AL-26, BE-10, and MN-53 IN SIX LUNAR METEORITES. F. Serefiddin^{1,2}, P. Ma^{1,3}, G.F. Herzog¹, R.C. Reedy⁴, K. Knie^{5,6}, G. Rugel⁵, T. Faestermann⁵, and G. Korschinek⁵, ¹Rutgers Univ., Piscataway, NJ 08854 <herzog@rutchem.rutgers.edu>, ²Cuesta College, San Luis Obispo, CA 93403 ³DCLS, 600 North 5th Street, Richmond, VA 23219, ⁴Planetary Science Institute, Los Alamos, NM 87544, USA, ⁵TU-München, D-85748, Garching, Germany, ⁶GSI, Darmstadt, Germany.

Introduction: Few ⁵³Mn activities have been reported for lunar meteorites. They can help to identify the effects of solar-cosmic-ray (SCR) irradiation and to improve estimates of cosmic-ray exposure (CRE) ages longer than 3 Ma. We report the activities of the cosmogenic radionuclides (CRN) ²⁶Al (T_{1/2}=0.7 Ma), ¹⁰Be (T_{1.2}=1.39 Ma), and ⁵³Mn (T_{1/2}~3.7 Ma) in six lunar meteorites. From these activities and published results we construct cosmic-ray exposure (CRE) histories.

Experimental methods and results: ²⁶Al, ¹⁰Be, and ⁵³Mn were separated chemically by precipitation and ion exchange. Activities were measured by accelerator mass spectrometry, ²⁶Al (dpm/kg) and ¹⁰Be (dpm/kg) at Purdue University, and ⁵³Mn (dpm/[kg Fe]) at TU-München (Table 1).

Discussion: We fit CRN data to various exposure models by finding combinations of parameters that mini-

mize
$$\chi^2 = \frac{1}{n-p} \sum_{i=1}^{n} \frac{\left(O_i - E_i\right)^2}{O_i}$$
. Here O_i is the i^{th} of n

measurements, E_i is the estimate of O_i predicted by an exposure model, and p is the number of parameters allowed to vary for each calculation. Our general model has six parameters, a lunar burial depth $D_{2\pi}$ and exposure time $T_{2\pi}$, a radius $R_{4\pi}$, a depth $D_{4\pi}$, and exposure time $T_{4\pi}$ for the meteoroid in transit to Earth, and a terrestrial age T_{terr} . We have

$$E = P_{2\pi} \left(D_{2\pi} \right) \left(1 - \exp\left[-\lambda T_{2\pi} \right] \right) \exp\left(-\lambda \left[T_{4\pi} + T_{Terr} \right] \right) + P_{4\pi} \left(R_{4\pi}, D_{4\pi} \right) \left(1 - \exp\left[-\lambda T_{4\pi} \right] \right) \exp\left(-\lambda T_{Terr} \right)$$

For all CRN in meteoroids, the production rates $P_{4\pi}$ due to galactic cosmic rays are based on [1]; in the Moon, we adapt $P_{2\pi}(GCR)$ from [2] except for ⁴¹Ca. Thermal neutron capture dominates lunar ⁴¹Ca production at depths > ~20 g/cm². We therefore made the approximation that $P_{2\pi}(^{41}Ca)$ in dpm/[g Ca] is equal to the (depth-dependent) values for the Apollo 15 core [3], independent of matrix effects. Most elemental compositions are taken from the literature; in a few cases we measured Fe by ICP-MS. In some lunar meteorites, the effects of solar cosmic rays (SCR) are also important. We calculated SCR production rates for the meteorites studied following [4].

As we had too few measurements to determine all parameters in the general model, we chose certain values (indicated by \equiv in Table 2) and then, by iterating the Microsoft Excel routine Solver, found the values of the others that minimized χ^2 (Table 2).

