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I. INTRODUCTION

Forming the basis for the production of virtually all
every-day products, catalysis has always been the driv-
ing force for chemical industries. In the 21st century, the
concomitant importance of catalysis research is even fur-
ther increased by the worldwide rapidly growing demand
for more efficient exploitation of energy and materials
resources. As in many other areas of materials science,
modern computational science is becoming a key con-
tributor in the quest to quantitatively understand the
molecular-level mechanisms underlying the macroscopic
phenomena in chemical processing, envisioned to ulti-
mately enable a rational design of novel catalysts and im-
proved production strategies. Of particular relevance are
hierarchical approaches that link the insights that model-
ing and simulation can provide across all relevant length
and time scales.1 At the molecular level, first-principles
electronic-structure calculations unravel the making and
breaking of chemical bonds. At the mesoscopic scale, sta-
tistical simulations account for the interplay between all
elementary processes involved in the catalytic cycle, and
at the macroscopic scale continuum theories yield the ef-
fect of heat and mass transfer, ultimately scaling up to a
plant-wide simulation.
A comprehensive control of catalytic processes requires

to address all of these facets and will thus ultimately
necessitate novel methodological approaches that inte-
grate the various levels of theory into one multi-scale
simulation. With the focus on the surface chemistry,
first-principles kinetic Monte Carlo (kMC) simulations
for heterogeneous catalysis represent precisely one step in
this direction. A proper evaluation of the surface kinetics
also dictates to unite two distinctly different aspects and
in turn two distinct methodologies2: The first important
part is an accurate description of the involved elemen-
tary steps, typically comprising adsorption and desorp-
tion processes of reactants and reaction intermediates,
as well as surface diffusion and surface reactions. When
aiming at a material-specific modeling that is at best of
predictive quality, the computation of the corresponding
kinetic parameters is the realm of electronic structure
theories3–5 that explicitly treat the electronic degrees of
freedom and thus the quantum-mechanical nature of the
chemical bond.
Even though such a set of first-principles kinetic pa-

rameters constitutes already an (even for the most sim-
ple model systems hitherto barely achieved) important
intermediate goal and highly valuable result, it does not
suffice for a description of the surface catalytic function.
For this, a second key ingredient is the occurrence (and
thus relevance) of the individual elementary processes,
in particular of the different reaction mechanisms. An
evaluation of this statistical interplay within the mani-
fold of elementary processes obviously needs to go be-
yond a separate study of each microscopic process. Tak-
ing the interplay into account naturally necessitates the
treatment of larger surface areas. Much more challeng-
ing than this size, however, is the fact that the surface
catalytic system is of course “open” in the sense that
reactants, reaction intermediates and products continu-
ously impinge from and desorb into the surrounding gas
phase. Due to the highly activated nature of many of the
involved elementary steps, the correspondingly required
evaluation of the chemical kinetics faces the problem of
a so-called “rare-event dynamics”, which means that the
time between consecutive events can be orders of magni-
tude longer than the actual process time itself. Instead of
the typical picosecond time scale on which say a surface
diffusion event takes place, it may therefore be necessary
to follow the time evolution of the system up to seconds
and longer in order to arrive at meaningful conclusions
concerning the statistical interplay.

Tackling such demanding simulation times is the ob-
jective of modern non-equilibrium statistical mechanics
techniques, many of which rely on a master equation
type description that coarse-grains the time evolution
to the relevant rare-event dynamics.6,7 Kinetic Monte
Carlo simulations8,9 fall within this category, and dis-
tinguish themselves from alternative approaches in that
they explicitly consider the correlations, fluctuations and
spatial distributions of the chemicals at the catalyst sur-
face. For given gas-phase conditions, the typical output
of such simulations are then the detailed surface composi-
tion and occurrence of each individual elementary process
at any time. Since the latter comprises the surface reac-
tion events, this also gives the catalytic activity in form
of products per surface area, either time-resolved, e.g.
during induction, or time-averaged during steady-state
operation.

Summarized in one sentence the central idea of first-
principles kMC simulations for heterogeneous catalysis is
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thus to combine an accurate description of the elemen-
tary processes with an account for their statistical inter-
play in order to properly evaluate the surface chemical
kinetics. As such, the approach is the result of a twofold
choice: The choice to employ first-principles electronic
structure calculations, presently predominantly density-
functional theory (DFT), to obtain the kinetic parame-
ters of the individual processes, and the choice to employ
a master equation based kMC algorithm to tackle the
required long simulation times. Aiming to give an in-
troduction to this technique, the main purpose of the
present Chapter is therefore to motivate in detail why
such a combination of distinct theories is necessary at
all, what can be expected from it, and to critically dis-
cuss its advantages and limitations in comparison to al-
ternative approaches. I will try to achieve this goal by
first going step by step through the underlying concepts,
mostly illustrating the ideas with a simple toy system.
Instead of aiming at the hopeless undertaking to give a
comprehensive overview of existing applications in the
field, a subsequent Section will then illustrate the use
of first-principles kMC for catalysis-related problems fo-
cusing on one showcase. Emphasis is hereby placed on
highlighting the capabilities of, but also the challenges
to such modeling. This then provides a natural starting
point for the last Section, in which I will sketch where
I see the current frontiers of this technique – and it will
become quite obvious that as always in cutting-edge re-
search there is still “lots of room at the bottom”.

II. CONCEPTS AND METHODOLOGY

A. The problem of a rare-event dynamics

Instead of a more formal derivation, let me develop the
more detailed conceptual discussion on the basis of a sim-
ple toy system. Consider the diffusive surface motion of
an isolated atomic reaction intermediate that chemisorbs
more or less strongly to specific sites offered by a solid
surface. At finite temperature T the adsorbate will vi-
brate around its adsorption site with a frequency on
the picosecond time scale, and diffuse (depending on its
bond strength) say about every microsecond between two
neighboring sites of different stability. The actual diffu-
sion process itself takes thereby also only a picosecond or
so, and in the long time in between the adsorbate does
really nothing else than performing its random thermal
vibrations. Obviously, if we want to get a proper un-
derstanding of what is going on in this system this re-
quires us to follow its time evolution at least over a time
span that includes several of the rare hops to neighbor-
ing sites, i.e. here of the order of several microseconds or
more. Despite its simplicity, this toy model carries thus
all the characteristics of a rare-event system, in which the
relevant dynamics of interest (here the hops over the sur-
face) proceeds by occasional transitions with long periods
of time in between. This separation of time scales be-
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FIG. 1: Schematic representation of the relevant degree of
freedom of the PES underlying the surface diffusion prob-
lem discussed in the text: Two stable adsorption sites A

and B of different stability are separated by a sizable bar-
rier. A MD simulation of this problem would explicitly follow
the dynamics of the vibrations around either minimum and
would therefore most likely never escape to the other basin
within affordable simulation times. KMC simulations coarse-
grain this short-time dynamics into the rate constants, kAB

and kBA, and consider the discrete state-to-state dynamics
as prescribed by a Markovian master equation. Transition-
state theory (TST) is employed to derive the rate constants
from the underlying PES, where in harmonic TST the barrier
heights, ∆EAB and ∆EBA, as well as the vibrational modes
at the minima and the transition state (TS) are required.

tween thermal vibrations and the actual diffusion events
results from the necessity to break (or “activate”) chem-
ical bonds in the latter. Highly activated processes are
quite typical for surface chemistry and catalysis10–12, and
correspondingly such a rare-event dynamics is more the
norm than an exception.

An important concept to further analyse the dynamics
of our toy system is the so-called potential energy surface
(PES).13 While chemical bonds are the consequence of
electronic interactions, a frequently justified approxima-
tion is to assume that the electron dynamics takes place
on much faster time scales than the motion of the atomic
nuclei. In this Born-Oppenheimer picture the electrons
therefore adapt adiabatically to every configuration of
atomic positions {RI}, and, reciprocally, the atoms can
be viewed as traveling on the PES landscape E{RI} es-
tablished by the electronic interactions. The forces acting
on a given atomic configuration are then the local gradi-
ent of the PES, and a (meta)stable atomic configuration
corresponds to a (local) minimum of this landscape. In
the language of a PES, the relevant degree of freedom of
our surface diffusion problem can therefore schematically
be described as shown in Fig. 1: Two neighboring ad-
sorption sites of different stability are represented by two
minima of different depths, separated by a sizable barrier
as characteristic for the activated diffusion process.

A widely employed approach to follow the time evo-
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lution at the atomic level are molecular dynamics (MD)
simulations, which correspond to a numerical integration
of Newton’s equations of motion.14 Starting in any one
of the two minima and using the forces provided by the
PES gradient, a MD trajectory would therefore explicitly
track the entire thermal motion of the adsorbate. In or-
der to accurately resolve the picosecond-scale vibrations
around the PES minimum this requires time steps in the
femtosecond range. Surmounting the high barrier to get
from one basin to the other is only possible, if enough
of the random thermal energy stored in all other degrees
of freedom gets coincidentally united in just the right di-
rection. If this happens as in our example only every
microsecond or so, a MD simulation would have to first
calculate of the order of 109 time steps until one of the
really relevant diffusion events can be observed. Even
if the computational cost to obtain the forces would be
negligible (which as we will see below is certainly not
the case for PESs coming from first-principles calcula-
tions), this is clearly not an efficient tool to study the
long-term time evolution of such a rare-event system. In
fact, such long MD simulations are presently computa-
tionally not feasible for any but the most simple model
systems, and spending CPU time into any shorter MD
trajectory would only yield insight into the vibrational
properties of the system.

B. State-to-state dynamics and kMC trajectories

The limitations to a direct MD simulation of rare-event
systems are therefore the long time spans, in which the
system dwells in one of the PES basins before it escapes
to another one. Precisely this feature can, however, also
be seen as a virtue that enables a very efficient access
to the system dynamics. Just because of the long time
spent in one basin, it should not be a bad assumption
that the system has forgotten how it actually got in there
before it undergoes the next rare transition. In this case,
each possible escape to another PES basin is then com-
pletely independent of the preceding basins visited, i.e.
of the entire history of the system. With respect to the
rare jumps between the basins, the system thus performs
nothing but a simple Markov walk.6

Focusing on this Markovian state-to-state dynamics,
i.e. coarse-graining the time evolution to the discrete
rare events, is the central idea behind a kMC simulation.
Methodologically, this is realized by moving to a stochas-
tic description that focuses on the evolution with time t of
the probability density function Pi(t) to find the system
in state i representing the corresponding PES basin i.
This evolution is governed by a master equation, which
in view of the just discussed system properties is of a
simple Markovian form6,

dPi(t)

dt
= −

∑

j 6=i

kijPi(t) +
∑

j 6=i

kjiPj(t) , (1)

where the sums run over all system states j. The equa-
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FIG. 2: Schematic top view explaining the differences be-
tween a MD (left panel) and a kMC (right panel) trajectory.
Sketched is the path covered by an adsorbate that diffuses over
the surface by rare hops to nearest-neighbor sites. Whereas
the MD trajectory resolves the short-time vibrational dynam-
ics around the stable adsorption sites explicitly, this is coarse-
grained into the rate constants in the kMC simulations so that
the corresponding trajectory consists of a sequence of discrete
hops from site to site.

tion thus merely states that the probability to find the
system in a given state i at any moment in time t is
reduced by the probabilities to jump out of the present
state i into any other basin j, and is increased by the
probabilities to jump from any other basin j into the
present state i. These various probabilities are expressed
in the form of rate constants kij , which give the average
escape rate from basin i to basin j in units of inverse
time. Because of the Markovian nature of the state-to-
state dynamics, also these quantities are independent of
the system history and thus an exclusive function of the
properties of the two states involved. Assuming for now
that all rate constants for each system state are known,
the task of simulating the time evolution of the rare-event
system is in this description then shifted to the task of
solving the master equation, Eq. (1).

