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Some information to the lecture...

 Whoaml?
Prof Shawn Bishop
Office 2013 Physics Building,
Tel (089) 289 12437
shawn.bishop@ph.tum.de

Office Hours for Course > When my office door is open.

e Web content to the course

All the slides | use and examples we make in class will be made available on
the web, every Wednesday before class

— Navigate to 2 www.nucastro.ph.tum.de
— Click “Lehre” = “Experimental physics in English |”

 Timetable and course outline

— Subject to changes based on my travel (announcements will be made) *


mailto:shawn.bishop@ph.tum.de
http://www.nucastro.ph.tum.de/
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Erweiterte Suche

TUM Nukleare
Astrophysik

» Forschung
* Doctorarbeiten
* Diplomarbeiten

b Leute

Technische Universitat Munchen

TUM HuKleare Astrophysik

Experimental Nuclear Astrophysics at TUM

The nuclear astrophysics group at the Technische Universitadt Minchen welcomes you to our
web portal.

Nuclear Astrophysics

Experimental nuclear astrophysics is largely concerned with the business of element production;
that is, Mucleosynthesis. What we know of our Universe is that, within the first few minutes of
its popping into being, only the lightest elements, ranging from simple hydrogen up to beryllium,
were produced. You can see this in the plot below which shows, as a function of time since the
beginning of the Universe {along the top horizontal axis) and temperature of the nascent Universe
(along the bottom horizontal axis) the mass-abundance fractions of these light elements. After
some few thousand seconds, the abundance fractions no longer change with time (or
temperature), signalling the end of element production. (The ongoing decrease in neutrons is
due to their beta-decays into protons. This process is not nucleosynthesis). The production of
these light elements within the first few minutes of cosmic history is called Big Bang
Mucleosynthesis (BBN).
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Lecture—-1
Newton's apple and all that...
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Lecture 1 - Contents

M1.1 Fundamentals
— Historical motivation...
— Purpose of classical mechanics
— Coordinates and vectors...

M1.2 Motion in Space
— Velocity and acceleration
— Motion in two or three dimensions
— Projectiles and circular motion

M1.3 Newton's laws of motion
— The origins of the three little “laws”
— Examples of applying Newton’s laws



http://upload.wikimedia.org/wikipedia/commons/0/04/Hamilton.jpg
http://en.wikipedia.org/wiki/Image:Galileo.arp.300pix.jpg

1.1 Historical Background

e Aristotle (384 BC — 322 BC) - physics and metaphysics

— Made distinction between natural motion and enforced
motion.

— “every body has a heaviness and so tends to fall to its
natural place”

— “A body in a vacuum will either stay at rest or move
indefinitely if put in motion (law of inertia)”

* Archimedes (287 BC—c. 212 BC)

— laid the foundations of hydrostatics

— Explained the principle of the lever

— Invented many machines (Archimedes screw ...)
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http://upload.wikimedia.org/wikipedia/commons/9/98/Kepler_laws_diagram.svg
http://upload.wikimedia.org/wikipedia/commons/8/88/Galileo_facing_the_Roman_Inquisition.jpg
http://upload.wikimedia.org/wikipedia/commons/4/48/Galilee.jpg

Hail the king !
* Sirlsaac Newton FRS (1642-1727)

— Made giant advances in mechanics, optics, mathematics

\

Conservation of linear Shares credit with Leibniz for the

and angular momentum

development of the calculus

Formulated first
“laws” of motion

Formulated theory
of gravitation

- /
"OPTICKS

| ! .
l T RE AIISE Invented reflecting Photons !
“Ei‘;li‘&}iq“iﬁéfii?;ﬂj telescope

R G T |

Two TREATISES ;;‘ Developed a

lPFCILS d \I G\I’ILDI‘

theory of colour



http://upload.wikimedia.org/wikipedia/commons/a/a0/Opticks.jpg

Fundamentals

12



What does “classical mechanics” aim to do?

