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Summary of Results Thus Far
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Alternative expressions for Pressures

with atomic number “z” in the volume V

n = N/V — E Nz/v N is the number of atoms of atomic species
z

N, A,
Mass density of each species is just: Pz = 7, X N, Where A, andN 4 are the

atomic mass of species “z” and Avogadro’s number, respectively

Mass fraction, in volume V, of species “z” is just X, = m,/pV = p,V/pV = p./p
Andclearly, > X, =1

Collect the algebra to write NZ/V = )OzNA/Az = Ny ﬁz Iy

X
And so we have for n: n = pNa E z
z AZ

“_n
Z

If species “z” can be ionized, the number of particlescanbe N. — N.n.
where 1, is the number of free particles produced by species “z” (nucleus + free electrons).

If fully ionized, n, = 1+ z and L X,
n=pNag)_. Az(l'l'z)




o : : 1 X.n
Th lecul ht is defined by th tity: | = = o
e mean molecular weight is defined by the quantity L Ez A,

We can write it out as:

X Y n,\17"
— - e 1_X_Y -
b= 1100 t 7001™He T ( ) A,

(n,/A.) isthe average of n,/A, for atomic species Z > 2

For atomic species heavier than helium, average atomic weight is 2z + 2 and if fully
ionized, n, = 2z + 1

~ 1 _ 2
K~ oX13y/ar(1-X—Y)/2 ~ 1+3X+0.5Y

Fully ionized gas:

Same game can be played for electrons:

ne =, N.(n,—1)=pNa)_, ﬁz (n, —1)
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Temp. vs Density Plane
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Fig. 2-11 Zones of the equation of state of a gas in thermodynamic equilibrium. Radiation



Thermodynamics of the Gas

15t Law of Thermodynamics: d() = dU + pdV
d() Thermal energy of the system (heat)

dU Total energy of the system

Assumethat U = U(T, V), then dU = (g—g)vdT—l— (g—g)TdV

Substitute into dQ:  d(@) = (g—?)v dT’ + [P + (g_g)fr

=
=

) d
Heat capacity at constant volume: Cy = —)V — (a_U)V

d
Heat capacity at constant pressure: Cp = (—T) = (3—%)‘/ - [P‘|‘ (a—g)ﬂ (g_g)p

We finally have: Cp — Cy — [P I




For anideal gas: [J = %NT and PV = Nt

oU 3
Therefore, ¢, = (6_T)V = §Nk
And, cp—cy =P (%%),=P-N/P =Nk

5
So, Cp = §N

Let’s go back to first law, now, for ideal gas:

dQ = dU + pdV = (%2) dr + PdV
= cydT + NTd’TV using U = SN7 and PV = Nt

For an isentropic change in the gas, dQ =0

This leads to, after integration of the above with dQ =0,and v = cp/cy = 5/3

7V7~1 = const 7TYP1™ = const PV7 = const




First Law for isentropic changes: dU — —PdV

Take differentials of TV'V_l — const — dr (’)/ — 1)d_V =0
T V

ut dV = =5 — €T (1—7)%@\20

NT

Use U=SNT=K —dr=35dK

dK
y— ~—1

Finally dU =

OJII\D

Because y is constant, we can integrate the last equation over the star: K —= %(7 — 1)U

Total energy of Star is gravitational binding energy 2 and internal energy U

E=U+4+0Q=U-2K=U-3y—1)U =—-3y—-4)U

v > 4/3 if star is to remain bound! (Ideal gas: y=5/3, so it’s safe)
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n Carinae (Southern Hemisphere)

- Eta Carinae: star of ~ 100 Solar masses

* Radiation pressure dominant over gas
pressure R

* Radiation luminosity is t@rjng star apart .
* A case where y < 4/3 in most regionsiof -
the star! s i

Hubble Space Telescope
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Polytrope: First Stellar Structure Model

Let’s go back to hydrostatic equilibrium equation:

2dP
Rearrange aP _ —GM(T) p(fr') — T—— — —GM(’I“)

2
dr r o d’l“
Differentiate: d "'"2 dP | _ _ d_M — 2
L2 dR) = ~GUL = —anGpr

Lane-Emden Equation results:

r2 dr r2 dr P

1 d [r2 dP] G dM

p dr

We have seen, under adiabatic/isentropic conditions that:

Px V™7 x p~7 Ideal Gas

4/3,5/3 4/3,5/3
Pe X ne/ / X pe/ / Deg. and Rel. Deg. electron gas
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Motivated by these P-p relationships, the polytrope model adopts a pressure profile:
P = Kp'tt/m

And the density function is given by 0 = pcgb” where ¢ is a dimensionless
function of radial coordinate 7.

