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Resonant Reaction Rate: 

Assume that both widths are small (total width is narrow) and they are constant (very 
weak energy dependence).  Sub the above cross section into the integral, treating the  
terms as constants: 
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Resonant Reaction Rate (Single Resonance): 

We have added the spin-statistical factors (now) to account for the fact that our 
theory up to this point has only considered spin zero particles (in entrance channel 
and exit channel) in the reaction. 
 
More generally, for particles with spin, we have to multiply the cross section by the 
spin-statistical factor to account for the different permutations of spin alignments that 
are allowed.  
 
Jr is the spin (intrinsic) of the resonance. 
J1 “                                             “ beam particle. 
J2 “                                             “ target particle. 
 
We define                                                            as the resonance strength.  
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In the event that several resonances can contribute to the rate, then we have: 

Where the sum extends over all resonances that can contribute to the rate, and 
where each resonance has its own resonance energy and resonance strength. 



Here,          is the “perturbing” component of the Hamiltonian that generates transitions. 

Inverse Reaction Rate 
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Let’s start with Fermi’s Golden Rule: 

Where       is the density of final states and: 

Let’s consider the ratio of the forward and inverse rates: 

Now, if                        then:                                     (exercise for you) 

Our transition rate ratio is now: 
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Collecting everything, we now have: 

Recall from Lecture 2, of last semester that the density of states for a free particle in 
final state      is given by: 

From the definition of cross section, the transition rate of particles scattered into any solid 
angle element is just:  “Flux times cross section” 

And from Chain Rule: 
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Almost there: 

If particles are massive in either entrance or exit channels, “a” and “b”, then: 

On the other hand, if one of the particles in exit channel (say, particle “4”) is a gamma, 
then a bit more work. 

For a massive particle-gamma combination, the center of mass lies at the massive 
particle.  (Why?)  This means, then, that the relative momentum of this system is simply 
the photon momentum (Why?). 
 
From relativity:   

All particles massive 
in entrance & exit 
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And so, for the reaction case: 

We have the relation: 

We finally have a relation between the photodisintegration cross section and the 
charged particle cross section 

From Lecture 6, the photodisintegration reaction rate was found to be: 

Recall that                                             . 
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Making the substitution for photodisintegration cross section and changing variable, we 
have now: 

Now,                                                                        .  At explosive temperatures between 106 to 
109 Kelvin,  this is a small number.  And the argument of the exponential is, at minimum, 
just the Q-value.  Q-values are of the order of a few MeV.  So, the exponential term is 
large – very large – compared to unity.  We therefore can write: 

From Lecture 6, the forward reaction rate is given by: 
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Ratio of inverse photodisintegration rate to the forward charged particle rate is: 

Note:  In equilibrium, with the forward and inverse rates equal to each other, the 
above equation is exactly the Saha Equation. 

Exercise for you.  Show that the ratio of rates when all particles are massive is: 

These two results will be required for future lectures on the nuclear processes occurring 
within extreme phenomena such as Supernova and X-Ray bursts.  Know them well!  



SOLAR NUCLEAR FURNACE: 
HYDROSTATIC HYDROGEN BURNING 

In its core, our Sun presently burns protons to produce alpha particles.  
We are now fully armed with the physics necessary for looking at this 
burning process in detail 
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After primordial BBNS, the dominant isotopic constituents are protons and alpha 
particles.  The first generation of stars had to condense from gas consisting of these 
isotopes (and a tiny fraction of others). 

All  
unstable 

Must start with something else.  P + D will not work:  there is not sufficient 
abundance of D to sustain the burning times of a star.  What else? 

This is the next most sensible reaction to consider.  It’s a weak interaction, so it 
will be very slow compared to the strong interaction reactions above. But we 
know there is plenty of hydrogen in the star to make it feasible. 
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Life on Earth 
possible 



PP-I 

Qeff= 26.20 MeV 

p + p  d + e+ + n 

p + d  3He + g 

3He + 3He  4He + 2p  

86% 14% 

3He + 4He  7Be + g  

2 4He 

7Be + e-  7Li + n  
7Li + p  2 4He 

7Be + p  8B + g  
8B  8Be + e+ + n  

99.7% 0.3% 

PP-II 

Qeff= 25.66 MeV 
PP-III 

Qeff= 19.17 MeV 

Netto:    4p  4He + 2e+ + 2n + Qeff 

Proton-Proton-Chain 
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Some reminders and definitions before we start: 

Reaction rate formula, between particles 1 and 2 is then: 

Lifetime of particle 1 to destruction by particle 2:  
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PPI Chain Abundance Equations: 

Two 3He destroyed per reaction  (left and 
right sides of equation are coupled) 

Now, compared to the p + p rate (weak interaction, so very slow), the p + D rate will 
be very fast (EM Interaction).  Therefore, D should reach an equilibrium abundance. 
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With D in equilibrium, this means 

Deuterium is thoroughly destroyed within the 
hydrogen burning zones of stars 

These must come from 
nuclear experiments. 

