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Resonant Reaction Rate:

1/2 o0
r19 = 8 M7_3/2f Fo(v)exp £ dE
uy 1 4 012 0 T

o Lol TR’ Lol
k2 (E-E.)24T12/4 2uE(E—-E,)%+T12/4

o

Assume that both widths are small (total width is narrow) and they are constant (very

weak energy dependence). Sub the above cross section into the integral, treating the T°
terms as constants:

12 = | — T € E— 5 5
g 21 14 010 L Jo (E-E)2+T2/47
|
\

T

2



Resonant Reaction Rate (Single Resonance):

(%)3/2 po NN 2J, + 1 Py gy
ri2 = | — e
2\t 1+ 615 (21 +1)(2Jo+1) T

We have added the spin-statistical factors (now) to account for the fact that our
theory up to this point has only considered spin zero particles (in entrance channel
and exit channel) in the reaction.

More generally, for particles with spin, we have to multiply the cross section by the
spin-statistical factor to account for the different permutations of spin alignments that

are allowed.

J, is the spin (intrinsic) of the resonance.

. “beam particle.
), “ target particle.
2J,.4+1 'yl

We define wy = 37 as the resonance strength.
1

T1)(2J2+1) T



In the event that several resonances can contribute to the rate, then we have:

3/2

27 o N1No —FE
— S h _— i T‘i/T
12 T T g (wy)se

7

Where the sum extends over all resonances that can contribute to the rate, and
where each resonance has its own resonance energy and resonance strength.



Inverse Reaction Rate

[
Let’s start with Fermi’s Golden Rule: [, _,; = % |Ha,b yzp(Eb)

Where py, is the density of final states and: ’Ha,b’ — <b|H

Here, H, is the “perturbing” component of the Hamiltonian that generates transitions.

a,—>b

Tb—>a

Let’s consider the ratio of the forward and inverse rates:

Now, if H, = H; then: |Hab|2 — |Hba|2 (exercise for you)

Ta,—>b )O(Eb)
Tb—>a, p(Ea,)

Our transition rate ratio is now:

Ep)
E.)

Hab
Hba




From the definition of cross section, the transition rate of particles scattered into any solid
angle element is just: “Flux times cross section”

Lo Vg A0 g P(Eb)

Tb—>a Uy dgb—>a p(Ea)

Recall from Lecture 2, of last semester that the density of states for a free particle in
final state a is given by:

( )_ 1 dN, B p?L
PPe) = dp, — 923
, dN dN dFE
And from Chain Rule: — = — —
dp dE dp
1 dN 1 dN dFE dFE

- — = E—
~r = =vaE s - "By

Collecting everything, we now have:



5 dPg 5 d

Pb
Almost there: ga Uq pa JE. dog,_p = gy Up pb dE, dop—q

If particles are massive in either entrance or exit channels, “a” and “b”, then:

dp
2

—2uF = ——=°C
p f iE " p

9a }uaEa daa—>b = 3p NbEb dab—mz

All particles massive
in entrance & exit

On the other hand, if one of the particles in exit channel (say, particle “4”) is a gamma,

then a bit more work.

For a massive particle-gamma combination, the center of mass lies at the massive
particle. (Why?) This means, then, that the relative momentum of this system is simply

the photon momentum (Why?).

« e d
From relativity: E3 — pi/CZ — d_g’ — CZE,Y/pr



And so, for the reactioncase: 1+ 2 = 3+~

2 12
We have the relation: | Jq QLLaEa do'a,—>b — gy C E,Y dab—>a

We finally have a relation between the photodisintegration cross section and the
charged particle cross section

,Qh+ 1)L+, B
2205 +1) PE2

03y(Ey) = ¢ o(E12)

From Lecture 6, the photodisintegration reaction rate was found to be:

8TN;y [ E?
- E J
T3~ h3 2 /Q JS’Y( ’Y) eXp(EfY/T) 1

dE,,

Recall that E, = Ei2 + Q123



Making the substitution for photodisintegration cross section and changing variable, we
have now:

