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Reaction Rate Summary 
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Reaction rate for charged particles:   

Reaction rate for photodisintegration (photon in entrance channel): 



THE PATH TO CROSS SECTIONS 
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3-Dimensional SWE, after separation of variables, will produce a radial equation of the 
following type: 

Make the substitution:                                 and show that the above equation 
becomes 

For                  , and outside the interaction zone, the above equation asymptotically 
becomes:    
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Incident beam 
along z-axis 

has a solution:                                    , where  

For a beam incident from the left, the solution outside the potential zone at large r is 
just: 

Outgoing wave function? 
 
Some of the incident beam transmits through the interaction zone, the rest scatters 
or undergoes a reaction.  How to quantify this? 
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Outgoing wave = Incident wave + Scattering wave 

Now we need to relate this function and the incident wave function to the reality of 
what we measure in a nuclear physics experiment. 

Consider:              .  This is a (local) probability density for the existence of a particle 
at the spatial coordinates                 .  Its time derivative tells us how the probability 
of there being a particle at these coordinates evolves in time. 
 
We must find a way to relate this quantity to the reality of an experiment. 
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Flux in 
Transmitted Beam 

Scattered 
Beam 

Differential cross section is defined as: 

Rate of particles scattered into   

Incident flux 

The total cross section      is obviously: 
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The general SWE is:  

Its complex-conjugate is: 

1. 

2. 

Exercise for the student:  Multiply 1. on the left by        and 2. on the left by      .  
Then take the difference of the resulting two equations.  The result should be: 

Another exercise:  Use some vector calculus to show the above result can be written: 

Where the “current” j is:   



Recall from page 6: 
 
 
Let’s use this to get the scattered current density from                                                      .    
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Are we any closer to reality??  Yes. 
 
Look:  The incident wave function was just 
 
Its current density j is  

This is the incident flux. 

All that remains now is to get the result for the scattered current density 
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In spherical coordinates: 

In the limit that                   the only terms that matter to us is the first one. 

Student exercise:  Apply this result to the scattered wavefunction 
to determine the scattered current as: 

This is a vector quantity, direct radially outward from the interaction zone.  Where 
does it go experimentally?  
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Flux in 
Transmitted Beam 

Scattered 
Beam 

It goes into our detector, which occupies a solid angle          and has an area of  

The rate of particles entering the detector is therefore:   
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Rate of particles scattered into   

Incident flux 

Cross section 
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z 

The basis functions for the 3-D SWE are the Spherical Bessel functions (radial) and the 
Spherical Harmonics (angular).   These functions form “Complete Sets” and this means 
any arbitrary function of                   can be expanded in a series representation of these 
functions. 
 
• Beam comes in along z-axis:  plane wave  exp ikz 
• Angular momentum has no z-component   
• Therefore,  

We therefore write: 
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The task is to determine the expansion coefficients      . 
 
Refer to Appendix slides of this lecture for how you can derive that the  

We have, therefore: 

We need a similar expansion for the total outgoing wave function: 

(**) 
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In the asymptotic limit of large r, the function  

As you will work out for yourself, following the guide in the Appendix, the expansion 
coefficients are given by:   

Finally, we have for the outgoing scattered wave: 
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Remember:  the previous mess must be equal to  

Taking the difference of the series so that                          is isolated leaves us with: 

Note: 
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Differential elastic cross 
section 

The        have the orthogonality 
condition  

Total Elastic cross section: 
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We can also define an expression for a reaction cross section. 
 
We had, as before, that the total outgoing wave function is: 

Current density: 

Recall from last lecture: 

And also (page 25, L 5) 

And also  
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Integrating                                               over the sphere will finally result in:  

Reaction Cross Section: 

Note:  if the phase shift of the scattered wave is real, then no reactions occur.  
Therefore, for nuclear reactions we require that       be a complex number. 

For our purposes in reaction rates, these expressions are not very practical.  But 
what is important to note about them is the                          dependence.  
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V 

0 a 

I I I I I I 

At the boundaries x = 0 and x = a, the value of the wave function and its derivatives 
there must match 

Wave from left E < V0 
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Transmission coefficient T is given by,  

At boundary x = 0 

Derivative at boundary x = 0 

At boundary x = a 

Derivative at boundary x = a 

Exercise for you guys:  use these equations to determine transmission coefficient as 
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More algebra on this: 

First: 
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After a lot of work: 

Where: 
Small at stellar energies 
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Dominant term is just the constant factor of  

In leading order, transmission coefficient is: 

And don’t forget that      is relative velocity 
between particles 1 and 2. 

Looking back at page 10, we remember the cross section is  

S(E) is called the “Astrophysical S-Factor”.  It is a function that “absorbs” all of the fine 
details that our approximations have omitted.   
 
With this parameterization of the cross section, we factor out the 1/E dependence and 
the very strong s-wave penetrability factor, which tend to dominate the cross section at 
low incident energy. 
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Now, let’s use the previous result for the cross section in our rate formula! 
 
Remember from L6, page 28: 

Subbing in the cross section formula 

Where: 

We also define the Sommerfeld Parameter as: 
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Log scale plot 

Linear scale plot 

This is where the action happens in 
thermonuclear burning! 

