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Bragg diffraction of spin waves from a two-dimensional antidot lattice
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Università di Perugia, Via A. Pascoli, I-06123 Perugia, Italy
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The spin-wave band structure of a two-dimensional square array of NiFe circular antidots (hole diameter 120
nm, periodicity 800 nm) is investigated. Brillouin light scattering experiments and band structure calculations,
carried out by means of the dynamical matrix method, provide evidence for either extended or localized magnonic
modes. Both families exhibit band gaps at Brillouin zone boundaries, attributed to Bragg reflection. Their
calculated magnitude agrees with the one obtained by using an analytical model that takes into account the
periodic variation of the internal field. This is in contrast to antidots in photonics and electronics, where the
back-reflection is directly caused by the presence of holes. The results are important for advancing research on
nanostructured two-dimensional magnonic crystals.
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Magnonic crystals (MCs) represent a new class of meta-
materials with periodically modulated magnetic properties,
where, similar to light in photonic crystals or electrons
in artificial crystals, allowed frequency bands and ranges
of forbidden gaps are present in the dispersion curves of
spin excitations.1,2 The first evidence for Bragg reflection
of spin waves (SWs) and occurrence of a rejection band in
one-dimensional (1D) MCs was given in stripes of periodical
varying width.3 Two-dimensional (2D) MCs can be realized
in the form of a periodic array of interacting nanomagnets
(dots)4,5 or holes in a ferromagnetic film (i.e., antidot [AD]
array).6 In this respect, propagation of SWs in AD lattices,
consisting of 2D periodic arrays of nanopatterned holes etched
into a continuous ferromagnetic film, has been extensively
investigated in the last years because of the possibility to
control SW propagation on the nanoscale.7,8 In order to
interpret the frequency dispersion of the propagating SWs
in 2D AD, an analytical model, based on the theory of
propagating SWs in transversely magnetized stripes with
effective width equal to the neighboring holes distance, has
been proposed.7,9 However, this model cannot account for the
presence of magnonic bands and band gaps, the understanding
of which is a key point from a fundamental perspective, but
also for its potential technological applications. MCs are in
fact promising to realize new SW-based devices, such as filters,
waveguides, and magnonic logic circuits, operating in the GHz
frequency range.10 Since the wavelengths of spin waves are
shorter than those of electromagnetic radiation in the GHz
range, dimensions of MCs devices can be scaled down by
several orders of magnitude with respect to photonic devices,
with the advantage that dispersion characteristics are tunable
by variation of the bias magnetic field.

In this Brief Report, we provide the first experimental
evidence together with the first theoretical systematic in-
vestigation for opening of magnonic band gaps in 2D AD

lattice. Opening of band gaps is interpreted in terms of Bragg
diffraction of SWs from the AD lattice, and a quantitative
explanation of this effect is given by studying the behavior
of the internal field. The mode frequencies were measured by
means of Brillouin light scattering (BLS), while band structure
was calculated by using the dynamical matrix method (DMM)
with implemented periodic boundary conditions (PBC) and
band gaps estimated by an analytical approach. We emphasize
that the discussion of bands and band gaps given for this
geometry can be considered general and also applied to
different AD geometries of submicrometric size and magnetic
materials in a saturated magnetic ground state.

A 22-nm-thick Permalloy (Ni80Fe20, Py) film was period-
ically patterned using focused ion-beam into a square lattice
with holes of diameter δ = 120 ± 30 nm, forming an AD array
of periodicity a = 800 nm.7 A scanning electron microscope
image of the sample is shown as an inset in Fig. 1. BLS spectra
are recorded in the backscattering configuration by using
a Sandercock-type high-contrast and high-resolution (3 + 3)
tandem Fabry-Pérot interferometer in the Damon-Eshbach
scattering geometry, where the wave vector q is perpendicular
to H . The laser wavelength is λ = 532 nm. In order to
change the magnitude of the wave vector q, the incidence
angle of light θ is varied. This angle is linked to q by the
relation q = (4π/λ) sin θ . In this Brief Report, we explore
wave vectors up to 2.2 × 105 rad/cm, which corresponds to
the reciprocal space up to the sixth Brillouin zone (BZ). A
magnetic field of magnitude H = 200 Oe, sufficient to saturate
the sample, is applied in the sample plane along the y-axis.

