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We study the spin dynamics in arrays of densely packed submicron Ni80Fe20 wires which form one-dimensional
magnonic crystals. They are subject to an in-plane magnetic field H being collinear with the wires. In the case
when neighboring wires are magnetized antiparallel, broadband spin-wave spectroscopy reveals a mode repulsion
behavior around a certain field Hmr. We attribute this to dipolar coupling and avoided crossing of resonant modes
of individual wires. The modes are found to hybridize across the array and form acoustic and optical modes.
When an array of alternating-width wires is considered, Hmr is found to vary characteristically as a function of
the width difference �w of neighboring wires. Interestingly, the sign of Hmr reflects the orientation of the wires’
magnetization. For our devices we find experimentally frequency splittings δf on the order of 1 GHz between the
acoustic and optical mode. We use micromagnetic modeling to analyze spin precession profiles and investigate
the hybridization of modes. The simulated splitting is larger than the observed one. We attribute the discrepancy
to a reduced dipolar coupling in the real samples. Using a theoretical model which considers the reduced dipolar
coupling we analyze δf for different geometrical parameters such as the edge-to-edge separation a and the width
difference �w. Though relevant for Hmr, �w is not decisive for δf . Instead, a is key for the frequency splitting.
The results are relevant in order to tailor the dynamic response and band structure of magnonic crystals.
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I. INTRODUCTION

Nanostructuring of materials allows one to form cavities
and confine different kinds of waves such as electromagnetic,
plasmon, or spin waves depending on the material properties.
The usual strategy to tune the frequency of a cavity-based
oscillator is to vary its geometry which in turn varies the
wavelength of a standing wave in the cavity. For spin waves the
patterned magnet itself functions as a cavity. The resonance
can be tuned not only by the specific geometry,1 but also
by varying the magnetization,2 the applied magnetic field,3

and magnetic history.4 Importantly, nanomagnets represent
resonators of open type, which means that their fields are
not confined completely inside the magnetic material: A
significant microwave magnetic field is present also in the
space around them. This allows for coupling of neighboring
oscillators and formation of collective spin-wave (magnonic)
modes in periodic arrays of such elements. For the latter
property periodic arrays of magnetic nanoelements are termed
magnonic crystals (MCs).5 Recently, a periodic array of
densely packed magnetic nanowires has been found to form
an MC where the band structure is reprogrammed by the
in-plane magnetic field H .6 In the long wavelength limit
(i.e., for small wave vectors k), a field-dependent mode
repulsion with a frequency splitting δf ≈ 1 GHz has been
observed around H = 0 when neighboring wires experienced
an antiferromagnetic order (AFO). Following Ref. 6 this
frequency splitting δf is a measure of the bandwidths of the

two lowest allowed magnonic minibands in case of symmetric
nanowires. The microscopic origin of the frequency splitting
and its characteristic field dependence was not discussed. Only
very recently Ding et al. presented a thorough study on dipolar
coupling of short nanowires. They reported a hybridization of
modes where, both the static and dynamic dipolar coupling
governed the eigenfrequencies and field dependencies.7 The
dynamic response was found to be very sensitive to the width
difference �w of neighboring wires. However, the upper mode
of the field-dependent mode repulsion observed earlier in
Ref. 6 did not show up experimentally (cf. Fig. 1 in Ref. 7).
Further studies are needed to elucidate the hybridization of
coupled oscillators in magnonic crystals. In this paper we
investigate very long nanowires with, in particular, �w �= 0
where static dipolar coupling is not decisive. Using broadband
spin-wave spectroscopy, micromagnetic simulations, and fur-
ther theoretical modeling we find that the dynamic dipolar
coupling leads to the experimentally observed repulsion of
two modes which we attribute to a field-controlled avoided
crossing due to hybridized magnonic excitations. We find
that the frequency splitting δf to depend crucially on the
edge-to-edge separation a but not on the width difference �w.
The findings are important for magnonics8 where one aims at
tailoring allowed minibands and frequency gaps in MCs.

This paper is organized as follows. In Sec. II we describe
the experimental techniques that we used to fabricate and
investigate the nanowire arrays. Section III outlines the micro-
magnetic modeling and theoretical approaches. Experimental
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results obtained for major and minor hysteresis loops are
presented in Sec. IV. In Sec. V we perform data analysis
and compare the experimental data with theoretical results.
We conclude in Sec. VI.

