Torque and Levers

The Mechanics of Rigid Bodies
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Homework 3

Two bodies of masses m, and m, are free to move along a horizontal straight,
frictionless track. They are connected by a spring with constant K.

The system is initially at rest before an instantaneous impulse J is give to m, along
the direction of the track.

Q) Determine the motion of the system and find the energy of
oscillation of the two bodies

A) You'll need to use ideas of energy, momentum conservation and derive the
eqn of motion of 2 coupled masses
(i) CONSERVATION OF MOMENTUM and ENERGY
(ii) NATURAL FREQUENCY w, OF A 2 BODY HARMONIC OSCILLATOR 5
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Lecture 4 - Contents

M4.1 Rotational vs Linear Dynamics
— Dynamics of “rigid bodies” (starre Kérper)...
— Torque (Drehmoment) and Lever arm (Hebelarm)...

— Energy of rotational motion...
— Angular momentum (Drehimpulse)...
— Newton’s laws for rotation...

ot b o

M4.2 Rotational motion of rigid bodies
— The moment of inertia | (Trdgheitsmoment)...
— The parallel axis theorem...

— Angular precession and gyroscopes...
— Yo-Yo’s and angular momentum...




-« Until now we’ve been con5|der|ng the dynamics of point like bodles (e.g.
elementary particles, point masses etc.)

|

2

-

— Move along some trajectory in space in response to external forces -
— All forces act through the “center of mass” (R,) of the body I
— Some quantities (energy and linear momentum) are constants of motion E
‘

| e FE B ) |

Point like particle

8

* The topic of rigid bodies (starre Kérper) that we’ll discuss today deals with _
. theresponse of a non-deformable extended body to external forces

— Forces do not-necessarily act through R,

'l
‘.

, — We have to consider the rotation of the body as well as translation -
o
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4.1.1 Torque

(Das Drehmoment)

 The motion of any rigid body is a combination of linear and rotational dynamics.
— To see : consider the response of a circular disk to a force F with various “lines of action”

(a) Purely radial force (b) Purely tangential force

_______________ I:

For a given force F, this becomes
larger when Lever Arm r,
(Hebelarm) becomes larger

7\ ______ F

Line of
action I: ““““““““
line of action passes through R, Purely tangential force pair, separated by r, from R
= Pure linear acceleration a, —>Zero linear acceleration since 2F=0
- do d’p
—>Pure angular acceleration |5 = 2" — =&
(c) General case dt  dt?

________ I: —> Linear and angular acceleration NES, as -+ 6

We are used already to the fact that forces cause linear acceleration (F=ma)
Apparently something related to F and r , can cause angular acceleration ?
9



To prove some of these “common sense” ideas, consider an apple glued to a plank of wood

Pivot point — can provide arbitrary force at the point of rotation to fix that point to a rotational axis

<Apply just enough force F, at distance r,
from pivot point to balance gravity

This means that (Newton 3) |, = _Eg

If we now rotate the apple through angle do
then the work done dW is
dW = Frde

< If you now repeat the experiment with a
force F, a distance r, from the pivot point to
balance gravity and raise to same final state

What force need be applied ?
- Total work done must be the same, since the final
state is same and gravity conservative force

dwW, = Fl(r1d§0): dw, = F, (r2d§0)

r, +

_ Define as TORQUE
LEVER ARM (Hebelarm) RULE |Fi =~ F; Fr=Fr, =

(Drehmoment)




Torque M is a force producing angular acceleration
2It’s a “twisting force”

If a body does not experience any linear acceleration then the net
force acting on it is zero

=ma=m(dv/dt)

If a body does not experience any angular acceleration then the
net torque acting on it is zero

2Meoc (day/dt) ?

11



What are the total forces and torques acting in our apple problem ?

- The whole system is stationary, so total torque is zero (torque from pivot, gravity, F,)

TORQUE | FORCES
A A F — —
FP ’ 2 Mp+Mg+M2_O Fp+Fg+F2_O
_______ ] :
(O)F, +rF, +r,F, =0 Fp—mg+r—mg=0
Fg:-mg 2
5 2N
> F, =+mg
r, I,
Torque pr ovi ded by gravity equal | pp o force needed to balance
+ opposite to that from F, torques
Torque is a vector quantity If force F, is applied at a point ry, at an
P, T F3 angle relative to the radial vector r,

from the pivot point, only the tangential
component of the force is relevant for
the torque M

|F5[sin(0)

|F5|cos(0)

