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Vaccination hesitancy is a major obstacle to achieving and maintaining herd
immunity. It is therefore of prime importance for public health authorities to
understand the dynamics of an anti-vaccine opinion in the population. We
introduce a novel mathematical model of opinion dynamics with spatial re-
inforcement, which can generate echo chambers, i.e. opinion bubbles in which
information that is incompatible with one’s entrenched worldview, is likely dis-
regarded. In a first mathematical part, we scale the model both to a determin-
istic limit and to a weak-effects limit, and obtain bifurcations, phase transitions,
and the invariant measure. In a second data analysis part, we fit our model to
measles and meningococci vaccination coverage across 413 districts in Germany
from five different years (2008-2013). We reveal, consistently across years and
for both diseases, that strong echo chambers explain the occurrence and persis-
tence of the anti-vaccination opinion. We predict and compare the effectiveness
of different policies aimed at influencing opinion dynamics in order to increase
vaccination uptake. According to our model, measures aiming at reducing the
salience of partisan anti-vaccine information sources would have the largest ef-
fect on enhancing vaccination uptake. In contrast, measures aiming at reducing
the reinforcement of vaccination deniers are predicted to have the smallest im-
pact.
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1 Introduction

For highly transmissible infectious diseases like measles, meningitis, and Covid-19, vaccine
hesitancy represents a major threat to public health [19, 77, 65, 13], preventing countries
from reaching herd immunity. The reasons for people deciding not to get vaccinated (or
not to vaccinate their children) range from underestimating the risk of contracting the dis-
ease and overemphasizing the vaccine’s potential side-effects to general distrust in medical
professionals and public health officials [51, 41, 68, 64, 59]. In order to develop effective
policy tools to tackle vaccination hesitancy, it is therefore of prime importance for public
health authorities to understand the dynamics of an anti-vaccine opinion in the popula-
tion. In this paper, we introduce a novel mathematical model of opinion dynamics with
spatial reinforcement, which allows for the emergence of echo chambers, i.e. opinion bub-
bles in which information that is incompatible with one’s entrenched worldview, is likely
disregarded.

The mathematical modeling of vaccine hesitancy has a long tradition. Similar to the
incidence of an infection, vaccination decisions are based on social behavior (see for ex-
ample the review articles [32, 78]). However, there is a fundamental difference: whereas
getting infected is a function of exposure and (bad) luck, refusing or accepting vaccination
is, provided sufficient supply of vaccines, a deliberate decision. Since the seminal work
of Fine and Clarkson [27], a game-theoretical approach prevails. The individual aims to
minimize their personal risk whereas public health authorities wish to improve the over-
all health status of the population (e.g. minimizing the disease burden [52]). When these
two objectives stand in conflict (e.g. if side-effects of a vaccine are known or presumed),
individuals may refuse vaccinations which, from a public health perspective, is undesir-
able [27, 54, 9, 35, 31].

A more recent strand of literature on vaccine hesitancy bypasses utilitarian considera-
tions and focuses directly on opinion dynamics [62, 4, 58]. Rather than modeling individual
decisions as a result of utility maximization, the individual is seen as being influenced by
the social environment, that is the behavior of one’s fellow citizens, news coverage, and
public health recommendations. This framework has been taken up by the social learn-
ing theory for vaccine hesitancy [7, 8, 60]. These studies either focus on data analysis, or
use generic models to address social learning, however, when addressing the link between
opinion dynamics and vaccination hesitancy [20, 4, 76, 11], most studies do not validate
the models by data analysis. A notable exception is [62], which shows that spatial clusters
of local outbreaks can be explained by clusters of low vaccination coverage, presumably
caused by local opinion dynamics. However, extant models lack an underlying mechanism
for opinion dynamics and its change over time.

More generally, the presence and dynamics of vaccine hesitancy in a population is
a specific case of modeling opinion dynamics over time. The basis of all opinion models,
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the voter model [50], has the disadvantage that in a finite, well-mixed population, only
one opinion remains in the long run, which obviously is not in line with the empirical
reality. A remedy is the introduction of zealots or stubborn individuals which decreases,
while not fully preventing, the occurrence of opinion loss ( [53, 25, 14, 34, 33] and the
review article [18]). Yet, the zealot model does not incorporate mechanisms that lead to
the formation of echo chambers. Instead, nonlinear opinion models may account for such
effects (see the Sznajd-models [71, 72] or the Ising model [56]).