II. EXPERIMENTAL TECHNIQUES:
NANOLITHOGRAPHY AND SPIN-WAVE

SPECTROSCOPY

Nanowire arrays were prepared on semi-insulating sub-
strates. We used substrates of either [100] Si covered with
300-nm thick SiO2 or [100] GaAs. Both substrates provided
excellent surface quality and a high dielectric constant. A
PMMA 50k/950k double-layer resist and thermal evaporation
of Ni80Fe20 (Permalloy) were utilized to create nanowires by
lift-off processing.6,9–11 In this paper we will discuss in detail
sample A. A sketch and a scanning electron microscopy (SEM)
image of this sample are shown in Fig. 1. Sample A consists
of 200 pairs of 160-μm-long wires with alternating widths
w1 = 370 nm, w2 = 315 nm, and an edge-to-edge separation
of a = 100 nm. Due to the shape anisotropy the magnetization
M of each wire aligns preferentially with the long (easy) axis
of the wire. The wires are thus bistable. The width difference
�w = w1 − w2 is just 55 nm (i.e., the widths differ by a factor
of only 1.17). The width difference is smaller by an order of
magnitude if compared to the MC considered in Ref. 12 and
similar to the study performed on short nanowires.7 Atomic
force microscopy reveals a thickness of t = 25 nm for sample
A. The saturation magnetization is μ0Ms = 1.02 T as deter-
mined from a ferromagnetic resonance characterization of an
unpatterned reference film. All wide wires are interconnected
at one end via a 5-μm-wide orthogonal stripe [Fig. 1(c)]. A

FIG. 1. (Color online) (a) Sketch of the experiment. The nanowire
array is located underneath a coplanar waveguide with two ground
(G) and one signal line (S). (b) Side view of a sample showing the
layered structure. (c) Layout and SEM image of sample A. Each
period of this structure contains two wires of different widths. The
difference in wire widths is �w = 55 nm. Note the presence of a
reversal pad for sample A. Its purpose is to narrow the distribution
of the the switching fields for the wide wires. The bright area in the
SEM image is a part of the CPW (bottom at the right).

50 � coplanar waveguide (CPW) on top of the ferromagnetic
sample is used to excite and detect spin waves [Fig. 1(a)].
The CPW’s central conductor is 10-μm wide and is oriented
parallel to the wires long axis, that is, along the easy-axis
direction [Fig. 1(b)]. The CPW was fabricated using electron
beam lithography. We utilized a PMMA 600k resist and
thermal evaporation of a 150-nm-thick trilayer of Cr/Ag/Au.
The ferromagnetic wires and CPW are electrically isolated
from each other by a 100-nm-thick layer of SiO2. We use
a vector-network analyzer (VNA) as a source and a detector
in a broadband spin-wave spectroscopy experiment.13,14 The
VNA measures the transmission of microwaves from 10 MHz
to 26.5 GHz through the CPW with an accuracy of 0.5 ×
10−3 dB. We apply a small microwave power of −10 dBm
to ensure the linear regime of spin-wave excitation. At such
a low power the magnetic rf field amplitude around the
CPW is smaller than 0.1 mT which is well below the onset
of nonlinear effects.10,15,16 Our study is thus different from
Ref. 17 where nonlinear hybridization was addressed. When
the microwave frequency matches the eigenfrequency for a
spin-wave resonance a drop in the transmission is observed.
This is caused by resonant absorption of microwave power by
the precessing magnetization M due to the torque τ ∝ M × hrf

where hrf is the microwave magnetic field. We normalize
each spectrum by a reference spectrum obtained at a field of
90 mT applied in a direction perpendicular to the wires. Here
τ is at a minimum and the frequency-dependent response of
the CPW itself is measured. By this means we increase the
signal-to-noise ratio of spin-wave resonances.13 As the CPW
width is 10 μm and large compared to the periods of the
arrays we probe long-wavelength spin waves (i.e., ones with
wave numbers close to k = 0). Spectra are taken using the
measurement protocol as follows: (i) A magnetic field is
applied to define the magnetic history; (ii) the “measurement”
field H is applied parallel to the wires; (iii) the microwave
transmission T (f ) is measured; (iv) a reference field of
+90 mT is applied perpendicular to the wires; (v) the reference
transmission Tr (f ) is measured; (vi) the ratio T (f )/Tr (f ) is
calculated. Steps (i)–(vi) are repeated for different H . We note
that the excitation is not completely zero in step (iv) as the
microwave field couples weakly to edge modes of the wires.
We have chosen a moderate value of +90 mT as a reference
field to position the corresponding resonance frequency below
the frequency regime taken by the avoided crossing addressed
in the present paper.

III. THEORETICAL APPROACHES AND MODELING

To develop an understanding of the mode repulsion and
field-dependent avoided crossing it is instructive to start the
theoretical analysis from a phenomenological analytical model
for uncoupled wires. For this we calculate eigenfrequencies f

following the formalism of Ref. 18. This theory assumes that
a standing spin wave is formed across the wire width due to
the geometrical confinement. As a result of the confinement
the wave vector kt which is directed perpendicular to the wire
edges is quantized. The standing waves are Damon-Eshbach
(DE) spin waves whose behavior in the confined geometry
is strongly affected by the dynamic demagnetization. The
demagnetization introduces an effective dipolar pinning of
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the dynamic magnetization at the edges. The strength of the
effective pinning determines the discrete values of kt for the
standing waves. Depending on the width w the value kt changes
and thereby the eigenfrequency.

