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Solution to Homework 2

Ny

0

 Two blocks of equal mass M are connected by a string which passes over a frictionless
pulley. If the coefficient of dynamic friction is y,, what angle 6 must the plane make with
the horizontal so that each block will move with constant velocity once in motion ?

Thanks to those of you who submitted answers (almost all correct) !
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- sign gives the wanted solution




Lecture 3 - Contents

M3.1 Energy fundamentals
— Work and Energy...
— Forms of energy...

M3.2 Force and Potential Energy
— Conservative and dissipative forces...
— Equilibrium and harmonic oscillations...

M3.3 Momentum, Impulse and Energy
— Momentum and impulse...
— It’s all a question of velocity...

— Conservation of momentum...



3.1 Work and Energy
Arbeit und Energie

Calculate the speed of the arrow ?
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Need F(t) applied by the string of the bow to the arrow?

> F(t)=ma(t), integrate over time to find v(t) at the point when the arrow looses contact with the string

Varying force as a function of position
- Equation of motion approach rather complicated



3.1 Work (Arbeit)

The idea that to “move something” you have to “expend
energy”, or do work, is familiar to all of us...
UNIT

Work is defined by \W = E§ =[MLT _2][L] Joule=1N m
=1kg m? / s?

W — SCALAR, defined by dot product of force (F) and displacement (s) vectors

For a 3D trajectory the work required to move a particle from point 1 to point 2 ?

2 dW =F.dr = F"dr = F”v"dt
ar = (F) r,
2 - felilqs
F, W) - o (L) Wi, = _[ F(r)d r Y
7 n -

—_—

Simple example 1 : Work done in gravitational field of earth ‘/7
! F=mg

Force F=mg= _mgéZ

Work  dW =-mgdz W (h) = J'— mgdz = —mgh



—_—

F =—mgg,

0
Work done by a falling particle 221 ? I:> W (h) =j—mgdz =+mgh gravity does work
h

Now, if we push the car the work done by us on the car is clearly positive

— We apply a force (F) that is in the same direction as the displacement vector (s) of the car

Work done can also be negative or zero

— Depends on the relative orientation of F and s

F ~ §=0
Fl &4 ! cexiéh, !
( i /
! |
| ij}w | (

¥

@

‘, L
U \ [
(a) Positive

ﬁ[
d 9 =

™
| _ & Padly o« SR

\
=
work (b) Zero work

In our simple example of a mass moving in a central field (gravity), the work done is
independent of the precise trajectory followed

For any displacement in the x,y plane dr = dxé, +dyé,

- - Since, F perpendicular to dr
y . ) dW =F.dr =0

Z
A 2

—>work done is zero

Total work done 1>2is W =—mgh independent
of the trajectory followed...

X
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Energy is the capablllty a body has to do work

* In classical mechanics, energy appears in three forms

- * Kinetic Energy — only depends on the velocity V and mass m of a body
kin

* Potential Energy — dependent on the relative position of two bodies (r-r;)

E that interact with each other via some force

pot

AR TTAER a e

ok Heat Energy— internal energy of a body due to the microscopic motion (vibration

. and rotation) of its constituent atoms

Classical mechanics “arises” since different bodies transfer energy
between themselves by doing work W...

Energy cannot be created or destroyed, simply converted from one form into another
form (15t law of thermodynamics)

In any process in classical mechanics :> Q= AEpct +AE,,




Kinetic energy

* The total work done on a body by external forces is related to it’s displacement

* BUT - total work is also proportional to the speed of the body.
— To see this consider a block sliding on a frictionless table

F in direction of displacement s
= block speeds up, work is done
on the block (W,,>0)

Wi =0

tot

F has a componentin
direction of displacement s
- block speeds up, work is

done on the block
(W20, Wi Wigr)

w

W 0

tot *

F opposite to displacement s
->block slows down, work is
done by the block

- Negative work done by
agent (W,,<0)

F 1 displacement s
- block maintains speed

—>Zero work is done by agent

(W;=0)

10



Let’s make these “observations” more quantitative:

y y Particle subject to constant accn. > F, = Ma,
— : : _ 2 2
s —>F Velocity and displacement linked by & V,” =V;" +2a,S
————————— >
RO ?a{?f TR TR ,!' T ( )
o T S S R e 1 5
9.‘“,':(:'?'Tf’;%-.i‘.:;%&‘ﬂi"&?éh RN |:> F, =Ma, = |:> Fs=— |\/|V _E Mv,
—> X E ;
Net work done Y
by the force F T
Define this as kinetic energy - E . = 1
gY kin Ekln E MV W = AEkin

