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Homework 3 

2 

Two bodies of masses m1 and m2 are free to move along a horizontal straight, 
frictionless track.  They are connected by a spring with constant K.   

 
 
 
 
 
 
 
 
 

The system is initially at rest before an instantaneous impulse J is give to m1 along 
the direction of the track. 

Q) Determine the motion of the system and find the energy of 
oscillation of the two bodies 

m1 m2 

K 

J 

A) You’ll need to use ideas of energy, momentum conservation and derive the 
eqn of motion of 2 coupled masses 

(i)CONSERVATION OF MOMENTUM and ENERGY 
(ii) NATURAL  FREQUENCY w0 OF A 2 BODY HARMONIC OSCILLATOR 
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m1 m2 

K 
J 
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Only 2 “Homework Heroes” this week ! 
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Lecture 4 - Contents 

M4.1 Rotational vs Linear Dynamics 

– Dynamics of “rigid bodies” (starre Körper)... 

– Torque (Drehmoment) and Lever arm (Hebelarm)... 

– Energy of rotational motion... 

– Angular momentum (Drehimpulse)... 

– Newton´s laws for rotation... 

 

M4.2 Rotational motion of rigid bodies 

– The moment of inertia I (Trägheitsmoment)... 

– The parallel axis theorem... 

– Angular precession and gyroscopes... 

– Yo-Yo´s and angular momentum... 



• Until now we’ve been considering the dynamics of point like bodies (e.g. 
elementary particles, point masses etc.) 

– Move along some trajectory in space in response to external forces 

– All forces act through the “center of mass” (Rs) of the body 

– Some quantities (energy and linear momentum) are constants of motion 

 

 

 

 

 

 

• The topic of rigid bodies (starre Körper) that we’ll discuss today deals with 
the response of a non-deformable extended body to external forces 

– Forces do not-necessarily act through Rs 

– We have to consider the rotation of the body as well as translation 
8 

F=ma 

Point like particle 
Rigid Body 

F 

mg 

r 

w 



4.1.1 Torque  
(Das Drehmoment) 

• The motion of any rigid body is a combination of linear and rotational dynamics. 
– To see : consider the response of a circular disk to a force F with various “lines of action” 
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F 
mg 

F 

F 

F 

(a) Purely radial force (b) Purely tangential force 

(c) General case 

Line of 
 action 

line of action passes through Rs 

 Pure linear acceleration as 

Purely tangential force pair, separated by r from Rs 

Zero linear acceleration since SF=0 
 

Pure angular acceleration  

r  

r  


w

w  
2

2

dt

d

dt

d

 

For a given force F, this becomes 
larger when Lever Arm r  

(Hebelarm) becomes larger 

 Linear and angular acceleration 
  

0w 0sa

We are used already to the fact that forces cause linear acceleration (F=ma) 
Apparently something  related to F and r can cause angular acceleration ? 
  



Define as TORQUE 
(Drehmoment) 
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To prove some of these “common sense” ideas, consider an apple glued to a plank of wood 

r1 

d 
PIVOT 
POINT 

r1d 

Pivot point – can provide arbitrary force at the point of rotation to fix that point to a rotational axis 

Apply just enough force F1 at distance r1 
from pivot point to balance gravity 

 
This means that (Newton 3) 
 
If we now rotate the apple through angle d   
then the work done dW is 

gFF 1

drFdW 11

r2 

 If you now repeat the experiment with a 
force F2 a distance r2 from the pivot point to 
balance gravity and raise to same final state 
 
What force need be applied ? 
 Total work done must be the same, since the final 
state is same and gravity conservative force  

    drFdWdrFdW 222111 

2211 rFrF 

r2d 

2

1

2
1 F

r

r
F LEVER ARM (Hebelarm) RULE M



Torque M is a force producing angular acceleration 
It´s a  “twisting force” 

If a body does not experience any linear acceleration then the net 
force acting on it is zero   

SF=ma=m(dv/dt) 

 

 

If a body does not experience any angular acceleration then the 
net torque acting on it is zero  

SM (dw/dt) ? 
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What are the total forces and torques acting in our apple problem ? 