—_— —

sin0) |M =rx F

TORQUE M - vector product of radial vector and force acting

>
7|

Fa

s

|-

rs

12



A force F has the same effect when it

L L acts along the line of action,
irrespective of the precise position
where it acts

Proof
1) Consider a crazy shaped rigid body, with a force F, acting at point p,

LAl ,f"‘\

_F \:. 2) If we add a new force pair at another point p,
4

—>Total force F acting on the body is unchanged
—>Total torque M acting on the body is unchanged

3) Could remove these forces, and situation is identical,
but with Force F translated from point p, to p,

We can now prove that M is given by the vector product of r and F

T o=dop/dt F
M =r F =rsin(p)F =

rxF

13



Direction of torque ?

By convention, the vectors r, F and M define a right handed coordinate system

- | —

2
7
/ \,
o \Fue
d a ey
/ N |
' ‘ A~ Ria od
( P
\ /
\-_k/ /_,/ 2 2004 Encyclopedia Britannica, Ine.

M points in positive e, direction when the resulting rotation (and angular
acceleration dw/dt) is anticlockwise — by definition

® and M are both axial vectors, whilst r and F are polar vectors

14



4.1.2 Energy of a rotating rigid body?

* Anyone who has tried to stop a rotating bicycle wheel with their hand knows
that a rotating rigid body has energy (kinetic + potential)

— We can express this rotational KE in terms of the angular velocity ® in the same way the
translational KE,.,.. = %2 mv? = we hope to get something like KE,,oc ®?

 To develop this idea a little, think of a rigid body as being made up of a large
number of masses connected together by “stiff springs”, such that k>

— We are going to think of 3 “atoms” but the arguments apply to many atoms in a real rigid body!

2 The force acting between each mass is given by the compression
or expansion (Ar) of the springs.

F12 If we allow the restoring forces F,, etc. be finite then F1, = —KkAr1>
\ F - . — Elg i.e. displacements from =m
12 where Ary, =lim -t .
koo spring length go to zero
How much potential energy is stored ”internally” in the springs ?
_ Aliz ‘F ‘F no PE is stored “internally”
Eo=lm J. Fi.dri= lim, k12 dF,=lim_ _-——'2=0 inaRigid Body .
0 3k (That’s why it’s RIGID |)



* |f the potential energy stored “internally” in a rigid body is zero, then what form
must the energy take ?

E.. 2% + E,;,, a rotating rigid body in CM frame has only rotational KE

} —) Etot = % m1V12 + % mzvg +% m3V§ = % ml(rla))z + % m, (rza))2 +% m3(r3w)2

m L J
since V=mr for rotational motion
around the center of mass

We then obtain mmp E . = %(Z mirizja)2 — | ° E — 1 MV2

c.f. KE trans = 2

|
2
| = Zmiﬁ MOMENT OF INERTIA “plays role of mass”
i

Let the COM act now as a pivot point and consider the influence of an external tangential
force on the rotational KE of the system...

If individual forces were applied to each mass separately, they would obey

do do do
Fl — mll’l E P F2 — m2r2 E ) F3 — m3l'3 E

BUT, since the tangential force is only applied at r;, we must use the lever
arm equation to find the effective forces acting at r, and r;

16



In this case, when we take lever arm in account, we have for the tangential forces...

So, if F

were acting on each mass separately, we get

or 2 2
r,”(d or - (d
|:ext =mn C(lja) ! |:ext =m, i_(—a)] ’ |:ext =M, ° ( a)j
1

ext

dt

This means that when F_,, acts on the entire system

(da)j r,’ (da)j r,’ (da)j
Fo.=mpr| — |+m,~—| — [+ M, —| —
dt L\ dt r, \ dt

External torque exerted by the force on the whole system is then

dw dw dw
Mext = rlFext = m1r12 Ej"‘ mzrz2 Ej"‘ m3r32(a)

Zmr _ ([ de M — | EXTERNAL TORQUE
dt dt ext = MOM. OF INERTIA x ANGULAR ACC.