Furthermore we use micromagnetic simulations to shed
more light on the excitations in the coupled nanowires.
The simulations are based on the OOMMF software.19 The
material parameters are μ0Ms = 1.02 T, A = 13 × 10−12 J/m
(exchange constant), and γ = 176 GHz/T (gyromagnetic
ratio). We approximate our sample A by considering 15 unit
cells each of which consists of two wires with in-plane
sizes extracted from scanning electron microscopy and atomic
force microscopy images. A larger number of unit cells does
not change the simulation results. The simulated segment
has a dimension of �x × �y × �z = 13276 × 4 × 24 nm3.
It is discretized in cells of 4 × 4 × 4 nm3. The segment
is continued periodically in the y direction using periodic
boundary conditions.20 The wires are thus assumed to be
infinitely long in the y direction such that static dipolar fields
do not play a role. The direction of M for each of the 30
simulated wires is set prior to the simulation in agreement
with the ferromagnetic order (FMO) and AFO states. The spin
precession is excited by a field pulse with hrf = (0.7,0,0.7) mT.
The full width at half maximum of the pulse is 2.5 ps.
Fast-Fourier transformation of the time evolution of M results
in a spectra of frequencies of eigenexcitations. For this the
simulation time covers a time period of 5 ns after which
the precession amplitude is almost zero due to damping and
allows for artefact-free zero padding to 21 ns. We analyze
the time-dependent data starting from 0.5 ns after the pulsed
excitation. Such data also provide us with spatial profiles of the
eigenmodes. Field dependencies of the eigenfrequencies and
spin-precession profiles are extracted from the spin dynamics
for the innermost unit cell to avoid boundary effects.11 Because
of the large ellipticity of precession in thin metallic films we
make use of the in-plane component of dynamic magnetization
for the illustration purposes.

A more detailed theoretical analysis will be performed
using the numerical model from Ref. 12. This software numer-
ically solves an eigenvalue problem for an integro-differential
equation. This equation follows from the linearized Landau-
Lifshitz-Gilbert equation. This equation is derived specifically
for the quasi-one-dimensional geometry of a periodic array
of parallel nanowires of infinite length. The modeling is thus
efficient to analyze the formation of the avoided crossing and
frequency splitting for a broad range of parameters. In con-
trast to the standard OOMMF software the integro-differential
equation model is formed to incorporate a parameter lc which
can account for a reduced strength of the dipolar coupling. The
approach thus includes a phenomenological parameter which
corresponds to the length over which the dipolar coupling in
the array is effective. The physical meaning of this parameter
is the distance between the source of the dynamic dipole field
and the point of its observation at which the strength of dipolar
coupling is reduced by a factor of 1/e due to imperfections of
the real sample if compared to the ideal one. The value of lc
is extracted by fitting experimental data with the model. For
further details we refer to Ref. 5. Originally the parameter was
called “coherence length” when used to describe the results
of Brillouin light scattering experiments where data showed

systematically smaller bandwidths of the allowed miniband
at low frequency if compared with a modeling assuming
long-range dipolar coupling over the whole array. In the case
of all-electrical spin-wave spectroscopy at long wavelengths
or ferromagnetic resonance experiments it is instructive to
call this parameter “dipolar coupling length,” as the phase
coherence of precession is imposed by the uniformity of the
microwave driving field.

IV. SPIN-WAVE SPECTRA FOR MAJOR AND MINOR
HYSTERESIS LOOPS

For an array of q bistable wires, each of which is magnetized
uniformly, in principle 2q different magnetization configu-
rations (magnetic ground states) are possible. We discuss
only two periodic arrangements, that is, the ferromagnetic
order, for which magnetization vectors M in all wires are
aligned in the same direction, and the antiferromagnetic order,
for which neighboring wires are magnetized antiparallel.
These configurations are sketched in Fig. 2(a) and can be
set by a tailored magnetic field history in step (i) of the
measurement protocol. This has been demonstrated in Ref. 6.
Disordered states of nanowire arrays have been addressed
in Ref. 21 recently. To improve the degree of ordering for