 The whole system is stationary, so total torque is zero (torque from pivot, gravity, F2) 

r1 

r2 

02  MMM gp

0)0( 221  FrFrF gp

221 FrFr g 

Torque provided by gravity equal 
+ opposite to that from F2 

02  FFF gp

0
2
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r

r
mgFp


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2

12

r

rr
mgFp

TORQUE FORCES 

Pivot force needed to  balance 
torques 

r3 

Torque is a vector quantity 

|F3|sin(q) 
q 

|F3|cos(q) 

If force F3 is applied at a point r3, at an 
angle relative to the radial vector  r3 

from the pivot point, only the tangential 
component of the force is relevant for 

the torque M 

 qsin33 FrM  FrM 

TORQUE M – vector product of radial vector and force acting 



 
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F 
A force F has the same effect when it 

acts along the line of action, 
irrespective of the precise position 

where it acts 

F 
 

F 

p1 

F -F 

p2 

Proof 
1) Consider a crazy shaped rigid body, with a force F1 acting at point p1  

2) If we add a new force pair at another point p2 

 
Total force F acting on the body is unchanged 
Total torque M acting on the body is unchanged 
 
3) Could remove these forces, and situation is identical, 
but with Force F translated from point p1 to p2 

F 

F 

We can now prove that M is given by the vector product of r and F 

 r 

-r 
wd/dt 

F 

F 
r 

r  
w   FrFrFrM   sin



Direction of torque ? 
• By convention, the vectors r, F and M define a right handed coordinate system 

 

 

 

 

 

 

 

 

 

 

 

 

• M points in positive ez direction  when the resulting rotation (and angular 
acceleration dw/dt) is anticlockwise – by definition 

 

•  w and M are both axial vectors, whilst r and F are polar vectors 
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FrM 



4.1.2 Energy of a rotating rigid body? 
• Anyone who has tried to stop a rotating bicycle wheel with their hand knows 

that a rotating rigid body has energy (kinetic + potential) 
– We can express this rotational KE in terms of the angular velocity w in the same way the 

translational KEtrans.= ½ mv2  we hope to get something like KErot w2 

 

• To develop this idea a little, think of a rigid body as being made up of a large 
number of masses connected together by “stiff springs”, such that k 
– We are going to think of 3 “atoms” but the arguments apply to many atoms in a real rigid body! 
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1 

2 

3 

The force acting between each mass is given by the compression 
or expansion (Dr) of the springs. 
 
If we allow the restoring forces F12 etc. be finite then 
 

1212 rkF D
r12 

F12 
0lim

12
12 


D 

k

F
r k

where 
i.e. displacements from m 
spring length go to zero 

How much potential energy is stored “internally” in the springs ? 


D

 
12

0

1212.lim

r

kpot rdFE  

12

0

12

2

12lim

F

k dF
k

F

k

F

k
3

lim

3

12
 0

no PE is stored “internally” 
in a Rigid Body 
(That´s why it’s RIGID !) 
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• If the potential energy stored “internally” in a rigid body is zero, then what form 
must the energy take ? 

kinpottot EEE  a rotating rigid body in CM frame has only rotational KE 

2

332
12

222
12

112
1 vmvmvmEtot 

r1 r3 

r2 

m1 

m2 

m3 

     2

332
12

222
12

112
1 www rmrmrm 

since v=wr for rotational motion 
around the center of mass 

22

2
1 w








 

i

iitot rmEWe then obtain 









 

2

i

iirmI MOMENT OF INERTIA “plays role of mass” 

2

2
1 wI 2

2
1

,
MvE

transKE c.f. 

Let the COM act now as a pivot point and consider the influence of an external tangential 
force on the rotational KE of the system... 

r1 r3 

r2 

m1 

m2 

m3 

Fext 

If individual forces were applied to each mass separately, they would obey 

dt

d
rmF

w
111 

dt

d
rmF

w
222 

dt

d
rmF

w
333 , , 

BUT, since the tangential  force is only applied at r1, we must use the lever 
arm equation to find the effective forces acting at r2 and r3 
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In this case, when we take lever arm in account, we have for the tangential forces... 

