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Improve your golf... 
• Imagine that a point projectile is thrown with a velocity v0, making an angle a 

with the ground and that it moves under the influence of gravity 
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First job is to put together an equation of motion 

From equation of motion 
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Now we have x(t) and z(t) we can calculate velocity components by differentiation 

Trajectory for g=0 

Trajectory for g≠0 
parabola 

To see that the form is a parabola 

Maximum range? Maximum height? 



The magnitude of any vector, u,  is simply: 
 
Suppose we have a particle moving on a path r(t) such that:                , where C is a constant.  
(Magnitude is constant in time, so motion on a circle or sphere.) 
 
Then we also have: 
 
Taking derivative with respect to (wrt) time: 
 
 
 
Or, that the velocity vector and position vector are orthogonal: 
 
                                                                                                                       (always true for any circ. motion) 
 
No surprises here, since we did this last week.  Now, consider the special case when the magnitude 
of the velocity vector is also constant in time.  By the same steps as above, we will have: 
 
 
 
 
Or, in other words:                                                                                              (accel. orthogonal to vel.) 
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Generalized Circular Motion 



What happens when velocity magnitude is not constant? 
 
Start with:                                        (always true for any circular motion) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Next, consider time derivative of velocity magnitude: 

5 

(+ sign because                                          ) 



For any motion on a sphere or circle, the fundamental result                                 always 
holds. 
 
For non-uniform (meaning                   , C a constant) motion, the total acceleration 
vector        can be described by a centripital acceleration plus a tangential acceleration:  
 
 
 
 
 
 
 
Where:   
 
 
 
 
And, 
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Circular Motion Summary 
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Beauty of this result:  Any smoothly curved path can be “locally” represented by a circular 
approximation.  This approximation becomes exact in the limit that Dt  0.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This lets us solve for the equations of motion in terms of the radial and tangential components 
of the path. 
 
The we will see this in an upcoming example with an inclined plane. 

Path 
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Examples of Circular Motion 

Simple Pendulum (non-uniform) 

“Wall of Death” (crazy) 
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Some Fun Examples! 
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A more tricky problem 
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Example : as shown on the figure a particle is projected up an inclined plane with an initial 
velocity |vo|=100cm/s at an angle q0=135 degrees from the y-axis 
 
a) Calculate the force with which the particle presses on the plane... 
 
b)  Neglecting frictional effects use Newton's laws to calculate the particle velocity when q  has 
the values 90, 45 and 0 degrees... 
 
c) If you took the experiment to the moon, would your results be different ? 
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SOLUTION 
 
The first thing to notice is that the motion takes place entirely 
within a single plane (here the x,y plane) 
 
 Forces can easily be resolved into components normal (Fn) to 
and tangential (Ft) to the trajectory taken 

x 

y 

y 

x . 

b 

q 

The solution to (a) is easy: 
the particle stays in the plane  no resulting force can act (Newton 3)  
 
 bcosmgN 

The solution to (b) is more difficult: 
 Start by resolving the forces in the x,y plane into components 

perpendicular and parallel to the TRAJECTORY 

   qb cossinmgFt 

   

   qb

qb

sinsin

90cossin

mg

mgFn





90-q 

(a) 

(b) 
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    sm
dt

dv
mmgFt

 qb cossin

   
 
r

sm

r

mv
mgFn

22

sinsin


 qb

We can now write two equations of motion (i) along the trajectory and (ii) perpendicular to it 

   qb cossing
dt

dv


   qb sinsin
2

g
r

v


The equations of motion in these path co-ordinates become   

v
ds

dv

dt

ds

ds

dv


qd

ds
r And since    and   these become:  

   qb cossing
ds

dv
v     qb

q
sinsin2 g

ds

d
v and  q

q
cot

1


d

dv

v

We have used path coordinates s, r 
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 q
q

cot
1


d

dv

v
Integrate 

  Cd
v

dv
lncot   qq

     Cv lnsinlnln  q
qsin

C
v 

We can find the constant of integration C by inserting the initial conditions, q=135 degrees when 
v=v0=100cm/s  C=70.7cm/s 

1

sin

7.70  cmsv
q

Answer to (c) you would see the same trajectory of motion on the moon  independent of size of g 

For HOMEWORK try to do the same problem using Cartesian coordinates ! 
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M2.2 Frames of reference 
(Bezugssysteme) 

 
and fictitious forces  

(Trägheitskräfte / Scheinkräfte) 
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2.4 Dissipative Forces 
Friction 

A dissipative force is one that does “work” (work=energy = force x distance) that cannot be 
recovered later on... 

 

Non-dissipative forces are those that exchange energy between two forms  

(e.g. Kinetic and potential energy in a mass on a spring...) 21 

NOT DISSIPATIVE 

DISSIPATIVE 



Frictional forces 
 (Reibungskräfte) 

• We are all familiar with the idea of friction 
– Whenever two bodies interact by direct contact of their surfaces, 

there is a normal force (Newton III) and also a frictional force if we try 
to slide them against each other 

 
– Without friction we would not be able to walk, people would fall off 

bicycles, car engines would  If friction did not exist then we could not 
walk, nails would pull out, bottle-tops would unscrew  

 the world would be a pretty unusual place. 

