Skip to content
  • de
  • en
  • Chair of Astronautics
  • TUM School of Engineering and Design
  • Technical University of Munich
Technical University of Munich
  • Home
  • Archived Research
    • Robotic Operations
      • RacoonLab
      • Geriatronics
      • CopKa
        • Satellite communication
        • Teleoperation
        • Operational concept
      • SAINT
      • Completed Projects
        • LISA
        • FORROST
        • Space Mechanism
        • LINKA
        • Third Eye
    • Exploration Technologies
      • AllBert EinStein
      • ALPHA
      • BLTAS
      • Lunar Volatiles Scout
      • PROSPECT & PROSPECT Science Team
      • TherMoS
      • Micrometeoroids II
      • Micrometeoroids I
      • Development of particle launchers
      • V-Hab
      • LiSTOT
      • Completed Projects
        • MARVIN
        • LUISE & LUISE-2
        • LUISE-2
    • Satellite Technology
      • CubeSats
        • First-MOVE
        • MOVE-II
        • MOVE-III
      • Spacecraft Mechanisms
      • Satellite Communications and Operations
        • MFG
      • Concluded Projects
  • Publications
    • Dissertations
    • Student Theses
    • Publications
  • Alumni
  • Fascination of astronautics
    • Informationen zur ESA Astronautenauswahl 2021
    • Wie wird man Astronaut?
    • ESA Astronaut Selection Campaign 2008
    • Aus dem D-2 Tagebuch von Ulrich Walter
    • Milestones of Astronautics
    • Prof. Harry Oskar Ruppe
    • Stars and Cosmos
  1. Home
  2. Archived Research
  3. Satellite Technology
  4. Satellite Communications and Operations
  5. MFG

Contact Person

Nicolas Appel

 

Multifunctional Large Structures in Space

 In the MFG project (Multifunctional Large Structures in Space), additional possible uses for solar sails are being researched. The project, funded by the German Research Foundation (DFG), is a cooperation with the North Western Polytechnical University (NWPU) in Xi'an, China.

The exploration of space outside of Earth's orbit is known to be expensive, which is why available flight options cannot currently cover the demand completely. The increased use of low-cost small satellite missions is one possible solution to this problem, but these are severely limited due to significant limitations in the areas of energy supply and propulsion. This limitation could be significantly reduced if the geometric dimensions of the spacecraft in orbit could be drastically increased. While this is already used for monofunctional large structures, the following limitation still exists in the current state of the art: The functional combination of several functions into one large structure to improve space probes.

 

To top

Chair of Astrodynamics

Prof. Dr. Marcello Romano

New site address: 
Willy-Messerschmitt-Str. 11,
82024 Taufkirchen 
Germany

Old site address: 
Boltzmannstr. 15, 
85748 Garching, Germany

marcello.romano(at)tum.de

  • Privacy
  • Imprint
  • Accessibility