dt

d
rmFF ext

w
111 
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So, if Fext were acting on each mass separately, we get 
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d
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w
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This means that when Fext acts on the entire system 
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External torque exerted by the force on the whole system is then 
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or or 

wIMext 
EXTERNAL TORQUE 
= MOM. OF INERTIA x ANGULAR ACC. 
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 wI
dt

d
M ext 

We have just shown that the externally applied torques to a rigid body (Mext) are equal to 
the rate of change of a quantity IwL 

The angular momentum L=Iw is a conserved quantity of rotational motion when no or 
external torques Mext are applied 

0extM
dt

dL
 0

dt

dL

wIL 

constL or 

The linear momentum p=mv is a conserved quantity of translational motion when no 
external forces Fext are applied 

compare  
with 



Summary 
Fundamentals of rotational motion 

• A force with a line of action that passes through the 
COM of a rigid body creates only translational motion 
 

• A force with a line of action that does not pass 
through the COM creates both translational and 
rotational motion 
 

• We describe rotational motion of a rigid body using 
torques M to represent the action of forces F on it 
 

• The analogy to “mass” for rigid bodies is the moment 
of inertia I 

 
• The “internal energy” of a rigid body is only rotational 

 
• Angular momentum L is conserved when no external 

torques act on the rigid body 
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F 

mg 

r F 
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4.1.3 Newton´s Laws for Rotating Bodies 
• We are now ready to develop some more fundamental relations for the 

rotational dynamics of a rigid body. 

 We are going to show that the angular acceleration of a rotating rigid body (dw/dt) is 
proportional to the sum of the torque components along the axis or rotation SM 

 The constant of proportionality between SM and dw/dt is the moment of inertia I 

 

 To do this, we are going to consider the simplest rotating system  - a point mass moving on 
a circular path. 
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rv  wVelocity (v) related to angular velocity (w by 

Since               , we can write 
 
A constant tangential force Ftan would result in an acceleration a 

vmp 

rv w

 rmp  w

r
dt

d
m

dt

dp
maF 










w
tan

MMFrrF tan

 
t

mrrp
dt

d

dt

dp
rMrF






w2

tan

0




t

r

rmp w
Ftan  

x r 

dt

dL
M  rpL where is the angular momentum 

2















t
IM

w
where I=mr2 is the moment of inertia 
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dt

dL
M  rpL where is the angular momentum 

2















t
IM

w
where I=mr2 is the moment of inertia 

These equations are very similar to Newton´s 2nd law “multiplied by r” 

Translational Dynamics Rotational Dynamics 

dt

dp
F 

x r 
 rp

dt

d
Fr 

LM 

vmF 
x r 

w2mrrF 

wIM 

For this special case of circular motion of a mass point, a number of nice analogies exist 
between translational and rotational dynamics 

Position  r   (Spatial coordinate)    (Drehwinkel) 

Velocity v=dr/dt    (Geschwindigkeit) w=d/dt   (Winkelgeschwindigkeit) 

Accel.  a=dv/dt=d2r/dt2   (Beschleunigung)  dw/dt=d2/dt2  (Winkelbeschleunigung) 

Force  F=ma   (Kraft)  M=rF   (Drehmoment, Torque) 

Momentum  p=mv   (Impuls)  L=rp=rmv   (Drehimpuls, Angular mom.) 

Mass  m   (Masse)  I=mr2   (Trägheitsmoment, 
  Moment of Inertia) 
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We can arrive at the same conclusions, but now remembering that M, F, w, r, v etc are all vectors 

amF 
dt

pd
rFr 

dt

pd


r x 

M

 pr
dt

d
M 

dt

Ld


We have now defined the vector relationships for the angular momentum L and Torque M 

dt

pd
rp

dt

rd


dt

pd
r 

prL 

 pr
dt

d

dt

Ld
FrM 

Start at Newton´s 2nd 

Angular momentum  
Units [L]=ML2T-1=Nms=Js 

Torque  
Units [M]=Nm=J 



4.2 We’ve seen how the Moment of Inertia 
behaves like the “mass” for rotational motion 

It kind of seems sensible that it should depend not just on the 
mass, but how it is distributed relative to the axis of rotation 
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We are now going to calculate the moment of inertia of some simply systems 


i

iirmI 2



4.2.1 Calculating moments of inertia 

• Most rigid bodies are not discrete, i.e. represented by a few point masses, but 
consist of a continuous distribution of mass in space. 
– The sum of masses and distances that defines the moment of inertia becomes an 

integral over mass elements 

24 


i

iirmI 2  dmrI 2

Discrete Continuous 

 dVrI 2
We can describe the distribution of mass via it´s mass density =dm/dV 

dVdm 

 dVrI 2For a uniform mass density we can write 

Example : a thin, uniform bar 
choose a volume element with length dx  dxAdm 








hL

h

dxx
L

M
dmxI 22

AL

M


hL

h

x

L

M














3

3

 22 33
3

1
hLhLMI  Ans. 



