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Energy generation rate per unit 
mass of material 

average opacity coefficient 
in the material 

The 4 Equations of Stellar Structure 



Ancillary Equations:  Pressures 
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Internal  energy of photon 
gas 



First, let’s go back to the First Law of Thermodynamics and something already familiar: 

Generalized Adiabatic Coefficients 

Take the internal energy to be functions of T and V: 

Then, by definition: 
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For an ideal gas:  

So, we have: and: 

Heat Capacity at constant volume: 

When dP = 0 

Summarizing:  

Heat Capacity at constant pressure: 

Ideal Gas adiabatic exponent:  
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Let’s go back to first law, now, for ideal gas:  

using 

For an adiabatic change in the gas, dQ = 0 

From EOS we have:                                           .  Use this above to also get two more: 
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When integrated, these 3 equations lead to the familiar adiabatic formulae for an ideal 
gas: 



Mixture of Ideal and Photon Gases 
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On page 4 we had the 
general result: 

The total pressure 
of the gas: 

The total internal 
energy of the gas: 

Start doing the partial derivatives: 
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But, remember that:  

So, we have: 

And finally: 



Back on page 6, for the case of an Ideal Gas only, we found 3 differential 
equations that related the adiabatic exponent       to the temperature, volume 
and pressure of the gas.  Here, we have a mixed gas of particles and photons, 
but let us use the structure of the equations on page 6 as a guide for building 
analogous equations for the case of a photon + ideal gas.  Here they are: 
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For adiabatic changes to the gas, we require dQ = 0.  With this condition in the previous 
equation, we have: 

This equation ( * ) is central to what follows, so “get to know” it well! 
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The adiabatic exponents                            need to be determined.   Let’s proceed. 
 
Go back to equation ( * ) on page 10.  Compare it directly to equation ( 3 ) of page 10. 

Thus, we have the following result: 

In the gas, some fraction of the total pressure is from the Ideal part.  Call it                      . 
Photon part carries a fraction                                   of the total pressure. 
 
Substitute these in above to get: 
 
 
Now to get        .  



Now to equation ( 1 ) of page 10: 
 
 
First, we have the total gas pressure:  
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Substitute this into equation ( 1 ): 
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Using the relationships:                       and                                  , we have:  

Now, we know from equation ( 3 ) the adiabatic exponent        (solved it on page 11).  
And, above, we can replace dt/t using equation ( 3 ).  

Homework:  Substitute into ( * * * ) for dt/t and use the result for                 on page 11 to 
determine the formula for         . 
 
Result: 
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We now have                  , and we still need       .  There are different ways to get it.  One way 
is this: 
 
Take the difference between equations ( 1 ) and ( 2 ) and add that result to equation ( 3 ).  
Should get: 

You’ve got         and                 .  The remaining algebra is for you to do.  Show: 



Summarizing Adiabatic Exponents 
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Some Theorems of Stellar Equilibrium 
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Let’s take two of the 4 stellar structure equations and run with them; see where they 
take us. 

Hydrostatic equilibrium 

Radiative Transport.  
(Equation ( D ) on page 2, 
rearranged) 

Dividing the 2nd by the 1st, leaves us: 

Remember:                , which is the opacity 
averaged over all photon frequencies. 
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Next, let’s define the following quantity: 

This is just the average energy rate per unit mass interior to the point “r” divided by the 
total energy generation rate per unit mass of the entire star. 

By its definition,  

We can now write: 

Nothing has changed here; it’s all still exact.  All we have done is buried the dependence 
on radial coordinate, r, into the        term. 
 
But, now we can derive a simple theorem, that limits the value of the stellar opacity at 
all points in the star, from this result.  Let’s see. 
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We have:                                                             and, also: 

Also,  

Therefore, we 
have:  

Also, because  

Finally: Or, a limit on opacity: 
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We have: 

So, after reversing the integral limits, and 
dividing by unity [P(r)/P(r)], we have: 

Pressure-averaged 
quantity.  Call it: 

Let’s return back to:                                                         .  And let’s integrate it.        

So, in terms of the total mass of the star, and its total luminosity, we can write: 
 
                                                       .   Now use:  

And now we can write: 
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The previous result is Strömgren’s Theorem.  In words, we have: 
 
“The ratio of the  radiation pressure to the total pressure at a point inside a star in 
radiative equilibrium is proportional to the average value of        for the regions exterior 
to the point r, with the average being taken with respect to dP.” 

Explaining this with a diagram (picture 
worth 1000 words):  The ratio of radiation 
pressure to total pressure on surface of pink 
sphere (radius r) is proportional to the 
pressure average of        in the region of the 
blue shell of radius R-r. 



The Concept of Convection 
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We can use the Strömgren Theorem  equation to write  
as: 

But, we have:                                , so we can write:           

Radiation pressure: 

Sub this into ( * * * *): 

Compare with Adiabatic Exponent equation 2, on pages 10 and 15! 
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We just derived:                                                    
 
 
 
And 2nd Adiabatic Equation (rearranged): 

Consider a mass element dm.  Suppose it undergoes 
an increase in temperature relative to its 
surroundings.  The temperature increase will cause 
dm to expand,  and its density to become less than 
the surroundings.   
 
It will, therefore, make a displacement to a region of 
lower density.   
 
Assume: 
1. Pressure exerted by dm on surroundings is equal 

to pressure surroundings exert on dm. 
2. Expansion (or contraction) of dm occurs 

adiabatically. 
3. Friction can be neglected. 
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By the adiabatic assumption: 
 
 
And       is what we (or what you will) derived on page 14. 
 
 
 
 
 
By the first assumption, the dP/P terms will be the same for the surroundings and for 
dm. 
 
 
 
 
This means:  the temperature change of dm is different from the change in 
temperature of the surroundings. 

If                                     , then dm moves outward until it has the same temp. and 
density as the surroundings.  The converse means dm will sink until its temperature 
and density are the same as surroundings.   
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Thus, if the mass bubble, dm, has internal conditions such that 
then the star will be convective; the energy is carried away by 
convection, which is the movement of hot material to regions of  
lower temperature.  When the bubble and surroundings have the  
same temperature, at that point, the star  carries the energy by  
by radiative  transport. 
 
When convective transport is dominant, then we have:   

Now, we have:                                   and: 


