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Solution to Homework 2 

• Two blocks of equal mass M are connected by a string which passes over a frictionless 
pulley.   If the coefficient of dynamic friction is µK, what angle q must the plane make with 
the horizontal so that each block will move with constant velocity once in motion ? 

2 

q 

Thanks to those of you who submitted answers (almost all correct) ! 
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+ sign gives sin(q)=1, i.e. q=90deg  vertical slope- just 2 masses on a pulley 

- sign gives the wanted solution 



Lecture 3 - Contents 

M3.1 Energy fundamentals 

– Work and Energy... 

– Forms of energy... 

 

M3.2 Force and Potential Energy 

– Conservative and dissipative forces... 

– Equilibrium and harmonic oscillations... 
 

 

M3.3 Momentum, Impulse and Energy 

– Momentum and impulse... 

– It’s all a question of velocity... 

– Conservation of momentum... 



3.1 Work and Energy 
Arbeit und Energie 
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Calculate the speed of the arrow ? 

Need F(t) applied by the string of the bow to the arrow? 
 F(t)=mja(t), integrate over time to find v(t) at the point when the arrow looses contact with the string 

 
Varying force as a function of position  
 Equation of motion approach rather complicated 

 



3.1 Work (Arbeit) 
• The idea that to “move something” you have to “expend 

energy”, or do work, is familiar to all of us... 
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]][[ 2 LMLT sFW .Work is defined by 

UNIT 
Joule=1N m  
=1kg m2 / s2 

W – SCALAR, defined by dot product of force (F) and displacement (s) vectors 

• For a 3D trajectory the work required to move a particle from point 1 to point 2 ?  

 
2

1

.12

r

r

rdrFW

drFrdFdW ||.  dtvF ||||

h 

Simple example 1 : Work done in gravitational field of earth 

mgdzdW  mghmgdzhW

h

 
0

)(

zemggmF ˆForce 

Work 

gmF 

zd



• Now, if we push the car the work done by us on the car is clearly positive 
– We apply a force (F) that is in the same direction as the displacement vector (s) of the car 

 

• Work done can also be negative or zero 
– Depends on the relative orientation of F and s 

 

 

 

 

 

• In our simple example of a mass moving in a central field (gravity), the work done is 
independent of the precise trajectory followed   
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zemgF ˆ

yx edyedxrd ˆˆ For any displacement in the x,y plane  

Since, F perpendicular to dr 
 work done is zero rdFdW .

1 

2 

0

Total work done 12 is  independent 
of the trajectory followed... 
 

Work done by a falling particle 21 ? 

mghW 

gravity does work mghmgdzhW
h

 
0

)(



Energy is the capability a body has to do work 

 

• In classical mechanics, energy appears in three forms 
• Kinetic Energy – only depends on the velocity v and mass m of a body 

 

• Potential Energy – dependent on the relative position of two bodies (ri-rj)  

 that interact with each other via some force 

 

• Heat Energy– internal energy of a body due to the microscopic motion (vibration 
and rotation)  of its constituent atoms 
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Epot  

Ekin  

Q   

Classical mechanics “arises” since different bodies transfer energy 
between themselves by doing work W... 

Energy cannot be created or destroyed, simply converted from one form into another 
form (1st law of thermodynamics)  

 

In any process in classical mechanics     

 

kinpot EEQ 12



Kinetic energy 
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F in direction of displacement s 
 block speeds up, work is done 

on the block (Wtot>0) 

F has a component in 
direction of displacement s 
block speeds up, work is 

done on the block 
 (W´tot>0, W´tot< Wtot)  

F opposite to displacement s 
block slows down, work is 

done by the block 
 

Negative work done by 
agent (Wtot<0) 

 

F  displacement s 
block maintains speed 

 
Zero work is done by agent 

(Wtot=0) 
 

• The total work done on a body by external forces is related to it’s displacement 

 

