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Reading and References 

• Cauldrons in the Cosmos: Nuclear Astrophysics, C.E. Rolfs & W. 
S. Rodney, University Of Chicago Press 

• Principles of Stellar Evolution and Nucleosynthesis, Donald D. 
Clayton, University Of Chicago Press 

• Nuclear Physics of Stars, Christian Iliadis, Wiley-VCH 

• Nucleosynthesis and Chemical Evolution of Galaxies, Bernard 
E.J. Pagel, Cambridge University Press 

• Supernovae and Nucleosynthesis, David Arnett, Princeton 
University Press 

• An Introduction to Modern Astrophysics, Bradley W. Carroll & 
Dale A. Ostlie, Addison Wesley 

• Isotopes: Principles and Applications, Gunter Faure & Teresa 
M. Mensing, Johen Wiley & Sons, Inc. 
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Your Tutor: Peter Ludwig 
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INTRODUCTION TO THE STARS 
Twinkle, Twinkle Little Star..... 
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Introduction to the Stars 

• ~30% of all stars in multiple systems 

• Multiple systems vary from binaries, 
to Open Clusters, up to the 
enigmatic Globular Clusters 

• Open Clusters: a few to hundreds of 
stars 

• Globular Clusters: ~ 105 stars 

• OC’s reside in the Galactic Disk; GC’s 
reside in Galactic Halo 

Sirius B 

Sirius A 

Sirius A/B Binary star system 
Courtesy: Chandra X-Ray Telescope 
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Virial Theorem 

Consider point particle, mass mi and position vector ri inside cloud of similar particles.  
Then equation of motion for any particle i is: 

Now consider  and take its time derivative: 

LHS = 
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As the system evolves over a long period of time, and settles down into a static 
configuration,  leaving us with 

fi is the force acting on mass mi from all the other particles in the cloud.   Thus, with 
          the force between particle pairs: 
 
 
 
Also,                                (Newton’s 3rd  Law). 
 
So: 
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With                                                                 , we finally have 

• For ideal gas: K is related to temperature 

• Under collapse, cloud’s       increases, resulting 
in increasing temperature 

• Initially, this heat will radiate to space (diffuse 
gas) 

• Eventually, as density increases, however, 
much heat remains trapped, and temperature 
increases 
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Concept of Stellar Birth 
1. Stars are born of “seed” gas 

undergoing localized 
gravitational collapse 

2. 1st generation stars: gas would 
have been primordial: H and He 

3. Later generations formed of 
processed gas 

4. Points 2 & 3 suggest possibility 
of 2 populations of stars: very 
old and young 

5. Point 4 suggests populations 
should have different abundance 
distributions 

Spitzer Space Telescope 

Nursery 

9 



Stellar Populations 

• Population I (Pop I):  Stars that are “metal-
rich”.  Relatively “young” stars as compared to 
Galactic and Primordial Ages 

• Population II (Pop II):  Stars that are “metal-
poor”.  Ancient relics of the initial star 
formation periods of Galaxies and first 
generation of primordial stars 

• Metals: any element A > 4; that is, any 
element with Z > 2 
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The Pleiades Open Cluster (Pop I) 
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M30: Globular Cluster (Pop II) 
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Schematic of Galaxy of Pop Locations 
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Stellar Magnitude 

p 

RE 

d 

For “near” stars, method of parallax can be used to determine 
distance. 

Astronomers use the unit of parsec to measure stellar distance. 
A parsec (pc) is the distance such that angle p is equal to 1” of  
degree (1/3600 degree). 1 AU = 1.49 x 1011 m 
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• Greek astronomer Hipparchus was one of the first 
skywatchers to systematically catalogue the ~850 stars he 
observed 

• He assigned a magnitude index to each star ranging from 
m=1, for the brightest stars, to m=6 for the dimmest (opposite 
ordering of what one would expect) 

• Human eye has a nearly logarithmic subjective response to 
radiant energy flux 

• Modern astronomy defines: a 5 magnitude difference 
corresponds to a factor 100 in brightness (flux) 
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  We have, therefore: 

With F the flux, L the luminosity and d is the distance from us to the star. 
This is a relative scale.  
 
Astronomers assign an absolute magnitude to a star, M, by determining 
what it’s apparent magnitude would be if the star was located at 10 pc 
from Earth. 

Or 
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Homework:  With the previous definitions, show that a star’s 
apparent magnitude, m,  relative to the Sun, is related to the flux F 
received from the star by: 

For a certain stellar class called Cepheid variable, the intrinsic 
luminosity L and absolute magnitude M can be determined 
theoretically, to high precision. 
 