Solar core temperature 
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The lifetime (destruction rate) of deuterium is so short (fast) compared to its production 
through the p + p reaction rate, that we can safely assume that the hydrogen 
abundance in the star changes negligibly during the time in which deuterium reaches 
its equilibrium.   
 
We can then solve the deuterium abundance as a function of time: 

H is now constant! 

Transform with: 

Then we have: 

Solve this by multiplying both 
sides with integrating factor 
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Exercise for you:  Take the last equation and work the solution through to the end, under 
the initial condition that at t = 0 the deuterium fraction is:  (D/H)t=0.  

(Recall:                                          ) 

Plot shows something important:  
Deuterium achieves equilibrium 
abundance within less than a few 
minutes!   Main sequence stars burn 
hydrogen for billions of years.   
 
Assumption that deuterium is in 
equilibrium and rapidly destroyed is 
justified. 

Equil’bm abundance ~ 10-18 

Time (s) 

T = 15 MK 
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What does this result tell us about stars in the early Universe? 

• Primordial deuterium would have been incorporated in the first generations of stars 
• We have seen that it burns with hydrogen at a prodigious rate compared to the p + p 
reaction rate 
• Early generation stars that condensed out of the first gas clouds most likely started 
their fusion burning with the p + D reaction not the p + p reaction 
•  Dangerous to try extracting primordial deuterium abundances from stellar 
atmosphere Fraunhofer lines! 

Lifetimes of species in the PP1 
chain.  Again: the lifetime of 
deuterium against destruction by 
protons is, by far, the smallest 

t = 3He 



21 

Moving on now to the 3He abundance: 

The deuterium is in equilibrium.  We can therefore use:  

Exercise:  Use the equilibrium expression for D/H to write: 

Transform this using:   

Looks like something involving a trigonometric integral.   
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3He equilibrium abundance ratio to H, as a function of temperature.  For 
temperatures above ~ 6 MK, the ratio is tiny; meaning the H number density is 
overwhelmingly larger than that of 3He  solve the previous equation treating H 
as a constant. 
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Exercise for you:  Solve the previous equation using trigonometric substitution, or a 
table of integrals, to determine 3He/H as a function of time, with the initial condition 
that at t = 0, 3He/H = 0. 
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Plot of the time for 3He/H to reach 99% of its 
equilibrium abundance as a function of 
temperature. 
 
The time for 3He to reach equil’m is billions of 
years for temperatures less than ~ 8 MK.  It is 
therefore dangerous to assume 3He is in 
equilibrium for standard main sequence stars 
younger and less massive than our Sun. 
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Energy generation rate of the PPI Chain: 

Recall the results about deuterium (D) abundance changes:  D achieves 
equilibrium within minutes.  From page 9, with dD/dt = 0: 

Substitute into above eqn 

When 3He is in equilibrium, d(3He)/dt = 0 
 
Exercise for you:  Use the differential equation for , d(3He)/dt = 0 on page 9.  Use it to 
express the                factor in terms of a factor involving                .  Then use the 
equation  (**) to express the                factor in terms of a                  term. 
 
This will let us write the energy generation rate in terms of the p + p reaction rate only.  

(**) 
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After you have done the previous exercise, you should find: 

From lecture 11, we know the               factor can be written in a power-law form with 
exponent  

Lec. 11 

For p + p, we have for T6 = 15, n = 3.9 
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Exercise for you:  
 
Take the system of equations from previous page and: 
 
1. Assume that 7Be, 7Li have lifetimes that are short compared to star  both are in 

equilibrium, so that 
 
 
 
 

2. Assume 3He has also come to equilibrium in Equation 3: 
 
 

3. Use also Deuterium equilibrium in Eq. 2 
 
 

4. Use these simplifications to reduce the previous system of equations down to just 
two differential equations involving the rate of change of hydrogen and alphas. 
 

5. Also find an expression for the equilibrium abundance of 3He from the 
simplification in step 2 and using Eq. 3.  Show that your equation makes sense in 
the limits that H0 and 4He  0. 



PP Chain Abundance Evolution 
(No 3He Equilibrium Simplification) 
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Protons 

Alphas 

3He 

Time (yr) 

Initial Conditions: 
H0 = 0.71 
a0 = 0.29 
3He0 = 0 
 
Solved for fixed temperature:  15 MK 
 

Abundance 
Fraction 

Lifetime of Sun ~ 10 Gyr 