As we will see in the application example below, the
typical number of states in models for a reactive surface
chemistry is so huge that an analytic solution of the corre-
sponding high-dimensional master equation is unfeasible.
Following the usual stochastic approach of Monte Carlo
methods14,15, the idea of a kMC algorithm is instead to
achieve a numerical solution to this master equation by
generating an ensemble of trajectories, where each trajec-
tory propagates the system correctly from state to state
in the sense that the average over the entire ensemble of
trajectories yields probability density functions Pi(t) for
all states i that fulfill Eq. (1).

Since this ensemble aspect of kMC trajectories is quite
crucial, let me return to our example of the diffusing ad-
sorbate to further illustrate this point. Figure 2 shows
a schematic top view of our model surface sketching the
path covered by the adsorbate in a time span covering
a few of the rare diffusion events. The left panel shows
the trajectory as it would have been obtained in a MD
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simulation. The rare-event limitations to this simulation
technique are obvious by the many wiggles around each
one of the stable adsorption sites visited, representing the
large time span of vibrational motion before the adsor-
bate achieves the rare transition to a neighboring site.
The efficiency of a corresponding kMC trajectory, shown
in the right panel of Fig. 2, results precisely from the
fact that this vibrational short-term dynamics is elimi-
nated from the simulation and (as we will see below) is
instead appropriately accounted for in the rate constants
kij . The trajectory consists therefore of a mere series of
discrete hops from one stable adsorption site to another
one, or in the language of the master equation from state
i to another state j. Through which sequence of sites and
at which transition times the kMC trajectory proceeds is
randomly chosen by the kMC algorithm under appropri-
ate consideration of the probabilities as contained in the
rate constants kij . Contrary to the (for defined initial po-
sitions and momenta) deterministic MD trajectory, kMC
trajectories are therefore only meaningful in the sense
that averaging over a sufficiently large number of them
yields the correct probability with which the system is in
any of the states i at any moment in time t.
While this must always be kept in mind, it is also worth

noticing that the computation of most quantities of in-
terest would equally require some averaging over MD tra-
jectories. If we take the diffusion coefficient as a typical
target quantity within the area of our surface diffusion
model, one possible approach to the involved computa-
tion of the average displacement per time would for ex-
ample be to average over many hops observed during
one sufficiently long MD trajectory or average over many
shorter MD trajectories covering just one hop and start-
ing with different initial momenta. As long as the Markov
approximation is exactly fulfilled and the rate constants
are accurate, the result obtained from an averaging over
different kMC trajectories and the result obtained from
the MD procedure would then be indistinguishable, only
that the kMC approach is vastly more efficient and thus
presumably the only one of the two that is computation-
ally tractable.

C. kMC algorithms: From basics to efficiency

A kMC trajectory consists of a sequence of discrete
hops from one system state to another, where the random
selection of which state is next visited and after which
amount of time the corresponding hop occurs follows the
probabilities prescribed by the master equation, Eq. (1).
Starting in any given state of the system, an algorithm
generating such a trajectory must therefore appropriately
determine in which state to jump next and what the cor-
responding escape time ∆tescape is. The system clock is
then advanced by the escape time, t → t+∆tescape, and
the procedure starts anew. As illustrated in Fig. 1 for
the case of our two-well toy system, the resulting time
line has a staircase-like structure where the system al-

ways remains in one state for the time t to t + ∆tescape
before it hops to the next state.
Obviously, ∆tescape is determined by the rate constants

and in order to derive the exact relationship required for
the kMC algorithm let us stay with the two-well example.
In this system there is always only one possibility where
to go next. If in state A there is the possibility to jump
into state B with a probability expressed by the rate
constant kAB , and if in state B there is the possibility
to jump into state A with a probability prescribed by
the rate constant kBA. Now, one of the fundamental
ideas behind the entire kMC approach is that during its
thermal vibrational motion in one of the PES basins the
system loses the memory of its past history. Carrying this
picture one step further one may assume that this loss
of memory occurs continuously, so that the system has
the same probability of finding the escape path during
each short increment of time it spends in the PES basin.
This leads to an exponential decay statistics, i.e. the
probability that the system has e.g. escaped from state
A into state B after a time ∆t is 1− exp(−kAB∆t). The
connected probability distribution function for the time
of first escape pAB(∆t) is just the time derivative of this
and is a Poisson distribution,

pAB(∆t) = kAB exp (−kAB∆t) , (2)

centered around the average time for escape given by
∆tescape = k−1

AB . When only considering this average
time for escape, an executed jump from state A to state
B would therefore simply advance the system clock by
t → t + ∆tescape. Formally more correct is, however,
to advance the system clock by an escape time that is
properly weighted by the probability distribution func-
tion pAB(∆t).16,17 Generating such an exponentially dis-
tributed escape time is numerically achieved through the
expression

∆tescape = − ln(ρ)

kAB

, (3)

where ρ ∈ ]0, 1] is a random number. Equally, a jump
from state B to A would advance the system clock by
an exponentially distributed time −ln(ρ)/kBA. If, as in
the example in Fig. 1, basin B has a lower stability,
then the probability to jump out of this shallower well
will obviously be larger than jumping out of the deeper
well A, i.e. kBA > kAB . After Eq. (3), this means that
the typical escape time out of A will be larger than out
of B as illustrated by the schematic timeline also shown
in Fig. 1. Averaged over a sufficiently long time, we
therefore arrive at the expected result that the system
spends more time in the more stable state.
Generalizing the escape time procedure to realis-

tic systems with a manifold of different states i is
straightforward.17 Because of its loss of memory, the sys-
tem has at any moment in time a fixed probability to
find any one of the now many possible pathways out of
the present minimum, with the fixed probabilities for the
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FIG. 3: Flow chart illustrating the basic steps in the rejection-
free BKL algorithm. The loop starts with the determination
of all processes (and their rate constants) that are possible
for the current system configuration. After the generation
of two random numbers, the system is advanced according
to the process selected by the first random number and the
system clock increments according to the computed total rate
constant and the second random number, as prescribed by
an ensemble of Poisson processes. Thereafter the loop starts
anew, or the simulation is terminated, if a sufficiently long
time span has been covered.

different pathways given by the different rate constants.
Each pathway has thus its own probability distribution
function for the time of first escape. Say, if we are cur-
rently in state i, we have for each possible pathway to
another state j a Poisson distribution

pij(∆t) = kij exp (−kij∆t) . (4)

Since only one event can be the first to happen, an in-
tuitive generalization to propagate the kMC trajectory,
also known as the first-reaction method18, would be to
draw a random number for each possible pathway and
therewith determine for each one of them an exponen-
tially distributed escape time through an expression of
the form of Eq. (3). We then pick the pathway with
the shortest escape time, move the system to the state
reached by that pathway, advance the system clock by
the corresponding shortest escape time, and begin again
from the new state. Even though this is a perfectly valid
kMC algorithm, it is clearly not particularly efficient, as
we have to draw a lot of random numbers to generate all
the different escape times and then discard all but one of
them.
Among a variety of numerically efficient kMC algo-

rithms suggested in the literature19,20, the one most com-
monly used in practice is often attributed to Bortz, Kalos
and Lebowitz21 even though one can clearly trace its idea
back further8. As such, it is sometimes referred to as the
BKL algorithm, with the “N -fold way”, residence-time
algorithm or Gillespie algorithm being other frequently

employed names. Figure 3 compiles a flowchart of this al-
gorithm. As necessarily required in any kMC procedure,
it starts with the determination of all N possible pro-
cesses, aka escape pathways, out of the present system
configuration, aka state. The corresponding N different
rate constants are then summed to yield the total rate
constant

ktot =

N
∑

p=1

kp . (5)

Executed is the process q, which fulfills the condition

q
∑

p=1

kp ≥ ρ1ktot ≥
q−1
∑

p=1

kp , (6)

where ρ1 ∈ ]0, 1] is a random number. In order to un-
derstand the idea behind this condition imagine for each
process p a block of height kp. If we then stack all of
these blocks on top of each other as illustrated in Fig. 3,
we arrive at a stack of total height ktot. Choosing a ran-
dom height along this stack, i.e. 0 < ρ1ktot ≤ ktot, will
point to one of the blocks and this is the process that is
selected. Obviously, a process with a large rate constant,
i.e. a large block height, has a higher chance of being
chosen in this way, and this probability weighted selec-
tion is precisely what the partial sums in Eq. (6) achieve.
By executing the selected process the system is moved to
the new configuration, the system clock is advanced by

t → t− ln(ρ2)

ktot
, (7)

where ρ2 ∈]0, 1] is another random number, and the en-
tire cycle starts anew from the new system state. Instead
of drawing N different random numbers for the N pos-
sible pathways as in the intuitive first-reaction method,
this algorithm thus needs only two in each cycle, which
in case of realistic systems of the type discussed below
makes a huge computational difference. Each cycle fur-
thermore definitely propagates the system to a new state,
which is also often viewed as an advantage of the corre-
sponding class of “rejection-free” kMC algorithms.
An important aspect of the BKL algorithm is that the

time by which the clock is advanced, cf. Eq. (7), is
independent of which process was actually chosen. To
understand this it is important to realize that the overall
scale of ∆tescape is governed by the fastest process that
can occur in a given configuration. This process with
the highest rate constant has the shortest average escape
time, cf. Eq. (4), and even in the maybe more intuitive
first-reaction method a slower process has only a chance
of getting selected if its randomly drawn escape time is of
this order of magnitude. Since the Poisson distribution of
this slower process is centered around a longer average es-
cape time, this happens only rarely and correspondingly
the slow process occurs less often than the fast ones in
the generated kMC trajectory as should be the case. In
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the BKL algorithm this differentiation between slow and
fast processes is instead achieved through the probabil-
ity weighted selection of Eq. (6). Nevertheless, since the
overall magnitude of ktot is predominantly determined
by the high rate constant processes, the amount of time
by which the clock is advanced after the execution of a
process, cf. Eq. (7), is equally reduced as soon as a fast
process is possible. The same argument holds of course
for increasing system sizes. Larger system size typically
means more processes that can occur. With more terms
in the sum in Eq. (5) ktot gets larger, similarly reducing
the time increment achieved by the individual kMC steps
and thereby limiting the total simulation times that can
be reached.
In this respect, we see that the often made statement

that kMC enables simulation time up to seconds or longer
is a bit sloppy. The total simulation time that can be
reached depends instead on the system size and predom-
inantly on the fastest process in the system, both of which
dictate the increment in time typically achieved by one
kMC step. If the system features a process that happens
on a nanosecond time scale, it is this process and not the
possibly more relevant less frequent ones that will virtu-
ally always be executed. Each kMC step then advances
the time also only on the order of a nanosecond, which
may therewith well become a bottleneck for the simula-
tion. When people hence refer to the macroscopic times
that can be reached with kMC simulations, this simply
means that the fastest processes in the particular prob-
lems and system sizes they studied allowed them to do
so – or that they resorted to some of the known tricks
to address this problem (vide infra). In fact, it depends
on the physics of the problem what simulation times are
required, and even when “only” achieving say microsec-
onds, a kMC simulation may still be an enormous asset.
This said, the limitations set by the presence of very fast
processes are one of the current frontiers of this method
to which I will return at the end of this Chapter.

