Nuclear Astrophysics

Lecture 1 Thurs. Oct 20, 2011 Prof. Shawn Bishop, Office 2013, Ex. 12437

www.nucastro.ph.tum.de

Reading and References

- <u>Cauldrons in the Cosmos: Nuclear Astrophysics</u>, C.E. Rolfs & W.
 S. Rodney, University Of Chicago Press
- <u>Principles of Stellar Evolution and Nucleosynthesis</u>, Donald D. Clayton, University Of Chicago Press
- Nuclear Physics of Stars, Christian Iliadis, Wiley-VCH
- <u>Nucleosynthesis and Chemical Evolution of Galaxies</u>, Bernard E.J. Pagel, Cambridge University Press
- <u>Supernovae and Nucleosynthesis</u>, David Arnett, Princeton University Press
- <u>An Introduction to Modern Astrophysics</u>, Bradley W. Carroll & Dale A. Ostlie, Addison Wesley
- <u>Isotopes: Principles and Applications</u>, Gunter Faure & Teresa
 M. Mensing, Johen Wiley & Sons, Inc.

Your Tutor: Peter Ludwig

www.nucastro.ph.tum.de

Twinkle, Twinkle Little Star.....

INTRODUCTION TO THE STARS

Introduction to the Stars

- ~30% of all stars in multiple systems
- Multiple systems vary from binaries, to Open Clusters, up to the enigmatic Globular Clusters
- Open Clusters: a few to hundreds of stars
- Globular Clusters: ~ 10⁵ stars
- OC's reside in the Galactic Disk; GC's reside in Galactic Halo

Sirius A/B Binary star system Courtesy: Chandra X-Ray Telescope

Virial Theorem

Consider point particle, mass m_i and position vector \mathbf{r}_i inside cloud of similar particles. Then equation of motion for any particle *i* is:

$$\frac{d}{dt}\mathbf{p}_i = \mathbf{f}_i$$

Now consider $\sum_i \mathbf{p}_i \cdot \mathbf{r}_i$ and take its time derivative:

$$\frac{d}{dt} \sum_{i} \mathbf{p}_{i} \cdot \mathbf{r}_{i} = \sum_{i} \frac{d\mathbf{p}_{i}}{dt} \cdot \mathbf{r}_{i} + \sum_{i} \mathbf{p}_{i} \cdot \frac{d\mathbf{r}_{i}}{dt}$$
$$= \sum_{i} \mathbf{f}_{i} \cdot \mathbf{r}_{i} + 2K$$

$$LHS = \frac{d}{dt} \sum_{i} m_i \frac{d\mathbf{r}_i}{dt} \cdot \mathbf{r}_i = \frac{d}{dt} \sum_{i} \frac{1}{2} \frac{d}{dt} (m_i r_i^2) = \frac{1}{2} \frac{d^2 I}{dt^2}, \ I = \sum_{i} m_i r_i^2$$

 $I \equiv$ moment of inertia of the system

As the system evolves over a long period of time, and settles down into a static configuration, $\frac{d^2}{dt^2}I \rightarrow 0$ leaving us with

$$K = -\frac{1}{2} \sum_{i} \mathbf{f}_i \cdot \mathbf{r}_i$$

 f_i is the force acting on mass m_i from all the other particles in the cloud. Thus, with F_{ij} the force between particle pairs:

$$\mathbf{f}_i = \sum_{j
eq i} \mathbf{F}_{ij}$$

Also,
$$\mathbf{F}_{ij} = -\mathbf{F}_{ji}$$
 (Newton's 3rd Law).
So:
 $K = -\frac{1}{2} \sum_{i} \left(\sum_{j \neq i} \mathbf{F}_{ij} \right) \cdot \mathbf{r}_{i} = -\frac{1}{2} \sum_{i} \left[\frac{1}{2} \sum_{j \neq i} (\mathbf{F}_{ij} - \mathbf{F}_{ji}) \right] \cdot \mathbf{r}_{i}$

$$= -\frac{1}{2} \sum_{i} \sum_{j \neq i} \mathbf{F}_{ij} \cdot (\mathbf{r}_{i} - \mathbf{r}_{j}) \right]$$

$$= -\frac{1}{2} \sum_{i} \sum_{j < i} \mathbf{F}_{ij} \cdot (\mathbf{r}_{i} - \mathbf{r}_{j})$$

With $\mathbf{F}_{ij} = G \frac{m_i m_j}{r_{ij}^2} \widehat{\mathbf{r}}_{ij}, \mathbf{r}_{ij} = \mathbf{r}_i - \mathbf{r}_j$, we finally have

$$K = -\frac{1}{2}G\sum_{i}\sum_{j\neq i}\frac{m_im_j}{r_{ij}} = -\frac{1}{2}\Omega$$