MAC 88104/5 – For fitting, we adopted the following activities (TW=this work): 41 Ca = 15.5; 36 Cl=4.4; 26 Al=15.3; 10 Be=2.0 [5]; 53 Mn=56.2 [TW]. The best fit-

ting results indicate burial on the Moon at 370 g/cm², a transit time of ~ 40 ka, and a terrestrial age of ~15 ka. The calculations overestimate the ^{10}Be activity, 2.9 vs. 2.1. Overall, the new results agree fairly well with those of [6-9]: T_{terr} , = 0.2-0.25 Ma; and $T_{4\pi}$ = 0.04-0.1 Ma. CRN data and the $^{131}\text{Xe}/^{136}\text{Xe}$ ratio indicate different lunar burial depths, 360-500 g/cm² and 85 g/cm², respectively, the latter for >500 Ma [7]. MAC 88104/5 probably was exposed at several different depths on the Moon.

Dhofar 081 (paired with *MAC 88104/5?*) - For fitting, we took weighted averages of [TW] and [10]: 36 Cl=7.2; 26 Al=31.6; 10 Be=5.0; 53 Mn=88.3. Our fit with $T_{4\pi}$ =0 gives T_{terr} =100 ka and $D_{2\pi}$ =310 g/cm² vs. 200 ka and 200 g/cm² from [10]. Fits with finite $T_{4\pi}$ give better results with $T_{4\pi}$ =170 ka being best. The ejection ages ($T_{4\pi}$ + T_{terr}) of Dhofar 081, ~0.4 Ma, and MAC 88104/5, ~0.2 Ma, do not agree, but the uncertainties are appreciable.

Paired meteorites LAP 02xxx: CRN activities are low in these 5 stones. Nishiizumi et al. [11] inferred $D_{2\pi} \sim 700$ g/cm², $T_{4\pi}$ =35 ka, and T_{terr} = 20 ka. To obtain production rates at depths > 550 g/cm², we extrapolated the composition-adjusted values of [2]. For fitting, we adopted ⁴¹Ca = 5.94 and ${}^{36}\text{Cl}=1.95$ [11]; ${}^{26}\text{Al}=5.99$ and ${}^{10}\text{Be}=0.70$ [TW,11]; and ⁵³Mn=22 [TW]. To compare with [11], we first excluded ⁵³Mn. With $R_{4\pi}$ =20 cm, we find $D_{2\pi}$ =650 g/cm², and $T_{4\pi}$ =37 ka, but best agreement for $T_{terr} \sim 0$. Although the goodness of fit remains acceptable when ⁵³Mn is added, the exposure parameters lead to an overestimate of the measured ¹⁰Be activity, 0.7, by ~50%. A threeparameter model with an earlier, long lunar exposure at 50 g/cm² followed by burial at 650 g/cm² for $T_{2\pi}$ =17 Ma, with $T_{4\pi}$ =38 ka and T_{terr} =0, i.e. gives a good fit except that the activity predicted for ¹⁰Be is ~15% too high.

NWA 032 - CRN activities in NWA 032 are even lower than those in the launch-paired LAP 02xxx stones. Nishii-

Table 1. ²⁶Al, ¹⁰Be, and ⁵³Mn activities and Fe concentrations in lunar meteorites.

Sample	$^{26}\text{Al}^1$	$^{26}\text{Al}^1$ $^{10}\text{Be}^1$ ^{53}N		Fe ³
Dhofar 081	33.9±2.8	4.36±0.10	88±11	2.38
MAC 88104 ^[5]	11.6±1.2	1.87 ± 0.17		3.43
MAC 88105 ^[5]	14.6 ± 1.2	1.97 ± 0.12	7±0.12 56±7	
LAP 02205,38	6.64 ± 0.38	0.63 ± 0.05	27.2 ± 3.4	17.1
LAP 02205,39	5.48 ± 0.26	0.64 ± 0.05	18.2 ± 1.6	17.1
LAP 02224,13		0.78 ± 0.10	21.1±1.6	17.1
LAP 02226,8	4.99 ± 0.28	0.63 ± 0.04	20.1 ± 1.9	17.1
LAP 02436,10	7.22 ± 0.59			17.1
NWA 032	4.7 ± 0.5	0.33±0.01 2.7		17.6
MET 01210,8	76.7 ± 3.4	6.86±0.49 120±11		13.0
PCA 02007,32	174±5	8.66±0.31	202±22	5.53
4) 1 0 0) 1	(FI	. C . 1 11		