The work done by the force = the change of the body’s kinetic energy s

Example of free fall in a central force (gravity)

1) The work done by the body as it is lifted to a height h is: W = —Mgh

Work done goes into potential energy of the body in the gravitational field

2) Drop the body — the gravitational force changes PE into KE

:%9t2|:>t: |:>V gt =+/2hg =) Ey, =2 MV =

3) When the body hits the earth, W is converted to heat Q and dissipated in the earth

11
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Conservative and Non-Conservative forces

* For forces like gravity, the work required to move from point 1 to 2 is independent
of the trajectory taken, it depends only on relative position of 1 and 2

This means that: W12 ZWA +WB +WC = —W21

Work done by external
AC agent to move body

from1to2 Work done by external

agent to move body
from 2 to 1

Furthermore, since the work done is path independent it also follows ’}\

-~

that the work done moving around any closed trajectory will be zero

- Forces that obey this rule are “conservative” or “non-dissipative” { Ve
(Examples: Gravity, Coulomb interaction, Elastic forces, etc...) 3

—>Forces that do not obey this rule are “non-conservative” or “dissipative”
(Examples: Kinetic friction, Fluid resistance — here energy goes “somewhere else”)

13



Potential Energy

 We have see that a body can loose or gain kinetic energy because it interacts
with other objects that exert forces on it...
— During such interactions the body’s kinetic energy = the work done on it by the force
— Ifyou give a force the “possibility” to do work, the body has POTENTIAL ENERGY

The “mild” danger associated with storing PE in The “extreme” danger of storing PE in elastic energy
the earths gravitational field (don’t try this at home!)

* Unlike kinetic energy that is associated with motion, potential energy is

associated with the position of a particle in the force field of another body
14



AEpot(Fl, _l:z )E Epot(Fz )— Epot(Fl)E W,

o€, i) [FOar

CHANGE OF POTENTIAL ENERGY
MOVING FROM r, to r, SUBJECT TO A FORCE F(r)

The potential energy depends on the relative positions (r,,r,), not absolute positions

From the equation above we can write: dEpot =—F.dr=—dW 5Epot/5x
or equivalently, E(F)z —grad(Epot(Fl,Fz)) == 8Epot/ay
OE /02
— - — - NB, in this equation F(r) is the measurable quantity
F(r)= _VEpot r E,.: is obtained from it via integration.

FORCE - It is, therefore, defined only to within an integration constant
= - GRADIENT OF POTENTIAL - Only AEpot — _A\W has a physical meaning

15



* For conservative forces we can easily show that energy is a conserved quantity

-

— Start from Newton’s 2" law E(F): ma(r) and integrate over displacement

WORK CHANGE NEWTON CHANGE
DONE OF PE 1 OF K.E.

|:> AEpot(Fl, F2)+ AEkin(ﬁ, Fz)z 0 I:> Epot(F)+ Ekin(F): E = const

PRINCIPLE OF CONSERVATION OF ENERGY IN MECHANICS (Reason why conservative
forces take their name!)

What about frictional (hon-conservative) forces ?

. — - Fz_> N }:2_> N FZ_» o
Total force F = F cons + F #ric |:> j F.dr= I F cons.d T + _[ F tric.dr =W, +Q,,
conservative mm——=>1 I r rn

non-conservative
Q- AEpot = AE;, Q= AEpot +AE,, = AE

ENERGY CONSERVATION with DISSIPATION

Non conservative forces generate heat-Q that is equal to the change of the total energy of

the body... iy



Non conservative forces, Heat and Irreversibility

The idea of non-conservative forces generating heat is very closely linked with the flow of time
- Fundamental principle in nature that systems tend to flow from order = disorder

Coffee never gets warm
by itself and the
environment gets cool!

