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Abstract. In recent years, Electric Car sharing (ECs) systems represent a green
and innovative solution, positioning themselves as a real economic alternative to
the private car. They are now present in many cities around the world (Paris,
Berlin, Geneva, Rome, etc.). One-way ECs removes the constraint of returning
the car to the origin station, and extending the use of the system. However this
behavior usually leads to a situation for which some stations are full and other
empty. Furthermore, cars are electric and a minimum charging time is required,
which makes the system more constraint. In this paper, we address the issue of
redistribution of electric cars to balance the network. We proposed a modelling,
analysis and assessment of the system by using stochastic Petri Nets (PN) with
variable arcs weight; dependent on the marking of network and discrete event
simulation. Moreover, in this work we can determine and evaluate the perfor-
mances of the system (determine the number of unserved users, estimate the re-
location service launch moment...etc.) to respond to the largest number of re-
quests. Our approach might helping to develop decision-making tool for analysis
and performances optimization of ECs services.

Keywords: stochastic Petri Nets, Discrete event system, Electric Car-Sharing,
Discrete event Simulation, Decision making.

1 Introduction

Environmental and sustainable transportation issues are today at the heart of scien-
tific and sociological debates concerning the automobile. The electric mobility will sig-
nificantly increase and become the unavoidable way for cities, particularly when com-
bined with shared mobility. Many cities around the world are enthusiastic about Electric
Car sharing. ECs-network is a set of stations, located at different places of the city, for
example, residential areas, industrial zones, areas near to the stations, etc. A station
includes a limited number of parking spaces. This system encourages consumers to
return the EC as quickly as possible. In other words, this system is suitable for short
duration’s tours. There are two types of electric car sharing system today “one way”
and “round trip”, which can coexist together in the same urban context. We focus in



this work on the model called "one-way". One-way systems permit users to rent Electric
Car (EC) without having to return it at the departure station, unlike round-trip model.
However, there are many challenges of electric cars sharing operators that may have a
direct impact on the quality of service, the operational and economic viability of such
systems. The crucial challenge is to ensure that Electric Cars are available for pick up
and empty spots available for cars drop off at most stations. In a general way, the un-
balance of the system can be ordered in two types: (a) temporary unbalance: In this
case, we can have at a given moment in the day a set of unbalanced stations; but which
can naturally return to a balance situation after certain time. (b) Persistent imbalance:
In this case, the unbalance of the stations is not temporary and can extremely decrease
the quality of service of the system if the rebalancing of the stations is not carried out
by the operator. In order to minimize these two uncomfortable situation, the operators
need to implement rebalancing service repositioning EC and parking spots among sta-
tions according the frequentation of stations.

In this paper, stochastic Petri nets and discrete event simulation are introduced as
tools for modelling and structural analysis performances evaluation of ECs. The re-
mainder of the paper is organized as follows. We present an overview on related work
in the next section. Section 3 applies and discusses the proposed models based on the
stochastic PN. Section 4 presents system behavior simulations under different scenarios
and discusses the results. Finally, in Section 5 conclusions are presented.

2 Related works

Most of the studies related to ECs focus on methodologies extracting design guide-
lines or structural configurations that may help ECs operators to design their services.
Two main approaches stand out in reading the recent publications:

Mathematical Optimization Techniques: ECs systems raise several decision-making
and optimization issues such as the rebalancing of stations, the routing agent or truck
problem for the redistribution of EC, as well as the problem of location of stations in
city. From a certain point of view, these problems can be perceived as problems of the
type operational research. In this category, linear programming techniques or more gen-
erally, mathematical models are used for the modelling and the resolution of these prob-
lems. Carlier (2016) address the optimal dimension of a one-way ECs system in a city
using mathematical and time expanded graphs techniques with randomly generated de-
mand data. Ait-Ouahmeda, Josselina, and Zhoua (2017) have suggested a linear pro-
gramming model based on heuristic algorithms to obtain the optimal relocation team
for one way ECs system, where the authors assume the balancing carried out by agents,
while agents can take only fully charged cars. Clemente et al. (2013), have modelled
ECs networks with incentive relocation strategies by using Petri nets and discrete event
simulation on the UML formalism. Efthymiou et al. (2017) have presented a complete
approach for the electric vehicle charging infrastructure location problem by using lin-
ear programming, multi-objective optimization and genetic algorithms. The decision
concerning the truck fleet size for balancing, their location and capacity, are addressed
by some authors, e.g. Hafez (1999), and Chauvet, Haouba, and Proth (2006), by using