— Provide a physical basis to describe the behaviour of bodies (point

Increasing level of complexity

masses or extended systems) subject to external forces...

— Kinematics of point masses
(motion as a function of time)
— Dynamics of the point masses
(why is the motion like it is ? — influences of forces etc...)

— Extended rigid bodies
(Finite size effects?, Inertia etc.)

— Extended non-rigid bodies : Elastic bodies (reversible deformation)
Hydrostatic, Aerostatic...

Hydrodynamic, Aerodynamic...

\4

— Non-linear dynamics (Chaotic dynamics)


http://upload.wikimedia.org/wikipedia/commons/5/54/Flight_dynamics_with_text.png

1.2 coordinates and position

* The position of a “body” in any space is defined by specifying
its co-ordinates...

A A R
r — X1 y; Z - -
s r=lp.2) r=1r.0,0)
= Xex + yey + Z€;
CARTESIAN CYLINDRICAL SPHERICAL

COORDINATES COORDINATES COORDINATES
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1.2.1 Trajectory, position and the nature of space

Positions are specified by vector quantities

A
r(t) = {x(t), y(t), z(t)}
Position co-ordinates are generally a function of time
since the particle moves along the trajectory subject to forces
(i) Linear Motion (e.g. Free fall) (ii) Motion in a Plane (e.g. Throw of a Ball)
7 Z

~’ Can always define a co-ordinate
system such that :

Xt)=y({t)=0 Wt 0 |:> =~
7 (t) =0 / \

.
y o 4
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* Translation and Rotation of the coordinate system is allowed, when the
trajectory is defined only by some universal physical laws

* Requires that these “Laws of Motion” are independent of
— Position
* space is homogeneous
— Direction
* space is isotropic

— Time

* time invariance

* These properties must be experimentally verified and will lead later in the
lectures to very important conservation laws (energy and momentum)




1.2.2 Converting between co-ordinate systems

r={r.6,p) 4P r={xyz @D r={p ¢z}

+
4\ Cartesian €-> Spherical
% & S @ cos ¢ r—,\jx%ﬂ”%l
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1.2.3 Velocity and Acceleration

 The time dependence of the position vector leads to other kinematic quantities
- velocity and acceleration

1) The average velocity is defined by

A ® ~ > -
® <V>(t1,t2) — r(t(f[) _:()tl) <> average

Dependent on the time interval (t,-t,) and trajectory

2) The instantaneous velocity is the time derivative of the position
dr = displacement

Consider an infinitesimal displacement of the position vector
\A dr over an infinitesimal time dt

\ v(t) = {x(1), ¥(t), 2(t)} = W, ).V, (©).v, (©)

Velocity is always parallel to the trajectory

18



The instantaneous acceleration is the time derivative of the velocity

A

N

v

| DIRECTION ?

The instantaneous acceleration (Beschleunigung) is a
vector orientated parallel to dv(t)

It’s magnitude is:

v(t) — v,

at) =, (®),v, ®),v, )} = {%(t), ¥(0), 2(t)}

Vi WO L
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Important special cases

(i) Uniform linear motion (like y in above example)

A = _
y(t) S A Oy(jc)’o
—> ¢ > ¢
\7(t)=dr—(t)=\7=const *(t)=dv—(t)=0
dt dt

20



1.2.4 Integrating Trajectories

Example 2) Constant acc (A) along e,.

-

(t)—— {A0,0

i

v(t) ={At +v,(0),00} =

!

(t) {A—tz +Vv, (0)t+x(0),0 O}
x(0)

dr
dt x(t) v, (t) a,(t)
A A A

Const acc.