- For ideal gas: K is related to temperature
- Under collapse, cloud's $\,\Omega\,$ increases, resulting in increasing temperature
- Initially, this heat will radiate to space (diffuse gas)
- Eventually, as density increases, however, much heat remains trapped, and temperature increases

Concept of Stellar Birth

- Stars are born of "seed" gas undergoing localized gravitational collapse
- 2. 1st generation stars: gas would have been primordial: H and He
- Later generations formed of processed gas
- Points 2 & 3 suggest possibility of 2 populations of stars: very old and young
- Point 4 suggests populations should have different abundance distributions

Spitzer Space Telescope

Stellar Populations

- Population I (Pop I): Stars that are "metalrich". Relatively "young" stars as compared to Galactic and Primordial Ages
- Population II (Pop II): Stars that are "metalpoor". Ancient relics of the initial star formation periods of Galaxies and first generation of primordial stars
- Metals: any element A > 4; that is, any element with Z > 2

The Pleiades Open Cluster (Pop I)

M30: Globular Cluster (Pop II)

Schematic of Galaxy of Pop Locations

Fig. 1-13 Schematic representation of the galaxy. (G. Abell, "Exploration of the Universe," Holt, Rinehart and Winston, Inc., New York, 1964.)

Stellar Magnitude

For "near" stars, method of parallax can be used to determine distance.

$$d = \frac{R_E}{\tan p} \approx \frac{1}{p} \text{ AU}$$

Astronomers use the unit of parsec to measure stellar distance. A parsec (pc) is the distance such that angle p is equal to 1" of degree (1/3600 degree). 1 AU = 1.49×10^{11} m

> $1 \text{ pc} = 3.086 \times 10^{16} \text{ m}$ = 3.2616 lyr

- Greek astronomer Hipparchus was one of the first skywatchers to systematically catalogue the ~850 stars he observed
- He assigned a magnitude index to each star ranging from m=1, for the brightest stars, to m=6 for the dimmest (opposite ordering of what one would expect)
- Human eye has a nearly logarithmic subjective response to radiant energy flux
- Modern astronomy defines: a 5 magnitude difference corresponds to a factor 100 in brightness (flux)

We have, therefore:

$$\frac{F_1}{F_2} = 100^{(m_2 - m_1)/5}$$
$$F_i = \frac{L_i}{4\pi d_i^2}$$

With F the flux, L the luminosity and d is the distance from us to the star. This is a *relative* scale.

Astronomers assign an *absolute magnitude* to a star, M, by determining what it's apparent magnitude would be *if* the star was located at 10 pc from Earth.

$$\frac{F_{10}}{F} = 100^{(m-M)/5} = \left(\frac{d}{10 \text{ pc}}\right)^2$$

Or

$$M - m = 5 - 5\log_{10}(d)$$

~

Homework: With the previous definitions, show that a star's apparent magnitude, m, relative to the Sun, is related to the flux F received from the star by:

$$m = M_{\odot} - 2.5 \log_{10} \left(\frac{F}{F_{10,\odot}}\right)$$

For a certain stellar class called Cepheid variable, the intrinsic luminosity L and absolute magnitude M can be determined theoretically, to high precision.

Since astronomers directly measure m, the above equation allows the distance to such a star to be determined. From this, astronomers build up the "Cosmological Distance Ladder", to measure ever greater distances.

Stellar Temperatures

- Astronomers measure the spectra of atomic transitions
- The spectral source is line *absorption* of continuum light in the stellar *atmosphere*
- Photo-absorption and scattering can cause atomic transitions
- Population ratio between two atomic states in thermal equilibrium given by Boltzmann's formula:

$$\frac{n_j}{n_k} = \frac{g_i}{g_k} \exp\left(-\frac{E_j - E_k}{kT}\right)$$

A Stellar Visual Band Spectrum

Hertzsprung-Russel Diagram

- Plot of absolute Magnitude against an "effective" temperature
- Intrinsic luminosity L from M
- Stephan-Boltzmann: $R_* = rac{1}{T_e^2} \sqrt{1}$
- If colour temperature of star (B-V) is known, a "quick" estimate of its Magnitude can be read off the H-R diagram!