While extant nonlinear models are rather phenomenological and not behaviorally
validated by empirical studies, the spatial reinforcement model introduced here aims to
implement behavioral mechanisms which have been extensively documented in psychol-
ogy, economics, and political science. In our model, zealots represent people’s exposure to
stubborn individuals, i.e. characterized as exhibiting partisan (pro-vaccine or anti-vaccine)
information. Controlled behavioral experiments show that distorted information critically
affects people’s decision making such as the willingness to cooperate [22]. For example,
during the current Covid-19 crisis, higher exposure to Fox News has been found to reduce
people’s propensity to follow stay-at-home orders [66].

In addition, our model accounts for the fact that individuals are disproportionately
exposed to ideas similar to their own. In other words, their ideas are being reinforced.
Behavioral research has documented two main sources of reinforcement. On the one hand,
there are technical filters of information. Both traditional media outlets and social net-
works have incentives to align their stories to the (presumed) opinions of their readers and
users [70, 57, 23]. However, even in social networks individuals are usually exposed to a
large range of information [12, 28]. In addition to technical filters, information is being
filtered – often subconsciously – by the individuals themselves [26, 6, 75]. People are more
likely to dismiss information that is in conflict with one’s entrenched worldview [42, 30],
as well as information from sources that are perceived as outgroup [73, 17]. In particu-
lar, political partisanship has been found to have a sizable effect on people’s acceptance
of government vaccination recommendations. Democrats were much more likely than Re-
publicans to believe in the safety of the swine flu (H1N1) vaccine, introduced in 2009 by the
Obama administration. In contrast, Republicans were much more likely than Democrats to
believe in the safety of the smallpox vaccine, introduced in 2003 by the Bush administration
[46]. In the current Covid-19 crisis, Democrats are more likely to believe in the perils of
contracting the virus, and in the effectiveness of social distancing [3].

Vaccination data exhibits an inherent spatial structure, evidenced for example by the
correlation between local outbreaks and vaccination coverage [62]. Indeed, the vaccina-
tion rates of the two diseases studied here, measles and meningococci, show strong spatial
patterns across Germany [38]. Districts that are geographically closer exhibit more similar
vaccination coverage for both diseases than districts that are geographically more distant.
Furthermore, these correlations could not be appropriately explained by social co-factors
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like unemployment, or income [38]. To account for this inherent spatial structure, we
develop and analyze a spatially structured variant of our model, based on the simple as-
sumption that communication between individuals – and thus transmission of vaccination
opinions – not only occurs within a local geographic area but also between neighboring
areas.

In the methods section, we summarize for non-mathematical readers the main prin-
ciple of our spatial reinforcement model; the technical details can be found in the supple-
mentary material. We then provide a more detailed description of the model and of the
vaccination coverage data used. In the results section, we first analyze the model behavior
analytically by scaling to a deterministic limit and discuss the bifurcation structure in a rel-
atively simple two-patch system. Subsequently, we scale the model to a weak effects limit,
which yields a Fokker-Planck equation, and obtain the invariant measure. In the second
part of the results section, we use this invariant measure to analyze vaccination data for
measles and meningococci in Germany. We show that the model is appropriate, and use
the estimations as a basis to predict the effectiveness of various policies aimed at increasing
vaccination uptake.

2 Methods

Mathematical model in a nutshell. To study the opinion dynamics of vaccine hesitancy,
we develop a spatial, i.e. graph-based, reinforcement model which allows for the emer-
gence of echo chambers. These are environments in which individuals’ (pro-vaccine or
anti-vaccine) opinions get reinforced through biased interaction with peers or exposure to
sources with similar tendencies and attitudes as themselves [16]. Our spatial reinforcement
model builds on the classic voter model [50]. Each individual is assumed to be born with
a certain opinion (pro-vaccine or anti-vaccine). In order to change their opinion, individ-
uals need to be exposed to the opposite opinion. In this case, an individual has a certain
probability to change their current opinion.