>t
21



Example (iii) Constant circular motion (HARMONIC MOTION)

—> circular co-ordinates match the symmetry of the problem

A r(t)‘ Jx2ry? =const=x,=y,  AMPLITUDE
v(t)
Yo o= at+¢(0) PHASE
r \ d
(p . .
W 0) 0= =9 Angular velocity = @=const
<€ > X
Xo
> Ansatz  X(t) =x,cos(at+¢(0))  y(t) = Y,sin(et+¢(0))
> Velocity  V, (t) = X(t) =—ax, sin(at +9(0)) v, () =y, cos(et +¢(0))
v

v(t) = (v, (t), v, (1).0) =) M =V, +v,° =Jo* X +a?y: =ar |V = F

Magnitude of velocity stays constant, but direction constantly changing (acceleration always non zero)
. vit
W 2 o | CIECIIAN
a(t) = d_ = {— "X, cos(a)t + (0(0)),—(0 Yo sln(a)t + (0(0)),0} Towards orbit center
t

a(t)| = —o°r

v(t+dt)

22



1.3 NEWTON'S
LAW’S OF MOTION
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1.3.1 Let’s do some “inductive reasoning”

* Q) When is the position of an object described by F(t) =(%,,0,0) ?

* Q) When does an object move according to r(t) = (v,t,0,0) ?
A) When it is left by itself!

- Newton “genius” was that he postulated that “all objects behave this way”

L}
&)/
SMQKI' GUY!
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NEWTONS FIRST LAW

“An object at rest tends to
stay at rest and an object in
motion tends to stay in
motion”

Pinitial= ?fina[

Law of inertia or momentum !
|
|

Also written down by Galileo
35 years earlier! ©
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http://en.wikipedia.org/wiki/Image:Galileo.arp.300pix.jpg

1.3.2 Let’s do some more “inductive reasoning”

* When is the position of an object described by F(t) =(%,,0,0) 7
* When does an object move according to r¢t)=(v,t,0,0) ?

-~ a
* Q) When does an object move according to r(t) = (EtZ,O,O) ?

To change the velocity of something, we
have to “push” (our arms get’s tired!)

Larger changes in velocity for the same
object require larger pushes

Define the “amount of pushing” as FORCE
F~Av/At

“amount of pushing needed to change v
depends on body’s to mass
F*m



http://upload.wikimedia.org/wikipedia/commons/4/48/A_single_white_feather_closeup.jpg

1.3.2
NEWTONS SECOND LA

“The force required to change

the velocity of an object is
proportional to the mass of
the object times the induced
acceleration”

3 laws in one !

2"d order differential equation
=2 Will require 2 initial conditions,
i.e. x(0) and v,(0) to solve
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1.3.3 Yet more “inductive reasoning”

* When is the position of an object described by F(t) =(X,,0,0) ?
* When does an object move according to rt)=(v,t,00) ?

* Q) When does an object move according to r(t) = (%tZ,O,O) ?

28



1.3.3
NEWION'S THIRD LAWS

NATURALIS ‘*
; PRINCIP 1 All
For every action, there is an m il |

N
equal and opposite reaction” . MATHEMATICA- "}
|
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THE

MATHEMATICAL PRINCIPLES
OF

NATURAL PHILOSOPHY.

DEFINITIONS.

DEFINITION 1.

THE QUANTITY OF MATTER IS THE MEASURE OF THE SAME,
ARISING FROM ITS DENSITY AND BULK CONJUNCTLY.

Thus air of a double density, in a double space, is quadruple in quantity; in a triple
space, sextuple in quantity. The same thing is to be understood of snow, and fine dust
or powders, that are condensed by compression or liquefaction; and of all bodies that
are by any causes wh diffe

atly condensed. I have no regard in this place to a
medium, if any such there is, that freely pervades the interstices between the parts of
bodies. It is chis quantity that I mean hereafter everywhere under the name of body or
mass, And the same is known by the weight of each body; for it is proportional to the
weight, as I have found by experiments on pendulums, very accurately made, which

shall be shewn hereafter.
DEFINITION II.

THE QUANTITY OF MOTION IS THE MEASURE OF THE SAME,
ARISING FROM THE VELOCITY AND QUANTITY OF MATTER
CONJUNCTLY.