25 

 22 33
3

1
hLhLMI 

Max or minimum of I ? 

  063
3

1





hLM

h

I 02
2

2





M

h

I

i.e. minimum 

2

L
h 

L – minimum when bar spins around its 
center of mass 
(what about a maximum ?) 

Example 2 : Uniform disc with a radius R, thickness L via a rotation axis through its center 

Easiest here to divide up the disc into infinitesimal cylindrical shells, thickness dr 

rLdrdV 2Infinitesimal volume LdrrdVdm  2Mass 

 drLrrdmrdI 222 


2

1

3

R

R

drrLI   4

1

4

2
2

RR
L


   2

1

2

2

2

1

2

2
2

RRRR
L




 2

1

2

2
2

1
RRMI  Ans. 

This infinitesimal shell contributes 

 LRR

M
2

1

2

2 



Mass density 

2

2

1
MRI Without central hole  
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Example 3 : Uniform sphere with a radius R via a rotation axis through its center 

Easiest here to divide up the sphere into infinitesimal discs of thickness dx 

22 xRr Radius of disc  dxxRdxrdV 222  Its volume 

 dxxRdVdm 22  mass 

5

15

8
R




34

3

R

M


 

    dxxRxRdmrdI 2222

2
12

2
1  

for a solid disk with radius r and mass M=dm, we just showed that  

 




R

R

dxxRI
222

2
1 

Integrating over whole sphere 

3

4 3R
VM


 Now we need the mass density  

2

5

2
MRI sphere We then obtain the answer Ans. 



Some other commonly encountered examples 
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The parallel axis theorem (Steinerscher Satz) 
• The moment of inertia of a rigid body depends on the distribution of mass around 

the axis of rotation 

Problem  we have infinitely many axes of rotation ! 

 

 

 

 

• There is a simple relationship between the moment of inertial about an arbitrary 
axis of rotation (IP) and that passing through the center of mass (ICM) 

 

• The parallel axis theorem states  

28 

For example, I could take this mechanical linkage and have it rotate 
around an axis through its center of mass (cm) or another axis parallel to 
that and separated by 0.15m – the rotational energy is different for each 

2MdII CMP 

i.e. The moment of inertia around an arbitrary axis (p) is 
equal to the moment of inertia through the center of 

mass plus the CM moment relative to the original axis 

Let´s prove this ! 
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To prove the parallel axis theorem then consider the body shown below and two parallel 
axes of rotation O (through the C.O.M.) and P at rP=(a,b,0) 

Clearly d2=a2+b2 

The moment of inertial about the axis through O  

  
i

iiiCM yxmI 22

The moment of inertial about the axis through P  

     
i

iiiP byaxmI
22

These expressions don´t involve the co-ordinates zi measured perpendicular to the slices, so 
we can extend the sums to include all particles in all slices 

2 

3 

     
i i

i

i

ii

i

iiiiiP mbaymbxmayxmI 2222 22

2MdII CMP 

Expanding out 3 we get   

From 2, this is !  CMI From 1, this is  2Md

1 

We finally obtain   proving the parallel axis theorem  

Both terms are zero  
since x=0, y=0 is COM 

would indicate that it requires less work (EKE-rot=½Iw2) to get an object rotating 
around its COM, compared with any other axis of rotation... 
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General motion of an extended body 
combines rotational and translational 

dynamics... 
 

