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Energy generation from nuclear reactions is a function 
of temperature, density and the set of composition 
parameters             .  So                                        , and is 
the energy rate per unit mass of stellar material. 

2 

Let            be the energy rate flowing outward 
through a spherical surface of radius r. 
 

This is the 3rd stellar structure equation for a static star.  We have two more to 
derive.  It can also be expressed as a mass derivative quite simply: 

Energy generated in dm + energy entering dm 
= energy flowing out of dm.  Or, 



THE ROAD TO ENERGY TRANSPORT 
IN STARS 
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We have just derived the relation between the luminosity gradient in a star.  It depends on 
the local energy generation rate and the local density of the material  This, in turn, is 
connected to the nuclear reactions occurring in that material. 
 
Before we can get to nuclear reaction physics, however, we require one more stellar 
structure equation. 
 
It is clear that the energy generation rate in the star, being density dependent (and 
temperature dependent because nuclear reaction rates are highly sensitive to 
temperature), must produce a temperature gradient in the star.  We know this, of course:  
the center of the star is hottest and the surface is where the energy escapes to space.  
Heat flows from hot to cold, so the star has a temperature gradient. 
 
This temperature gradient is responsible for the transport of heat to the surface.  The 
carriers of the thermal energy, for a star consisting of a mixture of ideal gas and radiation 
(like Main Sequence stars), are photons. 
 
Our final stellar structure equation must somehow connect the luminosity of the star with 
the temperature gradient.  Our system of stellar structure equations will, then, be closed. 



Reviewing your Lecture 2 notes, you will find on page 18 (after some algebra), that the 
energy density of a photon gas is: 
 
 
 
 
This suggests defining a spectral energy density (energy per unit volume per unit 
frequency interval) as: 
 
 
 
We know also, from our work in Lecture 2, that the total photon gas pressure is: 
 
 
  (*)    
 
This result further suggests a definition for the “spectral pressure”, which can be thought 
of as the fractional contribution to the total pressure by photons of angular frequency     : 
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Using the last expression and Equation (*) we can obviously write: 
 
 
 
 
 
From which, it trivially follows: 
 
 
 
 (**)  
 
 
Remember this last result.  With it, we can now derive the stellar temperature gradient in 
terms of the photon luminosity. 
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Difference in radiation force         across the slab: 

Furthermore,  a photon flux       , when passing through a thin slab of material, will 
suffer an attenuation in flux.  The change in flux of this beam, for normal incidence 
(as is the case with our geometry) is given by: 
 
 
 
Now,       is the energy per frequency interval carried by all photons with frequency     
crossing through          per unit time. 
 
Dividing it by c will yield the momentum flux (total momentum) carried by all 
photons with angular frequency      crossing through          per unit time.  
 
Thus:   



Equate the bottom expression to what we have at the top of previous slide, and take the 
limit as                  : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now we must integrate over all photon frequencies. LHS is just,              (by definition) 
 
 
 
(***) 
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We are almost done:  Remember the identity (**) on page 6.  Multiply (***) by it.  We 
have: 
 
 
 
 
 
 
 
 
Finally, the luminosity of our wedge, once integrated over a spherical shell, is just: 
                                          .  We have, therefore, that: 
 
 
 
 
 
 
 
Or, more compact:   

Averaged       over distribution of         .      is the average opacity 
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Recall from lecture 2 the condition for hydrostatic equilibrium: 

Also recall for a polytrope star with particle and radiation pressure the definitions of 
lecture 3 

Use the above two expressions to get dPtot/dr and substitute into L(r) from previous 
page  

For massive stars, Thomson scattering dominates the opacity (Compton scattering on 
free electrons).  The cross section for this process is a constant.  For complete 
ionization it leads to a opacity of 0.4 cm2/g 
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Eddington’s Quartic Equation: we derived the mass of a radiation + particle gas star 

    is almost always close to 1 except for the 
most massive of stars 

Substitute this into the previous luminosity expression: 

Assuming       is constant over entire star, then  

Mass luminosity relation of 
Lecture 1 



Sources of Opacity 
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• Bound-Bound Absorption: Absorption of a photon by an atom, causing an upward 
transition to electron orbital of higher energy.  It is a true-absorption process; its inverse 
is normal emission via downward transitions. 
 
•Bound-Free Absorption:  Absorption of a photon by an atom causing a bound electron 
to make a transition to the continuum.  True-absorption process; inverse is radiative 
recombination. 
 
• Free-Free Absorption:  Absorption of a photon by a continuum electron as is passes an 
ion and makes a transition to another continuum state at higher energy.  A true-
absorption process; inverse is bremsstrahlung. 
 
• Scattering from free electrons: Scattering of photons by individual free electrons in the 
gas, and known as Compton Scattering; in non-relativistic limit, called Thomson 
scattering.  Not true-absorption as the photon energy remains unchanged. 
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Energy generation rate per unit 
mass of material 

average opacity coefficient 
in the material 

The 4 Equations of Stellar Structure 



Ancillary Equations:  Equations of State 
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Internal  energy of photon 
gas 



First, let’s go back to the First Law of Thermodynamics and something already familiar: 

Generalized Adiabatic Coefficients 

Take the internal energy to be functions of T and V: 

Then, by definition: 
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For an ideal gas:  

So, we have: and: 

Heat Capacity at constant volume: 

When dP = 0 

Summarizing:  

Heat Capacity at constant pressure: 

Ideal Gas adiabatic exponent:  
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Let’s go back to first law, now, for ideal gas:  

using 

For an adiabatic change in the gas, dQ = 0 

From EOS we have:                                           .  Use this above to also get two more: 
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When integrated, these 3 equations lead to the familiar adiabatic formulae for an ideal 
gas: 