We introduce three important extensions to the voter model. First, we allow for the
presence of so-called zealots ( [53, 25, 14, 34, 33], reviewed in [18]). Zealots are agents who
never change their mind, and as such are permanent senders of a particular partisan po-
sition. They represent the presence of (and exposure to) partisan information sources that
persistently advocate in favor or against vaccination (e.g. stubborn individuals, national
health authorities, newspapers, internet platforms, etc.). Second, we introduce a spatial
structure. In the basic form of the voter model used here, interaction happens only within
a geographically determined area (also called a patch). In our spatial model, exposure to
other opinions is also possible between individuals who live in neighboring patches (in
addition to one’s own patch). Third, we allow for reinforcement of current opinions. Be-

5



havioral research documents that humans are more likely to engage with people who have
similar behavior or belief as themselves, and that they tend to discredit opinions that are
not aligned with their own [40]. In our model, reinforcement enables the emergence of
echo chambers.

We study the dynamics of opinion, i.e. the frequency of a certain opinion – pro-
vaccine or anti-vaccine – per patch and across patches. As our model is stochastic by
nature, we first analyze a deterministic limit which explicit the long term behavior of the
model, that is whether one or both opinion can be maintained and what is the expected
frequency of each opinion in each patch. Second, we use a weak-effects limit to obtain
the expected distribution of opinion frequencies within and across patches. This so-called
invariant measure will later be used for data analysis.

Model description. In order to represent the spatial structure of districts, we define Γ as
an undirected graph. We write k ∈ Γ to indicate that k is a node of the graph, with each
node representing a geographic unit, e.g. a patch or in our real data a district. For two
nodes k, k′ ∈ Γ we define the relation k ∼ k′ if and only if there is an edge between k and k′.
Let dk denote the degree of a given node k ∈ Γ, that is the number of neighboring nodes.
The nodes (patches/districts) themselves are assumed to have an identical social structure,
and an identical population size. Let N denote the total population size in one district,
Ni the number of zealots with opinion i ∈ {1, 2}, and ni = Ni/N the share of opinion i
zealots in a given district. In our vaccination data, these represent stubborn pro-vaccine and
anti-vaccine opinions, respectively. Furthermore, let X(k)

t be the number of (non-stubborn)
opinion 1 supporters (pro-vaccine) in node k ∈ Γ at time t, while N− X(k)

t is the number of
(non-stubborn) opinion 2 (anti vaccine) supporters.

Individuals change their opinion by being exposed to other opinions. In the basic
zealot model, a given individual changes opinion at rate µ. In that process, the individual
simply interacts with a randomly chosen other person (including the zealots) from that
district, and adopts that person’s opinion. In order to take interaction (and thus potential
opinion spillovers) between neighboring patches/districts into account, we define the con-
vex combination of the number of opinion 1 supporters in a given district k and the average
number of opinion 1 supporters in the neighboring districts:

X̂(k)
t = (1− τ)X(k)

t + τX̌(k), X̌(k) :=
1
dk

∑
k′∼k

X(k′)
t . (1)

The parameter τ represents the strength of communication and connectedness between
neighboring districts. A person meets with probability 1− τ an individual from their own
district, and with probability τ an individual of a randomly chosen neighboring district.
A person thus interacts with an opinion 1 supporter (and thus adopts that opinion) with
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probability
X̂(k)

t + N1

N1 + N2 + N
.

We define the incremental increase or decrease, respectively, of the number of opinion 1
supporters as the spatial zealot model:

X(k)
t → X(k)

t + 1 at rate µ(N − X(k)
t )

X̂(k)
t + N1

N1 + N2 + N
, (2)

X(k)
t → X(k)

t − 1 at rate µX(k)
t

N − X̂(k)
t + N2

N1 + N2 + N
. (3)

A person in an echo chamber is less likely to flip to the opposite opinion, be it because it
is less likely to meet people of the opposite opinion, or because that person discards the
alternative opinion as nonsense. We subsume both reasons as a decrease in the effectiveness
of interaction. Let ϑ1 denote the probability for a opinion-2 person to interact effectively
with an opinion-1 supporter. An opinion-2 supporter interacts effectively with all opinion-2
supporters (1− X̂(k)

t + N2), and with the fraction ϑ1 of opinion-1 supporters (ϑ1(X̂(k)
t + N1)).

With ϑ1 capturing the strength of reinforcement of opinion 2 supporters, the probability of
an opinion-2 supporter becoming an opinion-1 supporter reads

ϑ1(X̂(k)
t + N1)

ϑ1(X̂(k)
t + N1) + (N − X̂(k)

t + N2)
.