The equilibrium magnetization state, in the presence of such
an applied magnetic field, is calculated with a micromagnetic
code by using typical Py magnetic parameters: 4πMs = 9.4 kG,
γ /2π = 2.95 GHz/kOe, and A = 1.3 × 10−6 erg/cm, where
Ms is the saturation magnetization, γ is the gyromagnetic
ratio, and A is the exchange stiffness constant. With these
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FIG. 1. (Color online) Experimental BLS data (full circles) and
calculated bands (full lines). The thick black curve in the subsequent
BZs represents the main propagating mode of the system. The thin
black curves are replicas of this mode in adjacent BZs. The red/dark
gray curves represent other modes as described in the text. The
dashed vertical lines mark the borders between adjacent BZs. Inset:
scanning electron microscopy image of the periodic array of holes in
Py showing the directions of H and q. The rectangular area (dashed
red lines) indicates the primitive cell.

parameters, the exchange length is lexch = √
A/2πM2

s
∼= 6nm.

Hence, we subdivide the sample into cells (parallelepipeds)
having size �x × �y × �z = 5 nm × 5 nm × 22 nm with a
total of 25,152 active micromagnetic cells in the primitive cell
(supercell) shown in the inset of Fig. 1. Due to the presence
of holes, the distribution of the ground-state magnetization is
non-collinear and exhibits small deviations from the direction
of H close to the ADs. In the calculations, we assume the
dynamic magnetization δmK (r) to take the Bloch wave form,
namely, δmK (r) = δm̃K (r)e i K ·r , where K is the Bloch wave
vector, and δm̃K (r) is the periodic dynamic magnetization,
which represents the solution, for a particular wave vector K
and a given mode, of the DMM eigenvalue problem within the
primitive cell.

In extended magnetic systems like AD arrays studied by
DMM with PBC, in addition to the usual nearest-neighbors
exchange interaction between micromagnetic cells,11 the ex-
change contribution across nearest-neighbors micromagnetic
cells belonging to adjacent surface supercells must be taken
into account. Hence, the exchange energy density of the given
supercell takes the form

Eex = A
∑

i

∑
l

(1 − mi · ml)

a2
il

, (1)

where mi = M i

Ms
(ml = M l

Ms
) is the reduced magnetization in

the ith (lth) cell. The first sum (index i) runs over all the
micromagnetic cells of the supercell; the second sum (index
l) runs over the nearest-neighbors of the ith micromagnetic
cell. The variable ail is the distance between the centers of
two adjacent cells of indices i and l, respectively. When the
ith micromagnetic cell is on one of the edges (vertices) of the
given supercell, the interaction with one (two) micromagnetic
cell(s) belonging to the correct nearest supercell must be added.

Figure 1 shows the measured spin-wave frequencies as
a function of the transferred wave vector, together with the
calculated dispersion curves. BLS spectra consist of series of
discrete peaks, which merge into one for wave vectors larger
than 1.5 × 105 rad/cm. It can be seen that some of the observed
modes exhibit a marked dispersive character, while other
modes have a prevalent stationary behavior, characterized by
an almost constant frequency. According to our calculations,
the detected spin-wave modes can be classified by taking
into account the features of their spatial extension along the
x direction indicated in the inset of Fig. 1. Based on this
observation, we reduce the problem, in a first approximation,
to an effective 1D problem by singling out the dependence
on the Bloch wave vector (along x) and neglecting the less
pronounced oscillation along the y direction. Our model
might thus apply also to the Py waveguide of modulating
width considered in Ref. 3. Within such an approximation, as
illustrated in Fig. 2, two distinct families of propagating modes
can be recognized:

