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Magnonic minibands in antidot lattices with large spin-wave propagation velocities
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Antidot lattices fabricated from permalloy thin films have been investigated by all-electrical spin-wave
spectroscopy and Brillouin light scattering. Periodic arrays of 120-nm-diameter nanoholes have been prepared
using focused ion beam etching. The periodicity of the square lattices was varied from 300 to 4000 nm. By
applying an in-plane field of 40 mT, we discover surprisingly large spin-wave velocities of up to 6 km/s for a
periodicity <400 nm. Using micromagnetic modeling and the further-developed plane wave method, we show
that edge excitations at neighboring holes couple and form an allowed miniband supporting fast spin waves. By
varying the orientation of the magnetic field we control the miniband characteristics. The coupling of edge modes
opens interesting perspectives for magnonic crystals.
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I. INTRODUCTION

Ferroic materials which are patterned on the nanoscale are
expected to provide enhanced functionality in information pro-
cessing and sensor applications.1 In particular, ferromagnetic
nanostructures have generated a large interest where collective
spin excitations [i.e., spin waves (SWs)] are expected to
transmit and process information. The research field aiming
at the control and manipulation of SWs (or magnons) is now
called magnonics.2 Spin-wave-based logic is envisioned which
offers parallel computing, low power consumption, as well
as working frequencies in the gigahertz regime.3,4 For this,
however, it is crucial to overcome the relatively small group
velocities vg of SWs. Ultimate control and functionality are
expected from a so-called magnonic crystal (MC) where an
artificially tailored band structure for SWs is formed with al-
lowed minibands and forbidden frequency gaps.5,6 The search
for MCs is also stimulated by the successful implementation
of photonic, plasmonic, and phononic crystals in dielectric,
metallic, and semiconducting materials, respectively.7–9 Pe-
riodic arrays of nanoholes or nanopitches have led to the
functionalization of the corresponding materials. Allowed
minibands and forbidden frequency gaps have been provoked
by coherent backscattering of the corresponding waves from
holes or pitches.

Magnonic crystals have entered the focus of experimen-
tal and theoretical research in nanoscience only recently.
Pioneering experiments performed on arrays of magnetic
nanowires have successfully demonstrated miniband behavior
and forbidden frequency gaps.10–15 However, severe obstacles
and drawbacks have been reported which hinder potential
applications of MCs in microwave electronics. The relevant
issues are the following: First, SW propagation velocities
vg are much smaller if compared with unstructured films,
suggesting slow signal processing in nanostructures.10–16

For an individual magnetic element of lateral dimension
l, the smallest excitable wave vector is on the order π/l.
This is due to spin-wave quantization.17 For 1 μm > l >

10 nm, theory predicts that SWs reside in an intermediate

regime between dipolar-dominated and exchange-dominated
SW excitations.18 For SWs in such nanostructures, group
velocities are particularly small. To obtain large vg, MC unit
cells were of micrometer19 and even millimeter dimensions,20

making miniaturization impossible. Second, inelastic light
scattering [i.e., Brillouin light scattering (BLS)] was used to
probe the SW propagation across the periodic arrays.10,11,15,21

Here it is an experimental challenge to provide such a large
wave-vector resolution that vg can be measured close to k = 0,
which has been suggested to be particularly interesting for
MCs.22 Third, an important improvement has been achieved
by MCs consisting of a complex unit cell with two different
ferromagnetic materials.21 Here, group velocities are up to
4 km/s at μ0H = 0 mT [extracted from Fig. 2(a) of Ref. 21
at k ≈ 1.2 × 105 rad/cm]. However, the device fabrication is
challenging. Two exposure and material deposition steps are
needed and they have to be aligned precisely on the nanoscale.

In this paper we present an approach on how to generate
magnonic minibands and large vg by employing periodic
nanoholes in a single permalloy (Ni80Fe20) thin film. The
antidot lattices (ADLs) [Fig. 1(a)] have been prepared by
focused ion beam etching, which has allowed us to create
edge-to-edge separations down to 180 nm. Hereby, we have
been able to generate MC behavior with strikingly large vg.
Our results suggest that localized modes residing close to the
edges of holes are coupled dynamically. The strong dipolar
interaction between edge modes is attributed to the contiguous
ferromagnetic material between the holes’ edges, providing a
large magnetic susceptibility. The interaction is larger when
compared with the inverse structure of an array of isolated
magnetic ellipses, which are stray-field coupled via air gaps
with small susceptibility.23 The strong coupling gives rise
to a pronounced miniband. Being similar to a tight-binding
approach, the coupling mechanism is in contrast to the
mechanism based on coherent backscattering from periodic
holes and pitches, as reported for photonic, plasmonic, and
phononic crystals.7–9 To explain our findings microscopically
we perform micromagnetic simulations and, in particular,
develop further the so-called plane wave method (PWM),
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FIG. 1. (Color online) (a) and (b) Scanning electron microscope
image of the antidot lattice in permalloy with integrated coplanar
waveguides (CPWs). The holes have a diameter of d = 120 nm and
are arranged on a square lattice of period p = 300 nm, as highlighted
by the magnified image. (c) Sketch of the device geometry displaying
relevant parameters: magnetic field H, angle η, and wave vector k
addressed by the CPWs.

which originally was restricted to three-dimensional (3D)
magnetic systems.24 The experimental findings and theoretical
approach are relevant to design and optimize the functionality
of two-dimensional (2D) MCs.