Put these into the Lane-Emden equation:

K(n+l) 1 d [Tzﬁ] — _¢n

471_Gpi—1/’n r2 dr dr
Clean it up by setting CL2 p— K(nl—tll)/ and | r = af
47 Gp- "

Finally, we have: giz dif {52 @] — _¢n




Boundary conditions for function ¢ : ¢(0) =1, (%)5—0 =0

Mass: M =4r fOR* pr?dr = 4mp.a’ fog* PmEdE
= —dmpua® [y & |¢242] d
c 0 d§

d
= —4ma’p, (52(1_?)5

3/2
_ K(n+1) 2d¢
— —47"/06 (4 G 1—1/'n) (5 d_5>g*

Homework: Show that the case n=0, solution to the Lane-Emden equation is:
6=1-£62/6
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Polytrope Solutions

Table 2-5 Constants of the Lane-Emden functionst

d¢ Pe
- P8 | o s
" & % (df)e-e. P
0 2.449%4 4.8088 1.0000
0.5 2.7528 3.7871 1.8361
1.0 3.14159 3.14159 3.28087
1.5 3.65375 2.71406 5.99071
2.0 4.35287 2.41105 11.40254
2.5 5.35528 2.18720 23.40646
3.0 6.89685 2.01824 54.1825
3.25 8.01894 1.94980 88.153
3.5 9.53581 1.89056 152,884
4.0 14.97155 1.79723 622.408
4.5 31.83646 1.73780 6,189.47
4.9 169 .47 1.7355 934,800
5.0 “ 1.73205 w
n=>5
n=4
n=3
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Case n = 3: Relativistic Deg. Electron
Gas and White Dwarfs

rel __ hem?2/3 4/3
Pre = 28— (3n.) /

C772/3 N 4/3
= her” (3PM€A> _ K plt1/3

Therefore, we have:

2/3 N 4/3
K= hcm (3 A)
Lhe
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3/2
— K(n+1) 2 do
M = —47mp, (47eri_1/n) (f dﬁ)g*

Whenn=3 M = —4rx (%)3/2 (52@)6

Substitute in for K from previous page:

o 9 hc 3/2 N : 2 dgo
M = —36m (127TG) ( uf) (§ d_f)g*
— 5%1 M@ Where [e isin grams.

This is Chandrasekhar’s mass relation for White Dwarf’s, and now you’ve
seen how it is derived! ©
16



Chandra X-ray Spectrum of WD H1504+65
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What is a mass estimate of this Oxygen-Neon WD?
| 10

10
X, X, C
— = E _(n _1) — E — n, — 1 = z full ionization
e z2=06 AZ ) 2=6 AZ

=0.48 x 6/12 4+ 0.48 x 8/16 + 0.02 x 10/20 = 0.49

My p = 28L Mg = 5.81 x 0.492M, = 1.39M,
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Exercise for student: Show that the ratio of mean to central density is (for any index n):

b _— _3(1lde

pe Edt )
K

Central Pressure: Use equations on page 29 for ¢ and R, = a&, , along with
P —K 1+1/n and the result for Mass on page 30.
c )Oc

P 1 GM?Z
¢ 47T(n‘|‘1)(d¢/d€)§* R

Exercise for student: show that

2 4
For n =3: Pc = 1.24 X 1011 (]\]\/f_;) (RQ) atm
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Case n = 3: “Main Sequence”

Main sequence stars have both particle pressure and photon pressure acting within
their interiors.

P = NT _ 7T2 4
gas P’Y — 15R33 1

Total Pressure: Py, = Py + P,

Suppose gas pressure contributes a fraction 3 to the total pressure . Then the photon
pressureis P, = (1 — B) Pyt - And Py = BP0t

In thermodynamic equilibrium, both gases must have the same temperature 7.
Eliminating the common temperature, we have (exercise for student)

1/3 4/3
X= s P = (22 / Na / o@
45h° 3 x B4 v Polytrope index of 3

again!

From P — Kp1+1/n K — (1—6)1/3 (NA)4/3

x5 1




This value of K can be used in mass expression (page 13) to determine Main
sequence masses. For you to show that the Mass is given by:

et () (08),

(rG)3/2x1/2 ~ 32 M

18.0 M@

niB2)
Finally, let’s get the central temperature of this Main Sequence model:

Pgas — MPT — /BPtot

= T BNAk Pc

1/3 4/3
(From previous pageP/p ) — ﬁNlik (1—53) (]\LA) p(lj/?)
2/3
=46 x 10°u8 (4=) " pe/®

20



0 d
In terms of the mean density, using I L— —3 (% d—?) from page 35
P £,

and table on page 31: ©

2/3
T, = 17.4 x 10540 (Af‘g_Q) 51/3

21
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Homework: A certain star has the following properties:

M =30M,; R=66Rq X =070 Y =0.30

Using these values, graph below, and the previous equation, estimate the central
temperature using the previous result for the polytrope Standard Model.

Refer to page 37 for the final mass formula of the
Main Sequence Star model to understand why the plot
is parameterized. (We do not Isolate (3 in the mass
formula. We isolate [,LQM/M@ and plot its values
for values of 3 ) And this is what we see in the graph.

Parametric plot of 3 versus log,,(u2M /M)

10 1.5 2.0

' Loglo(lle/Me)
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