FIG. 2. (Color online) (a) Illustration of antiferromagnetic (AFO;
left) and ferromagnetic order (FMO; right). Arrows mark the direction
of M for each wire. (b) Magnetic hysteresis for sample A. Small
arrows mark the sweep directions when taking the MOKE data.
Spin-wave spectra (grayscale plots) of sample A obtained (c) after
initial saturation at +50 mT parallel to the wires and (d) after applying
+50 mT and −12 mT. For −12 mT < μ0H < +8 mT the AFO is
stable. In this field regime the spectra of (c) and (d) are markedly
different. Dark color in (c) and (d) represents absorption. In (d)
we indicate Hmr for mode n = 0 (i.e., the position of the frequency
maximum of the intense low-frequency mode). Above 10 GHz the
contrast has been enhanced. The horizontal white lines at 5.9 GHz in
(c) and (d) reflect the excitation of the edge modes at the reference
field of +90 mT applied perpendicular to the wires. Since all data are
normalized to the same reference data set the edge excitation shows
up as a constant white line. The vertical dotted line in (b) indicates
the starting field of −12 mT when taking spectroscopy data shown
in (d). We replot the vertical dotted line in (d). The horizontal large
arrows in (b) and (d) indicate the two different sweep directions when
taking the spectroscopy data shown in (d).
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the AFO state, sample A is equipped with the 5-μm-wide
reversal pad (RP). This RP is introduced to synchronize the
magnetization reversal of the wide wires and to narrow the
distribution of switching fields. In Fig. 2(b) we show the
hysteresis loop of sample A. This is obtained by measuring
the longitudinal magneto-optical Kerr effect (MOKE). The
laser-spot diameter is about 100 μm such that the data reflect
the magnetic behavior averaged over many periods of the
array. The hysteresis loop is subdivided into three regimes:
(1) magnetic saturation, (2) a narrow field region with a
sharp drop in the magnetization, and (3) a wide region where
the total magnetization of the sample varies gradually as a
function of H . Coming, for example, from positive H the
total magnetization remains constant at M/Ms = +1, that
is, the array is in the FMO state. This state holds down
to μ0H ≈ −10 mT. Then a relatively sharp jump occurs
ending at M/Ms slightly below zero. This irreversible process
represents the switching of a large number of wires. Between
−10 mT and −25 mT (shaded region) the magnetization varies
monotonously until saturation at M/Ms = −1 is reached. This
kind of hysteresis loop has previously been reported for a wire
array in Ref. 22. The irreversible process in the narrow field
regime around −10 mT is attributed to the wide wires attached
to the RP which supports synchronized domain nucleation for
the wires reversal. The AFO state is formed in this way. The
narrow wires switch at larger magnitudes of the applied field
and do so over a wider field range, owing to the statistical
distribution of the individual switching fields. Obviously, the
AFO state with a high degree of antiferromagnetic ordering of
neighboring nanowires is at the low-field sides of the shaded
regions (i.e., right after the sharp jump in the hysteresis curve).

Spin-wave spectra obtained when decreasing the applied
field from positive saturation at +50 mT are displayed in
Fig. 2(c). For fields larger than −10 mT we observe three
families of resonance peaks. These are labeled RP, n = 0, and
n = 2. The resonance at very low frequency is consistent with
the one for a transversely magnetized 5-μm-wide magnet.23

This peak is attributed to the RP. This resonance is not relevant
to our study and will not be discussed in the following.
In the FMO state at μ0H > −10 mT each of the families
n = 0 and n = 2 consists of a pair of resonances. One sees
that in each pair the lower-frequency peak is of significantly
larger intensity than the higher-frequency one. At −10 mT
we observe a discontinuous jump in the frequencies of both
pairs. This field is consistent with the synchronized switching
field of the wide wires, as extracted from the MOKE data
[Fig. 2(b)]. Thus, this jump marks the transition to the AFO
state. (Note that, consistently, at nearly the same field the
resonance of the RP regains a large intensity for decreasing
H .) For −20 mT < μ0H < −10 mT the spectra are richer in
Fig. 2(c). We find branches with opposite slopes ∂f/∂H as
a function of H (i.e., positive and negative ∂f/∂H ). Below
−20 mT the two resonance pairs n = 0 and n = 2 are visible
again. They have a common slope ∂f/∂H and a behavior
which is mirrored if compared to the data at large positive H .
This behavior is thus consistent with the reversed FMO state.

We now study in detail the AFO state. To this end we
perform a measurement inside a minor hysteresis loop. After
first saturating the sample in the magnetic field +50 mT and
then decreasing the field down to −12 mT, the sample is set to

the AFO state. The data taken after this magnetization history
[Fig. 2(d)] look markedly different from Fig. 2(c). The largest
difference is observed for the field range −12 mT < μ0H <

+8 mT, where one observes extra branches whose frequencies
vary nonmonotonously with the applied field in Fig. 2(d). The
nonmonotonic behavior of resonance frequencies is consistent
with the AFO ground state.6,12 This suggests that the AFO
state is stable over this field range. At +8 mT we observe a
discontinuous jump in the spin-wave frequencies and for larger
fields the two pairs n = 0 and n = 2 are found which exhibit
the same positive slope ∂f/∂H . This indicates the transition
to the FMO state at +8 mT. For fields below −20 mT we find
the reversed FMO state.