Similarly, we introduce ϑ2 as the probability for a opinion-1 supporter to interact effectively
with a opinion-2 person. With this idea, we can define the increase aof the number of
opinion 1 supporters as the spatial reinforcement model,

µ(N − X(k)
t )

ϑ1(X̂(k)
t + N1)

ϑ1(X̂(k)
t + N1) + (N − X̂(k)

t + N2)
, (4)

and similarly the decrease

µX(k)
t

ϑ2(N − X̂(k)
t + N2)

(X̂(k)
t + N1) + ϑ2(N − X̂(k)

t + N2)
. (5)

In the analytical part of the results we scale the model both to a deterministic limit and
to a weak-effects limit, in order to obtain bifurcations, phase transitions, and the invariant
measure.
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Vaccination data. We apply the spatial reinforcement model to data on vaccination cover-
age for measles in Germany for child cohorts born in 2008-2012, by district and birth year.
For those birth years, a district’s measles vaccination quota was measured using a consis-
tent method across Germany, and is publicly available through the Robert-Koch-Institute
(RKI) ([37, 63] and supplementary material). Measles is a highly infectious childhood dis-
ease [39], with rare but serious complications, such as measles pneumonia. The standard
public health recommendation in Germany is a first measles vaccination for children at an
age of 11-14 months, and a second shot at 15-23 months [61]. We focus our analysis on
the first vaccination shot because it best captures deliberate vaccination denial (rather than
negligence/forgetfulness). Since public health recommendations are clear and salient, and
access to the vaccine is convenient and free of charge, we can consider parents’ decision to
not have their child vaccinated as a direct reflection of their opinions towards vaccination
(pro- or anti-vaccine). In the SI Appendix, we present a similar analysis using data on
meningococci vaccinations.

Model fitting and statistical analysis. In order to estimate the parameters of our spatial
reinforcement model using the measles or meningococci vaccination data across all 413
districts in Germany, we use a statistical method based on likelihood computation. Data
analysis is performed in two steps. First, we estimate the parameters of the decoupled
model (assuming τ = 0) and compare its empirical fit with and without reinforcement. We
compute the exact likelihood L = P(x(k) = y(k)), with x(k) being the fraction of vaccinated
individuals in district k ∈ Γ. Second, we estimate the parameters of the spatial model (τ ≥
0). In that case, we observe the data y(k) in grid node k, but obtaining the exact likelihood
comes at prohibitively high computational costs. Following [29, 69, 5], we approximate the
likelihood by the product of the marginal probabilities for single nodes, conditioned on
the state of all other nodes. This conditioned-likelihood (pseudo-likelihood) allows us to
compute the normalizing constant C by a one-dimensional integration (C is a key parameter
defined in the proposition and theorem in the results section). Note that this integration
has to be performed for each node, but it is still faster and more practical to compute |Γ|
one-dimensional integrals rather than one |Γ|-dimensional integral. Parameter estimations
based on pseudo-likelihood and exact likelihood typically yield comparable results [69].
The general pseudo-likelihood formula can be written as follows:

L̂ = ∏
k∈Γ

P(x(k) = y(k) | x(k′) = y(k
′), k′ 6= k).

Finally, in order to asses the sensitivity of the vaccination coverage v to changes in the
model parameters p, i.e. zealot strength (N1, N2) and reinforcement strength (ϑ1, ϑ2), we
compute the respective elasticities (for a similar approach, see [79]):

ev,p =
p
v

∂v
∂p

.
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(d) (f)(e)

Figure 1: Upper row: Stationary states for the deterministic spatial two-patch model in de-
pendency of the reinforcement parameter ϑ, with ϑ1 = ϑ2 = ϑ. (a) Symmetric and
decoupled n1 = n2 = 0.1, τ = 0. (b) Symmetric and connected, n1 = n2 = 0.1,
τ = 0.1. (c) Non-symmetric and connected, n1 = 0.1, n2 = 0.105, τ = 0.1. Black:
locally asymptotically stable states are in black; blue/green: unstable states states
(1- and 2-dimensional unstable manifold), closed circles: saddle-node bifurca-
tions, open circles (degenerated) pitchfork circles.
Lower row: Invariant measure ψ for the stochastic spatial two-patch model, with
θ1 = θ2 = 120. (d) Symmetric and decoupled N1 = N2 = 20, γ = τ = 0. (e) Sym-
metric and connected, N1 = N2 = 20, γ = 20. (f) Non-symmetric and connected,
N1 = 20, N2 = 20.4, γ = 20.