Dye in water never
“unmixes”



Example - The PE and KE of the simple pendulum

Equation of motion X = _9 X
A
; solutions _ x(t) = x, cos(at) with = \/%
Energy ?
h pE. E,o(h)=mgh n mg/(1-cos(xx)) Epot=0fg x=2=0
h=/¢—/cos(a)
2
2/

Forsmallo: ¢ = ((— h)2 +x2 =R+ -2h+X°  hes |:> h~ —
2

Instantaneous PE Instantaneous KE

X : : Xy .
= Epo= mgz—ogcosz(a)t) DB, =1mx* = 1mge’x,” sin’(at)=mg 2—°€sm2(a)t)

2 2
Total energy E =E,, +E, = mg;o (cos?(at)+sin?(at)) = % = const

The total energy of such an oscillator driven by non-dissipative forces is constant
18



The solutions for the K.E. and P.E. show that, energy is periodically exchanged between kinetic and
potential with a frequency of 2®

2 2 2 2

— mg X sin(ewt) =mag - 1(1— —mg X X
By =mg-2-sin (wt) =mg > L(1-cos(2at)) Epot_mgz—"gcosz(a)t) :mgz—"(%(ﬁ cos(2at))
E 3 i e o I T o Eu{,\: M X°Z X ~ Cos 2wk
’- 32}[ 2 (’ . B
NIANNT = (el
( - D (Ml
? 3
Total Energy | (Eum =< E90u> = % E, = Mg¥X~
—=constant | e
The average kinetic or potential energy of this type of simple mgx, >
“ P L E, =<E >=lE _ Mg
harmonic” oscillator over time is : kin pot/ — 2 “max Y,

Forces acting on a pendulum ?

~ mgx? 1maly? ) - = -
ot =y, = 3 M Epor(X) Forces acting F =—VEpot(r)
X A Xo OE ot
mgx
max _ 2,, 2 OX -
______ --Ept =7Mmox OE / max
Fo % |_| g |:> L
< > X > 0 g
OE o;
oz

-> FORCES VANISH AT EXTREMA OF POTENTIAL FUNCTION

19



Equilibrium and harmonic oscillators

* We've seen that whenever we can define a potential function E ,(r) for all conservative
forces and we can rather easily calculate the forces acting on the body from it ...

* Whenever F(r)=-grad (E,ot(r)) vanishes, i.e. at maxima and minima of E ,(r), there are no
forces acting and the system is in equilibrium

— Different “types” of equilibrium exist

Xo

Xo

UNSTABLE EQUILIBRIUM
(labiles Gleichgewicht)

Any small fluctuation of force would
result in motion away from x,

A Fou (%)
(i)
: ~
—— 1y
ot
ElT] o OEll]
OX ’ o Ox?

NEUTRAL EQUILIBRIUM

Any small fluctuation would result in
a new equilibrium position, close to x,

o 7]
)¢

Xo

Xo

STABLE EQUILIBRIUM

Any small fluctuation would result in
oscillations around equilibrium
position x,, 20



Very many “interactions” in physics have a potential

(111) x’ ; -""'\"A':jf e function with the form sketched here
LW - EXAMPLES:
5 —>Elastic forces
\ L - Coulomb force between positive and negative charges
b S ->Bond force between two atoms in a solid
WEL H—— I S &
Xo X

Although these interactions are rather complicated, we very often approximate the minimum in
the E,,(x) curve as a parabolic function

o€, F)
2 ot _
We can approximate the potential close to x, as Epot(x): Eoi(X) +3 k(X_ Xo) # =3k>0
OE ,.(x) &
Therefore, the force isgivenby F =——P"" /7 Kk(x—x EXACTLY SAME as ELASTIC FORCE
X 8X ( 0) <

WITH SPRING CONSTANT k

Egn of motion of such an oscillator my = _k(x_ Xo)

-z o :

gV A 0
// )AL ot + @, solutions — x(t) = X, + Acos(at +¢,)
’ / ]
[ | / 5
1 :
H‘ X i(t) i X .I.b . .t. / \
‘\ A g X / Xg - equilibrium position 0 — phase

\

1

1

1
Solution same as fortircular A — amplitude (depends on X(0) = X, + Acos(, )

motiof with const o size of initial displacement)
k
— | f a):\/: —

- CALLED A SIMPLE HARMONIC OSCILLATOR @~ anguiarirequeney = \m T

= Very useful in physics to describe the response of a system to small perturbations



This anharmonicity in the interatomic potential are
. . responsible for the thermal expansion of solids
¢ ni .
Q” ' - O;xa,xmo&\&‘n (Thermische Auslenkung)

{ :
\ { Epot (x——Xo}Z

N
> vV
®

- Harmonic approx bad for large amplitude A

Principle used in many thermometers and thermostat “temperature controllers”

Bimetallic Strip

—
_

1

’
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Example: A bead of mass m is free to move without friction on a vertical hoop of radius R.