From comparison of Figs. 2(c) and 2(d) it becomes evident
that the AFO state is characterized by a very specific shape
of f (H ) dependence. The main feature of this dependence
is the nonmonotonic character with extrema for each branch
near H = 0 (either a minimum or a maximum). The lowest
branch (with the largest intensity) has a negative curvature
and a maximum frequency of f = 5.95 GHz which is found
at μ0Hmr,0 = −5 mT. The higher-frequency mode of weak
intensity of the resonance pair n = 0 has a positive curvature
and a frequency minimum of 7.2 GHz at μ0Hmr,0. In Ref. 6
this behavior was identified as a mode repulsion. At −5 mT
the frequency splitting amounts to δf = 1.25 GHz. The small
signal-to-noise ratio and the finite linewidth of the resonances
which belong to the resonance pair n = 2 do not allow us to
infer, whether branches of opposing slope cross or repulse at
μ0Hmr,2 = −9.5 mT. A detailed analysis of Fig. 2(d) shows
that the AFO state is not perfect at −12 mT. There is a
further weak mode for μ0H < −5mT which merges with the
FMO branch at large negative fields. We attribute this to some
parasitic FMO domain similar to the one recently observed in
Ref. 21.

For comparison and reference we consider now exper-
imental results obtained on further nanowire arrays. One
array (sample B) was fabricated on GaAs and consisted of
450 180-μm-long wires with w = w1 = w2 = 300 nm. Thus
sample B exhibited �w = 0. The edge-to-edge separation
a = 100 nm was the same as for sample A. Its thickness
was t = 20 nm and saturation magnetization μ0Ms = 1.12 T.
Spectra obtained on sample B were presented in detail in Ref. 6
and will not be repeated here. For this sample we observed a
mode repulsion in the AFO state with δf = 1.05 GHz for
the pair n = 0. The value was found near μ0Hmr,0 ≈ −1 to
−2mT. A further sample consisted of 10 w = 300-nm-wide
wires with a large separation a = 700 nm. Its thickness was
t = 20 nm and μ0Ms = 1.11 T. Such a device was utilized as
a reference sample. The large separation and small number of
wires reduced the dipolar interaction to a minimum. It did not
exhibit the interaction effects considered in this paper and will
therefore not be discussed further.

V. DATA ANALYSIS AND DISCUSSION

We now discuss the microscopic origin of the mode
repulsion observed as a function of in-plane field H in the
AFO state. We will start with a phenomenological analytical
model for uncoupled wires (i.e., uncoupled oscillators). Then
we will present the micromagnetic simulations where the
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long-range dipolar coupling is included. In the last part of
the section we discuss the solution of an eigenvalue problem
for an integro-differential equation which is derived from the
linearized Landau-Lifshitz-Gilbert equation. Here we consider
a reduced dipolar coupling strength.

A. Results from the analytical model

In Fig. 3(a) we show eigenfrequencies f calculated for the
two uncoupled nanowires of different widths w1 = 370 (black
curves) and w2 = 315 nm (gray curves) following Ref. 18.
The full (broken) lines are for wires where M points in the
right (left) direction. Here, we assume that a positive field H

points to the right. We show data for two different eigenmodes
n = 0 and n = 2. The integer number n equals the number of
nodal planes which extend along the long axis of the wire. We
find that a mode with n = 0 (i.e., the fundamental mode) is
about 5 GHz below a mode with n = 2. For every mode order
n the narrow wire exhibits an eigenfrequency which exceeds
the respective frequency for the wide wire by about 0.5 GHz.
The difference in eigenfrequencies is consistent with experi-
mental data obtained on noninteracting nanowires of different
width.11

Consider now a periodic array with alternating-width
nanowires. If there is no dynamic dipolar coupling between
the wires of different widths the eigenfrequencies of Fig. 3(a)
are still a solution for such an array. If static magnetization
vectors for all wires are co-aligned the resonances in the two
different types of wires are well separated in frequency. They
shift in parallel as a function of the field H and do not cross
(full lines in the figure). The respective FMO configuration is

FIG. 3. (Color online) (a) Field dependence of eigenfrequencies
of individual nanowires with w1 = 370 nm (black lines) and w2 =
315 nm (gray lines). The full (broken) lines are for M pointing to the
right (left). [A positive (negative) field H points to the right (left).]
The low-frequency (high-frequency) branches belong to the families
of modes n = 0 (n = 2). The field dependencies are calculated
following Ref. 18. (b) Four different configurations labeled I–IV of H
and M for sample A. Letters I–IV in (a) refer to these configurations.
(c) Crossing fields for Case III in (a) calculated as a function of
width difference �w for w1 = w2 + �w and w2 = 315 nm. Symbols
denote the respective fields Hmr (absolute values) for samples
A and B.