dynamic programming and metaheuristics. Other research studied the system in opera-
tion level, where they focuses on the relocation problem of EC systems as crucial prob-
lem. Many authors have considered this issue from different angles. Bruglieri, Alberto,
and Lué (2014) proposed an approach to relocate vehicles by staffs taking into account
the location and the capacity of station using linear programming. However, they do
not specified which ECs should be relocated: charged at max or at medium of charging
capacity. The challenge to design optimal fleet size of ECs rental is approached by
various studies. Fanti, Mangini, and Pedroncelli (2016) propose a closed Petri nets
model for solving the fleet-sizing problem applied to a network of three stations, with-
out taking into consideration the relocation system.

Data collection and analysis techniques: The collection and predictive analysis of
data on user mobility and / or the operation of ECs systems can play a key role in better
design and effective management of this mode of urban transport. Indeed, this data can
be useful before and after the system deployment. A strategic estimate of the number
of ECs, stations and others is then possible before the deployment of the network. Op-
erationally, use of the analysis of the history of the system's previous operation can
allow, for example, prediction and thus system planning. Balac, Ciari, and Axhausen
(2015, 2017) address the impact of parking spaces on the quality of service of car shar-
ing by using the discrete event simulation-MATSim and a model developed by authors
for round-trip car-sharing with real data for car sharing in Zurich. While, Kaspi et al.
(2015) have addressed the management of car sharing service through parking reserva-
tion policies using mathematical models and discrete event simulation. Avrtificial neural
network and big data receive attention in recent years to analyse, predict the demand of
shared mobility systems (bike sharing, car sharing and ECs system). In this context,
Zhu, Li, and Liu (2015) and Chen et al. (2017), have proposed method to estimate car-
sharing/bike sharing demand based on deep learning and neural network approach and
datasets. On other hand, there are some similarities between self-driving car and Auto-
mated Guided vehicle (AGV) used for transporting material in logistic areas, with re-
spect to design, deadlock and optimization (Zhang et al. 2017). Karlgvist J., and L. A.
Sundbeck (2016) have tried to combine some existing technologies of AGV to autono-
mous car transportation, in this context we aim to adapt some existing for decision-
making solutions of AGV to electric self-driving car sharing in term of design, choice
of alignment and of the battery charging level.

3 Stochastic Petri Nets Modelling of ECs

The stochastic Petri nets model developed take into account many decision parameters
of system as station size, capacity, number of truck and influence the battery charging
level on the behavior and dynamic of system. Due to the number of car to add or remove
during the control of the station by truck, are according to the current number of avail-
able electric cars (EC) in the station. We introduced in the model new technique based
on arcs variable weights according to the current marking of the places Pci (see reloca-
tion module).



The proposed model (see figure 2) based on periodical redistribution strategy of cars
among stations, by trucks that are in charge of rebalancing. They move periodically
according to a predetermined program (At) with stochastic duration of path according
the traffic jam. These trucks move through the different stations of the system, and
according to the needs of station, load or unload cars. In our model, we have based on
the empty parking spaces Np and we set a re-balancing threshold Tsh, when the truck
arrives in a station, it is in one of the following situations: the station is (or will be soon)
empty (number of empty parking spaces is high Nep> Tsh); in this case the truck un-
loads cars in the station. The second situation is where the station is in congestion (hum-
ber Nep is too low Nep < Tsh); in this case, the surplus cars are loaded into the truck.
Finally, if the station contains an acceptable number of cars (Np = Tsh), it does not need
to load or unload cars, and it can continue its journey. For clarity we developed sto-
chastic PN model of 2 stations. Four modules are connected to build the model: (a)
station subnet represents the charging processes, capacity of station and users request,
(b) flux interstation represents dynamic of EC in city, (c) balancing module whose ob-
jective is to maintain the number of cars in each station at predetermined level, and (d)
maintenance module represents the breakdown EC event and composed by two possi-
bilities to charged car at max or just at threshold availability and transport it to stations
by truck.

3.1  Description of station subnet:

This module takes into account important decision parameters of ECs, in particularly
the charging battery level s and LC which represent the charging processes of station
(see figure 3). As well the capacity of station Ci, is sum of number of empty parking
spot (chargers) Nep, number of charged cars Ncd, number of current charging cars as
well as number of available cars Nav as illustrated in equation followed.

