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Alternative Rate Formula(s) 
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We had from last 
lecture: 

With: 

And: 

And we have approximated the S-factor, at the astrophysical energies, as a simple 
constant function        (units of keV barn). 

And (pg 16, 
Lecture 6): 



3 

We have (again) 

Set the argument of the exponential to be                             (dimensionless) 

From the definitions of                                  on the previous slide, you can work out 
that:  
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First, an algebraic step of substituting              into the equation for  

We substitute this, along with Eeff  into          above.  After some algebra: 

A Power Law expression for the Rate 
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Let’s pull out the physics of this complicated formula by trying to write it as something 
simpler, like a power law function. 
 
First, equate the last expression for the rate to something like a power law: 

Take the natural logarithm of both sides: 

Differentiate both sides wrt          : 
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Numerically,  

Summarizing then: 

Choose a value of temperature       to evaluate the rate at: 

Once we have this value for the rate at some temperature you have  chosen, to get 
the rate at any other temperature, just make the trivial calculation: 
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Finally, recall  
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Summary of Reaction Rate 
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Examples: 

The core of our Sun has a central temperature of about 15 million degrees kelvin.   

Reaction Z1 Z2 mu T6 Eeff n 

p + p 1 1 0.5 15 5.88 3.89 

p + 14N 1 7 0.933 15 26.53 19.90 

4He + 12C 2 6 3 15 56.09 42.81 

16O + 16O 8 8 8 15 237.44 183.40 

Reaction rate becomes more sensitive to temperature as we “burn” heavier 
nuclei together. 
 
Such a large sensitivity to the temperature suggests structural changes in star 
must occur at some point for certain reactions. 
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Full Reaction Rates: Comparison 

p + p reaction 
14N + p 
12C + a 

Solar abundances, density = 100 g cm-3:   

Rate 



Reaction Rate: Temperature 
Dependence 
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p + p reaction 
14N + p 
12C + a 



Energy Generation & Standard Model 
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Let us consider a representation for the nuclear rate of energy production (in units of 
energy per unit time, per unit mass) to be given by the following mathematical form: 

Then we can, quite generally, also write: 

 
For a Polytrope model, once the solution      to Lane-Emden equation is known, then 
we have the following results (for n = 3 Polytrope): 
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Using the equations on previous slide, we can now write the scaled nuclear energy 
generation rate in the very compact and simple form: 

The luminosity of the star (after settling into equilibrium) comes from the nuclear 
furnace in the core.  Let’s try to write the luminosity in the following form: 

Where we use the mass-averaged 
energy generation rate: 

We use an averaged energy rate because it is clear that not all mass in the star is 
contributing to the nuclear energy rate: only the core of the star is contributing to the 
energy generation rate.  So, we average over the mass of the star in the hope that the 
averaged rate times total mass (equation *) gives a reasonable result. 
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We must now consider the integral: 

Our differential mass element is, in the scaled radial coordinate                      
(refer to Lecture 2):     

And, from previous page,  

Collecting everything into 
the integral: 

In Lecture 3 we had: 
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Finally, then, we have that the mass-averaged nuclear energy rate is given by: 
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Lane-Emden Function for n = 3 

The integral we must consider is 

We are raising the Lane-Emden function to the power of (3u+s).  
If this number is large, then we are multiplying      by itself many 
times.  The function is always smaller than one:  take multiple 
products of it will cause it to become more sharply peaked, and 
its tail to grow smaller in magnitude. 

We can exploit this feature to make a suitable 
approximation of the function in the integrand 
above. 
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The power series expansion of        , for the first few terms looks like this:  

Let’s use the exponential approximation in the integral for  

Mass-averaged 
nuclear energy rate: 



A Polytrope Sun 
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Exact e 

Gaussian Approx. 

We had the general energy generation rate expressed as: 
 
For the proton-proton chain in the Sun,               and                  (at                          ).  
Therefore, we have, in terms of     that: 

Integrating this over the star introduces another         from           .  The 
integrand of the luminosity function then is something like:  



Structure of Polytrope Sun 
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Let us define the core to be that volume in which 95% of the nuclear energy is generated.   
 
We find that this occurs around                  (page 20).  Recall the stellar radius in the 
variable is                      . 
 
So the core occupies about 23% of the total stellar radius. 
 
So the fractional volume occupied by the core is  
 
Mass occupied by the core:  From plot on next page, it is about 33% of stellar mass. 
 
Question for you: 
 
This sun is 1 solar mass, and 1 solar radius in size.  Take 
 
Use these numbers and the result on page 17 to determine the mass of hydrogen per 
second the Sun burns.     Also use:  u =2, and s = 4.6  



Integrated Luminosity 
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This is 95% at                  ; this radius corresponds to 
1.6/6.89 = 23% of the stellar radius. 
 
Let us take this as being an (arbitrary) criterion for 
defining the core. 
 
As a fraction of the star’s volume, the core is only  



Mass Interior to Radius   
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Mass contained in the core                     is 
about 33%. 
 
So, a star the size of our Sun, in purely 
radiative equilibrium (no convection) has 
33% of its mass contained in only 1.2% of its 
volume! 



Derivative of Luminosity 
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Standard Solar Model:  Radial Run of Temperature, Density and Nuclear Energy Rate  

Remember, for n = 3:   



APPENDIX: SCALED MAIN 
SEQUENCE STRUCTURE PLOTS 

Polytrope model, for polytrope index n = 3 

24 



Integrated Luminosity 
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Let us take 95% of luminosity as being the (arbitrary) 
criterion for defining the core.  Then core has a 
radius  
 
As a fraction of the star’s volume, the core is only  



Derivative of Luminosity 
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Mass Interior to Radius   
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Mass contained in the core                              
is about 36%. 
 
So, a star the size of our Sun, in purely 
radiative equilibrium (no convection) has 
36% of its mass contained in only 1.3% of its 
volume! 
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Standard Solar Model:  Radial Run of Temperature, Density and Nuclear Energy Rate  

Solar Model Calculation 
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Nuclear Generation Rate 
Using the pp-chain      , which is a power law in temperature, with 
exponent n = 4.6, we end up with the Polytropic energy generation rate 
expressed on in the integral on the LHS below, where      is the Lane-
Emden function of index = 3.   
 
The L-E function, raised to such a high power, can be approximated to 
an excellent degree by a Gaussian (RHS), which can then be analytically 
integrated. 