given by the two panels I and IV in Fig. 3(b). However, when
neighboring wires are magnetized in an antiparallel manner,
the slopes ∂f/∂H of the respective f (H ) characteristics are of
opposite signs for the two types of wires, since for the wires
magnetized in the negative direction the f (H ) dependencies
are falling [broken lines in Fig. 3(a)]. Thus, field-dependent
resonances of the oscillators can now cross. The field position
Hcr of a crossing depends on the magnetization configuration:
It is either at a negative field [AFO state II in Fig. 3(b)] or a
positive field [AFO state III in Fig. 3(b)]. The sign of Hcr is
found to reflect the direction of M in the wide wires. In Fig. 3(c)
we show the calculated variation in |Hcr| with �w for modes
n = 0 and 2. We assume w1 = 315 nm + �w. The fields Hcr

for branch crossings shift to larger values with increasing �w.
We also place the experimentally measured fields Hmr for
n = 0 and n = 2 into the picture (symbols). Strikingly, we
find that the field positions |Hmr| taken from Fig. 2(d) coincide
with the calculated field positions Hcr of crossing branches
predicted for uncoupled wires of width w1 = 370 nm and
w2 = 315 nm. The measured fields Hmr,0 and Hmr,2 of sample
B with �w = 0 agree well also.24

B. Results from the micromagnetic simulations

Simulated spin-wave spectra for the FMO state of sample A
are shown in Fig. 4(a). We find resonance pairs n = 0,2,4 . . .

of positive slopes ∂f/∂H . Each pair consists of resonances
where the lower-frequency (higher-frequency) one has a strong
(weak) intensity. This agrees with the experimental data shown
in Fig. 2(c) for μ0H > −10 mT. We will focus on two pairs
at small frequencies and label them with (n = 0,a), (n =
0,b), (n = 2,a), and (n = 2,b). In Figs. 4(b)–4(e) we show
simulated spin precession profiles across the unit cell for these
four resonances. At H = 0 we find a large spin precession
amplitude in the wide (narrow) wire for (n = 0,a) [(n = 0,b)].
For each of these resonances the other wire of the unit cell is
less excited by hrf . Note that in Figs. 4(d) and 4(e) the large
spin precession amplitude remains located in one and the same
wire of the unit cell for the whole range of H . Inside each wire
there is just a single wave crest. The spin precession profiles
resemble confined DE spin waves with no nodal plane which
identifies them as n = 0 modes (consistent with our labeling).
The fact that the wires of different width in the unit cell both
exhibit a considerable spin precession amplitude at the same
frequency is a sign of dipolar interaction between them. Note
that the frequency separation between modes of the individual
wires is predicted to be as large as 0.5 GHz which is large if
compared to the linewidth of the individual resonances. In the
noninteracting case there would be no frequency overlap. Thus,
for uncoupled (i.e., noninteracting) wires one would expect a
noticeable spin precession amplitude only in one of the wires,
because the resonance frequencies differ for uncoupled wires
due to the difference in widths [Fig. 3(a)] [c.f. Fig. 4 in Ref. 11].
Importantly, the collective resonances in Figs. 4(d) and 4(e)
differ by the value of phase difference (not shown): For the
mode at the lowest frequency (n = 0,a) the oscillations in both
wires are in-phase. For the mode (n = 0,b) the oscillations are
antiphase. This is a signature of hybridization of the resonance
modes of individual wires: The dipolar interaction creates a
doublet which consists of an acoustic (in-phase oscillation) and
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FIG. 4. (a) Field dependence of eigenfrequencies f simulated
for sample A in the ferromagnetic order (FMO) state. Black
color indicates spin-wave resonances. (b)–(e) Corresponding spin
precession amplitudes for the two resonance pairs n = 0 and n = 2
across the width of the wires. Black (light gray) denotes a zero
(large) precession amplitude. The white horizontal stripes mark
the nonmagnetic space between nanowires. We show the variation
of spin precession amplitudes as a function of applied field H .
(f) Eigenfrequencies f in the antiferromagnetic order (AFO) state
and (g)–(j) spin precession profiles for the modes as indicated in the
graphs. In (a) and (f) the contrast in the grayscale plots is increased for
f > 10 GHz. In (b)–(e) and (g)–(j) the wide wire is at the top of each
graph. Note that the labeling n given in the right panels refer to the
situation around μ0Hmr,0 = −5mT. In general, the panels illustrate
the profiles attributed to the fourth (g), third (h), second (i), and first
(j) branch of Fig. 4(f) if the resonances at a given field are numbered
by one to four starting from the one of lowest frequency for each
value of H given on the x axis.

optical (antiphase oscillation) mode. The antiphase oscillation
provides the smaller integral signal due to a smaller net
magnetic moment and a smaller net dynamical stray field.
In Figs. 4(b) and 4(c) we display the behavior of (n = 2,b)
and (n = 2,a), respectively, where nodal lines occur in the
spin precession profiles. Again one finds that the large spin
precession amplitude is in the wide (narrow) wire for the
lower-frequency (higher-frequency) branch. We do not discuss

and observe modes with n = 1,3, . . . due to the symmetry of
the excitation field in the simulation and experiment.

