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Reaction Rate Summary

Reaction rate for charged particles: 1 +2 — 344

4w N1 N 3/2 ¢ 2
1o = e 2( P ) / v2o(v) exp (—&) dv
0

2T

8 \'/* NN > E
190 = (—) 1772 T_3/2/ Elgalg(v) eXP (—i) dE12
0

T

Reaction rate for photodisintegration (photon in entrance channel): 14+~v — 243

87TN1 > E2
— E B
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THE PATH TO CROSS SECTIONS



3-Dimensional SWE, after separation of variables, will produce a radial equation of the
following type:

[—Z(ii+%%)+a€;gf+vw1Mﬂ:Eﬂm

Make the substitution: R(r) = u(r) and show that the above equation
becomes r

[ R: d? (04 1)R

_Q/L 72 + QLLT’z + V(?")] ’UL(T‘) = Eu(r)

For 7 — 00, and outside the interaction zone, the above equation asymptotically
becomes:

B h* d?u(r)
20 dr?

= Fu(r)



B h? d2u(r)
20 dr?

2uk
72

— Eu(’r') has a solution: u(T) = exp *ikr, where k =

For a beam incident from the left, the solution outside the potential zone at large ris
just: wu(r) = Aexpikz
Outgoing wave function?

Some of the incident beam transmits through the interaction zone, the rest scatters
or undergoes a reaction. How to quantify this?

Incident beam
along z-axis




Outgoing wave = Incident wave + Scattering wave

Y = AexpiszrAf(Q,qb)M as r — oo
r

Now we need to relate this function and the incident wave function to the reality of
what we measure in a nuclear physics experiment.

Consider: 1)*1) . This is a (local) probability density for the existence of a particle
at the spatial coordinates (fr7 6, gb) . Its time derivative tells us how the probability
of there being a particle at these coordinates evolves in time.

We must find a way to relate this quantity to the reality of an experiment.
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Differential cross section is defined as:

do = (_5) dQ — Rate of particles scattered into d)

Incident flux

do
The total cross section o is obviously: 0 = — ] df)
a0 \ dS2

A



B O

The general SWE is:  — —V21/) + Vi =1th— By 1.
. . h2 2 % * aw*
Its complex-conjugate is: ——V 1" 4+ V"™ = —th—— 2.
21 ot

Exercise for the student: Multiply 1. on the left by ¥* and 2. on the left by ¥ .
Then take the difference of the resulting two equations. The result should be:

0, h
— ah*afy — vQ * v2 *
e CA AR
Another exercise: Use some vector calculus to show the above result can be written:
0 V'Y +V-j=0
ot I =

h

Where the “current” jis: j =

5, (V7 V0 = OVY)



Are we any closer to reality?? Yes.

Look: The incident wave function was just A exptkz

Its current density jis j = QZ (Yp*Vp — V™)

_k |A|2 This is the incident flux.

All that remains now is to get the result for the scattered current density Jsc

Recall from page 6: Ve = Af(9 gb) expzkr as r — o0

h
Let’s use this to get the scattered current density from j = Q_W (Pp*Vip — V™).



0 18 1 0

In spherical coordinates: V=u—+uy——

or r 89 rsiné’ 0

In the limit that 7 — o0 the only terms that matter to us is the first one.

9
or

Viooo = Uy

. . . .k
Student exercise: Apply this result to the scattered wavefunction ¥, = Af(0, ¢) ="
to determine the scattered current as:

.sc— A 2ur
j w“2| *1f

This is a vector quantity, direct radially outward from the interaction zone. Where
does it go experimentally?
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It goes into our detector, which occupies a solid angle df2 and has an area of r2urdQ

The rate of particles entering the detector is therefore: Jse =

MTQ |A| |f|2u7’

jse - Tu,d) = @|A|2|f|2dﬂ
o

11



Cross section

dO':(

do

o,

) dQ =

Rate of particles scattered into df)

Incident flux

. . 2 Q
— JSC u’l",r’ d — |f|2dQ

Jine

do 5
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The basis functions for the 3-D SWE are the Spherical Bessel functions (radial) and the
Spherical Harmonics (angular). These functions form “Complete Sets” and this means

any arbitrary function of (T? 0, 9) can be expanded in a series representation of these
functions.