(2J1 —|— 1)(2J2 —|— 1) 87TN3 /OO O'(Elg)
T3y = 3 p12b1o
(2J3 -+ 1) h 0 exp([Elg + Q]/T) —1

dFn2

Now, 7 = kT = 8.67 x 1077 MeV /K. At explosive temperatures between 10° to
10° Kelvin, this is a small number. And the argument of the exponential is, at minimum,
just the Q-value. Q-values are of the order of a few MeV. So, the exponential term is
large — very large — compared to unity. We therefore can write:

(2J1 + 1)(2J2 + 1) 87T)£1,12N3

T3y = s 1 1) 73 exp(Q/T)\/O Elga(Elg)eXp(Elg/ir')dElgJ

From Lecture 6, the forward reaction rate is given by:

g \1/2 ) { 50
12 = ( ) NlNQ’T 3/2 / Elgo'(Elg) exXp (—Elg/’?’) dElg
T2 0



Ratio of inverse photodisintegration rate to the forward charged particle rate is:

3,/2
r3y 9192 Ng (27 /

712 g3 N1iNy \ h?

(H12’F)3/2 exp(—Q12_>3,Y/fr)

Note: In equilibrium, with the forward and inverse rates equal to each other, the
above equation is exactly the Saha Equation.

Exercise for you. Show that the ratio of rates when all particles are massive is:

1/2

r3a 9192 N3Na [ i34
S8 2o a eXP(—Q12—>34/7')

r12 9394 N1 Na \ 12

These two results will be required for future lectures on the nuclear processes occurring
within extreme phenomena such as Supernova and X-Ray bursts. Know them well!
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After primordial BBNS, the dominant isotopic constituents are protons and alpha
particles. The first generation of stars had to condense from gas consisting of these
isotopes (and a tiny fraction of others).

time {seconds)
10 102 103 1w
1 w__ m— 5 ) -
] e A p+p—“He—p—+0p
] 5 o
g p+4He—>5Li—>p+4He >_A||
T e unstable
: S =
E lliﬂ n neutrons
0 & ‘He + ‘He — 3Be — “He + 4He_/
10 f
/ Li' 6
ll]-lz ] Jlll.lII L .([E&*— 1 Lll
3% 10° 1% 107 3 ¥ 10% 108

temp erature {(kelwinc)

Must start with something else. P + D will not work: there is not sufficient
abundance of D to sustain the burning times of a star. What else?

p+p— D+ +v

This is the next most sensible reaction to consider. It’s a weak interaction, so it
will be very slow compared to the strong interaction reactions above. But we
know there is plenty of hydrogen in the star to make it feasible.



p+p— D+ BT +v

+ D — 3He
P @\Life on Earth

possible

SHe + *He — a + 2p

'8
pp2 chain Be| |*Be 3He—|—4He—>7Be—|—'}/
‘Be+ 3~ — "Li+v
Li+p—a+a
H

> Be+p— B+

pp3 chain Be | [*Be
. SB—)'B—'_—I_V"_SBG

8Be — a + «

H 13




Proton-Proton-Chain

p+p—>d+et+

p+d->3He+y
86% | 14%
*He + 3He - “He + 2p *He + “He > "Be +y
99.7% 0.3%
PP-| i o | cl
Q= 26.20 MeV

‘Be+e > "Li+ ‘Be+p>8B+y
Li+p > 24%He 8B > 8Be + e* +

\

PP-li 2 “He

Q= 25.66 MeV —_—

Qo= 19.17 MeV

Netto: 4p > “4He + 2e* + 2v + Q¢




Some reminders and definitions before we start:

3/9 o0 2
(ov) = 4m (%) /o v2o(v) exp (—L;—T> dv

1/2 .
— (i> 7'_3/2/ Eo(F)exp (—E) dF
T 0 T

Reaction rate formula, between particles 1 and 2 is then:

N1 No
’r‘ f—
2T + 012

<O'U>12

Lifetime of particle 1 to destruction by particle 2:

72(1) = Nz(iv)m = (P%NA(UUM) R

15



PPI Chain Abundance Equations: ptp— D+ B+

dD
7 = T~ TDp p+D—*He+r
H?2 SHe +3He — o+ 2p
= 7<U'U>pp — HD(ov)pp
d(*H SHe)?
% — DH(ov),p <3 26) (00}

Two 3He destroyed per reaction (left and
right sides of equation are coupled)

Now, compared to the p + p rate (weak interaction, so very slow), the p + D rate will
be very fast (EM Interaction). Therefore, D should reach an equilibrium abundance.