The paper is organized as follows: In Sec. II the sample
preparation and the experimental techniques are described. In
Sec. III A, we investigate the dependence of the group velocity
vg on the lattice periodicity p. Based on this, in Sec. III B, we
discuss in detail the fast SW propagation by dipolar coupling
of edge modes in the antidot lattice of periodicity p = 300 nm.
The spin-wave dispersion of the edge mode as measured by
BLS and modeled by micromagnetic simulations is reported
in Sec. III C. Finally, in Sec. IV, the plane wave method is
presented to verify and interpret results in further detail.

II. EXPERIMENT

A. Sample preparation

A permalloy mesa was fabricated using optical lithogra-
phy and electron gun evaporation. Base pressure was 2 ×
10−7 mbar. During evaporation we achieved 8 × 10−7 mbar.
The thickness of the permalloy was δ = 25 ± 3 nm, as
determined by atomic force microscopy. We measured the
Gilbert damping of the permalloy to be α = 0.005 ± 0.002
following the vector-network-analyzer (VNA) ferromagnetic
resonance technique.25 A periodic array of nanoholes (i.e., an
ADL) was fabricated in the permalloy mesa using focused
ion beam (FIB) etching. The current was 150 pA and the
exposure duration was 8 to 9 ms. The total exposure duration
was between 5 and 30 minutes. We fabricated different ADLs.
From sample to sample the ADL periodicity p of the array
of nanoholes [Fig. 1] was changed from 300 to 4000 nm
while the hole diameter was d = 120 ± 10 nm for all samples.
This was checked by scanning electron microscopy. We chose
in particular FIB etching because it allowed us to stay with
one-and-the-same hole diameter for the different periodicities,

which we varied by more than a factor of ten. Electron beam
lithography would have been challenging because a detailed
proximity correction would have been required for the smallest
p. Subsequently, the samples were capped by a 15-nm-thick
insulator (SiO2). Using a double-layer photoresist and optical
lithography, two parallel coplanar waveguides (CPWs) were
integrated onto the insulator above each ADL by lift-off
processing. To minimize ohmic losses it was found crucial
to fabricate the CPW from a 80-nm-thick silver layer, capped
with 25-nm-thick gold.

B. All-electrical spin-wave spectroscopy

Coplanar waveguides (CPWs) were integrated [Figs. 1(a)
and 1(b)] to investigate spin-wave spectra and group velocities
vg by all-electrical spin-wave spectroscopy (AESWS).26–28 For
AESWS we use two collinear CPWs (i.e., sender and receiver)
with an inner conductor width of 2 μm and a spin-wave
propagation distance of s = 12 μm. In this work the CPWs
are thus sensitive at small SW wave vectors k close to about
104 rad/cm.28 The microwave output power of the VNA is
small so that we address the linear regime. For the following
discussion we will attribute kCPW = 1 × 104 rad/cm to the
CPWs used in this work. The CPWs are collinear with and
define the x axis such that the transferred wave vector is
orientated along the y axis [Figs. 1(b) and 1(c)]. Via AESWS,
we measure the group velocity vg at kCPW in the following
way:28 By continuous wave excitation at frequency f , a
particular SW wave vector k is selected via the SW dispersion
f (k). The phase � of the SW at the receiver site is given
by � = k(f )s. Sweeping f changes �. The phase � enters
the inductive signal picked up at the second CPW with a
VNA. Measuring the change of � and considering ∂f/∂� =
s−1∂f/∂k, we extract the slope of the relevant SW dispersion
from the measured transmission signal between the two CPWs.
The slope corresponds to vg. The experiments are performed
for different in-plane magnetic fields H using a microwave
probe station equipped with a crossed pair of field coils.29 For
η = 0◦, the magnetic field H is collinear with the x axis. Let
φ denote the misalignment between x axis and the ADL.

C. Brillouin light scattering

Brillouin light scattering is used to measure the dispersion
of thermally excited spin waves with wave vectors k up to
2 × 105 rad/cm.23 To study the SW dispersion frequency
f (k) for k � 2 × 105 rad/cm, we use BLS on nominally
identical samples without insulator and CPW, as discussed
in Ref. 23. BLS spectra were measured by using a Sandercock
(3 + 3) pass tandem Fabry-Perot interferometer. 200 mW of
solid state laser light (wavelength 532 nm) were focused onto
the antidot surface through a camera objective. Because of
the photon-magnon conservation law of momentum in the
scattering process, the in-plane component of the spin wave
wave vector k is linked to the incidence angle of light θ via
k = (4π/λ) sin θ . By sweeping the incident angle of the light,
we measure the SW dispersion (frequency vs wave vector).
Experiments are performed in the magnetostatic surface-wave
configuration where k is perpendicular to the direction of the
in-plane magnetic field H .
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D. Simulations and theoretical modeling

We employ micromagnetic simulations with 2D periodic
boundary conditions to model local SW excitation in the
array of periodic holes.30 Simulation parameters are saturation
magnetization Ms = 760 kA/m, thickness δ = 22 nm, and
exchange constant A = 1.3 × 10−11 J/m. The field H is
orientated 1◦ off the high-symmetry direction of the ADL to
avoid artifacts. Field pulses excite SWs in the linear regime up
to f = 50 GHz. The simulation time is 10 ns. For simulations
at k = 0, we simulate a single ADL unit cell subdivided into
square simulation-mesh cells with a lateral size of 3.25 nm.
Each simulation-mesh cell has a transverse width of 11 to
14 nm. Micromagnetic simulations also allow us to model
the specific spin-wave dispersion of a given ADL.30 For such
simulations with k > 0, we consider a single row consisting of
up to 65 ADL unit cells in the y direction. The lateral size of
the simulation-mesh cells is between 8 and 20 nm, depending
on p. The spatial extent of the field pulse is 2p and the peak
value of the field pulse amounts to 0.1 to 0.2 mT. A 2D fast
Fourier transform yields the dispersion relation f (k). From its
slope at k = kCPW = 1 × 104 rad/cm, we extract the simulated
value of vg.

