in semiconductor–metal hybrid structures for magnetic-field sensor applications”, Physica E 21, 897 (2004). [link: click here]
  • 27. M. Holz, O. Kronenwerth, and D. Grundler:
    „Optimization of semiconductor-metal hybrid structures for application in magnetic-field sensors and read heads”, Appl. Phys. Lett. 83, 3344 (2003). [link: click here]
  • 26. C.-H. Möller, Ch. Heyn, and D. Grundler:
    „Spin splitting in narrow InAs quantum wells with In0.75Ga0.25As barrier layers”, Appl. Phys. Lett. 83, 2181 (2003). [link: click here]
  • 25. M. Holz, O. Kronenwerth, and D. Grundler:
    „Magnetoresistance in metal/semiconductor hybrid structures: the effect of material parameters and contact resistance”, Phys. Rev. B 67, 195312 (2003). [link: click here]
  • 24. M.P. Schwarz, D. Grundler, Ch. Heyn, D. Heitmann, D. Reuter, and A.D. Wieck:
    „Induced non-equilibrium currents in the magnetization of mesoscopic dots in the quantum Hall regime”, Phys. Rev. B 68, 245315 (2003). [link: click here]
  • 23. O. Wunnicke, Ph. Mavropoulos, R. Zeller, P.H. Dederichs, and D. Grundler:
    „Ballistic spin injection from Fe(001) into ZnSe and GaAs”, Phys. Rev. B 65, 241306 (2002). [link: click here]
  • 22. C.-H. Möller, O. Kronenwerth, D. Grundler, W. Hansen, Ch. Heyn, and D. Heitmann:
    „Extraordinary magnetoresistance effect in microstructured metal/semiconductor hybrid structures”, Appl. Phys. Lett. 80, 3988 (2002). [link: click here]
  • 21. M.P. Schwarz, M.A. Wilde, S. Groth, D. Grundler, Ch. Heyn, and D. Heitmann:
    „Sawtooth-like de Haas-van Alphen oscillations of a two-dimensional electron system ”, Phys. Rev. B 65, 245315 (2002). [link: click here]
  • 20. D. Grundler, T.M. Hengstmann, N. Klockmann, Ch. Heyn, and D. Heitmann: 
    „Bend-resistance nanomagnetometry: spatially resolved magnetization studies in ferromagnet/semiconductor hybrid structures”, Physica E 12, 248 (2002). [link: click here]
  • 19. T. Matsuyama, C.-M. Hu, D. Grundler, G. Meier, and U. Merkt: „Ballistic spin transport and spin interference in ferromagnet/InAs(2DES)/ferromagnet devices”, Phys. Rev. B 65, 155322 (2002). [link: click here]
  • 18. M. P. Schwarz, D. Grundler, H. Rolff, M. Wilde, S. Groth, Ch. Heyn, and D. Heitmann: 
    „De Haas-van Alphen effect in a two-dimensional electron system”, Physica E 12, 140 (2002). [link: click here]
  • 17. M. P. Schwarz, D. Grundler, M. Wilde, Ch. Heyn, and D. Heitmann: „Magnetization of semiconductor quantum dots”, J. Appl. Phys. 91, 6875 (2002). [link: click here]
  • 16. Dirk Grundler: 
    „Oscillatory Spin Filtering due to Gate-Control of the Spin-dependent Interface Conductance”, Phys. Rev. Lett. 86, 1058 (2001). [link: click here]
  • 15. Dirk Grundler: 
    „Ballistic spin-filter transistor”, Phys. Rev. B 63, 161307 (R) (2001). [link: click here]
  • 14. T.M. Hengstmann, D. Grundler, Ch. Heyn, and D. Heitmann: 
    „Stray-field investigation on permalloy nanodiscs”, J. Appl. Phys. 90, 6542 (2001). [link: click here]
  • 13. I. Meinel, D. Grundler, D. Heitmann, M. Bichler, W. Wegscheider, V. Gudmundsson, and A. Manolescu: 
    „Enhanced magnetization of the integer quantum Hall effect”, Phys. Rev. B 64, 121306 (R) (2001). [link: click here]
  • 12. G. Meier, D. Grundler, K.-B. Broocks, Ch. Heyn, and D. Heitmann:
    „Effect of tilted magnetic fields on bistable nanomagnets in hybrid semiconductor/ferromagnet devices ”, Journal of Magnetism and Magnetic Materials 210, 138-142 (2000). [link: click here]
  • 11. Dirk Grundler:
    „Large Rashba-Splitting in InAs-Quantum Wells due to Electron Wave Function Penetration into the Barrier Layers”, Phys. Rev. Lett. 84, 6074-6077 (2000). [link: click here]
  • 10. M. P. Schwarz, D. Grundler, I. Meinel, Ch. Heyn, and D. Heitmann:
    „Micromechanical cantilever-magnetometer with an integrated two-dimensional electron system”, Appl. Phys. Lett. 76, 3564 (2000). [link: click here]
  • 9. I. Meinel, T. Hengstmann, D. Grundler, D. Heitmann, W. Wegscheider, and M. Bichler: 
    „Magnetization of the Fractional Quantum Hall States”, Phys. Rev. Lett. 82, 819-822 (1999). [link: click here]
  • 8. G.Meier, M. Kleiber, D. Grundler, D. Heitmann, and R. Wiesendanger:
    „Vertical Polarization of Quantum Magnets in High Density Arrays of Nickel Dots with small Height-to-Diameter Ratio ”, Appl. Phys. Lett. 72, 2168 (1998). [link: click here]
  • 7. I. Meinel, D. Grundler, S. Bargstädt-Franke, Ch. Heyn, D. Heitmann, and B. David:
    „High-sensistive Superconducting Magnetometry on a Two-Dimensional Electron Gas up to 10 Tesla”,  Appl. Phys. Lett. 70, 3305 (1997). [link: click here]
  • 6. B. David, D. Grundler, S. Krey, V. Doormann, R. Eckart, J.-P. Krumme, G. Rabe, and O. Dössel:
    „High-Tc SQUID Magnetometers for Biomagnetic Measurements”, Supercond. Sci. Technol. 9 , A 96 (1996). [link: click here]
  • 5. Dirk Grundler, Bernd David, and Olaf Dössel:
    „Experimental investigation of the kinetic inductance in YBa2Cu3O7 square washer SQUIDs”, J. Appl. Phys. 77, 5273 (1995). [link: click here]
  • 4. V. Polushkin, S. Uchaikin, S. Knappe, H. Koch, B. David, and D. Grundler:
    „Current Phase Relation of YBa2Cu3O7-d Step Edge Junction”, IEEE Trans. Appl. Supercond. 5, 2790 (1995). 
  • 3. D. Grundler, J.-P. Krumme, B. David, and O. Dössel:
    „YBa2Cu3O7 ramp-type junctions and superconducting quantum interference devices with an ultrathin barrier of NdGaO3 ”, Appl. Phys. Lett. 65, 1841 (1994). [link: click here]
  • 2. D. Grundler, B. David, R. Eckart, and O. Dössel:
    „Highly sensitive YBa2Cu3O7 dc SQUID magnetometer with thin-film flux transformer ”, Appl. Phys. Lett. 63, 2700 (1993). [link: click here]
  • 1. D. Grundler, R. Eckart, B. David, and O. Dössel:
    „Origin of 1/f noise in YBa2Cu3O7-x step-edge dc SQUIDs ”, Appl. Phys. Lett. 62, 2134 (1993). [link: click here]