The beam moves on the hoop, experiences gravity and a spring of spring constant k, which
has one end attached to a pivot a distance R/2 above the center of the hoop.

If the spring is not extended when the bead is at the top of the circle then:
(a) Find the potential energy of the bead as a function its angular position, measured from center of the
circle — draw the potential energy diagram of V(6)

(b) What minimum K.E. must the bead have at the top to go all the way around the hoop?

(c) If the bead starts from the top with this kinetic energy what force does the hoop exert on it at the top
and bottom points of the hoop ?

23
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Momentum and Impulse

* We know from Newton’s 2" law that force is givenby F _ m(dvl _ d(mv)

dt | dt

— Force is defined by the rate of change of a quantity B —mv ,thatis defined as
the linear momentum (Impuls)

— Momentum is a vector quantity

* Car driving north at 20m/s has different momentum from one driving east at 20m/s

— In every inertial reference frame, we can define the net force acting on ZE dB
a particle as the rate of change of its linear momentum dt




Momentum and kinetic energy both depend on the mass and velocity of the

particle...

Besides p being a vector and E,; a scalar quantity, to see the physical difference

between them we define a new quantity, closely related to the momentum

— The impulse )

Vector quantity that is the net force acting on a body x the time that it acts for

J=YF(t,-t)=Y F.At

Unit N.s=1kgm /s2xs=1kgm/s

So, what is impulse J good for ?
— Suppose that the net force is constant , i.e. XF=const, then dp/dt = const (NEW-II)

—~ p,—p - - -
— We can then write |:> ZF:ﬁ or (L,-t)> F=p,—p, =
2 1

J=p,—

—_

P

IMPULSE MOMENTUM THEOREM
The change in linear momentum of a particle during a
time interval equals the impulse of the net force that
acts on the particle during that interval

29



* The impulse momentum theorem also holds when forces are not constant, to see this
integrate both sides of Newton’s 2" law over time between the limits t, and t,

t t - p
. 2 . 2 d p 2 _ .
In this case J‘Zth:J‘[E]dt:Jdp: P, =Py

Py

This is the general J =[> Fdt=p,-p,| IMPULSE MOMENTUM THEOREM
definition of the impulse "

Image shows the typical F(t) when kicking a football

G The average force (F,,) is such that J = Fa\,('[2 —'[1)

such that the area under the F_ (t) and F(t) curves are
identical

30



Momentum and Kinetic Energy

The impulse momentum theorem highlights a fundamental difference between momentum,
which depends on velocity and kinetic energy, which depends on speed

= “changes of a particles

9= n . . Impulse = Force x Time
|J =P, - p1| momentum is due to impulse” P

“changes of a particles energy

. = o t
is due to work” Work= Force x Displacemen

|Wtot - Ekin,2 - Ekin,ll

Consider a particle that starts from rest (initial momentum p,=mv,=0,
initial KE = 1/2mv?=0)

It is now acted on by a constant force F from time t, to t,, and it moves
© through a displacement s in the direction of the force

.+l The particles momentum at time t,is P, = Py + J=1J

The particles KE at time t,is W, = FS

31



An illustration of the distinction between momentum and KE
Which ball would you rather catch ?

MOMENTUM (kgm/s) K. ENERGY (J)
p=mv E:=1/2mv?
/’-‘\\ Pl
[ 2 \ [ 8
1 i . H
\ ' \ /
N ‘\\ 2 /’ ‘\\ 40 ,'I
—> v=20ms™ e e

m=0.1kg

Since the change of momentum of both balls is the same, you need to provide the same
impulse with your hand to stop the ball = For a given force it takes the same time to stop

But, your hand has to do 5x more work with the golf ball, i.e. Your hand gets pushed back
5 times further c.f. the football.

You
CHOOSE !