1) dpm/kg 2) dpm/[kg Fe] 3) wt% from the literature

zumi and Caffee [10] noted the failure of a one-stage lunar irradiation at any single depth to fit the data well, and called instead for very deep lunar burial followed by a 42 ka trip to Earth as a small ($R_{4\pi}$ =5 cm) body that retains SCR effects and that landed <80 ka ago. For fitting we adopted ³⁶Cl=0.78, ²⁶Al=4.0, and ¹⁰Be=0.35 [TW,10]; and ⁵³Mn=2.7 [TW]. To evaluate the production rates at lunar depths > 500 g/cm² we extrapolated the compositionadjusted production rates of [2] based on constant halfthicknesses (g/cm²), 134 for ³⁶Cl; 111 for ²⁶Al; 114 for ¹⁰Be; 116 for ⁵³Mn. We confirm a poor fit for a singlestage lunar irradiation followed by terrestrial decay. Fits in which $D_{2\pi}$, $T_{4\pi}$, and T_{terr} , all vary converge on large values of $D_{2\pi}$, for which lunar production is small. Ignoring lunar production, therefore, we fit the data by allowing $T_{4\pi}$ and T_{terr} to vary for 1.4< $R_{4\pi}$ <500 and $D_{4\pi}$ < $R_{4\pi}$. Because total activities are so low, we checked for terrestrial contributions based on sea-level P(53Mn) = 0.20 dpm/[kg Fe] [12], which corresponds to a lunar depth of ~1300 g/cm², and therefore set $P(^{36}Cl) = 0.018$; $P(^{26}Al) = 0.024$; and $P(^{10}Be)$ = 0.0085. The best fit with ²⁶Al=4.0 dpm/kg and without SCR included suggests near-surface exposure in a small meteoroid, $R_{4\pi}$ <10 cm. Specifically we find $18 \le T_{4\pi} \sim \le 28$ ka and T_{terr}~10±10 ka. CRN activities are reproduced only moderately well, to within 13-36%. With SCR effects included, ⁴¹Ca, ³⁶Cl, and ⁵³Mn are matched to within 10% for $T_{4\pi}$ =~20 ka and T_{Terr} =<10 ka; 10 Be is underestimated, however: 0.2 vs. 0.35. The ejection ages of NWA 032 and LAP 02xxx are consistent, but uncertainties are large.

MET 01210 –Variations in 26 Al suggest SCR irradiation of this 23-g anorthositic breccia, perhaps throughout the stone [11]. For building a CRE history we adopted 41 Ca=4.1 and 36 Cl=14.2 [11]; 26 Al=80.2 and 10 Be=7.7 [11,TW], and 53 Mn=120 [TW]. With $P_{2\pi}$ =0 but without

Table 2. CRE exposure histories of lunar meteorites.

	$\mathbf{D}_{2\pi}$	$T_{2\pi} \\$	$R_{4\pi}$	$D_{4\pi}$	$T_{4\pi}$	$T_{\text{terr}} \\$	χ^2
	g/cm ²	Ma	cm	cm	Ma	Ma	
Dho	310	= >10	≡20	≡5.5	0.23	0.22	0.06
	210	= >10			≡0	0.08	0.34^{a}
	290	= >10	= 20	≡5.5	0.17	0.17	0.004^{a}
MAC	370	= >10	= 10	≡5.5	0.05	0.13	0.17
	370	= >10	= 20	≡5.5	0.04	0.16	0.16
	370	= >10	= 30	≡5.5	0.04	0.14	0.16
	370	= >10	= 30	= 10.5	0.03	0.14	0.16
LAP	650	= >10	= 30	≡ 10.5	0.037	0.0	0.015^{b}
	530	= >10	= 30	= 10.5	0.03	0.1	0.09
	650	17	= 30	= 10.5	0.04	0.0	0.015^{c}
NWA	530	= >10			≡0	0.15	0.56
	>1500	-	<10	<1	0.023	< 0.02	0.07
MET	>1200	-	<150	0.5	1.2-1.6	< 0.03	0.08-0.3
PCA	>1200	-		<2	~1.5	0.24	3
	0.75	2			≡0	0.24	0.7
	150	≡>10	<10	<1	0.20	0.25	0.12

a) Excludes ⁵³Mn for comparison with [10]. b) Excludes poorly fit ⁵³Mn. c) Assumes an early lunar burial at 50 g/cm².

