

Analysis of the impact of on-demand mobility services on mobility in the city of Munich

Christian Assmann

Technical University of Munich

Department of Civil, Geo and Environmental Engineering

Chair of Urban Structure and Transport Planning

Munich, 26.11.2018

Research Motivation

Urban Mobility Challenges

The Solution to all the Problems?

Pictures: Web

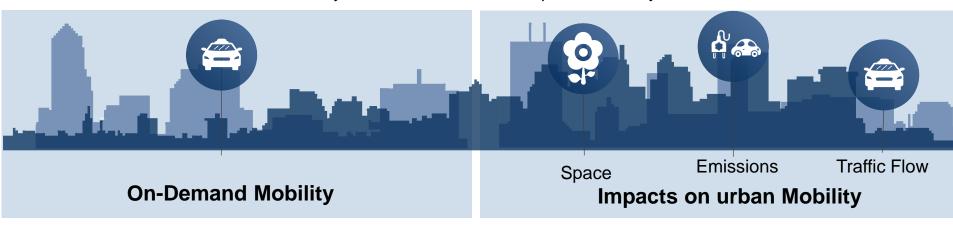
Objective and Research Questions

Questions: What are the Impacts of future On-Demand Mobility Services on Traffic Flow, Emissions and

Space in the City of Munich?

What are the relevant **influencing factors** for the future development of On-Demand Mobility

Services?


Under which general conditions can On-Demand Mobility Services lead to an **improvement** of

Traffic Flow, Emission and Space in the City of Munich?

Hypothesis: On-Demand Mobility improves the traffic flow in the city.

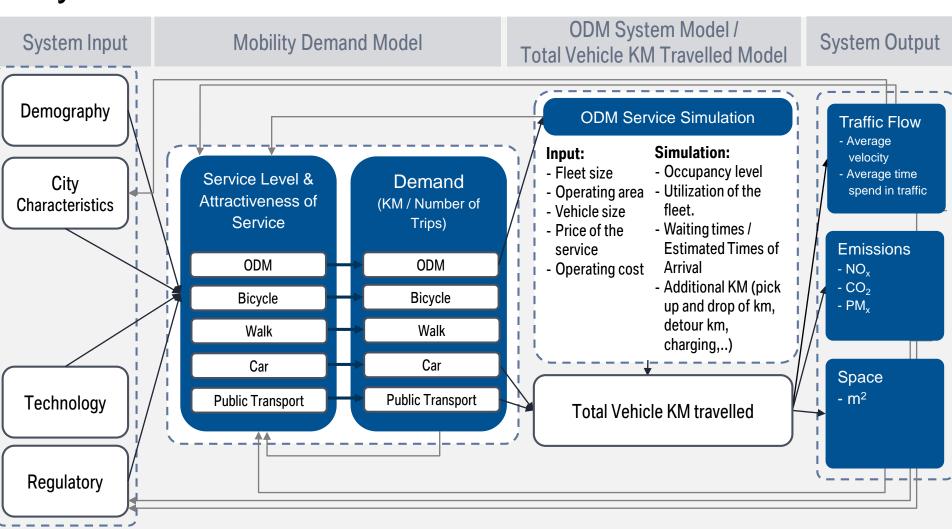
On-Demand Mobility reduces the emissions in the city.

On-Demand Mobility reduces the land consumption in the city.

Methodology and Research Design

Literature-Review

Explorative - Qualitative Expert Study


Quantitative
System Model
System Dynamics

Preparation and Interpretation of the Results

- Orientation in the study field
- "State of the art"
- Identification of applied methods
- Orientation in the study field / Consideration of different perspectives
- Identification of relevant parameters / system variables
- Application of CLDs, as well as Stock and Flow diagrams, to identify the mechanisms acting within the system
- Helps to identify patterns on the system's behaviour understanding the impact of different system levers
- Quantitative modeling of the system model using suitable data sources and relevant scenarios
- Software: PowerSim (System Dynamics)
- Evaluation and interpretation
- Identification of relevant system levers
- Formulation of suitable recommendations for action.

System Model - Overview

Thank you for your Attention!

Christian Assmann

PhD fellow mobil.LAB doctoral research group
Technische Universität München
Ingenieurfakultät Bau Geo Umwelt
Professur für Siedlungsstruktur und Verkehrsplanung
https://www.sv.bgu.tum.de/mobillab

PhD Student funded by BMW Group

Research, New Technologies, Innovation

Mobil: +49-151-601-76656

Mail: christian.aa.assmann@bmwgroup.com