To systematically calculate spin-wave dispersions at high
accuracy we use the semianalytical plane wave method
(PWM).24 This approach helps us to understand the dif-
ferent modes occurring in the ADLs and their systematic
dependencies on geometrical parameters. The PWM has
been established for the calculation of SWs in 3D systems
consisting of two ferromagnets in the saturated state. This is
a configuration in which spatial inhomogeneity of the static
demagnetizing field either does not occur or is negligible.24

In the present study we have adapted the PWM to the
calculation of magnonic spectra of 2D ADLs with an in-plane
external magnetic field. This has required the consideration of
nonmagnetic material (i.e., the holes), the modification of the
dipolar field calculation method, and the conduction of many
numerical tests to verify the correctness of the method. Details
on the methods will be given in Sec. IV.

III. RESULTS AND DISCUSSION

A. Classification of propagating modes in antidot lattices
of different periodicity

In Fig. 2(a) the gray-scale plot shows experimental spectra
obtained on the ADL with the smallest periodicity p =
0.3 μm. The strength of H is varied at η = 1◦. The graph
in Fig. 2(a) depicts the signal amplitude a11 measured on
a single CPW in the reflection configuration. Black color
indicates an SW resonance. Here, both standing as well as
propagating modes are resolved.28 In Fig. 2(a) BLS data
taken at k = 0 are also depicted for comparison. In Fig. 2(b),
micromagnetic simulations are depicted assuming k = 0 and
modeling the reflection measurement. We find a one-to-one
correspondence between the simulated and measured modes.
The graph of Fig. 2(c) depicts the real part of the transmission
amplitude a12 measured between the two collinear CPWs.
From comparison of Fig. 2(a) with Fig. 2(c), we find that
only the low-frequency branch labeled i exhibits partly a
white contrast in the transmission data. The single spectrum

FIG. 2. (Color online) Experimental data taken at η = 1◦ on an
ADL with p = 0.3 μm: (a) AESWS amplitude a11 in reflection
configuration (gray-scale plot, where dark color denotes an SW
resonance) and BLS data at k = 0 (open circles). Thin solid lines
are results of the PWM calculations (see text). (b) Micromagnetic
simulation data for k = 0 related to the reflection configuration.
(c) AESWS real part a12 in transmission configuration. Black and
white contrast oscillations indicate a phase change due to SW
propagation. (d) Single spectrum of the AESWS data (real part) in
transmission configuration for μ0H = 40 mT.

at μ0H = 40 mT in Fig. 2(d) shows that the signal amplitude
oscillates between positive and negative values as a function
of frequency. This corresponds to an oscillating black-white
contrast in Fig. 2(c) near the SW resonance of mode i. It
provides evidence of the propagation of this mode between
the two CPWs. The oscillating contrast is due to the phase
change accumulated along the path by the propagating SW.
The resonance frequency of mode i is found to take a minimum
at μ0H ≈ 30 mT. This is the anisotropy field beyond which the
magnetization M of the ADL starts to align with the applied
field H. All the further modes at higher frequency are not found
to propagate.

Before we discuss the propagation velocities extracted
from the transmitted signal a12, it is instructive to discuss
the magnetic anisotropy of SW modes in a square lattice of
nanoholes, as considered here. For this we address again the
ADL with the smallest periodicity p = 0.3 μm and the angular
dependence of its lowest-frequency mode i. In Fig. 3(a), the
solid line represents the measured resonance frequency f in
reflection configuration for different η at μ0H = 40 mT. A
minimum of f = 2.9 GHz is found at η = 1◦ (i.e., η �= 0◦).
We find that this marks the direction where H is collinear with
the ADL unit cell edge (i.e., a high-symmetry direction). We
thus attribute φ = 1◦ to the misalignment angle of the ADL
with respect to the x axis. Note that f varies significantly if η

is changed by a few degrees only. The precise alignment of H
is crucial for the phenomena discussed in this article.

Next, we use AESWS in the transmission configuration to
quantify vg. The solid circles in Fig. 3(a) are for vg obtained
on mode i at μ0H = 40 mT. The largest vg for p = 0.3 μm is
observed at η = 1◦, coincident with the minimum frequency
f = 2.9 GHz. It amounts to vg ≈ 6.0 km/s, which is a
large value if compared to both earlier results found in
nanostructured magnetic devices and in plain films. The value
strongly decreases when varying η; that is, when H becomes
misaligned with the ADL unit cell edge. For μ0H = 40 mT,
the plain-film group velocity is measured (calculated) to be
vg = 4.8 km/s (vg = 4.4 km/s) at a frequency of f = 6.0 GHz
and k = kCPW. Importantly, we find that, for H aligned with the
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unit cell axis, the propagation velocity in the nanostructured
ADL is of the same order as in the plain film if the same
external field is applied. To compare at a given frequency,
one has to keep in mind that, at k = kCPW, the minimum
frequency for H = 0 amounts to f = 2.87 GHz for the plain
film. Here, vg = 8.9 km/ns. This value reflects the fact that the
plain-film SW propagation velocity is inversely proportional
to the frequency.18