16



(

dD

With D in equilibrium, this means &= = ()

D
H (&

2.0:% 10~

1.5x 10717

1.0x 10717t

7.0% 108

5.0x 10718¢

3.0x 10718}

dt

nuclear experiments.

N ( D ) (oV) pp 7p(D) } These must come from

Deuterium is thoroughly destroyed within the
hydrogen burning zones of stars

Solar core temperature

5.0x 10° 1.0x 107 1.5x 107 2.0x 107

17



The lifetime (destruction rate) of deuterium is so short (fast) compared to its production
through the p + p reaction rate, that we can safely assume that the hydrogen

abundance in the star changes negligibly during the time in which deuterium reaches
its equilibrium.

We can then solve the deuterium abundance as a function of time:

d(D/H) H D .
7 = 5 (av)pp - H (ﬁ) (JU)pD H is now constant!
_ B H
Transform with: r=D/H a = E<Uv>pp b= H{ov),p
dx
Then we have: — 4+ br—a=20
Solve this by multiplying both 74 d

by _ bt
sides with integrating factor {x € } — —ac

= d



Exercise for you: Take the last equation and work the solution through to the end, under
the initial condition that at t = 0 the deuterium fraction is: (D/H),,.

(7).~ (5).-[(5).~ (&) )

(Recall: H{owv),p = )

Equil’lbm abundance ~ 1018

Plot shows something important: T=15 MK

Deuterium achieves equilibrium
abundance within less than a few
minutes! Main sequence stars burn 10713}
hydrogen for billions of years.
10716}
Assumption that deuterium is in
equilibrium and rapidly destroyed is
justified. ] 10 100 1000 10*
Time (s)

19



What does this result tell us about stars in the early Universe?

* Primordial deuterium would have been incorporated in the first generations of stars
* We have seen that it burns with hydrogen at a prodigious rate compared tothep + p
reaction rate

* Early generation stars that condensed out of the first gas clouds most likely started
their fusion burning with the p + D reaction not the p + p reaction

* Dangerous to try extracting primordia! deuterium abundances from stellar

atmosphere Fraunhofer lines! . | ]
I
0% + .

109 -

Lifetimes of species in the PP1 ’g .
chain. Again: the lifetime of S ot o) | J
deuterium against destruction by  *

protons is, by far, the smallest

X = Xpge =0.50

3

p=100 g -cm™




Exercise: Use the equilibrium expression for D/H to write:

ACH/H) _ H (o)~ H (i) (0)3s

dt H
Transform this using: = = (*He/H)  a = (H/2){ov),, b= H(ov)s3
dx
= — =a— bz’
dt

Looks like something involving a trigonometric integral.

21




3He equilibrium abundance ratio to H, as a function of temperature. For
temperatures above ~ 6 MK, the ratio is tiny; meaning the H number density is

overwhelmingly larger than that of 3He = solve the previous equation treating H
as a constant.

IlT‘TIlll_l*IlfllllTllrllil'1l‘l7[[llltl

B Xp = Xpe =0.50 -

‘\ p=100g-cm™3 )

n{He®)/n(#)




Exercise for you: Solve the previous equation using trigonometric substitution, or a
table of integrals, to determine 3He/H as a function of time, with the initial condition
thatatt=0, 3He/H = 0.

