

Positrons Probing Matter:

Novel Applications Using Low-Energy Positron Beams

Christoph Hugenschmidt

Technische Universität München

Positron Trapping in Vacancies

Positron Group at NEPOMUC

TIMA E21 Arbeitsgebiet Physik mit Positronen			der Bundeswehr Universität
C. Hugenschmidt	C. Piochacz	S. Vohburger	G. Dollinger
N. Grill	M. Reiner	H. Ceeh	B. Löwe
M. Tischler	T. Gigl	J. Weber	U. Ackermann
S. Zimnik	P. Pikart*	M. Leitner	M. Dickmann
J. Mayer*	Q. Ning*	P. Böni	L. Ravelli*
B. Straßer*	M. Stadlbauer*	L. Chioncel Uni AU	W. Egger

What we Measure:

Positron Beam Facility at NEPOMUC

Switch SR 11 Open beam port Remoderator PAES CDBS **PLEPS** SPM interface Intensity: > 10⁹ e⁺/s World record ! C. H. et al. NIM A 593 (2008) 616 New J. Phys. 14 (2012) 055027 J. Phys. Conf. Ser. 443 (2013) 012079

Positron Beam Experiments

Defect Mapping & Buried Clusters

Surface Segregation

Vacancies in Oxides

Electronic Structure

Plastic Deformation in Al and Al Alloys

- S(σ) correlation almost material independent (Al, AlMgSi0.5, AlMg3)
- Correlation of S and *locally acting* σ by spatial resolved DBS

8

Plastic Deformation in Al and Al Alloys

Aim: 2D defect mapping + visualization of local σ in asymmetrically shaped samples

Irradiation Induced Defects

Simulation of fission fragments induced defects:

Zr⁺ irradiated Zircaloy: 3 MeV, 2.5 10¹³ Zr⁺/cm² Samples: R. Hengstler, AREVA NP GmbH

Spatially resolved defect profile due to vacancy clusters

M. Stadlbauer, C. H. et al. PRB 76 (2007) 174104 R.M. Hengstler-Eger, C.H. et al. J. Nucl. Mat. 423 (2012) 170

Element Information

Buried Layers: Al/Sn/Al

Variation of A⁺ at Interface in AI/M/AI

Vacancies in Perovskite Oxide Thin Films

Pulsed laser deposited (PLD) homoepitaxial SrTiO₃

Sr²⁺

Aim:

Determination of vacancy types for different process parameter

Adjustment of e+ energy to max sensitivity in 200nm layer

D. Keeble et al. PRL 105 (2010) 226102, PRB 87 (2013) 195409

Results: SrTiO₃ Thin Films

D. Keeble et al. PRL 105 (2010) 226102, PRB 87 (2013) 195409

The Positron at the Surface

Auger electron

eV e⁺

Positron Annihilation Induced AES

²²Na based lab beam: 8000 e⁺/s

NEPOMUC: $\sim 4x10^7 \text{ e}^+/\text{s}$ + efficient e⁻ detection

J. Mayer, C. Hugenschmidt unpublished (2009)

B. Straßer, C. Hugenschmidt, K. Schreckenbach Radiat. Phys. Chem. 68 (2003) 627

Christoph Hugenschmidt

Emission of Auger-Electrons

several at. layers

e⁻Auger
I_{e+} < pA
elaborate
~10 eV
"0"
topmost at. layer
++</pre>

PAES

currents:
 setup:
 beam energy:
 e⁻_{sec} background:
 information depth:
 Auger yield:

Pd & CuPd

Application of Pd membranes:

- heterogeneous catalysis
- H storage
- H purification
- CuPd → better H permeation

But:

segregation at surface & grain boundaries

predicted by theory

calculated segregation energy:

E_{segr}(CuPd) ~ 60meV

O.Lovvik, Surf.Sci. 583 (2005) 100

CuPd: Surface Selectivity

 \rightarrow compare Auger fractions Cu & Pd

J. Mayer, C. H. et al. Surf. Sci. 604 (2010) 1772

(Sub-)ML Cu on Pd

Results

- > 1 ML Cu: Pd still visible \rightarrow Cu islands
- 5.9 ML Cu: only Cu-Augers → Pd surface completely covered with Cu

(higher e⁺ affinity to Pd)

J. Mayer, C. H. et al. Surf. Sci. 604 (2010) 1772

Cu on Pd: Evolution of the Surface

Stability of Cu layer?