We studied vg for propagating modes in antidot lattices
of different periodicity p to understand the significance
of this remarkably high value of vg. It has already been
reported that ADLs with mesoscopic lattice constants support
different SW modes.31–34 The characteristic eigenfrequencies
and spin-precession profiles depend on the lattice symmetry
and orientation of the in-plane magnetic field with respect
to high-symmetry directions.35 In Fig. 3(b), vg measured by
AESWS on ADLs with different p are depicted as circles.
We summarize data of vg measured for small misalignments
of H with the ADL primitive vectors (i.e., η − φ = 1◦ to
2◦). These angles η are intentionally chosen to compare with
simulations later on which must be performed at η − φ = 1◦
to exclude artifacts. Note that the values in Fig. 3(b) are thus
slightly below the maximum achievable vg [see, e.g., those
presented in Fig. 3(a)]. vg for p = 0.3 μm is of comparable

FIG. 3. (a) Eigenfrequency f (solid line, right axis) of the
low-frequency mode of the ADL with p = 0.3 μm. f is shown
as a function of angle η for μ0H = 40 mT. Symbols show the
corresponding group velocities vg (left axis) measured at kCPW =
104 rad/cm. The broken lines are to guide the eye. (b) Group
velocities vg at kCPW = 104 rad/cm of propagating modes in ADLs
with different p. The values have been obtained for 2◦ � η � 3◦

by AESWS (circles) and micromagnetic simulations (squares) at
μ0H = 40 mT and k = kCPW = 104 rad/cm. The horizontal dashed
line indicates the plain-film value. At p = 0.4 μm we find two modes
of different eigenfrequency which both propagate with a characteristic
but different vg. We explain this by a transition in the ADL behavior
at this value of p: below (above) p = 0.4 μm, the propagating mode
is found to exhibit an eigenfrequency f = 2.9 (6.0) GHz indicated by
the solid and open symbols (see text). At p = 0.4 μm these modes
coexist in the experiment, but are not well separated. The group
velocities obtained have a large error and are not considered for
detailed analysis. Triangles indicate vg predicted by PWM (given for
η = 1◦, see text). The gray shaded area represents group velocities
calculated using the nanowire model for 25 � δ � 28 nm (see
text).

magnitude as the unpatterned film value (vg = 4.8 km/s at
40 mT) depicted as the dashed line in Fig. 3(b). For the ADL
with p = 0.4 μm a transition is resolved; this is the only
sample where two propagating modes are found to coexist.
This makes it difficult to extract a value of vg and errors are
large. At p ≈ 4 μm the ADL exhibits the same vg as the plain
film. We observe the minimum vg = 3.2 km/s at p = 0.8 μm.
It is now interesting that the eigenfrequencies of the prominent
modes which propagate through the lattice depend also on
p. It is important that the frequency f of the propagating
mode at p = 0.3 μm with the largest vg is f = 2.9 GHz. For
p > 0.4 μm we find f ≈ 6 GHz for the propagating mode.
The purpose of this paper is to explain the strikingly large
velocities vg at p = 0.3 μm and the significant change in the
resonant frequency of the propagation mode. We do not discuss
details of the mode coexistence occurring at p = 0.4 μm.

To explain the high vg of the propagating mode at p =
0.3 μm (η = 1◦), we investigate microscopic details of the
excitations using simulations and semianalytical approaches.
Figure 4(a) illustrates the spatial SW profile of the lowest-
frequency excitation, labeled i in Fig. 2(b). Regions of large
spin-precession amplitude at f = 2.9 GHz reside close to the
edges of the holes. Such modes are known as edge modes;
in single elements they are named end modes.12,36 These
edge excitations are localized in SW potential wells formed
by the demagnetization field Hd close to the edges of the
holes. Interestingly, it is found that, at p = 0.3 μm, excited
regions at neighboring holes overlap with nonzero amplitude
in between the holes. SW propagation can occur from hole
to hole through the ADL. This is in contrast to the ADL
with p = 0.8 μm [Fig. 4(b)], where the edge excitations of
the individual holes are found to be separated by regions of
zero precession amplitude. In this scenario, propagation is
suppressed for the edge mode. Instead, the higher-frequency
mode (i.e., the extended mode at 5.6 GHz) propagates. The
corresponding precession profile is depicted in Fig. 4(c). For
p � 0.8 μm, this mode has already been extensively studied in
the literature.28,32 It is known to extend through the lattice in
parallel channels of large spin-precession amplitude formed
perpendicular to the field. The mode has zero precession
amplitude close to the edges of the holes. In Ref. 28 a nanowire
model has been introduced to calculate the corresponding SW
dispersion. Convincingly, the group velocities measured at
p = 0.8 and 1.0 μm lie on the curves in Fig. 3(b), which
reflect the nanowire model (solid lines) for film thicknesses
δ = 25 to 28 nm. For our data at small p this nanowire model
is not found to be valid anymore. To understand the significant
changes in the profiles of propagating modes between p = 0.3
and p = 0.8 μm in more detail, we analyze the internal field
distribution and coupling of the edge excitations localized in
the SW wells.