D. Transition-state theory

From the preceding discussion it is clear that the ef-
ficiency of a kMC simulation in tackling the long-time
evolution of rare-event systems arises from the fact that
the short-time vibrational motion around the individ-
ual PES basins is appropriately coarse-grained into the
rate constants kij . Up to now we have, however, simply
assumed that these probabilities for the hops between
the different system states are known. Obviously, if one
only aspires a conceptual discussion, one could use here
ad hoc values that either fall purely from heaven or are
(with more or less justification) believed to be somehow
“characteristic” for the problem. In fact, the original de-
velopment of kMC theory was done within this kind of
approach9,16–18,21,22 and by now there is an entire bulk
of literature where kMC simulations have been used in
this sense. As stated in the introduction, the idea (and

value) of modern first-principles kMC simulations is in-
stead to be material-specific, and in the philosophy of
hierarchical models, to carry the predictive power of first-
principles electronic structure theories to the mesoscopic
scale.2 For this type of modeling based on a proper micro-
scopic meaning, an important aspect is then to derive a
stringent relationship between the rate constants kij and
the PES information provided from the first-principles
theories.
As a first step in this derivation let us consider the

constraints coming from the master equation for a system
that has reached steady state. With a vanishing time
derivative in Eq. (1), we arrive at one condition

∑

j 6=i

[

kijP
∗
i − kjiP

∗
j

]

= 0 (8)

for every state i, where P ∗
i and P ∗

j are the time-
independent probabilities that the steady-state system
is in state i and j, respectively. This condition states
that at steady state the sum of all transitions into any
particular state i equals the sum of all transitions out of
this state i. Since such a condition holds for every single
state i in the system, the manifold of such conditions is
in general only fulfilled, if every term in the sum in Eq.
(8) separately equals to zero,

kij
kji

=
P ∗
j

P ∗
i

. (9)

This is the detailed balance (or microscopic reversibil-
ity) criterion6, which holds independently for the transi-
tions between every pair of states i and j in the system.
If the system has furthermore reached thermodynamic
equilibrium with respect to the population of these two
states, then the fractional population of states i and j on
the right hand side of Eq. (9) is simply proportional to
the Boltzmann weighted difference in the free energies of
these two states. For say the case of our surface diffusion
model and the two bound states of different stability, A
and B, we would have the condition

kAB

kBA

= exp

(

−FB(T )− FA(T )

kBT

)

, (10)

where kB is the Boltzmann constant, and FA(T ) and
FB(T ) are the free energies of states A and B, respec-
tively, comprising each the total energy of the state and
its vibrational free energy at the temperature T .
The detailed balance relation places some constraints

on the rate constants, and the PES information entering
are the relative energies of the different states and their
vibrational properties, i.e. data about the (meta)stable
minima. For just the evaluation of equilibrium proper-
ties, no further specification of the rate constants is in
fact needed. Based on knowledge of the PES minima
equilibrium Monte Carlo (MC) algorithms like the one
due to Metropolis23 or due to Kawasaki24 thus construct
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their transition probabilities according to detailed bal-
ance. In this respect, it is worth noting that in a dy-
namical interpretation, the resulting MC trajectories can
therefore also be seen as numerical solutions to the mas-
ter equation, Eq. (1). This holds only for the equilibrated
system though. While it is admittedly tempting to also
assign some temporal meaning e.g. to the initial part of
a MC trajectory when the system has not yet reached
equilibrium, it is important to realize that a MC step
does in general not correspond to a fixed amount of real
time.15 Only kMC algorithms propagate the system prop-
erly in time, and for this they need the absolute values
of the rate constants, not just the relative specification
as achieved by detailed balance.17 The latter criterion
is nevertheless an important constraint, in particular in
light of the frequently quite approximate determination
of the rate constants to be discussed below. If (inad-
vertently) different and inconsistent approximations are
made for the forward and backward rate constants be-
tween any two states, detailed balance is violated and
the corresponding kMC simulations will never attain the
correct thermodynamic limits.

At present, the most commonly employed approach to
obtain the absolute values of the rate constants in first-
principles kMC simulations in the area of surface chem-
istry and catalysis is transition-state theory (TST)25–27.
In TST, the rate constant for the transition from state
A to state B in our two-well toy system is approximated
by the equilibrium flux through a dividing surface sep-
arating the two states: Imagine creating an equilibrium
ensemble by allowing a large number of replicas of this
two-state system to evolve for a sufficiently long time
that many transitions between the two states have oc-
curred in each replica. If we then count the number of
forward crossings through a dividing surface separating
state A and B that occur per unit time in this ensemble,
and divide this by the number of trajectories that are
on average in state A at any time, this yields the TST
approximation to the rate constant, kTST

AB . Apart from
the assumed equilibrium, another important implicit as-
sumption is here that successive crossings through the
dividing surface are uncorrelated in the sense that each
forward crossing takes the system indeed from state A
to state B. In reality, there is, of course, the possibility
that a trajectory actually recrosses the dividing surface
several times before falling either into state A or state
B. Since this leads to kTST

AB overestimating the real rate
constant, the best choice of dividing surface is typically
near the ridge top of the PES, where recrossings and in
fact the entire equilibrium flux is minimized.27

In this respect, it comes as no surprise that in harmonic
TST (hTST)28, the dividing surface is actually taken to
be the hyperplane perpendicular to the reaction coordi-
nate at the maximum barrier along the minimum-energy
path connecting the two states, with the understanding
that the equilibrium flux occurs predominantly through
this one transition state. With the additional approx-
imation that out to the displacements sampled by the

thermal motion the PES around the minimum and at
the saddle point (in the dimensions perpendicular to the
reaction coordinate) is well described by a second-order
expansion, i.e. that the corresponding vibrational modes
are harmonic, this then leads to very simple expressions
for the rate constants.27 For the transition between the
two bound states in Fig. 1 one can e.g. derive the form29

kTST
AB (T ) = fTST

AB (T )

(

kBT

h

)

exp

(

−∆EAB

kBT

)

,

(11)
where h is Planck’s constant and

fTST
AB (T ) =

qvibTS(AB)

qvibA

. (12)

Here, ∆EAB denotes the energy barrier between the two
sites, qvibTS(AB) the partition function at the transition

state, and qvibA the partition function at the bound state
A.
With a corresponding expression for the backward rate

constant kTST
BA , the form of Eq. (11) naturally fulfills the

detailed balance condition, cf. Eq. (10). Equally im-
portant is to realize that because kTST

AB is an equilibrium
property, there is no need to ever perform any actual
dynamical simulations. Instead, only static PES infor-
mation is required in form of the energies at the initial
state minimum and at the transition state, as well as
the curvature around these two points for the harmonic
modes. It is this efficiency of hTST that largely explains
its popularity in first-principles kMC simulations, where
as we will further discuss below every single energy and
force evaluation “hurts”. The other reason is that hTST
tends to be a quite good approximation to the exact rate
constant for the typical processes in surface chemical ap-
plications, like diffusion or surface reaction events with
a tight transition state. Loosely speaking, the making
and breaking of strong covalent bonds involved in these
processes seems to give rise to rather smooth PES land-
scapes, with deep troughs and simply structured ridges
in between. These (anticipated) characteristics do not
necessarily call for more elaborate reaction rate theories
like transition-path sampling30 or even just more refined
TST versions like variational TST31, in particular as all
these approaches require significantly more PES evalua-
tions and thus come at a significantly higher computa-
tional cost in first-principles kMC.
In fact, with the vibrational properties of atomic

or small molecular adsorbates at minimum and transi-
tion state often found to be rather similar, and hence
fTST
AB (T ) ∼ 1, practical work has on the contrary fre-
quently even dodged the vibrational calculations and
resorted instead to the yet more crude approximation
of setting the prefactor simply constant to kBT/h ≈
1013 s−1 for temperatures around room temperature. Es-
pecially with applications in surface chemistry and catal-
ysis (involving larger molecules) in mind, one needs to
stress in this respect that this procedure is not generally
valid and does e.g. certainly not apply to unactivated
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adsorption processes, where the prefactor needs to ac-
count for the strong entropy reduction in going from the
gas-phase to the bound state at the surface. Assuming
at a local partial pressure pn of species n of mass mn

an impingement as prescribed by kinetic gas theory, the
starting point for the calculation of the rate constant e.g.
into site B is then the expression29,

kadsn,B(T, pn) = S̃n,B(T )
pnAuc√
2πmnkBT

, (13)

where the local sticking coefficient S̃n,B(T ) governs which
fraction of these impinging particles actually sticks to a
free site B, and Auc is the area of the surface unit-cell
containing site B. The determination of the local sticking
coefficient dictates in principle explicit dynamical simu-
lations, which in practice may again be avoided by resort-
ing to some approximate treatments. Defering the reader
to ref. [29] for a detailed discussion of this point, suffice it
here to repeat that in this case or when in general resort-
ing to approximations in the rate constant determination
particular care has to be exerted that this does not infer
a violation of detailed balance.

E. First-principles rate constants and the lattice

approximation

Within the hTST framework, the most important PES
information entering the determination of a rate constant
is apart from the (meta)stable minimum the location of
the transition state. In the surface catalytic applications
on which we focus here, the latter region of the PES cor-
responds typically to the situation where chemical bonds
are made or broken. This fact imposes an important con-
straint, when now considering which methodology to use
that would provide the required PES data. Electronic-
structure theories3,4, comprising ab initio quantum chem-
istry as well as density-functional methods, explicitly
treat the electronic degrees of freedom and are therefore
the natural base for such a modeling. However, in view of
the high computational cost incurred by these techniques,
and considering that for the rate constant determination
only the ground-state energy and not the additionally
provided detailed electronic structure data is necessary,
an appealing approach would be to condense the informa-
tion into a suitably parameterized interatomic potential.
Such potentials (or force fields) then yield the energy and
forces solely as a function of the nuclear positions and do
so at a significantly reduced computational cost. While
this approach appears to be highly successful e.g. in
the area of biophysical applications and finds widespread
use in applied materials research, it is crucial to realize
that few, if any of the existing atomistic potentials can
deal with the complex charge transfer or changes in hy-
bridization that are critical when bond breaking or bond
making plays a role. When really aspiring a material-
specific and predictive-quality modeling of surface chem-
istry, the quantum mechanical nature of the chemical

bonds needs therefore to be explicitly treated, dictating
the use of electronic-structure theories to generate what
is then commonly called first-principles rate constants.

For the extended metal or compound surfaces encoun-
tered in catalytic problems, DFT is currently the main
workhorse among the electronic-structure theories. De-
ferring to excellent textbooks for details32–34, the deci-
sive gist of this technique is that all complicated many-
body effects of the interacting electron gas are condensed
into the so-called exchange and correlation functional.
The exact form of this functional remains elusive, neces-
sitating the use of approximate functionals35, with lo-
cal (local-density approximation, LDA) and semi-local
(generalized gradient approximation, GGA) functionals
still forming the most widely employed class in current
applications5. While exact in principle, DFT in prac-
tice is thus not, and, moreover, does mostly not even
meet the frequent demand for “chemical accuracy” (1
kcal/mol≈ 0.04 eV) in the energetics.36 As studies of the
kind illustrated in the next Section only become com-
putationally feasible at all by the unbeaten efficiency of
DFT, this uncertainty is something that must be kept
in mind at all times and we will return to a more de-
tailed analysis of its consequences towards the end of this
Chapter. With expected typical errors in DFT-LDA or
DFT-GGA barriers of the order of say ∼ 0.2 eV, this also
further justifies the use of a crude reaction rate theory like
hTST in most existing first-principles kMC work: With
such an error entering the exponential in the rate con-
stant expression, Eq. (11), worrying about a more elab-
orate determination e.g. of the prefactor may not be the
most urgent issue. Just to set these critical remarks into
perspective though, let me stress that DFT is at present
the method of choice. With not many (semi-)empirical
potentials on the market that are parameterized to deal
with molecules at metal or oxide surfaces anyway, quali-
tatively wrong barriers with errors exceeding ∼ 1 eV (and
therewith often completely wrong hierarchies in the pro-
cess rate constants) would not be uncommon for any of
them. If one thinks kMC based on DFT rate constants
has problems, then simulations based on barriers from
semi-empirical potentials are completely pointless.

