


THE ROAD TO NUCLEAR REACTION
RATES



Some basic kinematics: We have two particles with masses 11 and 5 with velocities
Viand Vo

The velocity of their common centre of massis: \/ — X1V1 TM2oVa

mi—+mo
The velocity of particle 1 relative to the CoM velocity is just:
- __ __my _ _ __mgo
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And v is just the relative velocity between 1 and 2.

Similarly, particle 2 has a velocity relative to CoM velocity:

_V — M
vo — V sV



Before the collision, the total incident kinetic energy is:

T/,; = %(mlv% + ?’I’LQU%)

Using the previous two vector equations, we can substitute in for v, and v, in terms of v
and V. (An exercise for you)

T%:%(MV2+LLU2) M= ma +mo

p=mims/(mi + ms)

The first term is the kinetic energy of the center of mass itself; while the second term is
the kinetic energy of the reduced mass as it moves in the center of mass frame.



Nuclear reaction rate: The reaction rate is proportional to the number density of particle
species 1, the flux of particle species 2 that collide with 1, and the reaction cross section.

Flux of N, as seen by N, : Nyv

Flux of N; as seen by N, : N7 v

Reaction cross section: U(,U) / /
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This v is the relative velocity between the two b
colliding particles. Vi |

Important: this reaction rate formula only holds when the flux of particles has a
mono-energetic velocity distribution of just U



Inside a star, the particles clearly do not move with a mono-energetic velocity
distribution. Instead, they have their own velocity distributions.

We must generalize the previous rate formula for the stellar environment. From

Lecture 2,3 the particles 1 and 2 will have velocity distributions given by Maxwell-
Boltzmann distributions. We have the 6-D integral:

190 = / N1 (Ul)NQ(Ug)’UO'(’U)dS”UldB’UQ
d3U1 d3vg

The fraction of particles 1 with velocities betweenv; and v; + dv; is therefore,
mi
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Ni(v1)dvy, dvy dvy, = Ny (—) exp(—mlv%/QT) dvy, dvy, dvy
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And similarly for particle species 2.

Let’s take a closer look at:

exp(—myv? /27) exp(—movs /27)



exp(—mv? /27) exp(—mavs /27) = exp(—[m1v? + mov3]/27)

From equations on page 4, we can write the argument in [...] in terms of the center of
mass velocity /' and relative velocity v .

V2 2
exp(—[mlfv% — mgfug]/Q’r) = exp (— (m1 +2T2) — %)

So in terms of the CoM parameters,

mimo)>/? mq + ms)V? v?
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The reaction rate now becomes (6-D integral):
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And we note: V2 = V2 + Vy2 +V? and v =02 + Ug + v?



We now need to change the differential variables into the new CoM variables.

3 3 —
d Uld Vo = dledvlyd’vlzdvgﬁdUde’ng

= (dvy,dv, )(dvy,dva, )(dv, dvs)

From page 3, in component form, we have:

— ma — _—m3
U1, = mi+mso Uz + Vx V2, = mi1+mso Vg + Vx
Jacobian: OV, Ov, — mi1+ms2
81)233 8’0233 1 — T
OV Ovy mi1+ma2

And this is the same for the case of y and z components.



The rate integral now becomes:
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Note: the product N,N, is the number of unique particle pairs (per unit volume). If it
should happen that 1 and 2 are the same species, then we must make a small
correction to the rate formula to avoid double-counting of particle pairs.
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We can extend the previous result to the case when one of the particles in the entrance
channel is a photon. So reactionis: 1 +~v — 2+ 3

Therate: 71y = N1 Nyvo

As before, we generalize this by integrating over the number density distributions: A
Maxwell-Boltzmann for species 1, and for photons we recall from Lecture 2,3 the following:

U, mh w3
29 G = uydw = d
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(hme)3 exp(E,/T) — 1

Number of photons per unit volume between L/, and E., + dF., :

E2
W 7 dE

N(E)AEy = Gy exp(E, /1) —1 1
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The Einstein postulate of Special Relativity: speed of light is the same in all reference
frames. Therefore, the relative velocity v = ¢
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And O'(E,},) is the photo-disintegration cross section.
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Reaction Rate Summary

Reaction rate for charged particles: 1 +2 — 344
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Reaction rate for photodisintegration (photon in entrance channel): 14+~v — 243
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