* Beam comes in along z-axis: plane wave exp ikz
e Angular momentum has no z-component — m, = (

* Therefore, Y{m(6, ) ~ Py(cosh)

We therefore write: exptkz = Z apje(kr)Py(cosB),
£=0

13



The task is to determine the expansion coefficients Q¢

Refer to Appendix slides of this lecture for how you can derive that the ay = (2€ + 1)753

0

We have, therefore: Vine = expikz = Z(ZE + l)iejé(kT)Pﬁ(COS 9)7
£=0

oo . . 2
= Z(Zﬁ + 1)¢* sm(k'rk fr/ )Pg(cos #), r— o0
T
=0

We need a similar expansion for the total outgoing wave function:

exp tkr

Y ~ expikz + f(6,9) (**)

T

— Z by e (hr) Py(cos @)
prd kr



In the asymptotic limit of large r, the function w,(kr) = sin(kr — €7 /2 + &)

> ug(kr)  ~, sin(kr —4m/2 + 0,)
;:% by P Py(cosf) = 20: by . Py(cos8)

As you will work out for yourself, following the guide in the Appendix, the expansion
coefficients are given by: p, — (20 + 1)@"3 exp(idy)

Finally, we have for the outgoing scattered wave:

1] & _ o
w _ % 2(26 4+ 1)?:6—}—1 |:€—Z(]€T'—€7T/2) . 6215g€z(kfr—£7r/2)] Pg(COS 9)
r
£=0

15



exp ikr

Remember: the previous mess must be equal to f(6) ="

Y (26 + 1)if sin rm /%) p(cos ) + £(6) —eXpT””
£=0

exp itkr

- is isolated leaves us with:

Taking the difference of the series so that f(6)

k 1 . .
f(g) CXPIRT - = Z 9/ +1 f—i—lez(/ﬂ’—g’ﬂ/Q) [1 . €2Z5gj| PE(COS 6)
=0

1 — |
£(6) = —kE (204 D e/ [1 - 2] Pycos )
{=0

Note: @ = e'™/2 = il = ¢i7/2

sin 0y = % (e—we — ewe) = ¢ gin Oy = (1 — e%‘sf)

DO | .

16



1 o0
=7 Z (20 4 1)e™* sin §, Py (cos 6)

£=0
Differential elastic cross do |f(9 gb) |
section dQ

2

Z 20 + 1) sin 6y Py(cos 0)

£=0

The P, have the orthogonality / COS 9 P ; COS 9) dm Sopr
condition ¢ 2n + 1

. . 4 = . 9
Total Elastic cross section: ds) = 2 (20 + 1) sin” dy

£=0

17



We can also define an expression for a reaction cross section.

We had, as before, that the total outgoing wave function is:

oo

1 . o
W = gy Z(% +1)i (+1 {e—@(kr—&r/Z) _ 62@5g€z(kr—£7r/2)] Py(cos 6)
{=0
| h L O O™
Current density: Zuz (97“ 5,
= [ Z(QE + 1)if+1e#m/2 Py (cos 0)| — Z(% 4 1)iHLemim/202i8 Py (cos 9)
8 £=0 =0
. hk
Recall from last lecture: Jine — —
: 2
And also (page 25,L5)  Jg — Jse -, r2dS)

Jine

And also fdQ Py(cos 0) Py (cos ) = 2n+1 O’ 18



. jsc ' ur"a2dQ I .
Integrating do = : over the sphere will finally result in:
Jinc

@]
/0 e 192
Reaction Cross Section: Oy = k— E 2€ +1 ( — ‘62"52‘ )
£=0

Note: if the phase shift of the scattered wave is real, then no reactions occur.
Therefore, for nuclear reactions we require that 0y be a complex number.

For our purposes in reaction rates, these expressions are not very practical. But
what is important to note about them is the k=2 ~ F—! dependence.

1
b

19



Vv
Wave from left E <V, Vo
|l |11
0 a
Wy = Aeih® 4 Beike k=+v2mE/h
Vi = Fel” + Ge™ 9% qg=+/2m(Vo — E)/h
Wrrr = Ce'™ k=+2mE/h

At the boundaries x = 0 and x = a, the value of the wave function and its derivatives
there must match

20



A+ B=F+({ At boundary x=0
ik(A— B) =q(F - G) Derivative at boundary x =0

Fel® + Ge—9¢ = (eika At boundary x = a
q(Fel® + Ge 1) = ikCetka  Derivative at boundary x = a

Transmission coefficient T is given by, T = jf’:>g

Jinc

Exercise for you guys: use these equations to determine transmission coefficient as

P
A2 14 k2+q sinh? qa

21



More algebra on this: T

First:

ed® — e 9% ed®

_ICF _ !