B. Strong dipolar coupling of edge modes

Analyzing the demagnetization field Hd along the solid
line (A–B) of Fig. 4(a) yields a strong peak-to-peak variation
μ0�Hd ≈ 100 mT [solid line in Fig. 4(d)]. The amplitude
of this variation is found to depend almost only on the
hole shape and not on the ADL period p. [We note that,
despite the fact that −Hd > H , the spins are stabilized in
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FIG. 4. (Color online) Spatial SW profiles for μ0H = 40 mT, φ = 1◦, and k = 0, simulated for (a) p = 0.3 μm, f = 2.9 GHz.
(b) p = 0.8 μm, f = 2.9 GHz. (c) p = 0.8 μm, f = 5.6 GHz. Large (small) precession amplitude corresponds to large (small) z elevation.
(d) x component of demagnetization field Hd for p = 0.3 μm (solid line) and p = 0.8 μm (dashed line). Hd is taken in the y direction along
the lines (A-B) in (a) and (c), respectively. (e) Spatial SW profile for p = 0.3 μm, f = 4.5 GHz, and η = 10◦. The color coding for zero and
maximum spin precession amplitude is shown.

their magnetization configuration due to an effective positive
contribution of the exchange field.] Considering the very
inhomogeneous internal field it is now instructive to identify
regions in Hd(x,y) where spins can precess resonantly at
f = 2.9 GHz. We use theoretical SW dispersion relations
from Ref. 18, taking into account a quantization parallel to
the field as present in a transversely magnetized wire. We do
this in order to identify regions where the excitation is within
the spin-wave band.37,38 By using the values Hd(x,y) obtained
by micromagnetic simulations, we substantiate resonant spin
precession at f = 2.9 GHz to occur only in the minima of Hd,
very close to the edges of the holes. In the intermediate regions,
the nonzero amplitudes reflect off-resonance excitation.

We now interpret our data. The large group velocity vg

found in our experiment using a small-k excitation suggests
a steep slope of the spin-wave dispersion relation in the
long-wavelength limit [cf. Fig. 5(b)]. For an unpatterned
plain permalloy film it is known18 that, at long wavelengths
with k � 1 × 105 rad/cm, the main contribution to the
dynamic coupling (susceptibility in resonance) comes from
dynamic dipolar coupling. In particular, for Damon-Eshbach
modes where k ⊥ M the dynamic dipolar coupling leads to
a steep slope in the dispersion relation and thereby a large
group velocity vg. In our case we attribute the experimental
finding of large vg to the fact that SWs tunnel between
the neighboring resonant oscillators localized at the holes’
edges.38,39 The strength of such dipolar tunneling depends on
the tunneling distance, the film thickness, and the susceptibility
of the material through which the SW tunnels.22,23,39 A large

susceptibility χ of a material amplifies the dipolar stray
field and thereby increases the dipolar coupling strength (i.e.,
tunneling probability) between both sides of the tunnel barrier.
Our discussion is along the finding of Wang et al.,21,40 where
two sets of nanowires of alternating ferromagnetic material
formed a ferromagnetic film without air gaps. They observed
band formation and a relatively large group velocity in the
long-wavelength limit when k was perpendicular to M. The
band formation was attributed to resonant and off-resonant
precession of the adjacent ferromagnetic nanowires (see p. 9
of Ref. 23), which exhibited different individual resonance
frequencies at a given magnetic field.22,23 In the ADL geometry
considered here, edge-mode SWs tunnel through one-and-
the-same ferromagnetic material. Between the holes, spin
precession is off-resonance but the material still provides
a large χ due to the nearby resonance. At the same time
the material in between provides exchange coupling between
modes. This feature of the ADL geometry is different if
compared with magnetic elements from one-and-the-same
material which are separated by an air gap. [We compare
with values of air-gap-separated nanoelements. In Fig. 2 of
Ref. 22, for stripes of 70 nm separation, a group velocity
of vg = 2.8 km/s is found at μ0H = 50 mT and ≈10 GHz.
Note that the separation is much smaller if compared with the
edge mode discussed here for the p = 300 nm ADL, where a
higher vg is found. In Ref. 15, discs separated by a 70-nm-wide
air gap are studied. In Fig. 5 of Ref. 15, vg = 0 was found
for μ0H = 150 mT and 6 to 8 GHz, suggesting that dipolar
coupling was weak.]
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FIG. 5. Dispersions obtained from micromagnetic simulations
(gray-scale plot) and BLS measurements (symbols) at μ0H =
60 mT. A miniband behavior is resolved at low frequency for
p = 0.3 μm. The solid line is the calculated plain-film dispersion for
Ms = 760 kA/m and film thickness δ = 25 nm. The vertical dashed
line indicates the Brillouin zone boundary at π/0.3 μm. (b) Zoom
into the SW dispersion at μ0H = 40 mT near k = 0, as obtained
from PWM calculations (solid line) and micromagnetic simulations
(gray-scale plot). The dashed lines indicate the vg obtained for k =
0.5 × 104 rad/μm and k = 1.5 × 104 rad/μm. They correspond to
vg = 4.5 and vg = 3.6 km/s, respectively. Such data are evaluated
to obtain values vg considered in Fig. 3(b) (see text for details). (c)
Mode frequencies calculated by PWM for different p. The thick solid
lines mark regions where, for p < 0.35 μm the edge mode i and for
p > 0.35 μm the extended mode ii is predicted to be the propagating
mode. Circles mark predicted mode crossings (see text).