17




The angular momentum L=l is a conserved quantity of rotational motion when no or

We have just shown that the externally applied torques to a rigid body (M,,,) are equal to

the rate of change of a quantity lo=L

d dL

Moo =—(10) = == mmp M, =0 mmp AL o or L=const
dt /]\ dt dt
L=lw

external torques M,,, are applied

compare
with

The linear momentum p=mvV is a conserved quantity of translational motion when no
external forces F,,; are applied




Summary
Fundamentals of rotational motion

A force with a line of action that passes through the
COM of a rigid body creates only translational motion

A force with a line of action that does not pass
through the COM creates both translational and
rotational motion

We describe rotational motion of a rigid body using M . F y E
torques M to represent the action of forces F on it —

«“ ” . e . . . 2
The analogy to “mass” for rigid bodies is the moment | = Z m. I
of inertia | i
The “internal energy” of a rigid body is only rotational E = % Ia')2
Angular momentum L is conserved when no external d (| a)) dL
torques act on the rigid body M = o = ”




4.1.3 Newton’s Laws for Rotating Bodies

« We are now ready to develop some more fundamental relations for the
rotational dynamics of a rigid body.

- We are going to show that the angular acceleration of a rotating rigid body (dw/dt) is
proportional to the sum of the torque components along the axis or rotation XM

— The constant of proportionality between XM and dw/dt is the moment of inertia |

To do this, we are going to consider the simplest rotating system - a point mass moving on
a circular path.
% - —_— -
T Velocity (v) related to angular velocity () by v=@pxr mmp V=X
F

7Y Since p=mv ,wecan write B = m(E;XF) > P =Mar

w A constant tangential force F,,, would result in an acceleration a
M - dp do X T =R or
i m) F —ma=—=m —|r = rFanzer‘z‘M‘zm — =0
R - dt dt ‘ ot
\ dp d , OW
: rk, =M =r—=—(rp)=mr-—
M Tt where L=rp isthe angular momentum

2
M = I(%)) where I=mr? is the moment of inertia 20



2
M —%where L =rp is the angular momentum|M = I(%—?) where |=mr? is the moment of inertia

These equations are very similar to Newton’s 2" law “multiplied by r”

dp Xr Xr
=— mp Fr—— F=mv mp rF=mreo

‘“ \dV \

For this special case of circular motion of a mass point, a number of nice analogies exist
between translational and rotational dynamics

Translational Dynamics Rotational Dynamics
Position r (Spatial coordinate) | ¢ (Drehwinkel)
Velocity v=dr/dt (Geschwindigkeit) a=dpAt (Winkelgeschwindigkeit)
Accel. a=dv/dt=d?r/dt? (Beschleunigung) d wdt=d?pMt? (Winkelbeschleunigung)
Force F=ma (Kraft) M=rF (Drehmoment, Torque)
Momentum p=mv (Impuls) L=rp=rmv (Drehimpuls, Angular mom.)
Mass m (Masse) I=mr2 (Tragheitsmoment,

Moment of Inertia)




We can arrive at the same conclusions, but now remembering that M, F, @, r, v etc are all vectors
Start at Newton's 2nd

d—> rX L. d_’ .
t dt
M:—(FXB) = ' _>+_r>><_p —FX@ :d_L
dt t dt dt dt

_L’ _ Fx | Angular momentum y
B P Units [L]=ML2T-1=Nms=Js

<|
[

xF -9k 9 ()

Torque
Units [M]=Nm-=J

22



4.2 We’ve seen how the Moment of Inertia

behaves like the “mass” for rotational motion

| :Zmiriz
i

It kind of seems sensible that it should depend not just on the
mass, but how it is distributed relative to the axis of rotation

» Mass farther from axis
e Greater moment of inertia
. » Harder to start apparatus rotating

* Mass close to axis
* Small moment of inertia
« Easy to start apparatus rotating

We are now going to calculate the moment of inertia of some simply systems

23



4.2.1 Calculating moments of inertia

 Most rigid bodies are not discrete, i.e. represented by a few point masses, but
consist of a continuous distribution of mass in space.

— The sum of masses and distances that defines the moment of inertia becomes an
integral over mass elements

Discrete Continuous dm = pdv

We can describe the distribution of mass via it’s mass density p=dm/dV | = j I’ZpdV

For a uniform mass density we can write | = pj' rde

Example : a thin, uniform bar

choose a volume element with length dx > dm = ApdX

L-h \ M

—h

3

L-h
= | :szdm M _[xzdx :M[X—j
L L3

24

=» | =%|\/| [L2-3Lh+3h?] Ans.



o°|

< ,éj =2M >0
el AR o 1 3 oh?
tm/ P g M [_3L T 6h] =0 on i.e. minimum

oh

‘ L L — minimum when bar spins around its
h=— center of mass

Example 2 : Uniform disc with a radius R, thickness L via a rotation axis through its center