(1) Extended modes spreading in the horizontal “channels”
(along the x direction, parallel to q) exist between adjacent
rows of holes but have a non-vanishing amplitude along the
horizontal rows of holes. These modes are dispersive and
are analogous to the extended surface Damon-Eshbach (DE)
mode of a continuous film.12 However, in this case, a band
gap appears at each BZ boundary both in measurements
and calculations, so that we label the mode with the largest
calculated cross section in the nth BZ as DEnBZ, where n =
1,2,. . ., and it takes the role of a “band index.” At the center
of the first Brillouin zone (1BZ) (q ≈ 0), the DE1BZ mode
corresponds to the uniform precessional mode (Kittel mode),
the spatial profile of which has been measured.7

The frequencies of the calculated modes are shown in the
extended zone scheme, which refers to the transferred wave
vector q = K . For a few modes, the dispersion curves are
also repeated in neighboring BZs in order to mark the normal
modes of large calculated scattering cross sections. The overall
agreement between results of micromagnetic calculations and
BLS measurements is very good apart from an overestimation
of the measured frequencies in the vicinity of K = π/a. In
particular, the calculated band gap at the border of the 1BZ
(K = π/a) between the DE1BZ and the DE2BZ band turns out
to be 0.6 GHz and is in excellent agreement with the measured
one. The band gap between the DEnBZ modes decreases with
increasing n and eventually vanishes for large values of n.
The physical reason underlying the appearance of band gaps
at BZ boundaries is due to the different spatial localization of
the dynamic magnetization as shown in Fig. 2. For example,
at the edge of the 1BZ, the group velocity of both the upper
(DE2BZ) and the lower (DE1BZ) modes vanishes, and these
modes behave as two stationary waves, which differ by a spatial
shift of a quarter of the wavelength. In particular, the amplitude
of the lowest-frequency mode (DE1BZ) has its maxima between
vertical rows of holes in Fig. 2(a). In the horizontal channels,
the spin precession amplitude is proportional to sin (π/a) x.
The DE2BZ mode has its largest amplitude in between the holes
in vertical direction and takes a form proportional to cos (π/a)
x in the horizontal direction.

(2) Localized modes are mainly concentrated along the
horizontal rows of holes (Figs. 2(b) to 2(d)). These modes
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FIG. 2. (Color online) Calculated spatial profiles of representative modes in 3 × 3 primitive cells. The real part of the out-of-plane
component of the dynamic magnetization is plotted. For each mode, regions of large precession amplitudes are indicated. The corresponding
wavelengths at different high-symmetry points are also shown. A reference frame with the directions of H and q is also shown.

exhibit a pronounced localized spatial profile13 and resemble
the weak dispersive resonances observed in chains of magnetic
dots.14 They are therefore labeled as DEloc

nBZ modes, where the
label “loc” emphasizes their localized character along rows
of ADs. The dispersion of these modes is less pronounced if
compared to those observed for the extended modes, due to
the spatial localization. Note that in such a case, the agreement
between the measured and the calculated frequency bandwidth
(BW) is quite good, except for the lowest bands of localized
modes. This discrepancy is attributed to possible variation of
the hole diameters in the real AD.

Eventually, in addition to the aforementioned families of
extended and localized modes, we find, at very low frequency,
the so-called edge mode (EM).15 This mode exhibits a weakly
dispersive behavior, due to its strong spatial localization in the
regions adjacent to edges of ADs, where the internal field is
highly inhomogeneous. The calculated band has a width of
about 0.4 GHz and is slightly downshifted with respect to
the experimental data. This difference is ascribed to the
presence of imperfections at the border of the holes or to
its imprecise discretization in the used model, which strongly
affect the frequency of the EM.