• BUT - total work is also proportional to the speed of the body. 
– To see this consider a block sliding on a frictionless table 
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Let’s make these “observations” more quantitative: 

M M 

Fs savv x2
2

1

2

2 

 
s

vv
MMaF xx

2

2

1

2

2 


xx MaF Particle subject to constant accn.  

x 

Velocity and displacement linked by  

2

1

2

2
2

1

2

1
MvMvsFx 

Net work done 
by the force F 

Define this as kinetic energy  - Ekin 
2

2

1
MvEkin 

The work done by the force = the change of the body’s kinetic energy 

kinEW 

h 

gmF 

zd

Example of free fall in a central force (gravity) 

MghW 1) The work done by the body as it is lifted to a height h is: 

2) Drop the body – the gravitational force changes PE into KE 

Work done goes into potential energy of the body in the gravitational field 

2

2
1 gth 

g

h
t

2
 hggtv 2 MghMvEkin  2

2
1 W

3) When the body hits the earth, W is converted to heat Q and dissipated in the earth 
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Conservative and Non-Conservative forces 
• For forces like gravity, the work required to move from point 1 to 2 is independent 

of the trajectory taken, it depends only on relative position of 1 and 2 
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2112 WWWWW CBA This means that: 

Work done by external 
agent to move body 

from 1 to 2 
Work done by external 

agent to move body 
from 2 to 1 

Furthermore, since the work done is path independent it also follows 
that the work done moving around any closed trajectory will be zero  

 
Forces that obey this rule are “conservative” or “non-dissipative” 

(Examples: Gravity, Coulomb interaction, Elastic forces, etc...) 
 

Forces that do not obey this rule are “non-conservative” or “dissipative” 
(Examples: Kinetic friction, Fluid resistance – here energy goes “somewhere else”) 

 



Potential Energy 
• We have see that a body can loose or gain kinetic energy because it interacts 

with other objects that exert forces on it... 
– During such interactions the body’s kinetic energy = the work done on it by the force 

– If you give a force the “possibility” to do work, the body has POTENTIAL ENERGY 

 

 

 

 

 

 

 

 

 

 

• Unlike kinetic energy that is associated with motion, potential energy is 
associated with the position of a particle in the force field of another body 
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The “mild” danger associated with  storing PE in 
the earths gravitational field 

The “extreme” danger of storing PE in elastic energy 
(don’t try this at home!) 
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      121221, WrErErrE potpotpot 

  rdrFrrE

r

r

pot .)(,
2

1

21 

The potential energy depends on the relative positions (r1,r2),  not absolute positions 

CHANGE OF POTENTIAL ENERGY 
MOVING FROM r1 to r2 SUBJECT TO A FORCE F(r) 

    21,rrEgradrF pot

From the equation above we can write: dWrdFdEpot  .

WEpot 

























zE

yE

xE

pot

pot

pot

or equivalently,  

NB, in this equation F(r) is the measurable quantity 
Epot is obtained from it via integration. 
 
 It is, therefore, defined only to within an integration constant 
 Only             has a physical meaning 

 rErF pot)(

FORCE 
 = - GRADIENT OF POTENTIAL 



• For conservative forces we can easily show that energy is a conserved quantity 

– Start from Newton’s 2nd law                        and integrate over displacement 
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   ramrF 

  12

2

1

. WrdrF

r

r

  21,rrEpot  
2

1

r

r

rdram )()( 1
2

2
1

2
2

2
1 rmvrmv   21,rrEkin

WORK 
DONE 

CHANGE 
OF PE 

NEWTON 
II 

CHANGE 
OF K.E. 

    0,, 2121  rrErrE kinpot

PRINCIPLE OF CONSERVATION OF ENERGY IN MECHANICS 

    constErErE kinpot 

(Reason why conservative 
forces take their name!) 