In particular, the FIB technique has allowed us to create
short tunneling distances for edge modes and generate large vg

at p < 0.4 μm. For p = 0.8 μm, the large distances between
individual holes forbids SW tunneling, and coherence between
edge excitations is not induced. In experiments on ADLs with
p � 0.6 μm, we do not resolve mode i experimentally. This
is attributed to edge roughness and variations in the hole
diameters further decreasing the coherence.41 Due to variations
in the demagnetization field at different holes, the individual
resonances differ. Differently to the case of the coupled modes
at p = 0.3 μm, where the coupling can phase and frequency
lock the individual resonators, the experimental linewidth
broadens inhomogeneously.42 This makes such modes difficult
to detect.

We have performed further simulations at a constant field
μ0H = 40 mT where we have varied η. We find that,
for η ≈ 10◦, the regions of large precession amplitude at
neighboring holes do not overlap [Fig. 4(e)]. Dipolar coupling
is significantly reduced and the edge modes do not support
a propagating SW any longer. The simulations suggest vg

becoming zero for increasing η. This explains the strong
anisotropy of vg depicted in Fig. 3(a). The angular anisotropy
of vg is much less pronounced in the ADL with p = 0.8 μm
or a plain film.18,28 The tunability from very large vg to zero
vg is thus a unique feature of nanostructured ADLs originating
from the coherent magnonic coupling of edge modes.

C. Magnonic band formation

We now discuss the coupling of edge modes for p <

0.4 μm. We argue that the coupling can be understood in the
framework of a tight-binding model of localized states.43 For
such an approach, one expects the SW dispersion f (k) to be
periodic in k space and exhibit a Brillouin zone boundary. In
Fig. 5(a) we use both wave-vector-resolved SW detection via
BLS (open symbols) and micromagnetic simulations (gray-
scale plot) to explore the dispersion f (k) for p = 0.3 μm
by experimental and theoretical means, respectively. Data
are taken at μ0H = 60 mT, where the wave-vector-resolved
spectra exhibit a good signal-to-noise (SNR) ratio. Three
different SW modes are resolved. They correspond to modes
i, ii, and iii observed in Figs. 2(a) and 2(b) in ascending order
for increasing f . Minimum frequency has the edge mode
[cf. Fig. 4(a)], mode ii is the extended mode, and mode iii
corresponds to a mode localized in between neighboring holes
(cf. Figs. 2(b) and 2(d) in Ref. 41). The frequency of the lowest-
frequency branch (mode i, edge mode) varies characteristically
as a function of k with a frequency maximum at k ≈ 1 ×
105 rad/cm in Fig. 5(a). Interestingly, the Brillouin zone
boundary of the ADL as defined by kBZ = π/p = 1.05 × 105

rad/cm amounts to almost the same value. Beyond the
Brillouin zone boundary the frequency decreases again. This
is consistent with a miniband being periodic in k space. The
slight difference of the simulated Brillouin zone boundary
of ≈5% most likely has its origin in the large simulation-
unit-cell discretization of 9.75 nm. The miniband bandwidth
is 0.6 GHz. In Ref. 44, Dvornik et al. studied theoretically
the coupling of edge modes in two neighboring 50-nm-wide
nanomagnets. In Fig. 3(b) of Ref. 44, the authors reported a
mode splitting of about 0.25 GHz (simulated) and 0.05 GHz
(analytical result) in case of a dipolar interaction across an air
gap. The center-to-center separation of the edge modes was
100 nm. In our case the center-to-center separation of edge
modes is three times larger and amounts to 300 nm. Still, we
find a large interaction-induced miniband width of about 0.6
GHz. The simulations displayed as a gray-scale plot in Fig. 5(a)
remodel our observation of a miniband of the edge-mode
excitation. A discrepancy remains in the frequencies. This
might be caused by two effects: first, a small misalignment
between the magnetic field H and the high-symmetry direction
of the ADL and, second, mode i resides close to the hole edges
and is influenced by their roughness, which is not modeled.41

Extracting vg from the simulations at k = kCPW = 0.1kBZ

(μ0H = 40 mT), we obtain vg = 4.2 ± 0.7 km/s for p =
0.3 μm. [We provide a large error of 0.7 km/s when reporting
vg from micromagnetic simulations at p = 0.3 μm. This orig-
inates from the dependence of the dispersion on the simulation
parameters. Not all sample parameters are known precisely
from experiment. We have therefore considered k = 0.5 and
1.5 × 104 rad/cm [reflected by the two slopes in Fig. 5(b)],
δ = 22, . . . ,25 nm, and a small out-of-plane anisotropy in the
simulation. We note that vg obtained for the extended mode
does not vary much. For the edge mode, however, the parameter
variations give a large error, as indicated in Fig. 5(b).] The
experimental value of vg = 4.8 km/s measured at η = 2◦ is
in good agreement. The large vg close to k = 0 is a result
of the miniband formation in magnonic systems (cf. Fig. 2
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in Ref. 22). We use an enlarged scale to extract vg close to
zero from the simulated data [see Fig. 5(b)]. We summarize
simulated group velocities in Fig. 3(b) as squares for p ranging
between 0.3 and 0.8 μm. These data and the experimentally
observed values follow the same trend. AESWS experiments
with tailored CPWs thus turn out to be particularly powerful
to quantify vg close to the Brillouin zone center k = 0.