Getting DFT energies and forces for reactions at ex-
tended metal or compound surfaces is typically achieved
using so-called supercell geometries.37,38 With the tech-
nicalities of such calculations e.g. reviewed by Payne et

al.39, suffice it here to say that this automatically implies
having to deal with rather large systems. In view of the
huge computational cost connected to such calculations
one will consequently want to make sure that obtaining
the required PES information and, in particular, locat-
ing the transition state, can be done with as little energy
and force evaluations as possible. In mathematical terms,
locating the transition state means identifying a saddle
point along a reaction path on a high-dimensional sur-
face. Completely independent of the computational con-
straints, this is not at all a trivial problem, and the devel-
opment of efficient and reliable transition-state search al-
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gorithms is still a very active field of current research.40,41

Among a variety of existing approaches, string algorithms
like climbing-image nudged elastic band42,43 enjoy quite
some popularity in surface reaction studies, and are by
now included in most of the modern DFT software pack-
ages. Despite this ready availability, caution is always ad-
vised with these algorithms as none of them is fool-proof.
In particular if existing symmetries can be efficiently ex-
ploited to reduce the dimensionality of the problem, map-
ping the PES along a couple of suitable reaction coordi-
nates might therefore always be a worthwhile alternative,
that in addition provides also more insight into the over-
all topology of the PES than just knowing where the
saddle point is.

In either approach, identification of the transition state
and the ensuing calculation of the rate constant for an
individual pathway using DFT energies and forces is
nowadays typically computationally involved, but feasi-
ble. However, the more different processes there are, the
more calculations are necessary. The feasibility state-
ment holds therefore only if the total number of indepen-
dent rate constant calculations, i.e. primarily the expen-
sive transition-state searches, remains finite, if not small.
In order to ensure this, first-principles kMC simulations
resort up to now almost exclusively to a lattice mapping
in conjunction with the thereby enabled exploitation of
locality. Let me explain this concept again on the basis
of the surface diffusion problem. Quite characteristic for
many problems in surface catalysis the adsorbate con-
sidered in this example shows a site-specific adsorption.
In the case of a simple single-crystal surface it is then
straightforward to map the total diffusion problem onto
the periodic lattice formed by these sites, say a cubic lat-
tice in the case of adsorption into the hollow sites of a
fcc(100) surface. On this lattice a single diffusion event
translates simply into a hop from one discrete site to an-
other one, and the advantage is that one has a unique
specification of a given system state i just on the basis
of the population on the different lattice sites. If one
now constructs a catalog of possible processes and their
corresponding rate constants for every possible state on
the lattice before the kMC simulation, one can check at
every kMC step the configuration on the lattice, identify
the state and then perform the random selection which
process is executed at essentially zero computational cost
by looking up the processes and their rate constants in
the catalog.44

The lattice mapping together with the rate constant
catalog achieves already that the total number of rate
constants that needs to be computed is finite. A sig-
nificant reduction of this number that ultimately makes
the simulations feasible is thereafter achieved by consid-
ering the locality of most surface chemical processes. As-
sume in the simplest case that the diffusion process of
the adsorbate would not be affected at all by the pres-
ence of other nearby adsorbates, apart from the fact that
no diffusion could occur into any already occupied sites.
Despite an astronomically large number of different sys-

FIG. 4: Schematic top view illustrating the effect of lateral
interactions with the nearest-neighbors in the surface diffu-
sion problem with one atomic surface species and site-specific
adsorption into the hollow sites of a fcc(100) lattice. Consid-
eration of such lateral interactions requires the computation
of five different rate constants, corresponding to the motions
sketched with differently colored arrows, see text (small red
spheres = adsorbate, large gray sphere = substrate atoms).

tem states corresponding each to a different spatial dis-
tribution of a given number of adsorbates on the lattice,
only one single rate constant would need to be computed,
namely the rate constant for the pathway of a hop from
one site to the next. Admittedly, such a situation with
a complete absence of lateral interactions between the
adsorbates is rarely realized. Nevertheless, nothing pre-
vents us from extending the dependence on the local en-
vironment. Staying with the diffusion problem, imagine
that the diffusion process is now only affected by the pres-
ence of other adsorbates in nearest neighbor sites. For
the illustrative example of just one adsorbate species on
a cubic lattice this means that – regardless of the occupa-
tion of more distant lattice sites – now five different rate
constants need to be computed as illustrated in Fig. 4:
One for the diffusion process of an “isolated” adsorbate
without any nearest neighbors, two with one nearest-
neighbor site occupied, as well as one with two and one
with three such sites occupied (if all four nearest-neighbor
sites are occupied, the adsorbate obviously cannot move
via a nearest-neighbor hop, so no rate constant calcula-
tion is required here). If the diffusion process depends
furthermore on how the neighbors are arranged around
the diffusing adsorbate, further rate constants could be
required, e.g. to distinguish the situation with two neigh-
bors either located on diagonal neighboring sites of the
adsorbate as in Fig. 4 or not. Consideration of an in-
creasing local environment thus increases the number of
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inequivalent rate constants that need to be computed,
and this number increases steeply when accounting for
the constellation in the second, third and so on nearest-
neighbor shells. On the other hand, depending on the
nature of the surface chemical bond such lateral interac-
tions also decay away more or less quickly with distance,
so that either a truncation or a suitable interpolation45

is possible, in either case with only a quite finite amount
of different DFT rate constant calculations remaining.
This leaves the problem of how to determine in the

first place which lateral interactions are actually opera-
tive in a given system, keeping additionally in mind that
lateral interactions especially at metal surfaces are by no
means necessarily restricted to just the pairwise inter-
actions discussed in the example. For site-specific ad-
sorption the rigorous approach to this problem is to ex-
pand DFT energetics computed for a number of different
ordered superstructures into a lattice-gas Hamiltonian.2.
This cluster expansion technique46–48 is to date primarily
developed with the focus on lateral interactions between
surface species in their (meta)stable minima2,45,49–53, but
generalizing the methodology to an expansion of the lo-
cal environment dependence of the transition states is
straightforward. Due to the computational constraints
imposed by the expensive transition-state searches, ex-
isting expansions in first-principles kMC work in the field
are often rather crude, truncating the dependence on the
local environment often already at the most immediate
neighbor shells. In this situation, it has been suggested54

that a less rigorous alternative could be to resort to semi-
empirical schemes like the unity bond index-quadratic
exponential potential (UBI-QEP) method55 to account
for the effects of the local environment. In either case,
great care has again to be taken that applying any such
approximations does not lead to sets of rate constants
that violate the detailed balance criterion. Particularly
in models with different site types and different surface
species, this is anything but a trivial task.

III. A SHOWCASE

Complementing the preceding general introduction to
the underlying concepts, let me continue in this Section
with a demonstration of how first-principles kMC simu-
lations are put into practice. Rather than emphasizing
the breadth of the approach with a multitude of differ-
ent applications, this discussion will be carried out us-
ing one particular example, namely the CO oxidation at
RuO2(110). With a lot of theoretical work done on the
system, this focus enables a coherent discussion of the
various facets, which I feel is better suited to provide an
impression of the quality and type of insights that first-
principles kMC simulations can contribute to the field
of heterogeneous catalysis (with refs. 56,57 e.g. pro-
viding similar compilations for epitaxial growth related
problems). Since the purpose of the example is primar-
ily to highlight the achievements and limitations of the

cus site bridge site
bridge
sites

cus
sites
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FIG. 5: Top view of the RuO2(110) surface showing the
two prominent active sites (bridge and cus). Ru = light,
large spheres, O = dark small spheres. When focusing on
these two site types, the surface can be coarse-grained to the
lattice model on the right, composed of alternating rows of
bridge and cus sites. Atoms lying in deeper layers have been
whitened in the top view for clarity.

methodological approach, suffice it to say that the moti-
vation for studying this particular system comes largely
from the extensively discussed pressure gap phenomenon
exhibited by “Ru”-catalysts, with the RuO2(110) surface
possibly representing a model for the active state of the
catalyst under technologically relevant O-rich feeds (see
e.g. ref. [58] for more details and references to the origi-
nal literature).

A. Setting up the model: Lattice, energetics and

rate constant catalog

To some extent the system lends itself to a modeling
with first-principles kMC simulations, as extensive sur-
face science experimental59 and DFT-based theoretical
studies29 have firmly established that the surface kinet-
ics is predominantly taking place at two prominent active
sites offered by the rutile-structured RuO2(110) surface,
namely the so-called coordinately unsaturated (cus) and
the bridge (br) site. As illustrated in Fig. 5 this leads
naturally to a lattice model where these two sites are ar-
ranged in alternating rows, and to consider as elementary
processes the adsorption and desorption of O and CO
at the bridge and cus sites, as well as diffusion and sur-
face chemical reactions of both reaction intermediates ad-
sorbed at these sites. With a very small DFT-computed
CO2 binding energy to the surface29, the surface reac-
tions can furthermore be modeled as associative desorp-
tions, i.e. there is no need to consider processes involving
adsorbed CO2.
Another benign feature of this system is its extreme

locality in the sense that DFT-computed lateral interac-
tions at the surface are so small that they can be ne-
glected to a first approximation.29 Considering the ex-
haustive list of non-correlated, element-specific processes
that can occur on the two-site-type lattice then leads to
26 different elementary steps, comprising the dissociative
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FIG. 6: Calculated DFT-PES of one of the possible CO ox-
idation reaction mechanisms at the RuO2(110) model cata-
lyst surface. The high-dimensional PES is projected onto two
reaction coordinates, representing two lateral coordinates of
the adsorbed Ocus and COcus (cf. Figure 5). The energy zero
corresponds to the initial state at (0.00 Å, 3.12 Å), and the
transition state is at the saddle point of the PES, yielding
a barrier of 0.89 eV. Details of the corresponding transition
state geometry are shown in the inset. Ru = light, large
spheres, O = dark, medium spheres, and C = small, white
spheres (only the atoms lying in the reaction plane itself are
drawn as threedimensional spheres). (From ref. [60]).

adsorption of O2 resulting in three possible postadsorp-
tion states (two O atoms in neighboring cus sites, two O
atoms in neighboring br sites, or two O atoms, one in a
br site and one in a neighboring cus site); the associative
desorption of O2 from each of the three configurations
of the O atoms; the adsorption of CO in cus or br sites;
the desorption of CO from cus or br sites; the reaction
of CO with O from four different initial states with the
intermediates in neighboring sites (O in cus reacting with
CO in cus, O in cus with CO in br, O in br with CO in
br, and O in br with CO in cus); the corresponding four
backreactions dissociating gas-phase CO2 into adsorbed
CO and O; and the hops of O and CO from a site to the
nearest site (for all possible site combinations).
The rate constants for all these processes were calcu-

lated using DFT-GGA to determine the energy barriers
and TST expressions like those of Eqs. (11) and (13), en-
suring that all forward and backward processes obey de-
tailed balance.29 Fig. 6 shows one of the correspondingly
computed PES mappings along high-symmetry reaction
coordinates and Table I lists all the resulting energy bar-
riers as used in the kMC simulations. Just to set the
perspective, it is worth mentioning that it took of the
order of half a million CPU-hours at the time on Com-
paq ES45 servers to assemble this totality of energetic
information required for the rate constant catalog.
The relevant physics that emerges at the level of

this energetics is that there is a strong asymmetry in

TABLE I: Binding energies, Eb, for CO and O (with respect
to (1/2)O2) at bridge and cus sites, cf. Fig. 5, and diffusion
energy barriers, ∆Ediff , to neighboring bridge and cus sites,
as used in the kMC simulations. The desorption barriers are
given for unimolecular and for associative desorption with ei-
ther Ocus or Obr. This includes therefore surface reactions
forming CO2, which are considered as associative desorption
of an adsorbed O and CO pair. All values are in eV. (From
ref. [29]).