Mass-Luminosity Relation

- Stellar masses only possible from eclipsing binary systems
- Relationship is a power law (Main Sequence):

 $L_* \propto M^a, \ 3 \le a \le 4$

• We will see later in the course how this comes about

We are star-stuff. -- Carl Sagan

NUCLEAR ASTROPHYSICS

Primordiale Nukleosynthese

$${}^{2}H: n+p \rightarrow d+\gamma$$

$${}^{3}He: d+p \rightarrow {}^{3}He+\gamma$$

$$d+d \rightarrow {}^{3}He+n$$

$${}^{4}He: {}^{3}H+p \rightarrow {}^{4}He+\gamma$$

$${}^{3}He+n \rightarrow {}^{4}He+\gamma$$

$${}^{4}He + {}^{3}H \rightarrow {}^{7}Li+\gamma$$

$${}^{4}He + {}^{3}He \rightarrow {}^{7}Be+\gamma$$

$$d+{}^{4}He \rightarrow {}^{6}Li+\gamma$$

Keine Fusion zu schwereren Elementen, da es keinen stabilen Kern mit A=5 und A=8 gibt

$$p:^{4} He: d:^{3} He = 77: 23: 10^{-4}: 10^{-4}$$
 Nur < 0.1% "Metalle"

Solar Abundances

Nuclear Astrophysics Essentials

- How did the Primordial Abundances change?
- What nuclear processes are responsible for chemical enrichment? (Nucleosynthesis)
- Where in the Universe do these nuclear processes take place? (Astrophysical Site)
 - Astronomy, space missions, meteorites
 - Theoretical modelling
 - Nuclear Physics
- What nuclear physics quantities are important?
 - Astronomical observations
 - Nuclear physics experiments

Best Known Star: Sun

- Mean distance from Earth: 1.496x10⁸ km = 1 AU

- Mass: 2x10³⁰ kg

- Radius: 700 000 km

mean density:
 1,41 g/cm³

-Luminosity: 3.826 x 10

- Core Temperature: ~ 15 MK

- Age: 4,6 Gyr

Proton-Proton-Chain

Netto: $4p \rightarrow {}^{4}He + 2e^{+} + 2v + Q_{eff}$

Binding Energy per Nucleon

Fig. 7-1 The binding energy per nucleon of the most stable isobar of atomic weight *A*. The lf reaction products have larger binding energy than reactants, reaction is exothermic and releases energy (heat)

Solar Abundances Continued

 $\alpha\mbox{-particle}$ nuclei have local maxima relative to neighbouring masses - Will learn more about this further into the course

Young Stellar Objects (YSO)

WHAT SITES DO WE KNOW ABOUT?

A small fraction of the Orion Nebula

Nebula swarming with "proplyds". Within each of these bubbles is contained a new protostar

An Enigma: T Tauri Stars

Jets from Young Stars

HST · WFPC2

PRC95-24a · ST Scl OPO · June 6, 1995 C. Burrows (ST Scl), J. Hester (AZ State U.), J. Morse (ST Scl), NASA

Irradiation Environment

The Internal Irradiation Source

Spallation reactions occur here

• Flare events from young Sun accelerate light particles to 10's of MeV

•Spallation reactions (p,X), (³He,X), (α,X) produce radioisotopes

• X-ray winds disperse the gas and condensates out of production zone

Messengers of the Stars

Allende Meterorite

SiC Grain (0.1–20) microns

Measurements of isotopic abundances provides a measure of the nucleosynthesis at the site of origin \rightarrow model constraints

What is an Isochrone, You Ask?

$$N_{m} = N_{0} \exp(-\lambda t)$$

$$N_{d} = N_{init} + N_{0}[1 - \exp(-\lambda t)]$$

$$\frac{dN_{d}}{dt} / \frac{dN_{m}}{dt} = \frac{dN_{d}}{dN_{m}} = -1$$

$$N_{m}$$

$$N_{m}$$

Radioisotopes Discovered in the Early Solar System

	<u>Radioisotope</u>	<u>t_{1/2}</u>				
A mystery: how is possible!	this ⁷ Be	53 days				
	¹⁰ Be	1.5 My				
	³⁶ CI	0.3 My				
	⁴¹ Ca	0.1 My				
	⁵³ Mn	3.7 My				
	⁶⁰ Fe	1.5 My				
	⁶³ Ni	100 y				
	⁹² Nb	36 My				
	⁹¹ Nb	680 y				

Recent Discovery of ³⁶Cl

- Original amount of ³⁶Cl in inclusion can be inferred by intercept
- From slopes: $({}^{36}Cl/{}^{35}Cl)_{o} = 5 \times 10^{-6}$
- Condensation time ~ 1.5 My → original ³⁶Cl/³⁵Cl)_o = 1.6 x10⁻⁴
- No AGB model can yield this much ³⁶Cl
 - internal source component

Y. Lin et al., PNAS 102 (2005)

³⁶Cl Production Cross Sections

- Spallation reactions all unmeasured for ³⁶Cl production in ESS
- Relevant energy range from 1-few 10's of MeV
- Some of these are nicely in the domain of MLL tandem

M. Gounelle et al., ApJ 640 (2005)

Some Reactions:

³³S(α,X), ³⁴S(³He,X), ³⁴S(α,X), ³⁶S(p,X), ³⁵Cl(³He,X), ³⁵Cl(α,X), ³⁷Cl(p,X), ³⁹K(³He,X)

Cataclysmic Variables

WHAT SITES DO WE KNOW ABOUT?