In Fig. 5(a), the experimental and simulated data show a
clear MC band formation for mode i of Fig. 2(a) (i.e., the edge
mode residing at low frequencies). For mode ii of Fig. 2(a)
(i.e., the extended mode at higher frequencies), a miniband
formation and small forbidden-frequency gap is predicted but
much less pronounced. In the simulations of Fig. 5(a) the
extended mode exhibits a periodic behavior as a function
of k, suggesting MC behavior, but the intensity at large k

is extremely weak if compared to both the dispersion close
to k = 0 and the edge mode. Mode ii originates from the
undisturbed plain-film mode. It experiences a slight periodic
modulation of the internal field [see Fig. 4(d)]. Only very
recently have small forbidden-frequency gaps near Brillouin
zone boundaries been observed in a detailed BLS experiment
at the higher-frequency modes at large k. These gaps are out
of the scope of this paper and will be discussed elsewhere.45

IV. THEORETICAL ANALYSIS USING PLANE
WAVE METHOD

A. Formalism and basic considerations

In Ref. 24 the plane wave method (PWM) was employed
to model 3D magnonic crystals. We modified and used this
approach to model 2D antidot lattices. So far, only the dynamic
magnetostatic field was included in the PWM. In the present
formulation, the nonuniform static dipolar field together with
the finite thickness of the considered film are taken into
account. Let us consider a slab of a 2D magnonic crystal where
the dynamics of magnetization vector M(r,t) is described by
the Landau-Lifshitz (LL) equation with damping neglected,

∂M(r,t)
∂t

= −γμ0[M(r,t) × Heff(r,t)], (1)

where γ is the gyromagnetic ratio (γ > 0), μ0 is permeability
of vacuum, t is the time, and Heff is effective magnetic field.
Heff consist of three terms:

Heff(r,t) = H0 + Hex(r,t) + Hdip(r,t). (2)

The first term is the applied magnetic field H0, which is
homogeneous in space and directed along the x axis (in the
PWM calculations only this one direction will be considered).
The next component of the effective field is the exchange field
Hex(r,t). In magnetically inhomogeneous materials the spatial
inhomogeneity of both the exchange constant A(r) and the
saturation magnetization Ms(r) must be taken into account,
which leads to the following formula:

Hex(r,t) = (∇ · l2
ex∇

)
m(r,t), (3)

where the exchange length is defined as lex = [2A/(μ0M
2
s )]1/2.

In a linear approximation for saturated samples we can
decompose the magnetization vector into a static and dynamic

part:

M(r,t) = Ms êx + m(r,t), (4)

where we assume that the static part of the magnetization
vector is parallel to the x axis and is equal to Ms. The last
component of the effective magnetic field in Eq. (2) is the
dipolar field. A computation of this field in magnetic systems
is one of the main issues in spin-wave calculations. We start
with decomposition of this field into the static and dynamic
parts, H(r) and h(r,t), respectively. Because we are interested
in solutions corresponding to monochromatic spin waves, the
time dependencies of the dynamic magnetization and dipolar
field take the form m(r,t) = m(r)eiωt and h(r,t) = h(r)eiωt ,
respectively, where ω = 2πf .

According to the ideas presented in Ref. 46, for a slab
of a 2D magnonic crystal with uniform magnetization along
its thickness, the Maxwell equations can be solved in the
magnetostatic approximation with electromagnetic boundary
conditions properly taken into account on both surfaces of the
2D magnonic crystal slab, which are located at z = −δ/2 and
z = δ/2. For the structure considered and which is extended
to infinity in the (x,y) plane, analytical solutions in the form
of a Fourier series can be obtained for both static and dynamic
magnetic fields:

Hx(r‖,z)

= −
∑
G‖

Ms(G‖)

G2
‖

G2
x[1 − cosh (|G‖|z|)e−|G‖|δ/2]eiG‖·r‖ ,

(5)
hy(r‖,z)

=
∑
G‖

{
i

mz(G‖)

|k‖+G‖| (ky + Gy) sinh (|k‖ + G‖|z)e−|k‖+G‖|δ/2

− my(G‖)

|k‖ + G‖|2 (ky + Gy)2[1 − cosh (|k‖ + G‖|z)

× e−|k‖+G‖|δ/2]

}
ei(k‖+G‖)·r‖ , (6)

hz(r‖,z)

=
∑
G‖

[
i

my(G‖)

|k‖+G‖| (ky + Gy) sinh (|k‖ + G‖|z)e−|k‖+G‖|δ/2

−mz(G‖) cosh (|k‖ + G‖|z)e−|k‖+G‖|δ/2

]
ei(k‖+G‖)·r‖ , (7)

where r‖ is a position vector in the plane of periodicity
and G‖ = (Gx,Gy) denotes a reciprocal lattice vector of
our structure [i.e., G‖ = 2π

p
(nx,ny); nx and ny are integers].

Ms(G‖) are Fourier components of saturation magnetization,
which are calculated analytically for the circular shape of
antidots. k‖ = (kx,ky) is a Bloch wave vector of spin waves
which, according to the Bloch theorem, can be limited to the
first Brillouin zone. In deriving Eqs. (6) and (7) we use the
Bloch theorem for dynamical components:

m(r) =
∑
G‖

m(G‖)ei(k‖+G‖)·r‖ ,

(8)
h(r) =

∑
G‖

h(G‖)ei(k‖+G‖)·r‖ ,
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and assume that the static demagnetizing field is parallel to the
spontaneous magnetization.