In Fig. 4(f) we show simulated spectra for the AFO state
of sample A. In the simulation the state is stable over a wider
field range than in the experiment. Field-dependent spin-wave
profiles are depicted in Figs. 4(g)–4(j). The spectra are very
different from the ones of the FMO state and display a number
of mode repulsions. The field μ0Hmr,0 is found to be −5 mT
consistent with the experiment. The splitting δf between (n =
0,a) and (n = 0,b) at μ0Hmr,0 = −5 mT amounts to 2.2 GHz.
Note that the labeling n given in Figs. 4(g)–4(j) refer to the
situation around μ0Hmr,0 = −5mT. This is the field regime
which we focus on. At large positive fields the simulations
predict further avoided crossings between higher order modes.
These interesting features rest to be explored experimentally.
Here the labeling would be different. In our sample the AFO
state was not stable in this field regime of large positive H and
we will not discuss such avoided crossings.

We analyze the mode (n = 0,a) in Fig. 4(j) and find that
the precession amplitudes are almost the same for the two
wires of the unit cell at μ0H = μ0Hmr,0 = −5mT. Both modes
(n = 0,a) and (n = 0,b) near Hmr,0 are characterized by a
single wave crest in each wire (i.e., they originate from the
standing spin waves with no nodes). As for the FMO state, the
modes (n = 0,a) and (n = 0,b) differ in their relative phase
of the precessional motion. The lowest-frequency mode (n =
0,a) is characterized by an in-phase (out-of-phase) oscillation
of the in-plane (out-of-plane) magnetization component. The
next higher-frequency mode (n = 0,b) experiences an out-
of-phase (in-phase) oscillation of the in-plane (out-of-plane)
magnetization component. This complex behavior originates
from the antiparallel alignment of M in neighboring wires
and the dipolar coupling [c.f. Fig. 3(b) in Ref. 6]. At
μ0Hmr,0 = −5 mT both modes can be seen as the in-phase
and out-of-phase combinations of two individual DE spin
waves n = 0 in neighboring wires. When dipolarly coupled
they form a doublet consisting of an acoustic and optical mode,
respectively. The dipolar interaction pushes the frequency of
the optical mode upward and of the acoustic one downward
with respect to the case of uncoupled wires. The frequency
splitting δf arises. Since the in-plane component of precession
amplitude is larger than the out-of-plane component the in-
plane phases define the acoustic and optical modes. The large
ellipticity of precession of the magnetization in high magnetic
moment metallic films results in a much larger amplitude
of the in-plane component of the dynamic magnetization
than the out-of-plane one. As follows from the formalism in
Ref. 18 the dynamic stray fields produced by both components
are of the same shape and their magnitudes scale linearly
with the amplitude of the respective components of dynamic
magnetization. The scaling factor is the same for both field
components. Consequently, the stray field which is induced
by the in-plane component is much stronger and is mostly
responsible for the dynamic dipolar coupling of the wires. This
is why the phases of the in-plane precessional components are
considered to define the assignment of acoustic and optical
modes.

If we follow the mode profile (n = 0,a) in Fig. 4(j) to more
negative (positive) values of H , we find that the spin precession
amplitude grows in the narrow (wide) wire. Strikingly, one sees
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an opposite behavior in Fig. 4(i) around Hmr,0 for (n = 0,b).
Comparing modes (n = 0,a) and (n = 0,b) as a function of H

we find that for the wide wire the mode (n = 0,b) shows
a large precession amplitude in the field range from −30
to −5 mT [Fig. 4(i)]. Above Hmr,0 = −5mT the amplitude
decreases. In this field range the mode (n = 0,a) acquires
the largest amplitude for the wide wire. For the narrow wire
the scenario of interchanging spin precession amplitudes is
opposite. This difference between Figs. 4(i) and 4(j) evidences
that the two fundamental modes n = 0 of the individual wires
are hybridized and follow an avoided crossing behavior as a
function of H . For the resonance pair n = 2 mode repulsion
is predicted for Hmr,2 = −9 mT [Figs. 4(g) and 4(h)]. Here
the frequency splitting is only 0.3 GHz and much smaller if
compared with n = 0. The simulations predict further mode
repulsions centered at +33 and + 55 mT. They have not been
accessible in the experiment as the wires in the real sample
switch to the FMO state at a smaller field.

The simulated frequency splitting of δf = 2.2 GHz for n =
0 is larger by about 1 GHz than the experimentally observed
one. This points to an overestimation of the strength of the
dipolar interaction between spin waves in neighboring wires.
We will address this point later.