 \rightarrow Few ML of Cu on Pd

 \rightarrow Time dependent PAES

Results

time constant 1.4h

>> surf. diffusion

bulk (self) diffusion @RT
1 nm/h

segregation of Cu/Pd !

Cu fraction of Pd with 5.77ML Cu

ACAR Angular Correlation of Annihilation Radiation

Ceeh et al. Rev. Sci. Instrum. 84, 043905 (2013)

²²Na:

High transport efficiency

Polarized positrons: $P = v_m/c = 0.368(5)$

Christoph Hugenschmidt

ACAR Angular Correlation of Annihilation Radiation

- Special conditions not required
 → T >> 0, no B-field, no UHV
- - → surface, thin layers, 2D el. systems (planned)

🗖 e+ beam

Principle of ACAR

Measure **2D-projection of TPMD** (Two-Photon Momentum Distribution) of an oriented single crystal
 → 2D-ACAR spectrum:

$$N(\boldsymbol{\theta}, \boldsymbol{\phi}) = N(p_x, p_y) = \left(\int \rho^{2\gamma}(\mathbf{p}) dp_z\right) \otimes R(p_x, p_y)$$

2) **3D-reconstruction** of Fermi surface (FS) from several 2D-projections

3) 2D-Cuts through FS

4) **Magnetic ACAR**: Measure TPMD with B-field parallel/antip. to P(e+):

$$N_{\pm}(p_x, p_y) = \frac{\lambda_s}{4} \sum_{i}^{occ} \left[\frac{(1 \pm P)N_i^{\downarrow}}{\lambda^{\uparrow}} + \frac{(1 \mp P)N_i^{\uparrow}}{\lambda^{\downarrow}} \right]$$

J. A. Weber et al. J. Phys. Conf. Ser. 443(2013) 012092

Motivation

Nickel

Magnetic FCC metal One unpaired 3d-electron

"simple" test case for theory and experiment

http://www.phys.ufl.edu

Theory

6eV satellite peak arises when correlations are included (DMFT)

Effect of correlation change the shape of the Fermi surface

J Kolorenc, et al., arXiv:1202.6595v1

Results on Nickel

Integration direction along <100>: 4-fold symmetry
 Results (Preliminary! Publication in preparation; H. Ceeh et al.)
 LCW-folding: transformation from p-space to k-space
 Magnetic difference spectrum exhibits the same symmetry

Electron Correlations

Results (Preliminary! Publication in preparation; H. Ceeh et al.)

- signifcant effect due to electronic correlations
- Hubbard U determines strength of correlation effects
- best agreement for U = 2.0 eV

Summary I

0) Positron as nano-probe:

- **extremely sensitive** to open volume defects & non-destructive
- high-intensity beam NEPOMUC: >10⁹ e+/s
- **user facility**: NEPOMUC at MLZ Munich

1) Spatial resolved (C)DBS:

- 3D-defect imaging
- clusters, layers, chemical surrounding of defects
- T-dependent defect annealing
- 2) Defect spectroscopy with e+ lifetime:
 - type & concentration of **defects**
 - free volume
 - depth profile (beam)

Summary II

3) Surface physics with (t-dependent) PAES :

- **"no" secondary electrons** & non-destructive
- top most atomic layer sensitivity
- surface **segregeation**

4) Electronic structure, Fermi surfaces:

- T >> 0, no B-field
- spin-resolved ACAR
- bulk, surface & layers (beam)

Thanks to:

Collaborations

UniBW München:	G. Dollinger, W. Egger		
Uni Halle:	R. Krause-Rehberg		
Uni Kiel:	K. Rätzke		
Uni Augsburg:	L. Cioncel		
Uni Bristol	S. Dugdale	iviany sutdents	
Uni Tsukuba:	A. Uedono	+	

Many external users

MPI Heidelberg:	D. Schwalm, F. Fleischer
LMU München:	P. Thirolf, S. Gärtner
MPI Greifswald:	T. Pedersen, H. Saitoh

Funding

Deutsche Forschungsgemeinschaft

GEFÖRDERT VOM

Universität

Bayern e.V.

B a C a T e C

Bundesministerium für Bildung und Forschung