AR 14 BEE ginh? g

2kq

sinh ga =

2

dkq

, qga > 1
5 q

T>(

k2 +q

2
2) e—2qa x e—2qa

22



> 1 c
ﬁ/l\s 2 -
_. —exp |~ V2u[V (r) — Eldr
TTITITIITIT SRR 5 R Ry

f R, 2
3 2 Zl de
SquaF:e-well T =~ exXp |: ﬁ V 2/«’#/‘ \/ - — F d?’]
radius RO

)

\
E = 21Z2€2/Rc /

A7, 72€2 | E\/? EN\ /2 [ E
— — — 1 —_ — — arcsin —
2 EC EC EC

hv
Small at stellar energies

After a lot of work:

Where:  E. = 7, 7Z,e?/ Ry

23



Dominant term is just the constant factor of 7 /2

271'21 2262
hv

In leading order, transmission coefficientis: 1’ o< exp (—

And don’t forget that v is relative velocity
between particles 1 and 2.

Looking back at page 10, we remember the cross section is X E-1

exp [—27mn(v)]

o S(E) _271'212262 o S(E)
=P hv - FE

S(E) is called the “Astrophysical S-Factor”. It is a function that “absorbs” all of the fine
details that our approximations have omitted.

With this parameterization of the cross section, we factor out the 1/E dependence and
the very strong s-wave penetrability factor, which tend to dominate the cross section at
low incident energy.

24



Now, let’s use the previous result for the cross section in our rate formula!

Remember from L6, page 28:

8 1/2 NiNy 4 > E
2 (W;L) 1+ 5127- /0 12012(v) exp ( T ) 12

Subbing in the cross section formula

s \2 NN o0 b E
0

71 706 1y 1/2
Where: b = 27 22 ;e (%) = 31.272) Zop'/? keV'/?

. 212262
- hwv

We also define the Sommerfeld Parameter as: 7(v)

25



Probability (arb. units)

Probability (arb. units)
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Cross section, barns

Measured Astrophysics Cross-Section

0.460 Mev res.
107
107°°
Astro. Energy Range
12C( )13 N
P,Y
1077
107*
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107"
107 Dropping by many, many orders! How to
extrapolate to astrophysical energies?!
107"
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v
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Lab proton energy, Mev 27



S-Factor of Previous Data

“r 2C(p,y)*N

c
o
o
> Range of stellar energies
Pl L
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o)
7
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Laboratory proton energy (kev)

Can be parameterized by a simple linear function
of Energy
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A Reaction in the Solar PP Chain

3He(o,y)’Be

0.55
@Present Data
® Hilgemeier et al.
— — - Kajino et al.
0.45 - —— Williams et al.
Nollett
g 0.35 : -
g &
S I 1
8 m Krawinkel etal. ]
<+ 0.25
™
%)
0.15 |
02, : - : T . : : St
0.05 ‘ : L -
0 0.5 1
E. m(MeV)
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Another Reaction in the Solar PP Chain

’H(p,y)*He
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We now see the utility of using the S-factor formalism.

It allows us to find a constant, or linear function, by which to parameterize the
experimentally determined cross-section within the range of astrophysical energy for the
reaction under consideration.

The Objective of (some) nuclear astrophysics experiments, then, is this:

1 27'{'212262
— S(E)= _
()= sy ow (—55)

\ J

Measure this with a reaction
experiment as far down in
energy as possible (as close as
possible to stellar energy)

This is well defined, by the experimental
conditions (E is known, and therefore, so is v).

S(E) is a simple function at, or near, astro. Energies, and can then be “safely”
extrapolated down to the stellar energy range. 31



Let’s return to the reaction rate formula:

s \Y?2 NN,

>C b E
= Sz =3/2 S(E Bt I § 2
g 1+ 5127_ /0 (Erz) exp VEio T 12

Let’s focus on the integral, treating S(E) as a constant in lowest order. Drop the
“12” subscripts for clarity in what follows.

12 =

The exponential function in the integrand is
shown here by the solid line.

It looks very similar to something like a
Gaussian.

Probability (arb. units)

Let’s use this fact to motivate an
approximation of this integral.

T

0 02 04 06 08
Energy (MeV)

1.2
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How can we cast the integrand of the previous page into a form that is something like a
Gaussian?

b E
Take the integrand F'(E) = exp (—— — —> Tr=kT

Take the derivative dF/dE — () to determine the value of the energy, E, at
the location of the maximum. Call this value of energy, Eeff , the “effective”
burning energy.

b\ 2/
You should get: Eog = (%) = 1.22(212222uTE;2)1/3 keV

Note: T, means the temperature is in units of 10° kelvin

Evaluate F(E) at this value of E_4 to determine the value of the function at

maximum.
SE
Fmax = exp (‘ eff)
-

33



Now, we’re ready to construct the Gaussian. Set:

-(%5R)

The width of our Gaussianis /A and it must be determined to complete the
approximation.

b E 2 o
eX —_—— — — ~ X
p \/E - max p

We determine A by demanding that the curvature of the two functions above

matchat &/ = FE ¢ .