Dynamics can always be described as “two separate” motions  
 

1) Translational motion of the COM as if it was a point mass  
 

2) Rotation around an axis through the COM 
 

This is a general theorem 

Time lapse photography of throwing a hammer 



Rigid body rotation about a moving axis 
• We can extend our analysis of the dynamics of rotational motion to the general 

case when the axis of rotation can move (translate) in space 

 
“every possible motion of a rigid body can be represented as a combination of translational motion 

of the center of mass and rotation around the axis of the center of mass” 
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Let’s show that this is true for the kinetic energy of a rigid 
body with rotational and translational motion : 

22

2

1

2

1
wcmcmKE IMvE 

1)Remember that the rigid body is made up of i particles that are distributed in space 
and each of which is moving with a velocity vi 

iCMi vvv ´

velocity of 
COM 

velocity of ith 
particle relative 

to COM 

2)The KE of the ith particle in the inertial frame is ½ mvi
2, so 

 iiii vvmK .
2

1
 















 






 
´´

.
2

1
icmicmi vvvvm

  
i

iicmcmi

i

iKE vvvvmKE
22 .2

2

1
3)The total KE of the entire body is then 

 









i

ii

i

iicmcm

i

iKE vmvmvvmE 22 ´
2

1
.

2

1
We then obtain 
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 









i

ii

i

iicmcm

i

iKE vmvmvvmE 22 ´
2

1
.

2

1

2

2

1
cmMv

Translational KE 
of COM 

2´
2

1
i

i

ivm =Rotational energy 

222 ´
2

1
´

2

1
i

i

ii

i

i rmvm   w 2

2

1
wcmI

rv wTo see this, remember 

This summation must go to zero since it is equal to M times the velocity of 
the center of mass, relative to the center of mass  zero by definition  

22

2

1

2

1
wCMcmKE IMvE  General kinetic energy of a rotating + translating body.... 

Example - which body makes it faster down the slope ? 
22

2

1

2

1
wIMvMgh cm 

bottombottomtoptop UKUK Energy conservation 

2cMRI 

R

vcmw
2

2
22

2

1

2

1

R

v
cMRMvMgh cm

cm 

c

gh
vcm




1

2 Independent of R and M! 
Huge cylinders have same speed as 
small ones 



Angular precession 
• Until now, we have only considered the situation when the direction of the axis 

of rotation remains fixed in space 
– Interesting, and rather unexpected things can happen when we try to change the direction of 

the L=Iw vector  

– Most important is angular precession, the gradual precession of L around another axis W 

33 
Earth precession (26000 year period) 

Gyroscope 

Angular momentum causes strange things to happen 

http://en.wikipedia.org/wiki/Image:Gyroscope_precession.gif
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Precession occurs due to the relation between torque (M) and the change of angular momentum (dL/dt) 

wrM 

dt

Ld
M 

The gravitational force (w=mg) acts downwards 

2) The direction of L “tries” to change due to the torque 
M induced by the gravity force 
 
But, a changing L, gives rise itself to a torque since 
 
Therefore   dtMLd 

1) If the flywheel (disc) is not spinning, then the disc 
has no angular momentum (L=Iw=0, since w=0)  
 
Gravity force (w) produces a torque M, that causes 
the flywheel to fall down. 

DISC NOT SPINNING 

DISC IS SPINNING 

wrM 

There is an initial angular 
momentum Li, torque M only 
changes the direction of L, but not 
it’s magnitude 
 
Since dL always || M and M  L 

dL is always in the (x,y) plane, i.e. L precesses around the z-axis but does not fall down 
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At any instant in time t the gyroscope has angular momentum L 

 
A short time dt later it’s angular momentum has changed to 
L+dL 

 
The direction of the angular momentum vector has precessed 
through an angle df as shown on the vector diagram left. 

 
L

Ld
d ftan

dt

LLd

dt

d
W

f
Precession angular speed is 

L

Ld
d f

small  
angle 

L

M


wI

wr


wI

rmg
W Gyroscope precesses faster as w reduces ! 

The gyroscope precession frequency (W) should 
speed up as friction causes it to slow down 
 
Wobble upon slowing down ? 

wrM 



Homework 4 
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The figure below shows two pulleys holding a rigid bar K-N and two weights (WK and WN) 
in equilibrium 

 
 
 
 
 
 
 
 
 

The string holding the system at point N is suddenly cut.  Given the length L 
and mass m of the bar 

 
Q) Find the initial acceleration of (a) end K and (b) end N of the bar 

WN WK 

K N 