The elasticity ev,p is dimensionless and approximates the percentage change in vaccination
coverage v in response to a percentage change in the respective parameter p.

3 Results

3.1 Analytical results

Deterministic limit. To understand the general behavior of the model, we first scale the
model to a deterministic continuum limit, using the assumption that the population size
of the nodes (districts) is large. In this case, the stochastic property of the model becomes
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negligible and we obtain the deterministic limit, whose resulting equation can be readily
interpreted.

Before analyzing the more complex two-patch systems, let us briefly consider the
simplest possible case, namely a single patch with symmetric parameters (same number
of zealots and same strength of reinforcement for both opinions). We show that the,
if reinforcement becomes strong enough, patch undergoes a so-called pitchfork bifurca-
tion, meaning that three outcomes can occur: opinion 1 dominates, opinion 2 dominates,
and both opinions coexist at intermediate frequencies in the patch. More precisely, with
low levels of reinforcement, we find only one locally asymptotically stable state, in which
one of the two opinions vanishes. In contrast, when reinforcement is high, we find three
branches of stationary states, of which two are locally asymptotically stable (the single
opinion states), and the middle one (coexistence of both opinions) is unstable.

These results are first extended to two patches without any interaction between them
(τ = 0) and the outcome is illustrated in Fig. 1 (a)-(c). The stationary states for the
deterministic two-patch model is shown in dependency of the reinforcement parameter ϑ.
Locally asymptotically stable (unstable) states are shown in black (blue: one-dimensional,
green: two-dimensional unstable manifold), and bifurcation points are depicted as dots.
A product structure for the stationary states is found with each combination of single-
patch stationary states yielding a valid stationary state for the two-patch situation. As
three stationary states occur after the pitchfork bifurcation in a single patch, we find nine
branches in the two-patch model after a highly degenerated pitchfork bifurcation. As both
single-patch stationary states have to be locally stable to be combined into a locally stable
two-patch state, we obtain four branches of stable stationary points: Two of them are
convergent (the same opinion prevails in both patches) and the other two are divergent
(opposite opinions prevail in the two patches).

We can now extend the deterministic limit analysis to the two-patch model with in-
teraction (τ > 0). The comparison between panels (a) and (b) of Fig. 1 illustrates that
as interaction between patches increases (τ = 0.1), the degeneracy decreases (still under
an identical set of parameter values for both opinions). The convergent stationary state
x1 = x2 = 1/2 undergoes two subsequent non-degenerate pitchfork bifurcations. Particu-
larly, the stable part of the divergent stationary solutions becomes smaller. If between-patch
interaction increases even further, the divergent solutions eventually vanish as the interac-
tion enforces a convergence of opinions. In other words, when a distinct communication
happens between neighboring districts, one of the two opinions prevails in both patches.
If we break the symmetry of parameter values between opinions (Fig. 1 (c)), the pitchfork
bifurcations are unfolded into a series of saddle-node bifurcations. In view of the multi-
stable situation characterizing the deterministic behavior, we expect – when accounting for
stochasticity – the invariant measure to show a multi-modal distribution.
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Weak-effects limit. We now present results for the stochastic model under the weak-
effects limit. We aim a the analysis of patch data, where each patch has a certain population
size. Experience e.g. in population genetics [74, 24] indicates that this limit is better suited
for the analysis of such data than the deterministic limit. For the weak-effects limit, we
choose a different scaling of the parameters than before. We assume that the number of
zealots Ni are independent of the population size N, and that the reinforcement component
becomes small for large N, ϑi = 1− θi/N. Note that in the original scaling, a small value of
ϑi indicates a strong reinforcement, while from now on (with the new scaling), large values
of θi indicate strong reinforcement. We furthermore allow the spatial interaction parameter
τ to depend on 1/N but also on the frequency of a certain opinion in a given patch, with
the new parameter γ as proportionality constant,

τ(x(k)) =
1
N

γ x(k) (1− x(k)).