Since astronomers directly measure m, the above equation allows the 
distance to such a star to be determined.  From this, astronomers build 
up the “Cosmological Distance Ladder”, to measure ever greater 
distances. 
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Stellar Temperatures 

• Astronomers measure the spectra of 
atomic transitions 

• The spectral source is line absorption of 
continuum light in the stellar atmosphere 

• Photo-absorption and scattering can cause 
atomic transitions 

• Population ratio between two atomic 
states in thermal equilibrium given by 
Boltzmann’s formula: 
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A Stellar Visual Band Spectrum 
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Hertzsprung-Russel Diagram 

• Plot of absolute Magnitude against 
an “effective” temperature 

• Intrinsic luminosity L from M 

• Stephan-Boltzmann: 

 

• If colour temperature of star (B-V) 
is known, a “quick” estimate of its 
Magnitude can be read off the H-R 
diagram! 

White Dwarfs 

Main Sequence 

Giants 

Decreasing Temp 

L 

23 



Mass-Luminosity Relation 

• Stellar masses only possible from 
eclipsing binary systems 

• Relationship is a power law (Main 
Sequence): 

 

• We will see later in the course 
how this comes about 
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NUCLEAR ASTROPHYSICS 
We are star-stuff.  -- Carl Sagan 
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Primordiale Nukleosynthese 

E. Wright, Berkeley 
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Nur < 0.1% „Metalle“ 

Keine Fusion zu schwereren 
Elementen, da es keinen stabilen 
Kern mit A=5 und A=8 gibt 
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Solar Abundances 
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Nuclear Astrophysics Essentials 

• How did the Primordial Abundances change? 

• What nuclear processes are responsible for chemical 
enrichment? (Nucleosynthesis) 

• Where in the Universe do these nuclear processes 
take place? (Astrophysical Site) 

– Astronomy, space missions, meteorites 

– Theoretical modelling 

– Nuclear Physics 

• What nuclear physics quantities are important? 

– Astronomical observations 

– Nuclear physics experiments 
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Best Known Star: Sun 

- Mean distance from Earth: 
 1.496x108 km = 1 AU  
 
- Mass: 
       2x1030 kg 
 
- Radius:  
 700 000 km 
 
- mean density:  
 1,41 g/cm3  
 
-Luminosity:  
                   3.826 x 10 
 
- Core Temperature:  
                 ~ 15 MK 
 
- Age: 4,6 Gyr  
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PP-I 

Qeff= 26.20 MeV 

p + p  d + e+ + n 

p + d  3He +  

3He + 3He  4He + 2p  

86% 14% 

3He + 4He  7Be +   

2 4He 

7Be + e-  7Li + n  
7Li + p  2 4He 

7Be + p  8B +   
8B  8Be + e+ + n  

99.7% 0.3% 

PP-II 

Qeff= 25.66 MeV 
PP-III 

Qeff= 19.17 MeV 

Netto:    4p  4He + 2e+ + 2n + Qeff 

Proton-Proton-Chain 
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Binding Energy per Nucleon 

He 
O 

C Ne 

If reaction products have larger binding energy than reactants, reaction 
is exothermic and releases energy (heat) 
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Solar Abundances Continued 

a-particle nuclei have local maxima relative to neighbouring masses 
 - Will learn more about this further into the course 

Iron-group abundance peak 

4.5 – 5 order drop in  
abundance from Fe-group 
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WHAT SITES DO WE KNOW ABOUT? 
Young Stellar Objects (YSO) 
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A small fraction of the Orion Nebula 

Nebula swarming with “proplyds”.  Within each 
of these bubbles is contained a new protostar 
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An Enigma: T Tauri Stars 
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Irradiation Environment 
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The Internal Irradiation Source 

Spallation reactions occur here 

• Flare events from young Sun accelerate light particles to 
10’s of MeV  
•Spallation reactions (p,X), (3He,X), (a,X) produce 
radioisotopes 
• X-ray winds disperse the gas and condensates out of 
production zone 
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Messengers of the Stars 

Allende Meterorite SiC Grain (0.1—20) microns 

Measurements of isotopic abundances provides a measure 
of the nucleosynthesis at the site of origin   model constraints 
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What is an Isochrone, You Ask? 
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Radioisotope t1/2 

7Be 53 days 

10Be 1.5 My 

36Cl 0.3 My 

41Ca 0.1 My 

53Mn 3.7 My 

60Fe 1.5 My 

63Ni 100 y 

92Nb 36 My 

91Nb 680 y 

Radioisotopes Discovered in the Early Solar System 

A mystery: how is this 
possible! 
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Recent Discovery of 36Cl 