Eb ∆Edes ∆Ediff

unimol. with Obr with Ocus to br to cus

CObr -1.6 1.6 1.5 0.8 0.6 1.6
COcus -1.3 1.3 1.2 0.9 1.3 1.7
Obr -2.3 − 4.6 3.3 0.7 2.3
Ocus -1.0 − 3.3 2.0 1.0 1.6

the O binding to the two active sites, quite strong to
the bridge sites (∼ 2.3 eV/atom) and only moderate
at the cus sites (∼ 1.0 eV/atom). CO adsorption, on
the other hand, has a rather similar strength of the or-
der of ∼ 1.5 eV/atom at both sites. From the estab-
lished importance of the oxygen-metal bond breaking
step in catalytic cycles and the Sabatier principle10–12

one would thus expect the Ocus species to be mostly re-
sponsible for the high catalytic activity of this model
catalyst at high pressures. In fact, this notion, as ex-
pressed by the well-known Brønsted-Evans-Polanyi type
relationships61, is fully confirmed by the computed re-
action barriers, with the two reactions involving the
strongly bound Obr species exhibiting rather high bar-
riers (Obr +CObr :∼ 1.5 eV, Obr +COcus :∼ 1.2 eV) and
the two reactions involving the moderately bound Ocus

species exhibiting lower barriers (Ocus +CObr :∼ 0.8 eV,
Ocus+COcus :∼ 0.9 eV). From a mere inspection of these

energetics, particularly the lowest-barrier Ocus+CObr →
CO2 reaction appears thus most relevant for the catal-
ysis, and one would imagine it to dominate the overall
activity.

B. Steady-state surface structure and composition

With the rate constant catalog established, a first im-
portant application area for kMC simulations is to de-
termine the detailed composition of the catalyst surface
under steady-state operation, i.e. the spatial distribution
and concentration of the reaction intermediates at the ac-
tive sites. In the absence of mass transfer limitations in
the reactor setup, the reactant partial pressures enter-
ing the surface impingement, Eq. (13), can be taken as
equal to those at the inlet, without build-up of a signif-
icant product concentration in the gas-phase above the
working surface. If one furthermore assumes that any
heat of reaction is quickly dissipated away, an approxi-
mation to steady-state operation can simply be achieved
by performing the kMC simulations at constant reactant
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FIG. 7: Time evolution of the site occupation by O and CO of
the two prominent adsorption sites, bridge and cus, cf. Fig. 5.
The temperature and pressure conditions chosen (T = 600K,
pCO = 7atm, pO2

= 1atm) correspond to optimum catalytic
performance (vide infra). Under these conditions kinetics
builds up a steady-state surface population in which O and
CO compete for either site type at the surface, as reflected
by the strong fluctuations in the site occupations within the
employed (20 × 20) simulation cell. Note the extended time
scale, also for the “induction period” until the steady-state
populations are reached when starting from a purely oxygen
covered surface. (From ref. [29]).

partial pressures pO2
and pCO, at constant global tem-

perature T , and instantly removing any formed CO2.

Figure 7 shows the time evolution of the actual and
time-averaged surface coverages for a corresponding con-
stant (T, pO2

, pCO)-run starting from an arbitrary ini-
tial lattice population (in this case a fully O-covered
surface).29 Despite notable fluctuations in the actual pop-
ulations (characteristically determined by the size of the
employed simulation cell, here a (20×20) lattice with 200
br and 200 cus sites), steady-state conditions correspond-
ing to constant average values for all surface species are
reached after some initial induction period. Although the
dynamics of the individual elementary processes takes
place on a picosecond time scale, this induction period
can – depending on the partial pressures – take of the
order of a tenth of a second even at this rather elevated
temperature. At lower temperatures around room tem-
perature, this becomes even more pronounced, and due
to the decelerated rate constants the corresponding times
(covered by an equivalent number of kMC steps) are or-
ders of magnitude longer. These time scales are an im-
pressive manifestation of the rare-event nature of sur-
face catalytic systems, considering that in the present
example the evolution to the active state of the surface
involves only the kinetics at two prominent adsorption
sites without any complex morphological changes of the
underlying substrate. It is clearly only the efficient time
coarse-graining underlying kMC algorithms that makes it
possible to reach such time scales, while still accounting

for the full atomic-scale correlations, fluctuations, and
spatial distributions at the catalyst surface.

Performing kMC runs starting from different initial
lattice configurations and with different random number
seeds allows to verify if the true dynamic steady-state for
a given (T, pO2

, pCO) environment is reached, and in the
present system no indication for multiple steady-states
was found29. In this case, the surface populations under
given gas-phase conditions as obtained from averaging
over sufficiently long time spans are then already well
defined in the sense that no further averaging over dif-
ferent kMC trajectories is required. Corresponding in-
formation about the concentration of the reaction inter-
mediates at the active sites is therefore readily evalu-
ated for a wide range of reactive environments ranging
from ultra-high vacuum to technologically relevant con-
ditions with pressures of the order of atmospheres and
elevated temperatures. One way of summarizing the ob-
tained results is displayed in the middle panel of Fig. 8,
which compiles the dominant surface species, also called
most abundant reaction intermediates (MARI), at con-
stant temperature and as a function of the reactant par-
tial pressures.29 Note that the total computational time
to obtain such a “kinetic phase diagram”63 is typically
insignificant compared to the afore mentioned cost of as-
sembling the first-principles rate constant catalog. In
the present system this is particularly pronounced, as
the short correlation lengths resulting from the absence
of lateral interactions enable the use of rather small sim-
ulation cells and as there is no kMC bottleneck in form of
the discussed problem of a low-barrier process operating
on a much faster time scale than all others.

At first glance, the overall structure of Fig. 8 is not
particularly surprising. In O-rich environments the sur-
face is predominantly covered with oxygen, in CO-rich
environments the surface is predominantly covered with
CO, and in between there is a transition from one state
to the other which coincides with O and CO both be-
ing present at the surface in appreciable amounts. Such
a transition from O-poisoned to CO-poisoned state de-
pending on the partial pressure ratio is intuitive and con-
ceptually already grasped e.g. by the early ZGB-model64.
The real advance brought by the first-principles kMC
simulations is that this information is not only provided
for a generic model, but specifically for the RuO2(110)
system and without empirical input. Unlike in macro-
scopic engineering-type models as e.g. through the MARI
approximation the dominant surface species are thus not
assumed, but come out as the result of the proper eval-
uation of the statistical interplay of microscopically cor-
rectly described elementary processes.

This rigorous solution of the master equation, cf. Eq.
(1), is also what distinguishes kMC simulations from
more approximate theories that are otherwise equally
built on a microscopic reaction mechanism as concerns a
set of elementary processes and their rate constants. In
prevalent microkinetic modeling the master equation is
simplified through a mean-field approximation, leading



13

pO (atm)
2

pO (atm)
2

COCObrbr//--

COCObrbr/CO/COcuscus

OObrbr/O/Ocuscus

110-5 10+510-15 10-10

OObrbr// --

COCObrbr/CO/COcuscus

1

10-5

105

OObrbr// -- OObrbr/O/Ocuscus

1

10-5

105

10-10 110-5 10+510-15

pO (atm)
2

p
C

O
(a

tm
)

OObrbr/CO/COcuscus

1

105

10-5

10-10 10-5 1 10+5

FIG. 8: Steady-state surface composition of RuO2(110) in an O2/CO environment at T = 600K. In all non-white areas, the
average site occupation is dominated (> 90%) by one species, i.e. either O, CO or empty sites (−). The labels correspondingly
characterize the surface populations by indicating this majority species at the bridge and cus sites. In the white regions there is
a more complex coexistence of reaction intermediates and vacancies at the active sites. Compared are the results obtained by
the first-principles kMC simulations (middle panel) to more approximate theories: Constrained atomistic thermodynamics (left
panel) and microkinetic rate equations (right panel). Above the dashed line in the left panel, bulk RuO2 is thermodynamically
unstable against CO-induced decomposition, see text. (From refs. [29,60,62]).

to a set of coupled rate equations for the average con-
centrations of the different surface species.11,12,65 Con-

strained atomistic thermodynamics, on the other hand,
neglects the effect of the on-going catalytic reactions and
evaluates the surface populations in equilibrium with
the reactive environment.60,66 Essentially it thus corre-
sponds to a kMC simulation where the reaction events
are switched off, but because of its equilibrium assump-
tion gets away with significantly less first-principles cal-
culations. To better assess how these approximations
can harm the theory, it is instructive to compare the
results obtained with the three techniques when using
always exactly the same input in form of the described
set of elementary processes and DFT rate constants for
the CO oxidation at RuO2(110). The corresponding “ki-
netic phase diagrams” are shown in Fig. 8, from where
one can directly see that in terms of the overall topol-
ogy the rate equation approach comes rather close to the
correct kMC solution.62 Quantitatively, there are, how-
ever, notable differences and we will return to this point
in more detail below. In the case of constrained atomistic
thermodynamics the deviations under some environmen-
tal conditions are much more substantial, yet to be ex-
pected and easily rationalized.60,66 They concern promi-
nently the presence of the strongly-bound Obr species.
For the thermodynamic approach only the ratio of ad-
sorption to desorption matters, and due to its very low
desorption rate, Obr is correspondingly stabilized at the
surface even in highly CO-rich feeds. The surface re-
actions, on the other hand, are a very efficient means
of removing this Obr species, and under most CO-rich
conditions they consume the surface oxygen faster than
it can be replenished from the gas-phase. Theories like
kMC and the rate equation approach that explicitly ac-

count for the surface reactions then yield a much lower
average surface concentration of Obr than the thermody-
namic treatment, and as a consequence show an extended
stability range of surface structures with CObr at the sur-
face (i.e. the CObr/− and CObr/COcus regions in Fig.
8).

Particularly the stability of these structures under
rather CO-rich conditions has to be considered with care
though. In such reducing environments one would ex-
pect a CO-induced decomposition of the entire RuO2

substrate to Ru metal, and the dashed line in the left
panel of Fig. 8 represents a thermodynamic estimate
where this instability of the oxide bulk sets in.67 Consid-
ering only the kinetics involving br and cus sites of an
otherwise fixed lattice, neither kMC nor rate equations
account for this instability, but yield at maximum a com-
pletely CO-covered surface. With its ability to quickly
compare the stability of structures with completely dif-
ferent morphology, the constrained atomistic thermody-
namics approach can in this respect be seen as a nice
complement to the otherwise more accurate kinetic the-
ories. Relevant for the ensuing discussion is also that
the transition from O-poisoned to CO-poisoned surface,
which as we will see below corresponds to catalytically
most relevant environments, is quite far away from the
oxide instability limit. Under any such conditions the
kinetics determining the catalytic function concentrates
on the br and cus sites, and the lattice model underlying
the first-principles kMC simulations is fully justified.