Interaction per se is assumed to be a weak effect, so that τ(x(k)) tends to zero if N
tends to infinity. Moreover, if almost all individuals in a given patch have the same opinion
(x(k) ≈ 1 or x(k) ≈ 0), interaction has almost no effect. In other words, the effect of interac-
tion between patches is maximized if a patch is maximally heterogeneous, i.e. if x(k) ≈ 1/2.
Our assumptions reflect the application of the model. Put simply, we assume that if all my
neighbors have the same opinion as myself, I am inclined to follow that opinion too, and
do not look further to crosscheck my opinion with people from other districts (interaction
parameter τ is very small). By contrast, if my neighbors give me contradicting pieces of
advice, I may be more inclined to ask additional people. Consequently, I am more likely
to also communicate with individuals from neighboring patches (τ is larger). Moreover,
our choice of τ(.) is mathematically convenient as it yields a consistent scaling and an
appropriate invariant measure.

Before we investigate the spatial model (with interaction between neighboring dis-
tricts), we first derive the invariant distribution for the decoupled model (without interac-
tion between neighboring patches). While the proof of the next proposition can be found
in [55], we sketch the proof in the SI Appendix for the completeness.

Proposition 3.1 Let Ni denote the number of zealots for group i, N the population size, and ϑi =

1− θi/N the parameter describing reinforcement. We assume no interaction, γ = 0, s.t. all patches
become independent and identical. In the limit N → ∞, the density of the invariant measure for the
random variable xt = X(k)

t /N (for any k) is given by

ϕ(x) = C e
1
2 (θ1+θ2)x2−θ1 x xN1−1 (1− x)N2−1, (6)

where C is determined by the condition that the integral over ϕ(.) is 1.
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Using this result, we can determine the invariant distribution for the spatial model,
yielding our main theorem below. We are particularly interested in the invariant measure
ψ(.) which summarizes the pseudo-equilibrium distribution of the frequencies of opinions
in a stochastic model.

Theorem 3.2 Let Ni denote the number of zealots for group i, N the population size, and ϑi =

1 − θi/N the parameter describing reinforcement. We also scale the spacial interaction strength
τ = 1

N γ x(k) (1− x(k)). In the limit N → ∞, the density of the invariant measure for the random

variable x(.)t = (x(1)t , . . . , x(|Γ|)) = (X(1)
t /N, . . . , X(|Γ|)

t /N) is given by

ψ(x(·)) = C ∏
k∈Γ

(
ϕ(x(k)) exp

{
− γ

4 dk
∑

k′∼k
(x(k) − x(k

′))2
} )

, (7)

where ϕ(.) is the homogeneous-population distribution defined in eqn. (6), and C is determined by
the condition that the integral over ψ(.) is 1.

The distribution of opinion frequencies has a multiplicative structure, where the first
term is related to the local dynamics within a given patch k (ϕ(x(k))), while the second
term accounts for the communication between neighboring patches. For the two-patch
system, the shape of the invariant distribution can be visualized (Fig. 1). The local maxima
are the stochastic analogue of the locally asymptotically stable stationary points in the
deterministic case. In fact, Fig. 1 (d)-(f) correspond to Fig. 1 (a)-(c) for appropriate choices
of ϑ. We represent in subfigure (d) the case without patch interaction for which four local
maxima appear, mimicking the deterministic results of four stable stationary points. If
interaction strength increases (γ > 0 defining τ), the non-symmetric maxima decrease,
while the symmetric maxima (on the line x1 = x2) are still present (subfigure (e)). If
we choose non-symmetric parameters (N1 6= N2 in subfigure (f)), we still find the local
maxima on the diagonal, but now one maximum dominates the distribution. To conclude,
the different parameters (strength of reinforcement, strength of zealots, interaction between
patches) strongly influence the shape of opinion frequency distributions. All parameters
being identifiable, we set to estimate the parameters of our model based on real-world data.