Binary CV

Nova T _{max} 400 MK	X-Ray Burst 2 GK					
$ ho_{max}$ 10 ⁵ g/cm ³	10 ⁶ g/cm ³					
Ejecta yes	?					

Note: It is still an area of active theoretical and observational work to determine if any material is able to escape the gravitational well of the neutron star.

Novae Explosions

Courtesy Anatoli Iyudin

Nova Explosions

- Ejecta abundances are sensitive to (p,γ) reaction rates
- It is these rates that we must measure in the nuclear physics lab
- This will be a topic of future lecture

Cosmic Explosions: From Stellar Death Comes Life

SUPERNOVAE

Something to think about.....

Sun's Luminosity: 3.826×10^{33} erg/s Age of Sun: about 4×10^9 yr

Order of magnitude luminous energy output of SN: 10⁵⁰ erg

Determine how much luminous energy Sun has emitted to date.

Compare this to SN luminous output.

Then:

SN luminous lightcurve lasts for ~ 2 weeks. In that time, 10^{50} erg of energy is radiated away.

How many stars similar to our Sun would be required to radiate the same amount of energy in 2 weeks?

Once you have that number, ask yourself how many stars there are in a typical galaxy.

Supernovae

Animation: NASA/CXC/A.Hobart

Super Nova Explosions

- Ejecta abundances are sensitive to only a few (p,γ) reaction rates
- Other abundances are sensitive to nuclear masses
- Why this is so will be a topic of future lecture

How do stars explode?

Example: delayed neutrino-driven Explosion of ONeMg Cores

Crab Nebula

F.S. Kitaura, H.-Th. Janka, W. Hillebrandt, Astron. Astrophys. 450 (2006) 345.

"Real time" nucleosynthesis right before your very eyes! $^{13}C(\alpha,n)^{16}O$

IN SITU NUCLEOSYNTHESIS

In Situ Nucleosynthesis

FIG. 1 — Microphotometer tracings of various Tc stars in the regions of the three zero-volt Tc lines: R And (S6, 6e; LPV), RS Cnc (M6S; irregular), HD 35155 (S4, 1; nonvariable), ρ Per (M4 II-III, shown for comparison), UU Aur (N3; C5, 5; semiregular), 19 (TX) Psc (N0; C6, 2; irregular).

Benjamin F. Peery Jr. PASP 83 1971^{5}

The Case of Technetium

89Ru	90Ru	91 Ru	92Ru	93Ru	94Ru	95Ru	⁹⁶ Ru	97Ru	98Ru	99Ru	¹⁰⁰ Ru	¹⁰¹ Ru	102Ru	103 _R
										-		8		
⁸⁸ Tc	⁸⁹ Tc	90Tc	91Tc	92Tc	93Tc	94Tc	95Tc	96Tc	97Tc	987c	⁹⁹ Tc	100Tc	¹⁰¹ Tc	102T
											-		-	
⁸⁷ Mo	⁸⁸ Mo	⁸⁹ Mo	90 Mo	⁹¹ Mo	92Mo	⁹³ Mo	⁹⁴ Mo	⁹⁵ Mo	⁹⁶ Mo	97M	⁹⁸ Mo	⁹⁹ Mo	^{∖00} Mo	101 N
					8		8				-	-		

$$t_{1/2} = 2.1 \times 10^5 \text{ yr}$$

Nuclear Astrophysics in your own "back yard"

EXPERIMENTAL FACILITIES

Maier-Leibnitz-Laboratorium (Garching bei München)

MLL Tandembeschleuniger Garching

ISAC in Vancouver, Kanada

Normally, the dead don't talk; but, perhaps they have left us a message.

BIOGENIC RECORDS OF SUPERNOVAE

Magnetotactic Bacteria

Magnetobacterium bavaricum

- a) Lab grown strain
- b) Lake Ammersee specimen
- c) Lake Chiemsee specimen

Magnetofossils

- a) Quaternary Ocean DP fossils
- b) Miocene (23-5 My BP) fossils
- c) Cretaceous (145-65 Myr) fossils from Culver Cliff chalk
- d) Same as c)
- e) 1.9 Gyr fossils, Ontario Canada