Easiest here to divide up the disc into infinitesimal cylindrical shells, thickness dr

Infinitesimal volume ~ dV = 2zrLdr Mass dm= pdV =2arpLdr

| T This infinitesimal shell contributes dl =r’dm = I’2[27ZI’pL]dI‘
l t 3 71}0'— 4 4 72',0'— 2 2
| =L [ridr == [R!-R!] = : (RZ-R?)RZ +R?)
Ry
M M 1
. _ | == MIR?+R?) Ans.
Mass density £ 7Z(R22 _ R12 )L » 2 ( 2 1 )
1
Without central hole | = > MR*

25



Example 3 : Uniform sphere with a radius R via a rotation axis through its center

Easiest here to divide up the sphere into infinitesimal discs of thickness dx
Radius of discr =V R? —x*  ltsvolume dV = zr°dx = (R2 —X* )d)

mass dm= pdV = ,O7Z(R2 —X° )dx

g for a solid disk with radius r and mass M=dm, we just showed that

) o dl =2r2dm =1(R? — X | 0(R? — x? Jix]

Integrating over whole sphere

[
-
~
-
—
=
-

R
|=1p [(R?—x?fx = 5% s
-R 15
3
Now we need the massdensityp M = pV = AmpR
Y
o 47R®

2
We then obtain the answer » Isphere — g MR2 Ans.

26



Some other commonly encountered examples

e i
I—i?:fWL I=

N -
l—3Ma

(a) Slender rod, (b) Slender rod, (c) Rectangular plate, (d) Thin rectangular plate,
axis through center axis through one end axis through center axis along edge
I= lM(R,2 + Ry 1= L mr? I = MR?

2

(e) Hollow cylinder (f) Solid cylinder (g) Thin-walled hollow (h) Solid sphere (i) Thin-walled hollow
cylinder sphere

27



The parallel axis theorem (Steinerscher Satz)

The moment of inertia of a rigid body depends on the distribution of mass around
the axis of rotation

Problem = we have infinitely many axes of rotation !

@ ob For example, | could take this mechanical linkage and have it rotate
C’“‘ around an axis through its center of mass (cm) or another axis parallel to

%}’/ that and separated by 0.15m — the rotational energy is different for each

Axis

There is a simple relationship between the moment of inertial about an arbitrary
axis of rotation (I;) and that passing through the center of mass (I-)

* The parallel axis theorem states > |, =1, + Md 2

i.e. The moment of inertia around an arbitrary axis (p) is ]
equal to the moment of inertia through the center of ¥ l |
mass plus the CM moment relative to the original axis

(z-axis perpendicular ‘
&Vpla}ne of paper)

Let’s prove this ! 28



To prove the parallel axis theorem then consider the body shown below and two parallel
axes of rotation O (through the C.0.M.) and P at rp=(a,b,0)

Clearly d?=a?+hb? @

The moment of inertial about the axis through O

: . _ 2 \,2
- lewm _Zmi(xi i ) @
0 | Sem = i

The moment of inertial about the axis through P

l, :Zi:mi((xi —a)2+(yi —b)z) @

These expressions don’t involve the co-ordinates z; measured perpendicular to the slices, so
we can extend the sums to include all particles in all slices

Expandingout 3weget> o= Zmi (Xiz + yf)— ZaZ m; X; — ZbZ my; + (az + bz)z m,

(z-axis perpendicular
_to plane of paper)

Y J Y [ |
/ 1 1
From 2, thisis ¢y ! Both terms are zero From 1, this is Md?
since x=0, y=0 is COM

We finally obtain & 1, =lgy +Md?  proving the parallel axis theorem

would indicate that it requires less work (E,¢ =Yl @?) to get an object rotating

around its COM, compared with any other axis of rotation...
29



General motion of an extended body
combines rotational and translational
dynamics...

g A Dynamics can always be described as “two separate” motions
: 1) Translational motion of the COM as if it was a point mass

2) Rotation around an axis through the COM

This is a general theorem

Time lapse photography of throwing a hammer

30



Rigid body rotation about a moving axis

* We can extend our analysis of the dynamics of rotational motion to the general
case when the axis of rotation can move (translate) in space

“every possible motion of a rigid body can be represented as a combination of translational motion
of the center of mass and rotation around the axis of the center of mass”

Let’s show that this is true for the kinetic energy of a rigid E_— 1 Mv2 + 1 | w?
. . . . KE — cm cm
body with rotational and translational motion :

Axis of

rotation 1)Remember that the rigid body is made up of i particles that are distributed in space

e and each of which is moving with a velocity v,
/‘lﬁ\\ » Vi =Vcwm +V'i 2)The KE of the it" particle in the inertial frame is % mv?, so
‘_‘/ .'. . / I\ 1 N o N o
':. et | velocity of velocity of ith » K. —m VI VI =—M| | Vem +Vi |{ Vem +Vi
" = oM particle relative 2
; to COM

_ 1 iy
3)The total KE of the entire body is thenE, ;. = Z K, = E Z m (me +2Vem Vi +Vi'2)
i .