With its explicit account of the reaction kinetics, it is
needless to stress that kMC simulations do, of course,
also yield the correct temperature dependence. This is
exemplified in Fig. 9, which displays the “kinetic phase
diagram” obtained at T = 350K.29 Shown is a region of
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kMC-determined surface composition as in the middle panel
of Fig. 8, yet at T = 350K (see Fig. 8 for an explana-
tion of the labeling). Right panel: Map of the corresponding
turn-over frequencies (TOFs) in 1015 cm−2s−1: White areas
have a TOF< 103 cm−2s−1, and each increasing gray level
represents one order of magnitude higher activity. Thus, the
black region corresponds to TOFs above 1011 cm−2s−1, while
in a narrow (pCO, pO2

) region the TOFs actually peak over
1012 cm−2s−1. (From ref. [29]).

much lower reactant partial pressures, which, however,
corresponds exactly to the same range of O2 and CO
chemical potentials as in the corresponding kMC diagram
at T = 600K in the middle panel of Fig. 8. This is done
to briefly address the general notion of thermodynamic
scaling, which expects equivalent surface conditions in
thermodynamically similar gas phases and which is thus
often employed to relate results from surface science stud-
ies performed under ultra-high vacuum conditions and
low temperatures to catalytically relevant environments
at ambient pressures and elevated temperatures. If such
a scaling applies, the topology of the two diagrams at
the two temperatures would be exactly the same, with
only the width of the white coexistence regions varying
according to the changing configurational entropy. Com-
paring the two kMC diagrams in Figs. 8 and 9 it is clear
that scaling is indeed largely present in the sense that the
transition from O-poisoned to CO-poisoned state occurs
roughly at similar chemical potentials. Nevertheless, in
detail notable differences due to the surface kinetics can
be discerned, cautioning against a too uncritical use of
thermodynamic scaling arguments and emphasizing the
value of explicit kinetic theories like kMC to obtain the
correct surface structure and composition at finite tem-
peratures.

C. Parameter-free turnover frequencies

Besides the surface populations another important
group of quantities that is straightforward to evaluate
from kMC simulations of steady-state operation are the
average frequencies with which the various elementary
processes occur. Apart from providing a wealth of in-
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formation illuminating the on-going chemistry, this also
yields the catalytic activity as the sum of the averaged
frequencies of all surface reaction events. Properly nor-
malized to the surface area, a constant (T, pO2

, pCO) first-
principles kMC-run thus provides a parameter-free access
to the net rate of product formation or turn-over fre-
quency, TOF (measured in molecules per area and time).

A corresponding TOF-plot for the same range of gas-
phase conditions as discussed for the “kinetic phase di-
agram” at T = 350K is also included in Fig. 9.29 The
catalytic activity is narrowly peaked around gas-phase
conditions corresponding to the transition region where
both O and CO are present at the surface in appreciable
amounts, with little CO2 formed in either O-poisoned or
CO-poisoned state. On a conceptual level, this is not
particularly surprising and simply confirms the view of
heterogeneous catalysis as a “kinetic phase transition”
phenomenon60,63,64, stressing the general importance of
the enhanced dynamics and fluctuations when the sys-
tem is close to an instability (here the transition from O-
covered to CO-covered surface). Much more intriguing is
the quantitative agreement that is achieved with existing
experimental data68 as illustrated in Fig. 10. Recalling
that the calculations do not rely on any empirical input
this is quite remarkable. In fact, considering the multi-
tude of uncertainties underlying the simulations, in par-
ticular the approximate DFT-GGA energetics entering
the rate constants, such an agreement deserves further
comment and I will return to this point in more detail in
the final frontiers Section of this Chapter.

In the catalytically most active coexistence region be-
tween O-poisoned and CO-poisoned state, the kinetics of
the on-going surface chemical reactions builds up a sur-
face population in which O and CO compete for either
site type at the surface. This competition is reflected by
the strong fluctuations in the site occupations visible in
Fig. 7, but leads also to a complex spatial distribution of
the reaction intermediates at the surface. In the absence
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FIG. 11: Snapshot of the steady-state surface population un-
der optimum catalytic conditions at T = 600K (pO2

= 1atm,
pCO = 7atm). Shown is a schematic top view, where the
substrate bridge sites are marked by gray stripes and the cus
sites by white stripes, cf. Fig. 5. Oxygen adatoms are drawn
as light gray (red) circles and adsorbed CO molecules as dark
gray (blue) circles. (From ref. [29]).

of lateral interactions in the first-principles kMC model
there is no thermodynamic driving force favoring a segre-
gation of adsorbed O and CO. Nevertheless, as visualized
by the snapshot shown in Fig. 11, a statistical analysis
of the surface population reveals that they are not dis-
tributed in a random arrangement.29 Instead they tend
to cluster into small domains, which extend particularly
in the direction along the bridge rows and cus trenches.
This tendency arises out of the statistical interplay of all
elementary processes, but emerges at the considered am-
bient pressures primarily from diffusion limitations and
the fact that the dissociative adsorption of oxygen re-
quires two free neighboring sites and the unimolecular
adsorption of CO requires only one free site.

The resulting complex, and fluctuating spatial arrange-
ment has important consequences for the catalytic func-
tion. As demonstrated by Fig. 12, under these condi-
tions of highest catalytic performance it is not the reac-
tion mechanism with the highest rate constant, i.e. the
lowest-barrier reaction Ocus + CObr → CO2, that dom-
inates the overall activity.29 Although the process itself
exhibits very suitable properties for the catalysis, it oc-
curs too rarely in the full concert of all possible processes
to decisively affect the overall functionality. Even under
most active conditions, at T = 600K e.g. for pO2

= 1atm
and pCO = 7atm, it only contributes around 10% to the
total TOF, while essentially all of the remaining activity
is due to the Ocus+COcus → CO2 reaction mechanism.29

This finding could not have been obtained on the ba-
sis of the first-principles energetics and rate constants
alone, and emphasizes the importance of the statistical
interplay and the novel level of understanding that is
provided by first-principles kMC simulations. How criti-
cal it is that this evaluation of the interplay is done rig-

br

FIG. 12: Variation of the catalytic activity with CO partial
pressure at T = 600K and pO2

= 1atm. The displayed gas-
phase conditions comprise the most active state and the tran-
sition from O-poisoned to CO-poisoned surface (sketched as
white region in Fig. 8). Shown is the total TOF, as well as the
contribution of the four different reaction mechanisms. Upper
panel: First-principles kMC. Lower panel: Microkinetic rate
equations. (From ref. [62]).

orously, is again nicely illustrated by comparing to mi-
crokinetic modeling using mean-field rate equations. As
shown in Fig. 12, although using exactly the same set of
elementary processes and first-principles rate constants,
this theory incorrectly predicts an almost equal contri-
bution of the two competing low-barrier reaction mech-
anisms to the total TOF at peak performance.62 This
peak performance (at the corresponding transition from
O-poisoned to CO-poisoned surface) is furthermore ob-
tained at slightly shifted pressure conditions as was also
apparent from the “kinetic phase diagrams” in Fig. 8.
The neglect of the spatial inhomogeneity in the mean-
field approach thus leads to severe shortcomings, under-
scoring the virtue of first-principles kMC simulations to
explicitly resolve the locations of all reaction intermedi-
ates at the surface.
In this respect, it is intriguing to notice that the mi-

crokinetic modeling yields a TOF that is about three
orders of magnitude in error particularly under condi-
tions where one would intuitively expect the mean-field
approximation to be well fulfilled: The O-poisoned state
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at the lowest pressures shown in Fig. 12 on the left. The
reason for this deficiency even at an almost perfectly ho-
mogeneous surface coverage is that mean-field assumes
the random existence of independent vacant sites with
the probability of neighboring divacancies (created by as-
sociative desorption of O2 molecules or required for disso-
ciative adsorption of gas-phase O2) correspondingly be-
ing proportional to the vacancy concentration squared,
θ2vac. However, due to severe diffusion limitations par-
ticularly along the cus site trenches, divacancies created
through oxygen desorption persist for such a long time
that they completely dominate the total vacancy con-
centration at the surface. Rather than going as θ2vac, the
probability for a divacancy is thus close to half the prob-
ability of a single vacancy, ≈ θvac/2. If one patches the
oxygen adsorption expression in the rate equations ac-
cordingly, a TOF virtually identical to the kMC result is
obtained.69

This trick works, of course, only for gas-phase condi-
tions corresponding to the O-poisoned surface, and in-
correct TOFs are then obtained e.g. in the CO-poisoned
state. This nothing but exemplifies the well-known diffi-
culties of effectively correcting a rate equation formula-
tion to at least partly account for site correlations. KMC
on the other hand, does not suffer from this deficiency,
and fully includes all correlations and stochastic fluctu-
ations at the active surface sites into the modeling. In
this context it is important to realize that another way
of patching up deficiencies in the statistical modeling is
to resort to effective kinetic parameters. If one considers
all rate constants in the mean-field rate equation model
not to be fixed by the underlying first-principles calcu-
lations, but instead to be free parameters, it is possible
to achieve a perfect fit to the kMC TOF-profile shown
in Fig. 12.62,69 However, the result is just an effective
description, with the optimized rate constants no longer
having any kind of microscopic meaning and deviating
in their values from the true first-principles rate con-
stants underlying the kMC TOF-profile by several orders
of magnitude. Not surprisingly, this effective description
works only inside the parameterized range, and is not
transferable to gas-phase conditions outside those shown
in Fig. 12, where it predicts grossly wrong catalytic ac-
tivities.

This highlights a crucial conceptual point: A hierar-
chical technique like first-principles kinetic Monte Carlo
that builds on microscopically well-defined parameters is
not only substantially more involved than existing empir-
ical approaches because of the intense first-principles cal-
culations, but also because it typically requires a signifi-
cantly improved description at all ensuing levels, here the
solution of the statistical-mechanics problem. Effective
parameters, as e.g. rate constants fitted to experimen-
tal data, provide the possibility to (at least partly) cover
up deficiencies in the modeling. In the present context
this either means that one can get away with mean-field
rate equations despite existing site correlations or that
one can get away with a significantly reduced number

of kMC processes that then represent some unspecified
lump sum of not further resolved elementary processes.
The price paid by such a seemingly simpler modeling is
that it is typically neither transferable nor predictive,
and most importantly lacks the reverse-mapping feature
much aspired in multi-scale modeling, i.e. to be able
to unambiguously trace the correct microscopic origin of
properties identified at the meso- or macroscopic level.
All of this is possible in a theory like first-principles kMC,
but one has to go the extra mile in form of an unprece-
dented level of detail and accuracy in the modeling. This
level is at present mostly not matched in engineering-
style approaches to heterogeneous catalysis, and is also
the reason why existing first-principles kMC applications
are hitherto still confined to well-defined model catalysts
and simple reaction schemes.