3.2 Vaccination data analysis

The RKI defines a district’s vaccination quota as the number of children born in year X
getting their first measles shot within their first 24 months, divided over all children born
in year X. The left panel of Fig. 2 illustrates the variation of vaccination quotas across
Germany. Visually, the data suggests the existence of spatial correlations, e.g. a large
cluster with a low vaccination coverage in southern Germany. Moreover, as shown in the
middle panel of Fig. 2, districts’ vaccination quotas are strikingly consistent across birth
years. In our dataset, the smallest year-to-year correlation is ρ = .87 (Spearman correlation
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Figure 2: Panel (a): Measles vaccination coverage (in percent) for children born in 2010
across 413 districts in Germany (GIS-data: c©GeoBasis-DE / BKG (2021)).
Panel (b): Vaccination coverage for birth years 2010 and 2011, by district; 45 degree
line for comparison. Panel (c): Histogram of vaccination coverage for measles per
district in 2010. The solid blue (dashed green) line: fit of the decoupled model
with (without) reinforcement. Bin size is 0.01.

coefficient). This resonates with our assumption that people’s local environment is central
for their opinion formation and thus for their decision to support or reject vaccination.

We assess the extent to which reinforcement explains the distribution of vaccine opin-
ions across districts in Germany by estimating the reinforcement parameter θi. Fig. 2
(right panel) illustrates the superior fit of the decoupled model with reinforcement rather
than without reinforcement. The model without reinforcement is rejected (Kolmogorow-
Smirnow-test, significance levels p < 0.05 for all birth years separately). In contrast, the
model with reinforcement is appropriate for the data (Kolmogorow-Smirnow-test, signif-
icance levels p > 0.05 for all birth years separately), and the reinforcement component is
indispensable for explaining the data (the likelihood-ratio test rejects the model without
reinforcement, p < 0.000005, see SI Appendix for details).

The upper panels of Fig. 3 display the estimated model parameters for the decoupled
model, for each birth year separately. We find the zealot parameter to be larger for the
pro-vaccination than for the anti-vaccination opinion. In contrast, the reinforcement pa-
rameter is larger for the anti-vaccination than for the pro-vaccination opinion. This pattern
is consistent across all birth years. Additionally allowing for interaction between neighbor-
ing districts is meaningful (the estimated γ is consistently positive) but does not affect the
general patterns found above. In fact, the upper panels (decoupled model) and the lower
panels of Fig. 3 (spatial model) are striking similar. The zealot component is consistently
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Figure 3: Estimation parameters for the decoupled model (upper panels) and the spatial
model (lower panels). Right panel: Elasticities for the decoupled model (param-
eters of measles 2010). Blue: pro-vaccination parameters, green: anti-vaccination
parameters.

larger for the pro-vaccination opinion whereas the reinforcement component is larger for
the anti-vaccination opinion. This suggests that individuals are more often exposed to in-
formation that promotes vaccination, but vaccination deniers are more likely to filter out
this pro-information and focus on anti-information. In the SI Appendix, we show that
the relative sizes of all four parameters are robust to applying the model to meningococci
vaccinations rather than measles.

As shown in Fig. 3, right panel, we find as intuitively expected, that increasing any
of the two pro-vaccination parameters (N1, θ2) leads to an increase of the vaccination cov-
erage, while increasing the anti-vaccination parameters (N2, θ1) entails a decrease. More
interestingly, we find that decreasing the zealot strength of vaccination-deniers N2 has the
strongest effect on vaccination uptake. In contrast, influencing the reinforcement parameter
of vaccination deniers has the smallest impact.
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4 Discussion

We have developed and analyzed a novel spatial opinion model that incorporates reinforce-
ment, thus allowing for the occurrence of echo chambers. Applying our model to fit and
draw parameter inference from vaccination data for measles and meningococci, we find
our novel reinforcement model to be highly superior to a model without reinforcement.
Estimated parameters are robust across both diseases and all birth years in our sample,
and to allowing for spatial correlations between neighboring districts.

The model introduced here is the first model capable of structuring the factors in-
fluencing vaccination hesitancy into (i) exposure to – potentially distorted – partisan in-
formation and (ii) people’s tendency to consume information that is aligned with their
worldview; and to allow these components to be measured with spatial data. We find the
zealot component to be much larger for the pro-vaccine opinion than for the anti-vaccine
opinion. This resonates with the idea that in Germany the pro-vaccine opinion has much
more exposure than the anti-vaccine opinion. In contrast, the reinforcement component
is much larger for the anti-vaccine opinion. This is consistent with empirical studies that
associate vaccine hesitancy with people’s receptiveness to populism and conspiracy theo-
ries [43, 55, 67].

