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5 Lane-Emden equation and stellar modelling

5.1 Polytrope with n = 0

Consider a stellar model with finite radius R and constant density profile ρ(r) = ρc (see excercise
sheet 1). This corresponds to a polytrope of index n = 0.

(a) Ritter’s First Integral

Show, that in this case, the solution of the Lane-Emden equation
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with the boundary conditions φn(0) = 1 and φ′n(0) = 0 at the center, and φn(ξ1) = 0 at the
surface is parabolic:

φ0(ξ) = 1 − ξ2
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(b) Another lower bound on the central pressure

In Problem 3, a lower bound on the central pressure was derived. A stroger lower limit can be
obtained using the constant density model. Consider the Lagrangian form of the hydrostatic
equilibrium equation
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derived in Problem 2.3. Eliminate the variable r and integrate the equation to obtain the
pressure

P = Pc
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Use this to give a lower limit on the central pressure Pc. Note that although this is a stronger
lower limit than that of Problem 3, we did not actually prove that this is really a lower limit
here.

5.2 Polytrope with n = 1: Ritter’s Second Integral

Consider a polytrope with index n = 1. Show, that in this case, the Lane-Emden Equation takes
the form of the sperical Bessel differential equation
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r
+ (k2r2 −m(m+ 1))R(r) = 0 (5)

with the general solution
R(r) = A · jn(kr) +B · nm(kr) (6)

where jn(kr) and nm(kr) are the spherical Bessel functions of first and second order respectively.
Then, derive the solution φ1(ξ) by applying the boundary condition φ1(0) = 1 to the general
solution (6)
Hint: Find the coefficients k and m first, by comparing equations (1) and (5).
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5.3 General calculations for Polytropes

(a) Density ratio

Show that the ratio of mean to central density for any polytropic index n is given by
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where φ′ := dφ
dξ and ξ∗ = ξ1 is the first zero of φ and thus describes the surface of the star.

(b) Central Pressure

Show, that the central pressure can be written as

Pc =
1
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