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THERMODYNAMIC PROPERTIES:
EQUATIONS OF STATE



On the Road to Pressure Integral

Momentum transfer imparted to surface dS:

Ap = 2pcosfz




Flux Volume

Volume of ~
0 sarallelepiped — Vp@l - DAS

P = v, cosfdtdS

15—

Particles within this volume, moving in

direction of p, can strike the bottom
surface dS in a unit time




Pressure Integral

Number of all particles with momentum between p and p +dp, 6 and 6 + dO,
¢ and ¢ + d¢ striking dS will be:

Number per unit vol N Flux Volume " Fraction of solid angle
with momentum p subtended by dS

Total hittingdS = Np;y = n(p) X v, cosBdt dS x 7

1 d 1 2pcosb
P:Nhitds dft) :Nhitds pdt

00 /2
P = / pvpn(p)dp/ cos? 0 sin Odf
0 0




Electron in a box: Length L

Schroedinger Wave Equation: ——VZ\II — ¢,V
e — In° (1)2 (n? + n? 4+ n?)
CF n T 2m \L x Y z
_ R% (m\?2,_ 2
= 3m (E)" 7

Fill the box with N electrons. Each €n level can take 2 electrons
(Pauli). Electrons fill box from lowest energy level up to a maximum
energy level we call €F

Only positive integers n, . , are valid. States in the p05|t|ve octant (1/8) of spherein n,,
n,, n, coordinates contribute. Volume of this sphere: 47T?’LF/3 "F is the radius of
sphere at the Fermi Level with energy €F . N can now be related to the number of levels

L 4 3 3



Energy of Electron Gas in Box

1 nE
U =2 Z En:2X§X47T/ enn2dn En:%(%)QTLQ
n<ng 0
_ x A2, . 5 _ x° n\2 (3N \5/3 N = Ip3
= Tom (2) 1% = 15w (2)” (55) 2

The pressure of this electron gas is then given by (andy = [,1/3)

_ oU _ 7w %2 (3n. 5/3
Pe__W_wmh (w)

Where n, = N/V is the electron number concentration.

Pressure NOT dependent on temperature, but only on the electron volume
concentration! Degenerate electron gas does NOT behave like an ideal gas.



Relativistic Degenerate Electron Gas

2
We previously had on page 7 for kinetic energy of €, = h (E ) 2 TL2

electron in orbital “n”: 2m \ L
Let us equate this to p2/2m and get: p = hﬂ'n/L = h’ﬁn/Vl/?’

For the pressure integral, we need n(p) = Vdp

We also had, from page 7, for the total number of electrons in the box: N = %’n?ﬁ
These two equations give us p as a function of N, by substituting for n:

_ 1/3
P = Vh1/3 (%)

N _
Solve for N, and take dN/dp. Result is: \idp — Wghs — Tl(p)



For relativistic electrons, U =& C and the pressure integral becomes:

prel — L [PFpe b dp

iR P

From previous page, we have all we need to get the Fermi momentum, PF
_ 2/3 1/3
pr = hr?/3(3n.)Y

Finally, we have the relativistic degenerate electron pressure:

(3n6)4/3

rel __ hem2/3
Pe - 12




THE PATH TO RADIATION PRESSURE



Photon Gas in Box: Length L
32

Maxell’s Equation for the Electric field: ¢*V?E = @E
_ . N TTL s NyTY L N, TTZ
E, = Egysinwt cos =5—= sin 4= sin =%

With E, and E, given by similar expressions by cyclic shifting
of the cosine in the right (=) direction

Substitution of these back into Maxell’s Eqn yields:

Er@ +nd + )= Eid=PLE =

Mode Energy: €,, = RW,, = ni‘frc __ f,‘z/;?/rg




Each mode will have some average number of photons in it. Call this number
We need to eventually find a formula for §

Total energy of the photon gas: [J = Ziozl Sp€yp = Z hs,wn

n=1

Photon pressure: P’Y — g—g — Z hSn awn — % 2311 hs,,wy

— U
— 3V

Thermodynamic Partition Function Z for a mode (review your thermodynamics)
_ oo _ o0 S —
Z =) ooexp(—shw/T) =3 _oz*, z = exp(—hw/T)

1 1

1—x l1—exp(—hw/T)

Energy in a mode: <en> — 72 % InZ

hw
exp(hw/T)—1




hw,
Total Energy: U= Z<€”> - Z exp(hw /7') -

n

Remember from page 12, that n is a triplet of integers: n,, n, n,. We replace the
sum by an integral over dn,, dn,, dn,, and change to spherical coordinates:

I W
U=@2)x < [ 4mn’dnh -
/@X 8/0 A exp(hw,/T) — 1

2 polarizations

And we recall from page 12 that w, = mrc/Vl/B’

> 1
2 1/3 3
=7°h d
U=mn"hc/V /0 n nexp(hwn/'r)—l
_ (WQhC/L)(TL/WhC)4f dp—2° x> Chingehvariazle
\ exp r— 1} r =T cn/ T
_ 7w’V 4
- 15h303T

74 /15
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Pressure (at last!) was found, on page 13, to be U/3V:
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Hydrostatic Equilibrium

The gravitational body forces integrated over the volume V
must be balanced by the pressure acting on the total surface

area A.
/gpdV:/Pda (*)
Vv A

Gauss’ Law (Divergence Theorem): / (V-F)dV = / F-da
1% A

Use F = fv, where vis a constant vector (has no (x,y,z) dependence) and also use

the following identity: 7 . (fv) = f(N) +v-Vf
S0

Now Div. Thm: /‘/(V-fv)dV:v-/‘/Vde:v-Lfda

@v-(/VVde—/Afsz:O

But v was chosen to be a constant (non-zero) field. So, termin () is zero. Use it on
RHS in force balance equation (*).



Force balance: /gpdV:/Pda
1% A

— / VPdV (From last identity on previous page)
Vv

:,/gpdv—fvpdvzo
Vv Vv

This result must hold throughout the entire volume V, and since volume shape is
arbitrary, we therefore have:

= gp=VP
M

In spherical geometry, using g = —G—2 , Where M is the enclosed mass inside
radius r, we finally have: r

¥ = -G p(r)

72




Summary of Results so far.

1P — M) o(r)

dr =~ r2

Pgas:nT ,n=N/V

18