D. Temperature programmed reaction

spectroscopy

Properly tracking the system time kMC simulations
can of course not only address catalytic systems dur-
ing steady-state operation. A prominent example for a
time-dependent application in the field would be temper-
ature programmed desorption (TPD) or reaction (TPR)
spectroscopies, which provide insight into the binding
energetics of reaction intermediates by recording the
amount of desorbing species while ramping the substrate
temperature.70 With typical experimental heating rates
of a few Kelvin per second, modeling an entire TPD/TPR
spectrum covering say a temperature range of a few hun-
dred Kelvin leads again to time scales that are naturally
tackled by kMC simulations. Always starting from a de-
fined initial lattice configuration, the desorption or reac-
tion rate as a function of temperature is there obtained
from averages over an ensemble of kMC trajectories in
which with progressing simulation time the temperature-
dependent first-principles rate constants are adapted ac-
cording to the applied heating ramp. As the kMC time
does not evolve continuously, but in finite steps accord-
ing to Eq. (7), there can be some technicalities with
continous temperature programmes71, which in practice
can be addressed by larger simulation cells (leading to a
larger ktot and thus smaller time steps), finite tempera-
ture bins or other system-specific solutions.
Another type of TPD/TPR quantity that is typically

much less sensitive to this and some other problems
like slight inaccuracies in the first-principles rate con-
stants are integral yields, i.e. the total amount of a
species that has come off the surface during some ex-
tended temperature window. Such yields were e.g. mea-
sured for the RuO2(110) system from surfaces in which
initially all bridge sites were always fully occupied by
Obr, while the coverage of Ocus varied in the range
0 < θ < 0.8monolayer (ML), where 1 ML corresponds to
an occupation of all cus sites.72 The remaining free cus
sites were then each time saturated with CO, so that the
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FIG. 13: Total TPR CO2 yield from RuO2(110) surfaces ini-
tially prepared with varying Ocus coverage θ. In all surfaces
all bridge sites are initially covered with Obr species, and the
remaining (1− θ) cus sites not covered by Ocus are occupied
by COcus. The CO2 yield is given relative to the one ob-
tained for the surface with zero Ocus coverage. Shown are the
total simulated CO2 yield, as well as the contributions from
the two dominant reaction mechanisms under these condi-
tions: Ocus+COcus and Obr+COcus. The experimental data
is taken from ref. [72]. (From ref. [73]).

initially prepared surfaces contained an amount of 1 ML
Obr, θML Ocus and (1 − θ)ML COcus. The idea of this
set of experiments was to evaluate which of the surface
oxygen species, Ocus or Obr, is more reactive. With a con-
stant population of Obr and a linearly decreasing amount
of COcus, the expectation within a mean-field picture was
that in case of a dominant Obr+COcus reaction the to-
tal CO2 yield should show a linear (1 − θ) dependence,
whereas with an also linearly varying amount of Ocus a
dominant Ocus+COcus reaction would be reflected by a
parabolic θ(1− θ) variation. The measured linear depen-
dence shown in Fig. 13 was therefore taken as evidence
for a much more reactive Obr species, which was diffi-
cult to reconcile both with the much lower DFT-GGA
Ocus binding energy and the lower Ocus+COcus reaction
barrier, cf. Table I.
Only subsequent first-principles kMC simulations

based exactly on this DFT-GGA energetics were able to
resolve this puzzle as yet another consequence of the in-
homogeneities in the adlayer caused by the specific ar-
rangement of the active sites in conjunction with diffu-
sion limitations of the reaction intermediates.73 As ap-
parent from Fig. 13 the simulations perfectly reproduce
the experimental data, and even reveal that the contri-
butions from the two competing reaction channels follow
indeed the functional form expected from mean-field (lin-
ear vs. parabolic). Despite the much higher Ocus+COcus

rate constant, the share of this reaction mechanism is,
however, largely suppressed as at the conditions of the
TPR experiments rows of strongly bound Obr species
confine the reactive Ocus species to one-dimensional cus

FIG. 14: Snapshots of the surface population in the first-
principles TPR kMC simulation for the surface covered ini-
tially with 1ML Obr, 0.5ML Ocus and 0.5ML COcus. Shown
is a schematic top view as in Fig. 11, where the substrate
bridge sites are marked by gray stripes and the cus sites by
white stripes. Oxygen adatoms are drawn as lighter gray (red)
circles and adsorbed CO molecules as darker gray (blue) cir-
cles. Left panel: Initial population at T = 170K, Right panel:
Population at T = 400K. At this temperature, according to
mean-field > 98% of all initially present COcus species should
already have been reacted off by the low-barrier Ocus+COcus

reaction. Instead 40% of them are still present, namely essen-
tially all those that were not initially adsorbed immediately
adjacent to a Ocus species. (From ref. [73]).

site trenches. With strong diffusion limitations inside
these trenches, cf. Table I, the COcus molecules can only
access a fraction of the Ocus species and instead react off
with their immediate Obr neighbors as illustrated in Fig.
14.

As also evident from Fig. 14 decreasing surface cov-
erages toward the high-temperature end of the heating
ramp are an inherent feature of TPD/TPR spectroscopy.
With the concomitant increasing role of surface diffusion
and a manifold of systems exhibiting rather low diffusion
barriers, it is finally worth pointing out that TPD/TPR
kMC simulations are particularly prone to the mentioned
fastest-process bottleneck. As the gap between low and
higher barrier rate constants opens up more and more
with temperature, cf. Eq. (11), it is especially at the
high-temperature end that the kMC algorithm increas-
ingly ends up just executing diffusion events at minuscule
time increments. Approximate workarounds to this prob-
lem include either an artificial raising of the lowest bar-
riers or a mixing of kMC with MC schemes.22 Both ap-
proaches work on the assumption that on the time scale
of the slower processes the system essentially equilibrates
over the entire subset of states that can be reached via
the fast processes, i.e. that there is a separation of time
scales. Raising the lowest barriers will slow down the
fastest processes, which at an increased kMC efficiency
will still yield an accurate dynamics if the fast processes
are still able to reach equilibration even when they are
slowed down. Alternatively, reducing the kMC algorithm
to just the slow processes an equilibration over the subset
of states reached by the fast processes can be achieved by
performing some appropriate MC simulations after every
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kMC step. While quite some system-specific progress has
been achieved along these lines, it is in general hard to
know for sure that such approximations are not corrupt-
ing the dynamics – and the low-barrier problem prevails
as one of the long-standing challenges to kMC simula-
tions.

IV. FRONTIERS

By now it has become clear that the crucial ingredients
to a first-principles kMC simulation are the electronic-
structure (DFT) calculations to get the PES, the map-
ping of this PES information onto a finite set of ele-
mentary processes and rate constants, and the master
equation based kMC algorithm to evaluate the long-time
evolution of the rare event system. Quite natural for a
hierarchical approach spanning electronic to mesoscopic
length and time scales, this reflects three complementary
regimes of methodological frontiers: At the level of the
electronic interactions, at the statistical-mechanics level,
as well as in the interfacing in between.
Necessarily representing the finest scale in any multi-

scale materials modeling, it is natural to start a short sur-
vey of open issues in the three regimes at the electronic-
structure level. Obviously, if the needed accuracy is lack-
ing at this base, there is little hope that accurate predic-
tions can be made at any level of modeling that follows.
In this respect, the accuracy level at which first-principles
rate constants can presently be computed for catalytic
surface systems of a complexity as the RuO2(110) ex-
ample is of course a major concern. As discussed in
Section II.E the limitation is thereby predominantly in
the PES uncertainty, and only to a lesser extent in the
prevailing use of hTST as reaction rate theory. The prob-
lem here is that approaches with an accuracy superior to
the present-day workhorse DFT-GGA, but still tractable
computational demand, are not readily available. This
is particularly pronounced for catalytically most relevant
transition metal surfaces, where post Hartree-Fock quan-
tum chemistry methods are ill-positioned and there is in-
creasing evidence that concomitantly also the much ac-
claimed hybrid DFT functionals are hardly a major step
forward.5,74 On top of this, the current focus of first-
principles kMC work on the Born-Oppenheimer ground-
state PES must not necessarily always convey the correct
physics. Especially for core steps in the catalytic cycle
like adsorption processes involving electron transfer or
spin changes electronically non-adiabatic effects and the
consideration of excited states may be essential.75

With all of these issues under active research it is cru-
cial to realize that while a most accurate description
of every elementary process is of course desirable, what
matters at first in the context of first-principles kMC
simulations is how the error contained in the rate con-
stants propagates to the statistical-mechanics level and
affects the resulting ensemble properties. A very promis-
ing approach is therefore to employ sensitivity analyses

FIG. 15: Degree of rate control xi of different elementary
processes in the first-principles kMC model of CO oxidation
at RuO2(110). Shown is the dependence for the gas-phase
conditions of Fig. 12, where at constant T = 600K and
pO2

= 1atm the variation of pCO causes the transition from
the CO-poisoned surface state (left end of shown pressure
range) to the O-poisoned surface state (right end of shown
pressure range) with the catalytically most active coexistence
region around pCO = 7atm. The DRC values for all processes
not shown are zero on the scale of this figure and modest er-
rors contained in the corresponding first-principles rate con-
stants will practically not affect the computed TOF. (From
ref. [80]).

to identify which processes critically control the targeted
quantities. In the catalysis context, one possibility to
identify such “rate-limiting steps” are degree of rate con-
trol (DRC) approaches, which essentially correspond to
studying the linear response of the TOF to a change in
one of the rate constants of the reaction network.76–79

Such an analysis has recently been performed for the
RuO2(110) system and the corresponding results for the
set of gas-phase conditions also discussed in Fig. 12 are
summarized in Fig. 15.80 The most important conclu-
sion from this work for the present discussion is that,
while particularly in the catalytically most active state
there is no single but an entire group of rate-limiting
steps, this number of processes controlling the overall
CO2 production is small. This indicates that if the rate
constants of these processes are known accurately, the
kMC procedure will produce correct results even if the
other rate constants are inaccurate. Strikingly, some of
the unimportant rate constants could in fact be varied
over several orders of magnitude with no effect on the
computed TOF.80 Apart from providing a tool for ana-
lyzing the mechanism of a complex set of catalytic re-
actions, such a DRC sensitivity analysis thus tells for
which aspects of the reaction mechanism say a potential
DFT-GGA error in the rate constants is not much of a
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problem. On the other hand, it also tells which aspects
must be treated accurately with corresponding errors in
the rate constants directly carrying through to the meso-
scopic simulation result. In this respect, the RuO2(110)
DRC work revealed that under the gas-phase conditions
of the experiments shown in Fig. 10 the ruling processes
are the dissociative adsorption of O2 into a cus site pair
and the desorption of COcus. The almost quantitative
agreement with the experimental data reached by the
first-principles kMC simulations suggests therefore that
especially the microscopic quantities entering the corre-
sponding rate constants, namely the sticking coefficient
of oxygen at a cus site pair and the COcus binding energy,
are rather well described.80

At the level of the interfacing between the electronic-
structure and the stochastic system description the most
pressing issue is without doubt the identification of and
ensuing coarse-graining to the relevant elementary pro-
cesses. As most transition-state search algorithms re-
quire knowledge of the final state after the process has
taken place41,42, already quite some insight into the
physics of an elementary process is needed just to deter-
mine its rate constant and include it in the list of possible
kMC processes. Which processes are to be included in
this list at all, and when it can be deemed complete, re-
quires even more system-specific information. If the lat-
ter is not fully available, as is presently mostly the case,
the modeler is forced to resort to chemical intuition. Un-
fortunately, it is by now well established that the real
dynamical evolution of surface systems is full with non-
obvious, unexpected and complex pathways, with surface
diffusion occurring via hopping or exchange mechanisms
forming a frequently cited classic example2,81. In this
respect, the transition from MD to kMC is a paradigm
for the no-free-lunch theorem: In a MD simulation the
system would tell us by itself where it wants to go, yet we
would be unable to follow its time evolution for a suffi-
ciently long time. In kMC, on the other hand, the latter
can be achieved, but we have to explicitly provide the
possibilities where the system can go and can’t be sure
that we know them all.