 

• Some observations - Think about sliding a heavy box of books 
across the floor of your apartment... 
– Depends on the weight of the box (w=mg), i.e. the normal force exerted by 

the floor on the box... 

 

– If you imagine pulling the box with a rope, but not moving it, there must 
be a frictional force that acts against you (Newton III), perpendicular to the 
normal force... 

 

– Difficult to start the box sliding but, after it is moving, it is comparatively 
easy to keep it moving... 

 

• Where does friction actually come from ? 22 



Microscopic origins of friction 

• Fundamentally, the roughness of the two materials results 
in them “sticking” together and providing a “frictional 
force” when you try to slide them against each other... 

 

•  This “sticking together” due to electrons in one body 
forming “bonds” with atoms in the other material... 

– The bonds have to be broken to slide the two materials over 
each other  gives rise to the frictional force 

 

 

– Once the two materials are sliding, bonds are continually 
being broken and then reformed.   

 

 

– More bonds exist when the two materials are not moving , 
compared to the situation when they slide against each other. 

 

 

– Smoother surfaces do not necessary give less friction 
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Atomic Force 
Microscope image 
of a grain of wood 

Molecule 
bonding to a 

carbon nanotube 
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When two “atomically smooth” materials come into contact an extremely high number of atoms 
are in close proximity and many bonds can be formed per unit area 
 
 The two materials “fuse” together is what is known as a “cold weld” (welding = schweißen) 

Used extensively to build complicated 
semiconductor sandwiches in microelectronics and 

optoelectronics 



The frictional force 
• Think about how the magnitude of the frictional force should change with the 

applied force T 
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2) At some point, the box just begins to move – here 
the magnitude of the frictional force fs is linearly 

proportional to the normal force n 

 

Note  direction of fs always perpendicular to n and 
in a sense to oppose the applied force  

nµf ss .

Material specific parameter 
 Coefficient of static friction 

3) Once object is in motion the magnitude of the 
frictional force fs stays constant and is independent of 

the magnitude of the pulling force |T| 

nµf ks .

1) Initially the frictional force fs must 
increase as to exactly balance the applied 

force T 
  Newton III and box is not in motion 

Start from T=0 and slowly increase the 
pulling force 

 Coefficient of kinetic friction 



Some experimental observations 
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nµf ss .If an object is not moving under the influence of a pulling force due to friction, then 

Experiment shows that fs is independent of the surface area of the object in contact with 
the surface:  
 
  Only the normal force is important – WHY ? 
 

M 

M 

Mg
Mg

Mgn Mgn 

sK µµ The coefficient of kinetic friction is generally smaller than the static friction coeff. 

fs  fs  

HOW TO MEASURE ? 



Measuring the static coefficient of friction 
µs can be measured using an inclined plane  
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j Mg

 jsinMg

fs  
 jcosMg

 jsinMgFPull 

 jcos.Mgµf SS 

 jcosMgFN Normal force  

Pulling force  

Frictional force 

1. As the angle of the inclined plane j increases, the component of the weight down 
the slope will progressively increase until the friction becomes “critical” 

 

2. At that point, when the body just begins to move, the frictional force is maximal 

 

 

3. Measurement of the critical angle jmax will allow determination of the static 
coefficient of friction  

 

   maxmax cossin jj MgµMgf SS   maxtan jSµ



Example: Static Friction 

• A weird physicist (Bush?) wraps a leather belt a quarter turn around a fixed 
wooden circular cylinder with radius a.  The lower end holds a weight of 100kg.   
– If the coefficient of static friction between the leather belt and the wood is µs=0.2, determine the 

force (P) needed to just begin to move the weight upward 

28 

Leather belt 

P 

100kg 

SOLUTION: To solve this we need to analyze the problem by considering 
a small portion of the belt in contact with the cylinder and applying 
calculus  
 Our goal is to get an equation for the “normal force” as a function of 
position around the wooden cylinder 
 
 
 
 
 
 
 
 
 
 
 
 

We are going to denote by T(q) the tension in the belt segment at an angle q and define the total 
normal (Gr) and tangental (Gq) components of the force between the belt and the wooden cylinder 



Capstan Winch at work 
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The worker can drag a large fallen tree across rough ground using only his 
hand to provide just enough tension to keep the rope from slipping .  
Friction between the rope and white cylinder does the heavy work of 
pulling the log.  



Homework 2 

• Two blocks of equal mass M are connected by a string which passes over a frictionless 
pulley.   If the coefficient of dynamic friction is µK, what angle q must the plane make with 
the horizontal so that each block will move with constant velocity once in motion ? 

32 

q 
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I do not know what I may appear to the 

world, but to myself I seem to have been only 
like a boy playing on the sea-shore, and 

diverting myself in now and then finding a 
smoother pebble or a prettier shell than 

ordinary, whilst the great ocean of truth lay 
all undiscovered before me. 

 
Newton  



Next time 
 
 

Work and Potential Energy 
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