By computing elasticities, our model can be used to predict the effectiveness of differ-
ent measures aiming at increasing vaccination uptake. We find that the most sensitive pa-
rameter influencing vaccination uptake is exposure to the anti-vaccine opinion. According
to our model, measures aiming at reducing the salience of partisan anti-vaccine informa-
tion sources would have the largest effect on enhancing vaccination uptake. In contrast, we
find that measures aiming at reducing the reinforcement of vaccination deniers have the
smallest impact. This resonates with the idea that dialogue-based approaches which are
carefully targeted to a specific social group are among the most effective measures against
vaccination hesitancy [41]. Studying vaccine hesitancy for Covid-19, Klüver et al. [44] find
positive information, appropriate communication, and trust to be central. If the behav-
ioral mechanisms behind people’s reluctance to receive a Covid-19 vaccination are similar
to their opposition to vaccines against measles and meningococci, our study suggests that
targeting the partisan spreaders of anti-vaccine information could be very effective. An
important difference between Covid-19 vaccinations on the one hand, and measles and
meningococci vaccinations on the other hand, is the incidence of the disease. Both measles
and meningitis have been extremely rare in Germany for many years. Consequently, our
model neglects the influence of the disease incidence on the vaccination rate, as well as
the effect of the vaccination coverage on the infection dynamics [8]. In future research,
our model could be generalized to investigate vaccination opinion dynamics for prevalent
diseases.

Trust in government institutions is instrumental for how people process government
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recommendations, and thus for their willingness to get vaccinated (and to vaccinate their
children). By capturing well-documented behavioral biases in people’s processing of in-
formation, and delivering testable predictions at the macro level, our model complements
the growing empirical literature on the historical determinants of impersonal trust [1]. Our
model explains the substantial differences in measles and meningococci vaccination cover-
age within Germany – both within the former West Germany and within the former East
Germany – by the occurrence of the anti-vaccination opinion driven by strong echo cham-
bers. Further historical and sociological factors might contribute to the spatial correlations
in vaccination coverage. The opinion dynamics and echo chamber mechanisms we model
here do not contradict the existence of historical factors. On the contrary, the propensity
of people to influence opinion dynamics (being a zealot) or to be influenced by opinion
dynamics (adhering to an echo chamber) may likely have deeper roots into local histori-
cal factors. For Germany in particular, regions with high intensity of East German state
surveillance in the 1980s have been shown to have lower current levels of impersonal trust
and lower election turnout [49], and municipalities with high support for the Nazi party in
1933 are more likely to vote for the populist AfD today [15].

Beyond vaccination hesitancy, our model is applicable to a large range of problems of
opinion polarization; from discrepancies about the extent and causes of global warming, to
perceptions of inequality and the role of government [21, 2, 47]. In psychology, economics,
and political science, a prominent explanation for polarization has been the idea of moti-
vated reasoning [42, 10, 80]: When people are emotionally invested in a certain state of the
world being true – e.g. because it favors them economically, or because their partisan align-
ment is a critical part of their identity [40] – it limits their ability to process information in
an unbiased manner. While our model considers the behavioral biases of the receivers of
information, it neglects the motives of the senders of information [48, 36]. In a world that
relies increasingly on highly specialized expert knowledge, while at the same time citizens’
trust in experts is being constantly undermined by populist leaders and media outlets, fu-
ture work should expand our model to capture the interplay between expert senders and
non-expert receivers of information.

Finally, we comment on a more technical aspect of our model. We introduced the
model as a branching process at the level of single individuals. Looking at a deterministic
limit, we found a sequence of pitchfork bifurcations. Given appropriate parameters, these
bifurcations collapsed into a highly degenerate pitchfork bifurcation at a single point. This
bifurcation structure resembles that of the Ising/Curie-Weiss model, which has also been
applied to opinion dynamics [56]. Yet, the central mechanism of our model is fundamen-
tally different. While the Ising/Curie-Weiss model implements a majority rule [45], our
spatial reinforcement model is – just as the basic voter model – based on pairwise interac-
tions. We show that a different scaling of the parameters yields the weak-effects limit. This
limit is a stochastic process that is independent of the population size. It is thus suited to
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analyze data of populations of an appropriate size. Nevertheless, if the population within
a patch is too small, the branching process is better suited but stochastic noise can be very
strong decreasing the power of parameter inference. If the population is too large, the
noise averages out, and we approach a deterministic model. Future work should investi-
gate for which geographic/administrative units our model is best suited in order to gauge
its applicability to different countries and different opinion frequencies.
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