What about frictional (non-conservative) forces ? 

friccons FFF Total force 
conservative 

non-conservative 

rdFrdFrdF

r

r

frict

r

r

cons

r

r

...
2

1

2

1

2

1

  1212 QW 

kinpot EEQ 12
EEEQ kinpot 12

ENERGY CONSERVATION with DISSIPATION 

Non conservative forces generate heat-Q that is equal to the change of the total energy of 
the body... 



Non conservative forces, Heat and Irreversibility 
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The idea of non-conservative forces generating heat is very closely linked with the flow of time 
 Fundamental principle in nature that systems tend to flow from order  disorder 

Dye in water never 
“unmixes” 

Coffee never gets warm 
by itself and the 

environment gets cool! 



h<<l 

Example - The PE and KE of the simple pendulum 
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a 

h 

m 

x 

z 

x
g

x
l

 Equation of motion 

   txtx cos0
l

g
solutions with 

Energy ?  

  mghhEpot P.E.   acos1 lmg Epot=0 for x=z=0 
  

For small a :   222 xh  ll

l 

 acosll h

2222 2 xhh  lll
l2

2x
h 

 t
x

mgEpot 2

2

0 cos
2l

  txmgxmEkin  22

0

2

2
12

2
1 sin   t

x
mg 2

2

0 sin
2l



    tt
mgx

EEE potkin  22

2

0 sincos
2


l

const
mgx


l2

2

0

Instantaneous PE Instantaneous KE 

Total energy 

The total energy of such an oscillator driven by non-dissipative forces is constant 
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The solutions for the K.E. and P.E. show that, energy is periodically exchanged between kinetic and 
potential with a frequency of 2 

 t
x

mgEpot 2

2

0 cos
2l

 t
x

mgEkin 2

2

0 sin
2l

   t
x

mg 2cos1
2

2
1

2

0 
l

  t
x

mg 2cos1
2

2
1

2

0 
l

The average kinetic or potential energy of this type of simple 
“harmonic” oscillator over time is : l4

2

0
max2

1
mgx

EEE potkin 
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2
1

2

2
xm

mgx
Epot 

l Epot(x) 

2

0

2

2
1max xmEpot 

0x





























































0

0
l

mgx

z

E
y

E
x

E

F

pot

pot

pot

 rEF potForces acting  

l

mgx
Fx 

Fx 

x

Total Energy 
constant 

Forces acting on a pendulum ? 

 FORCES VANISH AT EXTREMA OF POTENTIAL FUNCTION 



Equilibrium and harmonic oscillators 
• We’ve seen that whenever we can define a potential function Epot(r) for all conservative 

forces and we can rather easily calculate the forces acting on the body from it ... 

 

• Whenever F(r)=-grad (Epot(r))  vanishes, i.e. at maxima and minima of Epot(r), there are no 
forces acting and the system is in equilibrium 
– Different “types” of equilibrium exist 
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 
0

0






x

pot

x

rE  
0

0

2

2






x

pot

x

rE
, 

UNSTABLE EQUILIBRIUM 
(labiles Gleichgewicht) 

 
0

0






x

pot

x

rE  
0

0

2

2






x

pot

x

rE
, 

NEUTRAL EQUILIBRIUM 

Any small fluctuation of force would 
result in motion away from x0 

Any small fluctuation would result in 
a new equilibrium position, close to x0 

STABLE EQUILIBRIUM 

Any small fluctuation would result in 
oscillations around equilibrium 

position x0 

 
0

0






x

pot

x

rE  
0

0

2

2






x

pot

x

rE
, 

Fx Fx 



x 

v

Solution same as for circular 
motion with const  
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Very many “interactions” in physics have a potential 
function with the form sketched here 
 
EXAMPLES: 
Elastic forces 
Coulomb force between positive and negative charges 
Bond force between two atoms in a solid 

Although these interactions are rather complicated, we very often approximate the minimum in 
the Epot(x) curve as a parabolic function 
 
