Exercises for Nuclear Astrophysics I - WS 2011/12Sheet 7

Peter Ludwig - Lehrstuhl E12 - peter.ludwig@ph.tum.de - Phone: 089/289/14273 Problems will be discussed Thursday 01/19/2012 at 13:00.

15 Reciprocity Theorem

A nuclear reaction rate is related to its inverse reaction by the reciprocity theorem. For a reaction $a + A \rightarrow b + B$ it can be written as

$$\frac{p_{aA}^2(2j_A+1)(2j_a+1)\sigma_{aA\to bB}}{1+\delta_{aA}} = \frac{p_{bB}^2(2j_B+1)(2j_b+1)\sigma_{bB\to aA}}{1+\delta_{bB}}$$
(1)

(a) Show that for massive particle a and A, it follows that the ratio of backward to forward reaction rate is given by

$$\frac{\langle \sigma v \rangle_{bB \to aA}}{\langle \sigma v \rangle_{aA \to bB}} = \frac{(2j_a + 1)(2j_A + 1)(1 + \delta_{bB})}{(2j_b + 1)(2j_B + 1)(1 + \delta_{aA})} \left(\frac{m_{aA}}{m_{bB}}\right)^{3/2} e^{-Q_{aA \to bB}/kT}$$
(2)

where $Q_{aA\to bB}$ is the Q-value of the foreward direction of the reaction, which can be written using the kinetic energies as $Q_{aA\to bB} = E_{bB} - EaA$.

(b) * Now consider a photo-disintegration reaction $A + \gamma \rightarrow b + B$. The photodisintegration decay constant is given by the expression

$$\lambda_{\gamma} = \frac{8\pi}{h^3 c^2} \int\limits_{E_t}^{\infty} \frac{E_{\gamma}^2}{e^{E_{\gamma}/kT} - 1} \sigma(E_{\gamma}) \, dE_{\gamma} \tag{3}$$

where $E_t = Q_{bB \to a\gamma}$ is the threshold energy for the reation (most photodisintegration reactions are endothermic) and E_{γ} is the photon energy. Show that in this case, the ratio of the reaction rates can be written as

$$\frac{\lambda_{\gamma}}{\langle \sigma v \rangle_{bB \to A\gamma}} = \left(\frac{2\pi}{h^2}\right)^{3/2} (m_{bB}kT)^{3/2} \frac{(2j_b+1)(2j_B+1)}{(2j_A+1)(1+\delta_{bB})} e^{-Q_{bB \to A\gamma}/kT}$$
(4)

Hint: You can make the assumption that $e^{E_{\gamma}/kT} - 1 \approx e^{E_{\gamma}/kT}$ for $E_{\gamma} >> kT$.

16 Abundance evolution of ²⁵Al

There are several processes that can influence the abundance of an isotope X in a star over time. In general, we can write

$$\frac{d(N_X)}{dt} = \sum_i \pm r_i \tag{5}$$

where we have to sum (+) over all production mechanisms and substract all destruction mechanisms (-) with individual reaction rates r_i .

(a) Find possible production and destruction mechanisms ²⁵Al using the section of the nuclide chart below.

Si 24	Si 25	Si 26	Si 27	Si 28
103 ms	218 ms	2,21 s	4,16 s	92,23
β ⁺ βр 3,913	β ⁺ βp 4,09; 0,39; 3,33 γ 1369*	β ⁺ 3,8 γ 829; 1622 m	β ⁺ 3,8 γ (2210)	or 0,17
AI 23	AI 24	AI 25	AI 26	AI 27
470 ms	129 ms 2,07 s	7,18 s	6,35 s 7,16 · 10 ⁵ a	100
	β* 13.5		B* 1.2	
β ⁺ βр 0,83	βn 1,42; 7069 11,79 βn 1,93	β ⁺ 3,3 γ (1612)	в ⁺ 3.2 1130	σ 0,230
Mg 22	Mg 23	Mg 24	Mg 25	Mg 26
3,86 s	11,3 s	78,99	10,00	11,01
β ⁺ 3,2 γ 583; 74	β ⁺ 3,1 γ440	σ 0,053	σ 0,17	σ 0,037

- (b) Write down the explicit expression for the time evolution of the ²⁵Al abundance $\frac{dN(^{25}Al)}{dt}$ using your result from (a).
- (c) Now we consider two specific reactions that can destroy the nucleus ²⁵Al: the capture reaction ²⁵Al(p, γ)²⁶Si and β^+ -decay. Neglecting other processes, determine the dominant destruction process at a stellar temperature of T = 0.3 GK assuming a proton capture rate of $N_A \langle \sigma v \rangle = 1.8 \cdot 10^{-3}$ cm³ mol⁻¹ s⁻¹ and give the total life-time of ²⁵Al with respect to both processes. Assume a stellar density of $\rho = 10^4$ g/cm³ and a hydrogen mass fraction of $X_H = 0.7$.
- (d) Calculate at which temperature T the two processes would contribute equally to the destruction of 25 Al. To do this, assume that the beta decay rate is independent of T. Further, assume a non-resonant proton capture reaction rate to calculate the reaction's power law dependence index n first.