As a final step of our investigation, we developed an
analytical model to estimate the band gaps, in analogy
to the well-known case of Bragg reflection of electrons
in a periodic potential.16 To achieve this goal, we first
estimate the mean internal field acting on precessing spins via
〈Hy

int (x)〉 = 1
Ny

∑
Ny

H
y
int (x,y) by averaging over a relevant

number Ny of micromagnetic cells along y direction using the

OOMMF micromagnetic code.17 In particular, H
y
int (x,y) =

H + H
y

dem (x,y) , where H
y

dem is the y-component of the
demagnetizing field Hdem. Note that the contribution of the
static exchange field is negligible. (To reproduce the internal
field of the periodic system in a realistic way, we have
simulated a 5 × 5 AD system, corresponding to 664 × 664
micromagnetic cells.)

The mean internal field 〈Hy extended
int (x)〉 experienced by

extended modes is estimated by averaging over the total
number of micromagnetic cells of the primitive cell along the
y direction (Fig. 3). For localized modes, instead, the average
〈Hy loc

int (x)〉 is performed over 28 cells in the y direction,
corresponding to their region of localization at the border of
BZs (Fig. 3). As it can be seen in Figs. 3(a) and 3(c), both
〈Hy extended

int (x)〉 and 〈Hy loc
int (x)〉, respectively, have periodical

oscillations with maxima corresponding to the hole lattice. As
illustrated in Fig. 3(e), in fact, Hdem inside the holes is aligned
with H due to the opposite uncompensated distribution of
surface “magnetic charges” in the holes with respect to that of
the magnetic material in which the holes are embedded.

In order to derive a simple analytical formula for band
gaps showing the role of the internal field for opening of
band gaps, it is reasonable to describe approximately the
mean internal fields 〈Hy extended

int (x)〉 and 〈Hy loc
int (x)〉 by a

periodic rectangular function, which is maximum in corre-
spondence with ADs (region 1 [1]:− δ

2 + n1a � x � δ
2 + n1a)

and minimum between the ADs (region 2 [2]: n1a + δ
2 � x �

[n1 + 1] a − δ
2 ) with n1 = 0,±1,±2,. . .. Therefore, 〈Hy (1)i

int 〉 =
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the channels. (b) Corresponding periodic rectangular function. The values of the internal field indicated by the arrows in regions 1 and 2 are
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to (d) localized along rows of holes. (d) Approximation of (c) using a rectangular function. (e) Sketch of the AD lattice with two holes (white)
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shown.

H + 〈Hy (1)i
dem 〉 (〈Hy (2)i

int 〉 = H + 〈Hy (2)i
dem 〉) (i = extended, loc),

and values of the mean internal field are obtained by the
OOMMF simulations and assumed constant in each of the
two regions [Fig. 3(b)–3(d)]. Since we are dealing with a
periodic system, the mean internal field can be expressed
as a Fourier expansion over the reciprocal lattice vectors,

namely 〈Hy
int (x)〉 = H 0

int
2 + ∑∞

k=1 Hk
int cos 2k π

a
x, where Hk

int is
the kth Fourier component, and k = 1,2,. . . (the superscript
y is omitted on the right-hand side). It can be shown that the
band splitting between a given couple of modes or band gap is
proportional to the k-Fourier component of 〈Hy

int (x)〉, viz.

Hk
int = 2

a

∫ a
2

− a
2

〈
Hy

int
(x)

〉
cos

2k π x

a
dx. (2)

If compared to the dynamic exchange and dipolar fields,
the difference of the mean internal field experienced by spin
modes between the two regions can be considered as a small
perturbation. Hence, we get according to perturbation theory

�νk i ≈ γ /2π
(
2
∣∣Hk i

int

∣∣Ms

)1/2 , (3)

with

Hk i
int = 2

kπ

(〈
H

y(1)i
int

〉−〈
H

y (2) i
int

〉)
sin

kπ δ

a
, i = extended,loc.