This curve (integrand) is called 
the Gamow Window 



Measured Astrophysics Cross-Section 
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12C(p,g)13N 

Dropping by many, many orders!  How to 
extrapolate to astrophysical energies?! 

Astro. Energy Range 



S-Factor of Previous Data 
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12C(p,g)13N 

Can be parameterized by a simple linear function 
of Energy 



A Reaction in the Solar PP Chain 
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3He(a,g)7Be 

B. S. Nara Singh et al., PRL 93, 262503 (2004) 



Another Reaction in the Solar PP Chain 
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2H(p,g)3He 
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We now see the utility of using the S-factor formalism.   
 
It allows us to find a constant, or linear function, by which to parameterize the 
experimentally determined cross-section within the range of astrophysical energy for the 
reaction under consideration. 
 
 
 
The Objective of (some) nuclear astrophysics experiments, then, is this: 

Measure this with a reaction 
experiment as far down in 
energy as possible (as close as 
possible to stellar energy) 

This is well defined, by the experimental 
conditions (E is known, and therefore, so is v). 

S(E) is a simple function at, or near, astro. Energies, and can then be “safely” 
extrapolated down to the stellar energy range. 
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Let’s return to the reaction rate formula: 

Let’s focus on the integral, treating S(E) as a constant in lowest order.  Drop the 
“12” subscripts for clarity in what follows. 

The exponential function in the integrand is 
shown here by the solid line.   
 
It looks very similar to something like a 
Gaussian.   
 
Let’s use this fact to motivate an 
approximation of this integral. 
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How can we cast the integrand of the previous page into a form that is something like a 
Gaussian? 

Take the integrand 

Take the derivative                            to determine the value of the energy, E, at 
the location of the maximum.  Call this value of energy,           , the “effective” 
burning energy. 
 
You should get:   

Note: T6 means the temperature is in units of 106 kelvin 

Evaluate F(E) at this value of Eeff to determine the value of the function at 
maximum. 
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Now, we’re ready to construct the Gaussian.  Set: 

The width of our Gaussian is        and it must be determined to complete the 
approximation. 
 
We determine       by demanding that the curvature of the two functions above 
match at                      .   
 
This is equivalent to requiring the 2nd derivatives at                       be the same.  
This is for you to do.  You should end up with: 

Thermonuclear burning happens within the energy range  



Charged particle thermonuclear burning happens around the relative kinetic energy 
value of: 
 
 
 
 
The range of kinetic energy over which the burning occurs is the width of our Gaussian 
approximation for the integrand of the rate.  The width of this Gaussian is given by: 

Summary Thus Far: 

35 

When using these formulae, use integers for 
the charges Z and be sure the temperature is 
scaled in units of 106.  Also, use atomic mass 
values in       ; for example:  4.004 for the mass 
of 4He. 

D 
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Returning to the rate formula, we insert our Gaussian approximation in the integral and 
we pull out the S-Factor, treating it as a constant. 

The integral, being a Gaussian, can be extended to           with tiny, tiny error. 
 
The value of the integral then becomes: 
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Next lecture we will use this last result to express the reaction rate as a power law in 
temperature. 
 
This will give us a qualitative understanding of the sensitivity of the reaction rate with 
stellar temperature. 



Assignment:  Part I 
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Start with the Ansatz: 

a) Determine where the pressure gradient changes sign. 
 

b) Determine the Pressure, P(r), as a function of radial coordinate. 
 

c) Determine the Stellar Mass as a function of radial coordinate: M(r).  Hint:  You need 
to use both the equation for conservation of mass and hydrostatic equil’m equation: 
 
 
 
 

d) Determine the density function            .  Confirm if it has the correct limiting 
behaviour as               . 

Due by ??, 2009 



APPENDIX TO LECTURE 6 

Some steps and hints for deriving the partial wave formulas used in this 
lecture. 
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How to show the result for the plane wave expansion? 

Star t with the expansion: 
 
 
We can do this because the spherical Bessel Functions and the Legendre polynomials 
form a complete set  any arbitrary function can be expanded in the basis of these 
functions. 
 
The task is to show that:  

You will need the orthogonality condition: 

(1) 
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You will also need the power series representation for the Bessel Function: 

And you will also need to know, as can be shown from the Gamma Function: 

The steps are as follows: 
 
1. Use the orthogonality condition on equation (1) to solve for 

 
2. Differentiate the formula obtained in step 1     -times with respect to (kr) and then 

set r = 0 to eliminate the r-dependence.  Use the power series above to evaluate 
the         derivative of the Bessel Function. 
 

3. Evaluate the remaining integral using: 



42 

Partial wave expansion for the total wave function: 
 
1. Start with the partial wave expansion for the incident free particle wave function 

on page 5, 
 

2. Substitute the expansion into equation (**) on page 5 and isolate                                    
by grouping the two infinite series together on one side of the equation. 
 

3.  Use                                                                     for the sine factors in the series. 
 

4. In the series, group the exponentials according to exp(ikr) and exp(-ikr) 
 

5. Argue to yourself that the terms having exp(-ikr) must die in the series.  (hint: the 
function in step 2 above only has outgoing waves) 
 

6. From step 5, the expansion coefficients will be determined. 