We can approximate the potential close to x0  as 
 

Therefore, the force is given by     

 
0

2
1

0





k

x

rE

x

pot   2

02
1

0)( xxkxExE potpot 

 
 0xxk

x

xE
F

pot

x 



 EXACTLY SAME as ELASTIC FORCE 

WITH SPRING CONSTANT k 

 0xxkxm Eqn of motion of such an oscillator 

 00 cos)(   tAxtxsolutions 

x0 - equilibrium position 

A – amplitude (depends on 
size of initial displacement) 

 – angular frequency 
m

k


0 – phase 

 00 cos)0( Axx 

 tr 0 t

 

CALLED A SIMPLE HARMONIC OSCILLATOR 
Very useful in physics to describe the response of a system to small perturbations 

0xA  tx

A – amplitude (depends on 
size of initial displacement) 
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This anharmonicity in the interatomic potential are 
responsible for the thermal expansion of solids 
(Thermische Auslenkung) 
 
 Harmonic approx bad for large amplitude A 

Principle used in many thermometers and thermostat “temperature controllers” 

Bimetallic Strip 
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Example: A bead of mass m is free to move without friction on a vertical hoop of radius R.  
  
The beam moves on the hoop, experiences gravity and a spring of spring constant k, which 
has one end attached to a pivot a distance R/2 above the center of the hoop.   
 
 
 
 
 
 
 
 
 
 
 
If the spring is not extended when the bead is at the top of the circle then: 
(a) Find the potential energy of the bead as a function its angular position, measured from center of the 

circle – draw the potential energy diagram of V(q 

 
(b) What minimum K.E. must the bead have at the top to go all the way around the hoop? 
 
(c) If the bead starts from the top with this kinetic energy what force does the hoop exert on it at the top 
and bottom points of the hoop ? 

R 

R/2 

BEADS 

k 

q 
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q 

R 

R/2 

k 
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-1
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1

2
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-1

0

1

2
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E
P

E
(q

)

Angle (radians)

SPRING PE
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Many problems are very difficult if you just try to 
directly apply Newton´s 2nd Law 
 
 A car crashes head on with a truck 
  
 Playing billiards, snooker and pool  

 
 A meteorite collides with earth 



Momentum and Impulse 
• We know from Newton´s 2nd law that force is given by 

 

– Force is defined by the rate of change of a quantity        , that is defined as 
the linear momentum (Impuls) 

 

– Momentum is a vector quantity  

• Car driving north at 20m/s has different momentum from one driving east at 20m/s 

 

– In every inertial reference frame, we can define the net force acting on  

 a particle as the rate of change of its linear momentum 
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 
dt

vmd

dt

vd
mF 
















vmp 

dt

pd
F 



• Momentum and kinetic energy both depend on the mass and velocity of the 
particle... 

 

• Besides p being a vector and EKE a scalar quantity, to see the physical difference 
between them we define a new quantity, closely related to the momentum 

 

– The impulse J 

 

 

 

 

• So, what is impulse J good for ? 
– Suppose that the net force is constant , i.e. SF=const, then dp/dt = const  (NEW-II) 

 

– We can then write 
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  tFttFJ   .12

Vector quantity  that is the net force acting on a body x the time that it acts for 
Unit N.s = 1kg m /s2 x s= 1 kg m / s 

12

12

tt

pp
F




 or   

1212 ppFtt   J

12 ppJ 

IMPULSE MOMENTUM THEOREM 
The change in linear momentum of a particle during a 
time interval equals the impulse of  the net force that 

acts on the particle during that interval 
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• The impulse momentum theorem also holds when forces are not constant, to see this 
integrate both sides of Newton´s 2nd law over time between the limits t1 and t2 

12

2

1

2

1

2

1

pppddt
dt

pd
dtF

p

p

t

t

t

t















 