inclusion of SCR effects the best fit obtained had an unconvincing $\chi^2{=}0.8.$ With inclusion of SCR effects the best fits are obtained for near-surface samples (1-1.5 cm) for $R_{4\pi}=3,\,10$ and 150 cm ($\chi^2{=}0.25,\,0.25,\,$ and 0.09). All three gave $T_{4\pi}{\sim}1.7$ Ma. The corresponding values of T_{Terr} were 20, 40 and 0 ka. These fits predict all CRN to within 10% on average, but consistently overestimate ^{10}Be in order to match $^{53}Mn.$ Nishiizumi et al. [11] also inferred $T_{terr}{\sim}0,\,$ but reported a lower (^{10}Be) CRE age of $0.8{\pm}0.2\,$ Ma.

PCA 02007 - Unusually high 26Al activities in 4 samples of this 23-g anorthositic breccia are evidence for SCR exposure [11,TW]. One proposed CRE history [11] has $T_{4\pi}$ =0.95 Ma. For fitting, we adopted 41Ca=6.7 and 36 Cl=16.5 [11]; 26 Al=176 and 10 Be=8.5 [11,TW], and 53 Mn=202 [TW]. With $T_{2\pi}$ =0, our fitting procedures for $T_{4\pi}$ and T_{terr} give poor results, $\chi^2 > 2$, primarily because ⁴¹Ca is underestimated. Our maximum modeled value of $P_{4\pi}(^{10}Be,GCR)$ for $D_{4\pi}< 2.5$ cm and $R_{4\pi}<10$ cm is ~18 dpm/kg, implying $T_{4\pi}$ ~1.4 Ma or 1.1 Ma if $P_{4\pi}$ (¹⁰Be,SCR) is as high as 2 dpm/kg. With $T_{4\pi}=1.4$ Ma we estimate $P(^{26}Al,SCR)=154$ and $P(^{53}Mn, SCR) \sim 600$. Fitting with $T_{4\pi} \equiv 0$ (i.e., lunar irradiation only) gives a better fit for $D_{2\pi}=0.75$ g/cm² ($\chi^2=0.7$). Lunar pre-irradiation at a depth of 150 g/cm² followed by Earth transit with $R_{4\pi}$ <5 cm with $T_{4\pi}$ =0.20 Ma and T_{Terr} =250 ka gives a good fit (χ^2 =0.12; ³⁶Cl=13%; others <5%).

Conclusions: Of the 6 lunar meteorites studied, two have transit times of 1-2 Ma and four of <0.3 Ma, reaffirming the general conclusion that most meteoroids launched from the Moon arrive at Earth soon or not at all [13]. As is well known, SCR effects occur in an appreciable fraction of lunar meteorites, suggesting that lunar meteoroids tend to be

small. Relatively low launch and Earth arrival velocities [13,14] may help reduce the ablation of lunar meteoroids and thereby aid in the preservation of near-surface material.

References: [1] Leya I. and Masarik J. (2009) MPS, 44, 1061-1086. [2] Leya I. et al. (2001) MPS, 36, 1547-1561. [3] Nishiizumi K. et al. (1997) EPSL, 148, 545-552. [4] Reedy R. C. (1987) LPS, XVIII, 822-823; Reedy R.C. et al. (2010) MPS, 45, A169. [5] Vogt S. et al. (1991) GCA, 55, 3157-3165. [6] Nishiizumi K. et al. (1991) GCA, 55, 3149-3155. [7] Eugster O. et al. (1991) GCA, 55, 3139-3148. [8] Wacker J. (1989) Antarctic Meteorite Newsletter, 12(3), 21. [9] Jull A.J.T. and Donahue D. J. (1991) GCA, 55, 2681-2682. [10] Nishiizumi K. and Caffee M.W. (2001) LPSC, 32, 2101.pdf. [11] Nishiizumi K. et al. (2006) LPSC, 37, 2369.pdf. [12] Schaefer J. et al. (2006) EPSL, 251, 334-345. [13] Gladman B. et al. (1995) Icarus, 118, 302-321. [14] Bart G. D. and Melosh H. J. (2010)J. Geophys. Res., 115, 10:1029/2009JE003441, 8 pp.