The formulas obtained for the demagnetizing fields are
represented in the reciprocal space for the in-plane components
but depend on the position along the thickness of the slab.
However, when the slab is thin enough (which is the case for the
ADL discussed with δ = 25 ± 3 nm), the nonuniformity of the
demagnetizing fields across its thickness can be neglected and
respective values of fields from Eqs. (6) and (7) with z = 0 are
used in the calculations. Because of its Fourier-series form, the
solution found for the demagnetizing fields can be used directly
in the PWM technique described in Ref. 24. After applying
the plane wave method to the LL equation (1) and using the
solutions (6) and (7) for the dipolar field, one can obtain the al-
gebraic eigenvalue problem which can be solved numerically.

Modeling of nonmagnetic material in PWM-based calcu-
lations of magnonic spectra has not been possible so far.
This is due to the formulation of the equation of motion,
the LL equation, for inhomogeneous media. In nonmagnetic
media the magnetization is zero and the LL equation becomes
an identity. However, in the PWM the system dynamics is
described by a superposition of a number of plane waves,
which are continuous functions and propagate throughout the
medium. Thus, each plane wave must be defined also in the
nonmagnetic medium. To do so, we model the holes by a
region of strongly reduced Ms. Then the set of solutions are
subdivided into physical and nonphysical results: physical
(nonphysical) solutions have close to zero (almost infinite) pre-
cession amplitude within the holes represented by reduced Ms.
Material parameters are chosen to eliminate the nonphysical
solutions from the relevant frequency range without affecting
the frequencies of the proper (physical) modes.

For the holes, we use a value of Ms at least ten times lower
than in permalloy to reproduce the shape and value of the
static demagnetizing field with good accuracy (less than 10%
error). This causes the nonphysical solutions localized within
the holes to shift to high frequencies.18 For p = 0.3 μm, only
the fifth mode (in increasing frequency order) has a sensible
amplitude in the hole region, and thus represents a nonphysical
solution.

The relevance of this formalism goes beyond the system of
magnonic crystals: similar challenges are encountered in the
application of the PWM to the calculation of band structures of
phononic crystals consisting of a solid and a liquid or gas.47,48

Similarly to the SWs confined to magnetic material in the
MC, in phononic crystals transverse vibrations do not occur in
constituting liquids and gases. The abrupt vanishing of these
vibrations at the border between the solid and the gas leads to
nonphysical extra solutions in the PWM.

B. Plane wave method applied to antidot lattices of
different periodicity

Using the PWM we calculated the relevant modes with zero
precession amplitude within the holes (i.e., physical solutions),
and we show the corresponding field dispersions in Fig. 2(b) as
solid lines. Note that we have plotted only symmetric modes in
order to consider the excitation symmetry in AESWS.29 The
PWM results and the experimental data are in good agreement.
Spatial mode profiles calculated by the PWM (not shown) for

modes i, ii, and iii agree well with micromagnetic simulations
[cf. Fig. 4]. We have thus verified by PWM the occurrence and
spatial profiles of the relevant modes in the ADLs.

The PWM allows us to elucidate the dependence of
propagation characteristics on p. In Fig. 5(b), we have
plotted the frequency of the relevant modes as a function
of ADL periodicity p. The thick lines mark the mode with
largest vg. For p < 0.35 μm, we find that the edge mode
(mode i) propagates. At p = 0.35 μm, the theory predicts
a transition to occur in that the mode ii (i.e., the extended
mode) is found to propagate for large p. Our experiments are
consistent with this transition. In particular, we observe the
two different propagating modes in one-and-the-same ADL
with p = 0.4 μm. [In the PWM we find the extended modes
to hybridize with transversally quantized modes for certain p,
which are highlighted by open circles in Fig. 5(b). We extracted
vg only for specific values of p away from these points of
hybridization; namely, k = kCPW for p = 0.3, p = 0.6, and
p = 0.8 μm. The repulsion of the dispersion curves will
appear only when the crossing modes have the same symmetry.
The mode with largest vg, as excited in the experiment, is
symmetric. This means that the crossing at p around 0.44, 0.62,
and 0.78 μm will change neither the dispersion nor the group
velocity. When repulsion between dispersion curves exists,
the flattening of the dispersion results in a decrease in vg. For
experiments, it is challenging to realize an ADL with exactly
the correct p to create hybridization. We do not consider this
situation here.] Results from PWM are depicted as triangles
in Fig. 3(b) and are in good agreement with the simulation
and the experimental data. PWM-calculated velocities are
systematically larger than the experimental velocities. This
discrepancy is attributed to the misalignment angle η − φ,
which is assumed to be zero in the PWM calculations but
ranges from 1◦ to 2◦ in the experiments depicted in Fig. 3(b).
Note the good agreement between the value vg = 5.8 km/s
obtained by PWM at p = 0.3 μm and the maximum vg ≈
6 km/s obtained by AESWS in Fig. 3(a).

V. CONCLUSION

In conclusion, we have reported artificial crystal behavior in
a nanopatterned antidot lattice. By means of focused ion beam
etching we have fabricated arrays of closely spaced nanoholes
provoking dynamic coupling of localized resonant spin-wave
modes. Dipolar coupling of edge modes is found to create
minibands with surprisingly large propagation velocities. We
have adapted the plane wave method to describe the devices
and reproduce the experimental findings. The large spin-
wave velocities create interesting perspectives in the field of
nanoscale magnonic devices.
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