(4)

In Eq. (3), �νk i = νk i
n+1 − νk i

n is the frequency splitting
at the border of BZs with n = 1,2,. . .. The DE2BZ mode
exhibits its maximum precession amplitude in region 1, where
〈Hy extended

int 〉 is larger and has thus a larger frequency. Instead,
the maximum precession amplitude of the DE1BZ mode is in
region 2, where 〈Hy extended

int 〉 is smaller, and the mode has thus
the smaller frequency. Similar features are found also for the
DEloc

2 BZ and DEloc
1 BZ modes. A comparison between the band

gap measured by BLS and the values calculated according to
Eqs. (3) and (4) and by means of DMM is shown in Table I. The
overall agreement is very good apart from an underestimation
of the BLS observed band gap between the DEloc

2 BZ and DEloc
1 BZ

modes, extracted from both analytical and DMM calculations.
Band splitting vanishes, as expected, in the continuous film
limit, namely for δ

a
→ 0. Fourier coefficients Hki

int decrease
with increasing k, leading to the narrowing of higher-order
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TABLE I. Frequency band gaps calculated either at the border
of the 1BZ (k = 1) or at the border of the 2BZ (k = 2) for the
most representative spin modes. Each couple of modes is indicated in
parentheses. The corresponding observed BLS frequency band gaps
are also shown.

�νk (GHz) DMM Analytical BLS

�ν1 (DE2BZ ÷ DE1BZ) 0.60 0.67 0.6
�ν1

(
DEloc

2BZ ÷ DEloc
1BZ

)
1.01 1.11 1.6

�ν2
(
DEloc

3BZ ÷ DEloc
2BZ

)
0.98 0.96 0.9

band gaps and confirming the trend found by means of DMM
calculations.18

From the previous analytical description, it is clear that
the occurrence of band gaps at the BZ boundaries can be
interpreted as due to the Bragg diffraction for propagating
SWs, because of the presence of the artificial periodicity of
the internal field, which gives rise to a counterpropagating
“Bragg-reflected” wave. However, it is important to notice that,
according to Eqs. (3) and (4), the relevant scattering potential
for Bragg reflection is not provided by the holes themselves,
but by the concomitant internal field inhomogeneity between
holes.

The main outcome of our model is consistent with Bragg
reflection effects studied on an individual magnonic waveguide
in Ref. 3, where the width was modulated periodically. There,
the observed spin-wave rejection frequency band has been
attributed to both internal field inhomogeneities and periodic
confinement effects in the transverse direction due to the
narrow stripe regions. To quantify the band gaps in our
model, we consider only the field inhomogeneity and not
the confinement. The 2D architecture of the nanopatterned
antidot lattice has already been shown to support coherent
coupling of unit cells in the transverse direction, counteracting
confinement effects.19

Bragg reflection due to inhomogeneities between holes is
fundamentally different from the case of Bragg reflection
of light and electrons in corresponding AD lattices and
artificial crystals.20,21 Finally, it is interesting to note that
the eigenfunctions representing frequency modes at the BZs
boundaries belonging to nth and (n + 1)th band (sin [kπ/a]
x and cos [kπ/a] x, with k = 1,2, . . . , respectively) are
interchanged with respect to those of electrons in electronic
bands studied within the nearly free electron model. This can
be understood taking into account that the periodic mean
internal field has its maxima in correspondence with ADs,
while the periodic electronic potential is minimum close to
the nuclei and vice versa. Moreover, also the BWs behavior
vs the Bloch wave vector is opposite with respect to the
electronic case for the range of wave vectors explored in the
measurements: BWs in magnonic AD lattice decrease with
increasing Bloch wave vector, while electronic BWs increase.

In conclusion, the band structure of collective modes for
a 2D magnetic array of ADs was determined by using a
micromagnetic approach, achieving a very good agreement
with BLS experimental results. It has been shown that, in
addition to extended modes propagating along channels of
ADs, there exists another kind of back-reflected propagating
modes mostly localized along rows of ADs. Band gaps are
interpreted in terms of Bragg reflection according to an
analytical model. To this respect, AD behaves not only as
waveguide for SWs, but the presence of band gaps permits the
frequency of traveling excitations to be filtered.

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under Grant Agreement No. 228673
(MAGNONICS) and under Grant Agreement No. 233552
(DYNAMAG).
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