The motion of the whole is the sum of the motions of all the parts; and therefore
in a body double in quantity, with equal velocity, the motion is double; with twice the
velocity, it is quadruple.

DEFINITION IIIL

THE VIS INSITA, OR INNATE FORCE OF MATTER, IS A POWER
OF RESISTING, BY WHICH EVERY BODY, AS MUCH AS IN IT
LIES, ENDEAVOURS TO PERSEVERE IN ITS PRESENT STATE,
WHETHER IT BE OF REST, OR OF MOVING UNIFORMLY

FORWARD IN A RIGHT LINE.

This force is ever proportional to the body whose force it is: and differs nothing
from the inactivity of the mass, but in our manner of conceiving it. A body, from the
inactivity of matter, is not without difficulty put out of its state of rest or motion. Upon
which account, this vis insita, may, by a most significant name, be called vis inertie, or
force of inactivity. But a body exerts this force only when another force, impressed upon
it, endeavours to change its condition; and the exercise of this force may be considered
both as resistance and impulse; it is resistance, in so far as the body, for maintaining its
present state, withstands the force impressed; it is impulse, in so far as the body, by not
easily giving way to the impressed force of another, endeavours to change the state of
that other. Resistance is usually ascribed to bodies at rest, and impulse to those in
motion; but motion and rest, as commonly conceived, are only relatively distinguished;
nor are those bodies always truly at rest, which commonly are taken to be so.

But how we are to collect the true
motions from their causes, effects, and apparent differences; and, vice versa, how from
the motions, either true or apparent, we may come to the knowledge of their causes
and effects, shall be explained more at large in the following tract For to this end it was
that I composed it.
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THE LAWS

1) An object at rest or

uniform motion remains

unchanged

2) Force = Mass x
Acceleration

3) “For every action, there is
an equal and opposite
reaction”

Some notes...
Law 1 is just a special case of 2

when |F|=0

There is a defined [(inear
relationship between F and a
(cause and effect), the mass m
is defined as the constant of
proportionality - m; the
inertial mass (trdger Masse)

From law 2, the unit of force
is defined as [Fl=kgm/s2=N -
the Newton

For m=const, we have:

—_—

F=ma=

If F=o0, we have dp/dt=o0 and
[inear ~momentum is a
conserved quantity




Examples of applying Newton's laws




Examples and applications of Newton’s Laws

Example 1) Free fall on earth X
Galileo showed experimentally that all bodies fall to earth in the same time I ‘ ° ‘
Z

- Ratio’s of the displacement from start over the same time interval = 1,3,5,7,09...

becarux N &_MMM d
S -1y - N1+ @-n)- N =

—
N |

el % Bk B & P * once;
—> Acceleration due to gravity = g=9.80665 m/s? (varies on earth +0.01m/s?, larger near poles)

—> One defines the gravitational force F;=m_g, where m_ is the gravitational mass (weight), which can
be very different to the inertial mass used in Newton’s 2" |aw
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Springs are devices that are capable of storing mechanical energy
NG R
S e}%& i

All physicists love masses on springs

Sl
itk
.%:
- ‘gi i
il
=74

To a fairly good approximation,
. springs obey Hooke's law
S

Fs =—kAs §
—————— X r
X 0 LSpring constant R. Hooke
(1635-1703)
“As the extension, so the force
FG
— SPRING CONSTART
— v — =
o — -— s
S = M
SPrW\ﬂ I’S_ K X l Frb-r'FS"—q a
X{t') = Xo \
a= Xlt)= O
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This alternative “mode” of motion can be easily studied by looking at a mass attached to a
spring on a frictionless surface (e.g. air hockey table)

- -

F:Tor'*E“{'F‘:“’“ - ma (”MMIE\)

N

9:.{#- mass ab a diskne x4 omd e ’rﬂﬂjd,
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