


The 4 Equations of Stellar Structure
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Return to the Standard (Stellar) Model

The stellar gas is a mixture of photons and Ideal particles. Thus,

Nap m? a
P,=nr="25kT P=—00rt=_T"
(L 45h° 3 3
7’1’2k‘4
Total Pressure: P, = P, + P, A = {5733

In thermodynamic equilibrium, these two gases have the same temperature. And let

Pg:/BPtot and PfY:(l—ﬁ)Ptot

31 —BNAkp)l/B

Then, we have: T — (
a [ W

1/3 4/3
= Ptot — (§ 1 - 6) (%) Polytrope of type 3
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Polytrope Solutions

Table 2-5 Constants of the Lane-Emden functionst

dé -
R R B (faos c
n 3 & (df)t-(. P /p
0 2.4494 4.8088 1.0000
0.5 2.7528 3.7871 1.8361
1.0 3.14159 3.14159 3. 28987
1.5 3.65375 2.71406 5.99071
2.0 4.35287 2.41105 11.40254
2.5 5.35528 2. 18720 23 . 40646
[3.0 6.89685 2.01824 54.1825 |
3.25 8.01804 1.04080 88.153
3.5 9.53581 1.89056 152.884
4.0 14.97155 1.79723 622.408
4.5 31.83646 1.73780 6,189.47
4.9 169.47 1.7355 934,800
5.0 ® 1.73205 ©
n=4
n=3
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Mass Luminosity Relation

Take the following equations from the 4 Structure Equations:

c dP dP M (r)
L(r) = —4nr? i o
() i pR dr dr G 12 pLr)
And use our friend: P, = (1 — 3)P
dP M(T) ub this into first equation
= d—: = -G 2 (1—8)p(r) zbgvz e
AdmcG M,
= L(r) = (1 - 5)

K

T

Small for all but the most massive of stars.



Eddington’s Quartic Equation

In 3" Lecture, pages 13 & 20, it was shown that the stellar mass can be written as,

7 V2T = 0,
g () () (€3)

(rG)?/2 Ch p dg

|
Product of the root of ¢

— 18.0 Y= 262 M@ and its 1%t derivate at the
B root.
0.9} For all, but the most massive stars, (1 — (3) is a
{ small quantity. So, rearrange the above equation to
0.8} . : )
: isolate (1 — /) and sub result into the previous
0.7t equation for to get L(R.)
0.6}
0.5}
0042_ Parametric plot of 3 versus 1Og10(u2M/M®)
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After the algebra (you should check, to make sure I’'m right © ), we arrive at the Mass
Luminosity Relation for Main Sequence stars!

m2caG* o\’ d¢ —
L., =L(R,) = N ’ M
()= vy ) (& M
4 ( M, 3
(1) (35

Numerically: [, — 1.35 X ]_035 erg/s

Y,

We now have our first theoretical prediction of the relationship between two observable
properties of stars.

The Luminosity of Main Sequence Stars (H-burning, hydrostatic, up
to ~15 solar masses) should be proportional to the 37 power of the
stellar mass. (first order result, we can do better).

To do better, we have to deal with that annoying opacity,



100 Total Opacity of Solar Composition
103 .
Material
10 m_ L Kramer’s Opacity: Varies (crudely) as 77—3-°
and almost as o p
107% 10°
sl i 10° Empirical relation given as:
k
241+ Xp) (0.1 p
RE = 1.2 x 10 9 T35

S p -
§ 102} . /
2 This factor of 2 is required to get agreement for
s | to curveswithp > 0.1 g cm ™3

10 Thomson’s Opacity: Constant, and has a value

\ of kep, = 0.40/ e cm?g—1!
100k ) \\‘\\\\\ The exponent in Kramer’s Opacity is also: k = (0.3
[ .
I We need to simplify the
LR Ty = - - -~ Kramer’s opacity so that it is
T “averaged” over all of the stars

Fig. 3-16 The total opacity of material of solar composition as a function of tem- We are conSIderlng in the Mass-
perature. Each curve is labeled by the value of the density. The range of values Luminosity relationship. 8



The first step: get a formula that expresses temperature in terms of density. This will give
us a Kramer’s formula that is now only a function of density.