Number of empty parking spaces Nep +
Number of current charging cars Ncc +
Number of available cars in station Nav +
Number of charged cars in station Ncd

Csi =

Mi(1,1,2,0,0,0,1,4,0)

Firing of Ts1

M1(0,0,1,1,1,0,1,4,0)

Firing of Trcs1

parking speaces

12(0,0,0,0,0,0,0,5,1)

qus,"— Cs=(M(Pch)+M(Pav)+M(Pcd)+M(Pc))

Fig. 1. Station subnet
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3.2 Description of dynamic and flux inter-station subnet

This subnet models the trip of users with electric cars between origin and destination
stations. The ECs mobility is composed of diver events (see figure2 dynamic flow sub-
net). First, user rents a car from station Si (in the place Puci each token represents car+
users, it represents the number of rented cars from stations Si). When user rents a car
from station Si, the following events can occur: user decides to make a round trip (return
to original departed station) modelled by the transition Tsii and the place Piti; or take a
one way trip (go to other station) modelled by the transition Tsij, i#j, with firing prob-
ability (Random switch Rsij) and the place Pitj. A token (EC+user) is marked at place
Puci, which is a common resource for transitions Tsii and Tsij (j=1, 2... N). The firing
of transition Tsii or Tsij represents the user decision to choose his destination. The fir-
ing of transition Titi or Titj (represent the trip delay), whose firing delay is stochastic.
Thereafter, when user arrives with EC at destination Sj, this modelled by place Pwi,
and if there is at least one available spot, the EC is returned to the station, as modelled
by firing of transition Tdri. On the contrary, if station Sj is full (M(Pci)=0), the user
decides to go to another station Sj i#j, to return the EC, or wait in station Si, i=j, until a
spot becomes available (M (Pci)>0).

3.3 Description of relocation module

This module makes it possible to carry out five main events (see in figure 2 balancing
of station subnet) described as follows:

» Removal event of electric car from station to truck, in term PN this event repre-
sented by firing of transition Tcroi (enabled if Ncadi<Navpi). That is mean that it is
enabled if only there is sufficient cars in charging and there is sufficient available spots
in truck.

» Removal event of minimum EC if there is not enough empty spots in truck, rep-
resented by firing of transition Trmin (enabled if M(Pc)>Nap and M(Pch)>Navp and
M(Pbi)>Navp and M(Pc)<Tshi-Navpi).

« Addition event of EC to station is represented by firing of transition Tcadi (ena-
bled if M(Pci)>Ncad and M(PT i)>Ncad.

» Min addition event of EC is interpreted by firing of transition Tadmi (enabled if
number of car to add Ncad> number of car available in Truck M(PTi),

» No action to do is translated by firing of transition Tei then the truck continues to
next station for balancing.

Where: Ncroi is number of EC to be removed from station Ncroi=Tshi -M(Pci ),
Ncadi is number of EC to be added to stations Ncadi=M(Pci)-Tshi, Tshi threshold
of empty parking spaces, CTi capacity of truck, and Navpi is number of available
empty places in truck Navpi=CTi-M(PTi). For further details and clarification. The ta-
ble 2 interprets more the model.



4 Simulation and discussion

In this section we present an application of the proposed stochastic PN models to a
ECs of N= 10 stations with various capacities and fleet of EC k=35. Order to lead a
performance analysis and evaluation study, Petri nets is suitable for discrete event sim-
ulation when the modelled system is too complex (large, infinite number of statements
stochastic complex process to characterize and / or resolve; ...) to perform an analytical
study. We tested behavior of model in different scenarios (a) without relocation and
with 95% charging level, (b) without relocation and with 50% charging level, (c) with
relocation.

The performance evaluation through discrete event simulation is done through
the dynamic evolution of the markings of the various places of the model according to
the firing of transitions occurs in time (Cintra and Ruggiero 1992). An illustration, use-
ful to interpret some measures of performances later, is shown in figure 8. The simula-
tion generates set of events listing, saved during the simulation.