This is the general 
definition of the impulse 

12

2

1

ppdtFJ

t

t

  IMPULSE MOMENTUM THEOREM 

In this case  

Image  shows the typical F(t) when kicking a football 

The average force (Fav) is such that  
 
such that the area under the Fav(t) and F(t) curves are 
identical 

 12 ttFJ av 



Momentum and Kinetic Energy 
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The impulse momentum theorem highlights a fundamental difference between momentum, 
which depends on velocity and kinetic energy, which depends on speed 

1,2, kinkintot EEW 
“changes of a particles energy 

is due to work” 
Work= Force x Displacement 

12 ppJ 
“changes of a particles 

momentum is due to impulse” 
Impulse = Force x Time 

Consider a particle that starts from rest (initial momentum p1=mv1=0, 
initial KE = 1/2mv2=0)  
 
It is now acted on by a constant force F from time t1 to t2, and it moves 
through a displacement  s in the direction of the force 
 
The particles momentum at time t2 is 
 
The particles KE at time t2 is 
 
 

JJpp  12

FsWtot 
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An illustration of the distinction between momentum and KE 
Which ball would you rather catch ?  

14  msv

m=0.5kg 

m=0.1kg 

120  msv

MOMENTUM (kgm/s) 
p=mv 

K. ENERGY (J) 
EKE=1/2mv2 

2 

2 

8 

40 

Since the change of momentum of both balls is the same, you need to provide the same 
impulse with your hand to stop the ball  For a given force it takes the same time to stop 
 
But, your hand has to do 5x more work with the golf ball, i.e. Your hand gets pushed back 
5 times further c.f. the football. 

You 
CHOOSE ! M=12g 

|v|=130ms-1 

M=142g 
|v|=45ms-1 



• The concept of momentum is especially important when we consider two 
or more interacting bodies 
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We differentiate between internal and 
external forces 
Internal forces  

dt

pd
F A

AonB 

dt

pd
F B

BonA  

0
dt

pd

dt

pd
BA  

BA
pp

dt

d


constppP BAtot 

If the vector sum of external forces acting on a closed system is zero, then the 
total  momentum of that system is a constant of the motion 

Direct consequence of Newton-III but useful since it doesn’t depend on the 
precise nature of the internal forces 
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Example: Elastic Collision and Conservation of Momentum 
 

To test the ability of a chain to resist impact it is hung from a 250kg block.  The chain also has 
a metal plate hanging from it´s end as shown below.  A 50kg weight is released from a height 
2m above the plate and it drops to hit the plate.   

Find the impulse exerted by the weight if the impact is 
perfectly elastic and the block is supported by : 
 
(a) Two perfectly rigid columns 
(b) Perfectly elastic springs 

 
 
Finally, for part (c) of the question find the energy  
absorbed by the chain in cases (a) and (b) above. 
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As expected, the energy absorbed by the chain is less in the case when the support is damped 



Homework 3 
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Two bodies of masses m1 and m2 are free to move along a horizontal straight, 
frictionless track.  They are connected by a spring with constant K.   

 
 
 
 
 
 
 
 
 

The system is initially at rest before an instantaneous impulse J is give to m1 along 
the direction of the track. 

 

Q) Determine the motion of the system and find the energy of 
oscillation of the bodies 

m1 m2 

K 

J 



Summary of lecture 3 
• Work and Energy (Arbeit und Energie) 

– Work = Energy = Force x Distance 
 

– Kinetic energy = work required to accelerate a particle from rest to 
a velocity v 
 

– Potential energy = energy defined in the conservative field of a 
force 
• Force defined by gradient of potential energy functional 
• Potential energy stability diagrams 

 
– Conservative forces = work-kinetic energy relationship is 

completely reversible, dissipation is negligible 
 

– Energy in a simple harmonic oscillator 
 

• Momentum and Impulse (Impuls und Impuls Übertrag) 
– Momentum of a particle is defined by p=mv 

 
– Impulse Momentum Theorem J =  p = Force x Time 

 
– Momentum is a conserved quantity when no external forces act. 
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2

2

1
MvEkin 

kinpot EE 0 kinpot EEQ 12

 rErF pot)(