Recall, from page 3, we found (and this is also in Lecture 2/3 pages 36, 37) that:

(o)~ (21 P ENANT
a|_B* t

1 a1 NAP Get his from squaring and rearranging the
6 Pg — ﬁ ——FKT stellar mass formula on page 6. T ﬁ
v 1 —
M, =18.0 Mo

NQ 52

You have all the ingredients here to now relate temperature to density. The final
result, after doing the algebra:

2/3
M.\ P13
Mg

T = 4.6 x 10°u0




Use this last result in the Kramer’s Opacity formula by replacing : p/T3

(14 Xpg) (0.1)’“ p

9 P T3.5

st () (3) (1)

\

ke = 1.2 x 10%

Now, no two stars are alike, so we have to start doing some reasonable averages of T and p.

First thing is to average over the stellar temperature. And remember, the temperature of
the ideal gas and photon gas are the same. However, the photon gas pressure depends only
on the temperature (not on density), so there seems like a good place to start.

R
Try a volume average of the 4 ATt fO CLT47‘2 dr
radiation temperature <a > — i
47 fo r2dr
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From the polytrope formalism, the solution to the Lane-Emden ¢(T) equation gives the
run of density as a function of radial coordinate, r. For n=3 polytrope, we had (page 29
of Lec. 2/3) p = pccb?’. On previous slide, we had T" ¢ p1/3 =1 =T.¢0.

The above integrals can be done numerically (Mathematica), using numerical qﬁ(?")
Result is:

Tow = (T4 = 0.3227, We will need T,

We now have an “average” temperature (weighted over volume) in terms of central
temperature. Next, we need the density that corresponds with this T,

Two slides ago (slide 9) we had the following result:

A7\ 2/3

T = 4.6 x 10° * 1/3
po M p
Tcw pav 1/3

Need to eliminate this

= 0.322 =

1. @

=
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And from the Polytrope formalism in, you(!) should have found the following result:

— M*
£ = — (1 dgb) Where, P =
&

R "R

1
T 54.1825 From the table on page 4.

Finally, for the Sun (a Main Sequence Star), P = 1.404 g cm ™

0. = 54.1825p = 54.1825 x 1.404 = 76.1 g cm =3

Pav = 0.322% x p. = 0.322% x 76.1 = 2.54 g cm ™3

What have we got now: T, = 0.3227. and pav = 2.54 g cm 3

1+ X Mo \? (0.1\" (107\"*
And we need to complete: ’iK:S'Sg( +2 ) (uﬁ)_S(Mf) (pav> (Tav)

We still need the central temperature, and then we are DONE!
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The central temperature:

Mo\ 2/
T. = 4.6 x 10° o
e ( M@) c
| P _gldey _ 1
From the last slide, we had: e — ¢ de -~ 54.1825

And: p = 1404 g cm 3

ForaSolar-typestar: X =0.71 Y =027 Z=0.02 and 8 ~1

X Y

~1
n
_ X 4+ z{ =N = 0613
“= | To0s™ T 2002t T <Az>]

Collecting all the numbers, we finally have: 7, = 11.9 X 10° K
= T,, =0.322T. = 3.85 x 10° K

Assuming
fully ionized
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Finally, Kramer’s Opacity becomes simplified to:

2 koo 1/2
e =389 5K =2 (Fe ) (S1) () aouexin () (3

0.40
Total Opacity: & = Kth + KK where Kih = .
(&
1 (1+X)
And, for fully ionized material: /J_ = 5 And X = 0.71 for Solar.
(&

2
The total Opacity is now: x = (0.342 + 2-03(U/6)_3 (A]é@)

() (M=)

And we had for Luminosity:L>!< — 1.35 % 1035

erg/s
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Calling m = —= we finally have the function for Luminosity:
©

L.=1.35x 10% (uB)" m® /
* — 1. re/s
0.342m2(uf)® +2.03 ~ °

Or, using L = 3.84 x 10%% erg s™1

7T 5
m
= =103 5 (Mﬁ)g erg/s
With U, as before, given by its Solar value:
X Y n, —1 Assuming
n = m NH + 1 004nHe + 7 <A—z>} = 0.613 fully ionized

The function above is parametricin 3 . We work the function by choosing a value for
m, and then solving Eddington’s Quartic equation for (3, to evaluate the RHS.

What does it look like when plotted against REAL Main
Sequence data??
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Mass-Luminosity: Main Sequence

logyo(L/Le)

/: e Data are from: G. Torres et al., Astron.
; .3;'.-_-;’-5"" Astrophys. Rev. (2009)
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loglo(M/MQ) 16