M=12g

M=142g
|v|=130ms*

|v|=45ms1

32



Momentum, like einergy, s a-comserved gtig'ntity

RN~ &

* The concept of momentum is especially important when we consider two
or more interacting bodies

We differentiate between internal and
external forces
Internal forces

= d Pa = d Pg

F B-on-A = = —F A-on-B = —

A dt

dpA de ©
:0 = =

dt i dt dt(pA+pB)

|:> Puot = P, + Py = CONSt

(c)

If the vector sum of external forces acting on a closed system is zero, then the
total momentum of that system is a constant of the motion

Direct consequence of Newton-lll but useful since it doesn’t depend on the
precise nature of the internal forces

—



Example: Elastic Collision and Conservation of Momentum

To test the ability of a chain to resist impact it is hung from a 250kg block. The chain also has
a metal plate hanging from it’s end as shown below. A 50kg weight is released from a height
2m above the plate and it drops to hit the plate.

250kg Find the impulse exerted by the weight if the impact is
l perfectly elastic and the block is supported by :
. 50kg
| (a) Two perfectly rigid columns
2m (b) Perfectly elastic springs

L Finally, for part (c) of the question find the energy
absorbed by the chain in cases (a) and (b) above.

34
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250kg

] K no oy ok Uus = J;-g‘: and Mot Uy =0, we olkua

‘T—— lSOkg
2m W\wizj"‘ + Mmp(6) 2= MU +« M, Ug
_L gO\Ub"\S +o( Ug = Us = MNF SL\

“ Mo « Mb

m——

Tle vvipulse exeded on e chain IS: "'(Pu;.—Pua)’-‘ Mw U -~ MwU_B Mw (U "U-(—)

W\
TMU"CM/. —_ (ng —PW’IS = WMw (J—Z_j’——‘ o= V\,A:‘_J—Zj‘l—_l e [ ZSL\ Mb*MN‘x

Mus ~ My,

ALY
L0okg x 2.(a.8lms- )7- (zma « Soug = 26\Ns ANS.

111

(C) Cince no cD\o'\%z o‘v- hae PoSTENSTIAL ENEQ,Q\’ oF hre block or m(sb\{- @ ceans c\wuaj (.w\pazd'
on he Cenrervaiion ﬁa 'CfUJiEJ we houe .

/

A = en.ezatj abcoclbed b\*-& Choun = (Vw{ ——"(V-’p'\ - (- (Kb*"‘KL(’)

Crse( @) l(w.('=0( Ky, = © and  Kei= ijh/ Hence

AE - Mﬂj k= Sij (?B\ My’-), 1.0~ = 981X



be, = kaU’F
For case () Kv; = O ! bloc muhauj sl'ol-wncuj)

block ord) we iqht
K wi = Mwﬂh (as befoe) KE 4emnss r},f on a

Kt = 5 MuUp”

Wree Ve = W\w\(—-‘%g\"  dedarce d w ansue’ fo ).
(Mw’t‘ WW)

=) \'\Sdkt;n hE -—-(Ku? = Kw(rS ot ( Kb'. 'kvf->
i 8 &
Mwgh — LW\w [_""_‘ig—"?l & (,. [,leG“_w_'_\_zﬂi‘_X )

BDE =
Muw + Mp Mw My
= Mmagh — My gh Ery v ]
(Mw*Mb)
Mp
= Mugh | - = Wugh [—"”"’"’
(V\I\w-va\ W + My
be - M“’M" 5(,\ = _@2@—-)( a9l x 2.0 = ﬁﬂ
Mw*m (300) A’“S

As expected, the energy absorbed by the chain is less in the case when the support is damped
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Homework 3

Two bodies of masses m, and m, are free to move along a horizontal straight,
frictionless track. They are connected by a spring with constant K.

The system is initially at rest before an instantaneous impulse J is give to m, along
the direction of the track.

Q) Determine the motion of the system and find the energy of
oscillation of the bodies
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Summary of lecture 3

Work and Energy (Arbeit und Energie)
— Work = Energy = Force x Distance

— Kinetic energy = work required to accelerate a particle from rest to
a velocity v

— Potential energy = energy defined in the conservative field of a

force E(F) _ _%’Epm(;)

* Force defined by gradient of potential energy functional

* Potential energy stability diagrams

— Conservative forces = work-kinetic energy relationship is le = AE
completely reversible, dissipation is negligible

— Energy in a simple harmonic oscillator 2F,

Momentum and Impulse (Impuls und Impuls Ubertrag)

— Momentum of a particle is defined by p=mv
(Fav)x v )

— Impulse Momentum Theorem J = Ap = Force x Time

— Momentum is a conserved quantity when no external forces act.
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