Velocity u; of particle in

rotating, translating rigid body . 1 2 - _; l >
= (elocity v, of cener of mass) - \Afe then obtain » Eve =— E m. V., +Vem. E m.V'i + _Z m.v':
plus (particle’s velocity v;’ relative 2 - i - i 2 - | |

to center of mass)

31



EKE = %(Z m. ]chm +\7cm.z mi\7i +%Zmiv’i2

T \1Zmiv'i2
25

1 =Rotational energy

= Mv?

2 cm

To see this, remember V=¥

Translational KE 1 1 1

of COM = == T o= :

m) 2Zmivi_ 5@ Zmiri _Elcma)
i |

This summation must go to zero since it is equal to M times the velocity of
the center of mass, relative to the center of mass = zero by definition

1 2 1 2 . . . .
E.: = > Mv, +E lcw@”| General kinetic energy of a rotating + translating body....

| =CcMR?

Example - which body makes it faster down the slope ?
on K _+U_ =K U,  mpM h=1m2 + 2107
Energy conservation top T = +U ottom g > am T3 @)

top bottom

o
N — 1 1 Vi ="
T - ~ Mgh :E |\/|V§m +§C|\/|R2 R? R
b g .
. \\\ o
B

e 2gh Independent of R and M!
S, . ch = . |— Huge cylinders have same speed as
- 1+c small ones

32



Angular precession

e Until now, we have only considered the situation when the direction of the axis
of rotation remains fixed in space

— Interesting, and rather unexpected things can happen when we try to change the direction of
the L=lw vector

— Most important is angular precession, the gradual precession of L around another axis Q

Angular momentum causes strange things to happen

Gyroscope

Earth precession (26000 year period)

33


http://en.wikipedia.org/wiki/Image:Gyroscope_precession.gif

Precession occurs due to the relation between torque (M) and the change of angular momentum (dL/dt)

DISC NOT SPINNING

—_— - —_

M=rxw

X

torque makes 1t rotate
about y-axis (flywheel

) .
| R R
L ool g
K__ s’ axis falls)

DISC IS SPINNING

torque makes it precess
about z-axis
(flywheel axis doesn’t fall)

Flywheel initially at rest:

Flywheel spinning initially:

The gravitational force (w=mg) acts downwards

1) If the flywheel (disc) is not spinning, then the disc
has no angular momentum (L=1@=0, since &=0)

Gravity force (w) produces a torque M, that causes
the flywheel to fall down.

2) The direction of L “tries” to change due to the torque
M induced by the gravity force
— dL

But, a changing L, gives rise itself to a torque since M = E
Therefore 2 dL = Mdt

There is an initial angular
momentum L, torque M only
changes the direction of L, but not
it’'s magnitude

L

1
View from above

Since dL always [ Mand M _L L

X

dL is always in the (x,y) plane, i.e. L precesses around the z-axis but does not fall down

34



At any instant in time t the gyroscope has angular momentum L

A short time dt later it’s angular momentum has changed to
L+dL

The direction of the angular momentum vector has precessed
through an angle d¢ as shown on the vector diagram left.

small

‘di‘ angle ‘dt‘
m) tan(dg)= ‘L‘ > d¢zﬂ
Precession angular speed is - Q= Cciff ‘d Lc‘it/‘l_‘ L -2
M :FXVV rmg

Q=-—2

Gyroscope precesses faster as o reduces !
lw

Fiywheel intally at rest: The gyroscope precession frequency (Q2) should
torque makes it rotate speed up as friction causes it to slow down

about y-axis (flywheel
axis falls)

Wobble upon slowing down ?
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Homework 4

The figure below shows two pulleys holding a rigid bar K-N and two weights (W, and W)
in equilibrium

Wi Wy

The string holding the system at point N is suddenly cut. Given the length L
and mass m of the bar

Q) Find the initial acceleration of (a) end K and (b) end N of the bar
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