C. Solutions of the integro-differential equation from the
linearized Landau-Lifshitz-Gilbert equation

In Fig. 5 we compare the experimental data obtained on
sample A (symbols) with the theory using the dipolar coupling
length lc as a fit parameter. One sees that for the FMO state
(straight lines) the agreement with the experiment is excellent
assuming lc = 2.4 μm. The value is similar if compared to
the results obtained on sample B in Ref. 6. The agreement
for the AFO state (curved lines) is good for negative field
values. It noticeably worsens for positive H . Importantly, the
experimental data for positive H are close to the theoretical
line for the FMO state. In Ref. 7 this observation was also
made and explained as the influence of a small ferromagnetic
domain dipolarly coupled to the AFO environment.

FIG. 5. (Color online) (a) Comparison of experimental (symbols)
and theoretical data (lines) for sample A. Straight lines which cross
represent the eigenfrequencies calculated for the FMO state where we
consider the two possible and opposite orientations of the saturation
magnetization. The curved lines displaying the field-dependent mode
repulsion indicate the calculated eigenfrequencies of the AFO state.
We consider a dipolar coupling length lc of 2.4 μm. Circles are the
resonance positions extracted from the experimental data of Fig. 2(d)
for n = 0. (b) Frequency splitting δf for the AFO state as a function
of the edge-to-edge separation between the wires.

Following Fig. 5 a reduced dipolar coupling length lc allows
us to explain the smaller frequency splitting δf observed in
the experiment if compared to the micromagnetic simulations.
Here we note that there is no adjustable parameter in
exact micromagnetic models which would reduce δf without
affecting the frequency positions for all the higher-order
modes. The only parameter is the length (strength) of the
dipolar coupling which affects the magnonic band bandwidth
and therefore δf without noticeably affecting the frequency
positions of the higher-order modes being less dispersive by
themselves. The higher-order modes are less affected by the
finite lc because the nodal lines introduce phase shifts inside
each nanowire which reduce the dynamic stray field due
to internal compensation. The dynamic dipolar coupling of
higher-order modes is intrinsically much smaller. In general,
the dipolar coupling is completely determined by the array
geometry. In Ref. 5 it was suggested that the systematic
discrepancy observed in the low-frequency resonance pair
n = 0 originated from imperfections of the geometry of the
real artificial crystal. Imperfections in the lithography might
have provoked a deviation from the perfect periodicity. It was
proposed that the imperfections may result in a reduction of
the collective dynamic stray field and thus in a decrease in the
dynamic dipolar coupling. Analysis of the effect of specific
imperfections on δf is out of the scope of the present paper.

Using the same theory we made further numerical calcula-
tions of the frequency splitting δf between the acoustic and
optical mode of the n = 0 pair for the AFO state. On the
one hand we calculated δf as a function of the difference
�w of the wire widths introduced in Fig. 3(b). For each
�w we determined the value Hmr,0 and then extracted δf

at this field position. We found that the frequency splitting
varied only slightly when we changed �w from 0 to 100 nm.
δf decreased by just 0.05 GHz from 1.21 to 1.16 GHz
(not shown). At the same time the field Hmr,0 varied by
several mT. On the other hand we calculated δf as a function
of the distance between wires of w1 = 315 nm and w2 =
370 nm considering lc = 2.4 μm. In Fig. 5(b) we find that
the frequency splitting decreases considerably with increasing
edge-to-edge separation a at small separations. At large a

the splitting δf approaches zero. At a few 100 nm the wire
separation is so large that the dipolar coupling of wires
becomes negligible. This is one more evidence of the fact
that the frequency splitting originates from the hybridization
of resonances in the wide and narrow nanowires.

VI. CONCLUSIONS

We investigated densely packed arrays of narrow Ni80Fe20

wires where a small edge-to-edge separation created an
appreciable dipolar coupling between individual wires. Using
broadband spectroscopy we investigated the spin waves in the
long-wavelength limit. In particular we focused on an array
consisting of wires of two different widths w1 = 370 and
w2 = 315 nm and analyzed in particular antiferromagnetic
alignment of neighboring wires. The edge-to-edge separation
a was 100 nm. Consistent with a previous study6 conducted
for a width difference �w = 0, we observed a nonmonotonic
behavior of eigenfrequencies f as a function of the in-plane
magnetic field H . We found two characteristic modes which
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exhibited a mode repulsion behavior. Using micromagnetic
simulations and theoretical modeling we attribute this to a
geometry- and field-controlled avoided crossing of confined
nanowire modes. The frequency splitting δf is minimal for a
field Hmr where spin-wave frequencies f of uncoupled wires
with opposite orientations of magnetization M are degenerate.
Dynamic dipolar coupling of the oscillators removes this
degeneracy and leads to the frequency splitting between
acoustic and optical modes. The splitting δf and field Hmr

are found to depend crucially on the edge-to-edge separation
a and width difference �w, respectively. These properties are
thus controlled by nanolithography. This provides a further

means to tailor the frequency response of magnonic crystals
which are relevant for future magnonic applications.
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