• Original amount of 36Cl in inclusion 
can be inferred by intercept 

• From slopes: (36Cl/35Cl)o = 5 x 10-6 

• Condensation time ~ 1.5 My  
original 36Cl/35Cl)o = 1.6 x10-4 

• No AGB model can yield this much 
36Cl 
–  internal source component 

Y. Lin et al., PNAS 102 (2005) 
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36Cl Production Cross Sections 

• Spallation reactions all 
unmeasured for 36Cl 
production in ESS 

• Relevant energy range from 
1-few 10’s of MeV 

• Some of these are nicely in 
the domain of MLL tandem 

M. Gounelle et al., ApJ 640 (2005) 

Some Reactions: 

33S(a,X), 34S(3He,X), 34S(a,X), 36S(p,X), 35Cl(3He,X),35Cl(a,X), 37Cl(p,X), 
39K(3He,X) 
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WHAT SITES DO WE KNOW ABOUT? 
Cataclysmic Variables 

Main Sequence Companion or AGB 

H+He-rich (or solar-like) material 
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Binary CV 

             Nova               X-Ray Burst 
Tmax     400 MK                2 GK 

 

rmax   105 g/cm3           106 g/cm3 

 

Ejecta    yes                        ?     

Note:  It is still an area of active 
theoretical and observational  
work to determine if any material 
is able to escape the gravitational 
well of the neutron star. 
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Novae Explosions 
Nova Cygni 1992 

with HST 

Courtesy Anatoli Iyudin 

-decay of 1st excited state 
in 22Ne 
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Nova Explosions 

• Ejecta abundances are sensitive to (p,) 
reaction rates 

• It is these rates that we must measure in the 
nuclear physics lab 

• This will be a topic of future lecture 
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SUPERNOVAE 
Cosmic Explosions:  From Stellar Death Comes Life 
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Tarantula Nebula in LMC (constellation Dorado, southern hemisphere)  

size: ~2000ly (1ly ~ 6 trillion miles), disctance: ~170000 ly 
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Tarantula Nebula in LMC (constellation Dorado, southern hemisphere)  

size: ~2000ly (1ly ~ 6 trillion miles), disctance: ~180000 ly 
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Something to think about..... 
 
Sun’s Luminosity:  3.826 x 1033 erg/s 
Age of Sun:  about 4 x 109 yr 
 
Order of magnitude luminous energy output of SN:  1050 erg 
 
Determine how much luminous energy Sun has emitted to date. 
 
Compare this to SN luminous output. 
 
Then: 
 
SN luminous lightcurve lasts for ~ 2 weeks.  In that time, 1050 erg of 
energy is radiated away.   
 
How many stars similar to our Sun would be required to radiate the 
same amount of energy in 2 weeks? 
 
Once you have that number, ask yourself how many stars there are in 
a typical galaxy. 
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Supernovae 

Animation: NASA/CXC/A.Hobart  
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Super Nova Explosions 

• Ejecta abundances are sensitive to only a few 
(p,) reaction rates 

• Other abundances are sensitive to nuclear 
masses  

• Why this is so will be a topic of future lecture 
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How do stars explode?  

Crab Nebula 

Example: delayed neutrino-driven Explosion of ONeMg Cores 

F.S. Kitaura, H.-Th. Janka, W. Hillebrandt, Astron. Astrophys. 450 (2006) 345. 
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IN SITU NUCLEOSYNTHESIS 
“Real time” nucleosynthesis right before your very eyes! 13C(a,n)16O 
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In Situ Nucleosynthesis 

Benjamin F. Peery Jr. PASP 83 1971 55 



The Case of Technetium 
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EXPERIMENTAL FACILITIES 
Nuclear Astrophysics in your own “back yard” 
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Maier-Leibnitz-Laboratorium  (Garching bei München) 
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MLL Tandembeschleuniger Garching 
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ISAC in Vancouver, Kanada 

60 



BIOGENIC RECORDS OF 
SUPERNOVAE 

Normally, the dead don’t talk;  but, perhaps they have left us a message. 
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Magnetotactic Bacteria 

a) Lab grown strain 

b) Lake Ammersee specimen 

c) Lake Chiemsee specimen 

 

Magnetobacterium bavaricum 
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Magnetofossils 
a) Quaternary Ocean DP fossils 

b) Miocene (23-5 My BP) fossils 

c) Cretaceous (145-65 Myr)  fossils from Culver Cliff chalk 

d) Same as c) 

e) 1.9 Gyr fossils, Ontario Canada 

64 