The risk of overlooking a potentially relevant molecular
process is especially consequential in first-principles kMC
simulations. As discussed above, there is no possibility to
cover up for a missing process as in traditional kMC simu-
lations, where an unknown number of real molecular-level
processes is in any case lumped together into a hand-
ful of effective processes with optimized rate constants.
Instead, in a theory based on parameters with correct
microscopic meaning such as first-principles kMC simu-
lations omission of an important process means just one
thing: A wrong result. Even if in the position of know-
ing all relevant processes, the problem frequently arises
that with increasing system complexity this number of
processes just about explodes, making a direct compu-
tation of all required rate constants from first-principles
at present intractable. Examples for this are multi-site
lattices or multi-species problems, or simply as already

indicated in Section II.E the existence of far-reaching sig-
nificant lateral interactions. And this is not to mention
the degree of complications that come in if the system
can not easily be mapped onto a lattice as e.g. in the
case of morphological transformations of the active sur-
face during induction or steady-state operation82. The
technical obstacles emerging in such cases can quickly be
overwhelming, and are in existing practical applications
unfortunately still too often “solved” by resorting to un-
systematic and unjustified approximations.

Obviously, one way out of all of these problems would
be that the kMC simulation determines by itself which
processes need to be considered. Imagine there is such
an automatized procedure that tells which processes lead
out of any given system state. Apart from solving the
problem of overlooking a possibly relevant process, this
also addresses the limitations imposed by an exceeding
total number of processes, as one would be able to con-
centrate on only those processes out of states that are
actually visited by the system. In principle this also su-
persedes the lattice approximation, unless one wants to
keep it for state recognition when constructing dynami-
cally evolving look-up tables where the information of all
pathways of already visited states is kept.83 In view of
these merits, it is not surprising that such a procedure
is hunted for like the holy grail. In fact, it gets rein-
vented over the years and features under names such as
adaptive kMC84, on-the-fly kMC85, self-learning kMC86

or kinetic activation-relaxation technique87. While the
technical realizations vary, a core feature of all of these
approaches is to resort to a transition-state search al-
gorithm that only requires information about the initial
state. Minimummode following techniques like the dimer
method88,89 would be a typical example. With such an
algorithm at hand, the idea is to initiate a sufficiently
large number of such transition-state searches to iden-
tify all low-lying saddle points around the current state
of the system (potentially accelerated MD techniques90

could be used for this, too). The rate constant for each
of these pathways is then supplied to the kMC algorithm
which propagates the system in a dynamically correct
way to the next state, and the procedure starts again.
In principle, this is a beautiful concept that gives access
to the exact time evolution, if indeed all bounding sad-
dle points are found. Even if “only” the lowest-barrier
escape pathways are determined, the dynamics may still
be approximately ok as the omission of high-barrier path-
ways and their corresponding small rate constants in Eq.
(5) does not introduce an exceeding error. In practice,
however, it is essentially impossible to demonstrate that
all (or at least all low-barrier) pathways have been found
through a finite number of transition-state searches, es-
pecially for the high-dimensional PESs of systems that
are of interest in catalysis research. In this situation, it
is mostly a matter of taste whether one thinks that the
holy grail has already been found or not. Due to the pro-
hibitive number of first-principles energy and force eval-
uations required even when only employing the smallest
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justifiable number of searches from each state such adap-
tive or on-the-fly approaches are at present in any case
practically not really feasible for anything but the most
trivial model systems – and on a philosophical note it
is precisely those crooked PES alleys that are likely not

to be found by a few transition-state searches that often
correspond just to those nonobvious pathways that are
overlooked by chemical intuition.

In examples of the type of the RuO2(110) system the
computational constraints do not extend to the level of
the actual kMC simulations. Compared to the costs of
setting up the catalog of first-principles rate constants,
running these simulations up to the required extended
time spans and even for a manifold of environmental
conditions represents normally an insignificant add-on,
in particular as these calculations can be performed on
cheaper capacity compute-infrastructures. However, this
must not necessarily always be the case, and the men-
tioned low-barrier problem, i.e. a process operating
on a much faster time scale, provides already a proto-
typical example where the statistical kMC simulations
themselves can quickly become a bottleneck, too. This
holds equally for problems with a substantially increased
number of processes as often automatically implied by
larger simulation cells. On a bookkeeping level signifi-
cant speed-ups to overcome corresponding limitations are
still realized by ever more efficient algorithms both with
respect to the searches involved in the process selection
step and with respect to updating the list of possible pro-
cesses for a new system configuration.20,83,91–93 Beyond
this, developing concepts resort to either spatial or tem-
poral coarse-graining, e.g. through grouping of lattice
sites into coarse cells or by executing several processes
at a time with approximate post-corrections of ensuing
correlation errors.20

While the focus of such work is to improve the ef-
ficiency within the kMC framework, a more problem-
atic issue at the general statistical-mechanics level is the
Markov assumption underlying the master equation, Eq.
(1). In parts, this concerns already the possibility of
locally adiabatic correlated events as e.g. a sliding mo-
tion over several PES minima that are only separated
by low barriers. However, if only the existence of such
events is known, this kind of problem is quickly patched
up by an appropriate augmentation of the list of possible
kMC processes. Particularly in view of the often largely
exothermic surface catalytic processes, a much more se-
vere challenge arises instead from non-Markovian behav-
ior resulting from a finite heat dissipation. A classic ex-
ample for this would be the often controversially debated
hot-adatom motion, in which after a largely exothermic
dissociative adsorption process the reaction intermediate
travels larger distances before it has equilibrated with the
underlying substrate.94–96 Rather than assuming a con-
stant global temperature T as in prevailing kMC work,
a consideration of such effects requires a model for the
local heat transfer including e.g. an assignment of a lo-
cal time-dependent temperature to each surface species

accounting for its past process history.
Apart from dissipation through electronic friction and

substrate phonons, a heat transfer model for steady-state
catalysis at ambient pressures would furthermore need to
include a heat release channel into the fluid environment.
This then connects to a last frontier that actually leads
outside the methodological first-principles kMC frame-
work as sketched in this Chapter. In work of the latter
type the focus is at present almost exclusively on the sur-
face reaction chemistry, with only a rudimentary treat-
ment of the reactive flow field over the catalyst surface.
Apart from the constant global temperature mimicking
an infinitely efficient heat dissipation, this concerns fore-
most the complete neglect of mass transfer limitations in
the fluid environment as e.g. expressed by equating the
reactant partial pressures entering the surface impinge-
ment, cf. Eq. (13), with those at the inlet and disregard-
ing the built-up of a finite product concentration over
the active surface as done in the described RuO2(110)
work. In order to improve on this, the kMC simulations
need to be adequately interfaced with a computational
fluid dynamics modeling of the macro-scale flow struc-
tures in a given reactor setup.97 While the latter are
naturally described at the continuum level, the crucial
difficulty is that their effects intertwine with all lower
scales, with local concentration changes (or fluctuations)
in the gas-phase directly and non-linearly connecting to
inhomogeneities in the spatial distribution of the chem-
icals at the surface (e.g. reaction fronts), or the local
heat dissipation at the catalyst surface intimately cou-
pling to the kinetics and statistics of the elementary pro-
cesses. The correspondingly required robust and self-
consistent link of surface reaction chemistry modeling as
provided by first-principles kMC with an account of the
effects of heat and mass transfer as provided e.g. by time-
dependent Navier-Stokes equations has to date not been
achieved. In order to overcome the empirical parameters
and (unscrutinized) simplifying approximations entering
seminal engineering-style work tackling this coupling98,99

will necessitate quite some further methodological de-
velopments at all involved length and time scales, but
has already been identified as a core critical need in a
report100 on chemical industrial technology vision for the
year 2020.

V. CONCLUSIONS

The purpose of the present Chapter was to introduce
the first-principles kinetic Monte Carlo approach in its
specific flavor geared toward heterogeneous catalytic ap-
plications, as well as to provide an impression of its
present capabilities and open frontiers. As a hierarchi-
cal approach, first-principles kMC jointly addresses two
complementary and crucial aspects of reactive surface
chemistry, namely an accurate description of the ele-
mentary processes together with a proper evaluation of
their statistical interplay. For the prior it resorts to first-
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principles electronic structure theories, for the latter to a
master equation based description tackling the rare event
evolution of surface catalytic systems. The result is a
powerful technique that gives access to the surface chem-
ical kinetics at an unprecedented accuracy, in particu-
lar by including a sound quantum-mechanical descrip-
tion of the ubiquitous bond making and breaking and
by including a full account of the atomic-scale correla-
tions, fluctuations, and spatial distributions of the chem-
icals at the active surface sites. As a technique based on
elementary processes with a clear-cut microscopic mean-
ing, first-principles kMC is naturally transferable and can
provide comprehensive insight into the on-going surface
chemistry over a wide range of temperature and pressure
conditions.
In its philosophy, it is clearly a bottom-up approach

that aims to propagate the predictive power of first-
principles techniques up to increasing length and time
scales. For this it is important to realize that at both
the electronic structure and the statistical-mechanics
level the various applied approximations introduce un-
certainty, and the bridging from one scale to the other
gives rise to additional uncertainty. With such multiple
sources of uncertainty affecting the final result, only a
stringent error control will ever allow to assign the de-
sired predictive quality to the simulation. Most pressing
issues for such a robust link at the transition between the
molecular and mesoscopic scale are presently the identi-
fication of and ensuing coarse-graining to the relevant
elementary processes, as well as the propagation of er-
ror in the first-principles rate constants to the ensemble
properties resulting from the statistical interplay.
With the stated claim of predictive quality first-

principles kMC simulations inherently require a level of
detail and effort that is uncommon, if not far beyond
standard effective modeling based on empirical param-
eters. Critical issues here are the necessity of a well-
established microscopic characterization of the active sur-
face sites, as well as the computational cost to determine
accurate first-principles rate constants for a number of el-
ementary processes that virtually explodes with increas-
ing system complexity. As a result, existing practical ap-
plications are still restricted to single-crystal model cata-
lysts and reaction schemes of modest complexity, but this
will undoubtedly change with further algorithmic devel-

opments and ever increasing computational power. The
demanding characteristics of the approach must also be
born in mind when attempting the now due interfacing
of first-principles kMC with their focus on the surface
chemistry with macroscopic theories that model the heat
and mass transport in the system, i.e. the flow of chemi-
cals over the catalyst surface and the propagation of the
heat released during the on-going chemical reactions.

Corresponding developments will necessitate incisive
methodological advances at all involved length and time
scales, and have to overcome the present standard of un-
controlled semi-empiricism and effective treatments. Yet,
they are fired by the imagination of an ensuing error-
controlled multi-scale modeling approach which starting
from the molecular-level properties will yield a quantita-
tive account of the catalytic activity over the entire rele-
vant range of reactive environments. Most importantly,
this also encompasses a full ”reverse mapping” capability
to the mechanistic aspects, i.e. the power to analyze in
detail how the electronic-structure (bond breaking and
bond making) actuates the resulting macroscopic cat-
alytic properties, function and performance. I am con-
vinced that it is ultimately only the concomitant new
level of understanding that will pave the way for a ratio-
nal design of tailored material-, energy- and cost-efficient
catalysts, and it is this vision that makes working on
these problems so exciting and worthwhile.
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