This is equivalent to requiring the 2" derivatives at F/ = Eeff be the same.
This is for you to do. You should end up with:

A= (B

-7 Ee T2 = 0.75(Z3 Z3 pTg) "6

Thermonuclear burning happens within the energy range Eeff + A/Z

34



Probability (arb. units)

Summary Thus Far:

Charged particle thermonuclear burning happens around the relative kinetic energy
value of:

b 2/3
Eog = (%) = 1.22(Z272uT2)/3 keV

The range of kinetic energy over which the burning occurs is the width of our Gaussian
approximation for the integrand of the rate. The width of this Gaussian is given by:

e | A= ey Y = 0TH(22 23T
E0=0.32 MeV @
15} '
When using these formulae, use integers for
. i the charges Z and be sure the temperature is
—exact scaled in units of 10°. Also, use atomic mass
""" BPPNOX- values in M ; for example: 4.004 for the mass
o of He.

06 08 1 1.2
Energy (MeV)
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Returning to the rate formula, we insert our Gaussian approximation in the integral and
we pull out the S-Factor, treating it as a constant.

1/2 00 2
8 NiNy 5 / L — Eog
— (= F - dE
r12 (Wﬂ> 1_|_5127' SoFmax . eXp A /2

The integral, being a Gaussian, can be extended to —o¢ with tiny, tiny error.

The value of the integral then becomes: ﬁA/Q

2\'? NN, _,
S 2 =320 8, F
r12 (N) 1+5127 o4L'max

2\'? NiN> o,
12 = (;) mT / ASy exp(—?)Eeff/T)

36



Next lecture we will use this last result to express the reaction rate as a power law in
temperature.

This will give us a qualitative understanding of the sensitivity of the reaction rate with
stellar temperature.



Assignment: Part |

| dP 47 7\ 2
Start with the Ansatz: —— — G 2 r ex _ (_)

a) Determine where the pressure gradient changes sign. 0512‘_’ =0
T

b) Determine the Pressure, P(r), as a function of radial coordinate.

c) Determine the Stellar Mass as a function of radial coordinate: M(r). Hint: You need
to use both the equation for conservation of mass and hydrostatic equil’m equation:

dM, dP, M.
— 4 2 . ro_ T
dr e dr G 2 Pr

d) Determine the density function p(?“) . Confirm if it has the correct limiting
behaviouras r — 0.

Due by ??, 2009




Some steps and hints for deriving the partial wave formulas used in this
lecture.

APPENDIX TO LECTURE 6

39



How to show the result for the plane wave expansion?

expikz = Z(ZE + 1)i%j,(kr)Py(cos8), 2 =rcosd
£=0
Star t with the expansion: eXpikz = Z agjg(k’r)Pg(COS 9) (1)
£=0

We can do this because the spherical Bessel Functions and the Legendre polynomials
form a complete set = any arbitrary function can be expanded in the basis of these
functions.

The task is to show that: a¢ = (2¢ + 1)i*

You will need the orthogonality condition:

2

Otm
m+1"

[ Py(cos0) Py, (cos ) sin0dh =
0

40



You will also need the power series representation for the Bessel Function:
1)5 2s+/¢

m)_fzsl 8+€+1/2> 225-|—£+1

And you will also need to know, as can be shown from the Gamma Function:

1 (2n + 1)!
“ =
(n—|— 2). = i1 VT

The steps are as follows:
1. Use the orthogonality condition on equation (1) to solve for aﬁjﬁ(kT’)

2. Differentiate the formula obtained in step 1 £ -times with respect to (kr) and then
set r = 0 to eliminate the r-dependence. Use the power series above to evaluate
the ¢th derivative of the Bessel Function.

3. Evaluate the remaining integral using:

4 226101 ¢!
/ cos’ O P;(cos ) sin 6df = al
0

2041




Partial wave expansion for the total wave function:
1. Start with the partial wave expansion for the incident free particle wave function
on page 5, Vine

exp tkr
r

2. Substitute the expansion into equation (**) on page 5 and isolate f(Q)
by grouping the two infinite series together on one side of the equation.

3. Use sinx = % lexp(—ix) — exp(ix)]| for the sine factors in the series.
4. In the series, group the exponentials according to exp(ikr) and exp(-ikr)

5. Argue to yourself that the terms having exp(-ikr) must die in the series. (hint: the
function in step 2 above only has outgoing waves)

6. From step 5, the expansion coefficients will be determined.