4.1 Simulation of scenario (a) and (b)

Using our simulation algorithm, we can noticed on the trajectories represented by
Figure 9 that the number of EC (Ncc) in the scenario (a) "oscillates" around 4, unlike
on the scenario (b) the number of EC oscillates around 9 (congestion). It can be seen
that the limit Ci set here at 10 is also respected. These simulations effectively confirm
that the behaviour of the model is consistent with our formal analysis performed.

femiy ol | O Behaviorof saton scenario s=05%

HHHIU |

L@Lﬂww ! lMH”“
[ L O e

=

Iy
il

Fig. 3. Behaviour of station S1 and S2: scenario (a) and (b) s= 50% and s=95%
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It is possible to evaluate several performances of the system as example:

*  The average frequency of Trcsl means that there are on average 0.0156
available electric cars rented per mn (time unit) for scenario 1. In other
hand, on average one car available rented each 64.10 mn comparing with
scenario 2 is 121. 80 mn.

F(trcsl)avr = Z,uix T = tSllrinnloo(NF(Trcsl)/tsim)



Where tsim is total simulation time, NF(Tcs1) firing number of transition Tycs during
simulation and = is the probability that this system is in this state .

» Sojourn time of available car in station corresponds to the average sojourn
time of token in the places Pav, This means that there are on average the
available car sojourn 53.16 mn in station before utilization.

tsim

SPavr = MBanasr /11 = Jim " (M(Pyy) X 7/ NE)
0

Where, t is Duration of each cycle and Nt is number of tokens crossing Place Pav at
the end of each cycle.

4.2  Simulation of scenario (c)

In this scenario we simulate the system with relocation service and with 50% of
charging availability threshold. In viewpoint of truck relocation strategy. It is possible
to observe in the analysis of the influence of the suggested solution on the average
unserved users and on the quality of service. We focus our attention on the behavior
of the time evolution of the number of available electric cars in the stations which
can be observed in Figures 11. According to the control function integrated in the
model, it can be observed that the number of EC (marking the places Pci) in all
stations "oscillates" around the threshold.

Graphs representing (see figure 10) the dynamic behaviour of a given system, such as
those presented in our illustrative example, provide a valuable benefit to the operator.
They allow a visual, fast and intuitive way to observe the good or the bad functioning
of its system according to the management policies used or the parameters applied. The
riches of our models also permit to evaluate, significant performances index as corpo-
ration gain for each scenario. The dynamic model developed is a valuable assistance
for the implementation, operation and control of car sharing systems. It is pertinent to
both the analysis for the simulation.

Time (o)

Fig. 4. Evolution of empty parking spaces with relocation and Evolution of number of
relocation



We can also analyse more closely the rebalancing policy of the network: how many
interventions? Which stations are visited? ... The measurements and the analysis to be
carried out on the evolution of the markings of places and/ or the firing of the transitions
of the PN model make it possible to express several performances of the system. The
figures below are some illustrations in this frame.

5 Conclusion and perspectives

ECs system have been encounter many challenges crucial of them is to ensure users
EC and empty parking spots in each station. Consequently, the optimal redistribution
of ECs is unavoidable for the vivacity of system and avoid his failure. In this frame-
work, we proposed relocation technique for optimal dynamic and balancing of this ur-
ban transportation mode; by using stochastic Petri nets and discrete event simulation.
The relocation is periodical consists to visit stations periodically (each determinate
time). The obtained results underline of 10 stations with one truck for online relocation
strategy increase mostly the served users and decrease importantly the two extreme
cases (empty and full). In this context, we will address in next to estimate and predict
the optimal size of the relocation team (workers, trucks) and optimal charging level of
EC for enormous ECs network by optimization techniques (neural network) and Petri
nets through simulation; it will be tested on a realistic case study. Otherwise, the pre-
sented models permit evaluating some important decision keys to design or manage the
system: sojourn time of EC in station, average unserved users, and % time full/or empty
of stations. The numerical results of simulation show that strategy with 50% of charging
level reduced the number of users not served (viewpoint demand) and create dynamic
in system. However this politic drives system to the running out situation of EC. At
the present time and although the introduction of computer equipment and new infor-
mation technologies in the new generations of ECs, relocation or rebalancing of stations
is often done on the basis of common sense, knowledge of the network and the instan-
taneous state of the stations at the time of the tour. Without performance evaluation and
/ or prediction tools, this does not necessarily lead to a good level of service, especially
in the case of large networks whose organization and management are often complex.
On other hand, in near future self-driving electric car will replace classical car and ECs
will be automated and more flexible in city. In this context, we aim to re-drive our
approach and for modelling of self-driving ECs system in urban area.
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