(ﬁ) - % tanh (t\/ §<av>ppﬂ<av>33)

-(5). e ()




t(He'/Hel = 0.99), years

pXy
50

loll

lolo

10°

10*

107

10*

10°

10

| L lill“]

<JU>PP E ov agv
2<O’U>33 tanh tJ 9 < >]9PH< >33

LI YII"I

Plot of the time for 3He/H to reach 99% of its
equilibrium abundance as a function of
temperature.

? Pl B3 lll"]

| (2 ¢ IIII"I

The time for 3He to reach equil’m is billions of
years for temperatures less than ~ 8 MK. It is
therefore dangerous to assume 3He is in
equilibrium for standard main sequence stars
younger and less massive than our Sun.

LU ll"ll

LI llll"l

| P O | ltllll
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Energy generation rate of the PPI Chain:

1
€ppl = ;(Qpp Tpp T+ QpD TpD + ()33 ?°33)

1 H*? SHe
—+ (@ 5 00)n + QuoHDIo0)0 + Qa0
Recall the results about deuterium (D) abundance changes: D achieves
equilibrium within minutes. From page 9, with dD/dt = 0O:
H2
(*%*) HD{ov),p = > (ov)pp  Substitute into above eqgn

When 3He is in equilibrium, d(3He)/dt =0
Exercise for you: Use the differential equation for, d(3He)/dt = 0 on page 9. Use it to
express the <UU>33 factor in terms of a factor involving (JU>pD. Then use the

equation (**) to express the (Jv>pp factor in terms of a <O'?J>pD term.

This will let us write the energy generation rate in terms of the p + p reaction rate only.



After you have done the previous exercise, you should find:

H? ()33 ' X!
Cppl = % (Qpp + Qpp + = 9 (0V) pp :H = pNAA—IIj :
I I

B N2 X?

TAA—%{ (Qpp + Qpp + Q233> (o ’U>;0p

From lecture 11, we know the <O'U>pp factor can be written in a power-law form with
exponent

_ (—2 4 32eff) 3

-

272 N\ 1/3
Lec. 11 glefl _ 4o 457 ( Z1220
T T6

For p + p, we have for T, =15,n=3.9

3.9
T
Cppl = €ppl (To) (To)

26



dH _H H?
= 2—6<U’U>3H63He 2——{ov)pp — HD{ov)pp

dt 2 2 .
—H("Be){ov),7ge — H("Li){ov) 7 s

dD  H?

dr :7<Uv>pp_HD<U’U>pD 2

d(°He) (3He)? 3
dt DH({ov)pp =2 5 (oV)spespe — (CHe)(*He)(0V) o5 e

d(*H 3He)?
(dt e) - ( 28) <JU>3H€3H€ + QH(TBG) <O-’U>p7Be + QH(7Li)<O"U>,p7Li

—(PHe)("He){ov)asne 2

d(d]fe) = (PHe)("He){ov) o3 e — H("Be)(0v)prpe — ("Be)Aerpe 5

d("Li)

= = (MBe)Arpe — H(Li){00)y71; 6 )




Exercise for you:

Take the system of equations from previous page and:

1.

Assume that ’Be, “Li have lifetimes that are short compared to star = both are in
equilibrium, so that

d("Li+" Be)
=0
dt
3
Assume 3He has also come to equilibrium in Equation 3: d(d—fje) =0

Use also Deuterium equilibrium in Eq. 2

Use these simplifications to reduce the previous system of equations down to just
two differential equations involving the rate of change of hydrogen and alphas.

Also find an expression for the equilibrium abundance of 3He from the
simplification in step 2 and using Eqg. 3. Show that your equation makes sense in
the limits that H=>0 and “He - 0.



PP Chain Abundance Evolution
(No 3He Equilibrium Simplification)

Abundance
Fraction 1
0 1'_ Alphas
. 01' Initial Conditions: Protons
s F H,=0.71
i TT3: L7
: 3He, = 0 At Lifetime of Sun ~ 10 Gyr
0.001¢
: Solved for fixed temperature: 15 MK
1074
107>} ” 3He
1076 e £ LIS LA
10 1000 10° 10

Time (yr) .



