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REACTION RESONANCE 
PHENOMENON 
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Simple “toy” model to consider:  
3-D SWE, s-wave scattering 
and potential just a constant 
for    

The general radial SWE: 

For  

Or: 

Recall:  To satisfy this at the origin, we require  
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Therefore,  

Outside potential, for  

The constants E and F are normalization constants, and we can write them in any form 
we want (as long as the form is always a constant).   Factor them both as follows: 

Then: 
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At the boundary of the potential,                 , we require continuity of wave functions: 

Value matching 

Derivative matching 

We have for the phase shift of the 
outer wave function: 

Now, what about the relative intensity of the outer wave function within the interior 
of the potential                     ?  Take the modulus-squared of both equations above and 
add the results: 

Take the ratio of these two equations: 
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Phase shift 

Relative intensity 

Results for                                      , 
and an energy E corresponding to: 

These structures are resonances.  The 
amplitude matching between the incident 
(external) wave function and the internal 
wave function are optimized at these values 
of incident energy. 

Maximized when the cosine term is zero; 
when argument is                        . 

These are Resonance Energies 
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When the incident beam energy is at, or close to, one of the system’s resonance energies, 
the probability of forming a compound state in the potential is maximized. 
 
Also note:  the condition 
 
tells us something about the derivative matching equations on page 20:  this cosine term 
is exactly the same as the internal wave function derivative condition being set to zero. 
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This suggests that resonances occur when the outer 
wave function and internal wave functions match, 
such that, the slope of wave function at the 
boundary radius  is zero. 
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Also note:  the boundary and derivative matching equations on page 5 are equivalent to 
the following: 

This is called the logarithmic derivative at the boundary.  Our boundary/derivative 
matching conditions, then, for any partial waves (not just s-waves) can be 
summarized succinctly as: 

When                   the system should be at a resonance. 
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Recall from page 15, of Lec. 7, that the total outgoing scattered wave function was shown 
to be: 

Let’s deal with                only:                    

Recall from page 17, Lecture 7, the elastic cross section was found to be: 

And the reaction cross section was found to be, on page 19, Lecture 7, 
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These cross sections must be related back to the phase shift.  Let’s determine what the 
logarithmic derivative is for this outgoing wave function. 

After some algebraic work: 

Behold!  We can now drop this into the elastic and reaction cross section equations (l=0) 
at the bottom of previous page: 
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For the reaction cross section: 

Now, look at the form for the resonance scattering amplitude: 

It has its maximum when                ; when the logarithmic derivative is zero. 

Because the wave functions can be complex, the logarithmic derivative can be, in 
general, a complex function:   

Subbing this in to the above equation, and two more steps of complex algebra will 
result in the following reaction cross section formula 



Summary Thus Far: 
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Elastic cross section in terms of logarithmic derivative, and boundary of potential: 

Reaction cross section in terms of logarithmic derivative and boundary of potential:  
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What have we done?  We’ve derived “formal” expressions for the elastic and reaction 
cross sections in terms of the logarithmic derivative, and in doing so, we have eliminated 
the rather mathematically “ugly” phase shift  
 
But we’ve traded this problem for another:  in avoiding the phase shift, we’ve introduced 
the logarithmic derivative      .  What have we “won” by doing this.  How do we calculate   
     ? 
 
We calculate according to its definition, 
 
 
And there are ways to build model wave functions for                 .  Further, by using the 
internal wave function we continue to stay away from direct usage of 
 
Let’s do an example to see where the physics comes in to all of this mathematical 
formality.  
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As before, take as our (highly simplified) internal nuclear wave function to be of a form:  

Outgoing wave Incoming wave 

We require this structure of wave function because we are now allowing reactions to 
occur.  Reactions involve beam particles penetrating into the nuclear volume (Incoming 
wave), and then leaving this volume through some reaction channel (outgoing wave). 
 
• We cannot expect these waves (incoming & outgoing) to be in phase with each other. 
• The incident beam particle may be absorbed in the nuclear volume (i.e. A (p,g) 
reaction), so the outgoing wave amplitude must be smaller amplitude than incident 
wave 

Let us therefore try the following ansatz: 
 
With                    both real numbers.  

So take as our model internal wave function: 
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So we have: 

Exercise for you:  Using this form for the internal wave function, determine the 
logarithmic derivative to be: 

This result must be zero for a resonance! 
 
Now, think physics.  The parameter q represents attenuation of the outgoing internal 
wave function due to absorption.  (note it appeared as an exponential, similar to the 
exponential penetrability factor in our discussions on charged particle cross sections 
and the S-factor). 
 
In low energy reactions, absorption is weak and elastic scattering is huge. 
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We therefore consider                , and we demand that the log. derivative be zero for 
resonance 

Expand this in a Taylor Series around the resonance energy          and around q=0 

The first term is zero, by definition of resonance condition. 

At resonance energy, from above, the tangent function is zero and: 
 
Therefore,   
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Referring back to pages 10-12, and using the previous results: 
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Continuing.. 
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Interference term: changes sign above 
and below resonance energy 
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Elastic resonant cross section 
showing the interference effect 

Reaction resonant cross section.  
The width of the curve at 50% of 
maximum is the total width 
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Resonant Reaction Rate: 

Assume that both widths are small (total width is narrow) and they are constant (very 
weak energy dependence).  Sub the above cross section into the integral, treating the  
terms as constants: 
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Resonant Reaction Rate (Single Resonance): 

We have added the spin-statistical factors (now) to account for the fact that our 
theory up to this point has only considered spin zero particles (in entrance channel 
and exit channel) in the reaction. 
 
More generally, for particles with spin, we have to multiply the cross section by the 
spin-statistical factor to account for the different permutations of spin alignments that 
are allowed.  
 
Jr is the spin (intrinsic) of the resonance. 
J1 “                                             “ beam particle. 
J2 “                                             “ target particle. 
 
We define                                                            as the resonance strength.  
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In the event that several resonances can contribute to the rate, then we have: 

Where the sum extends over all resonances that can contribute to the rate, and 
where each resonance has its own resonance energy and resonance strength. 


