
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s thesis in computer science

Application virtualization on Windows 7
with Microsoft App-V

Manuel Söhner

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s thesis in computer science

Application virtualization on Windows 7 with Microsoft
App-V

Applikationsvirtualisierung unter Windows 7 mit
Microsoft App-V

Author: Manuel Söhner
Supervisor: Prof. Dr. Uwe Baumgarten
Submission date: November 15, 2011

I assure the single handed composition of this bachelor’s thesis only supported by declared
resources.

Munich, November 15, 2011 Manuel Söhner

Acknowledgments

There are some people that have contributed to the thesis so I would like to take this
occasion to thank them.

First of all, I would like to thank oLLi for offering me the chance to work with the school
network, coaching me during the internships and teaching me the SMC’s mode of opera-
tion.

This thesis would perhaps not have come about if Gabriel had not been so kind to orga-
nize a meeting with the client and server team in order to find a convenient topic for all
involved parties. So, I would like to thank him, Michael T., Michael K. and all the other
contributors of ZIB for giving me the opportunity to research the application virtualization
topic and for allowing me to work in the Windows 7 project.

Furthermore, I like to express my gratitude to Christof for the great collaboration and
to Robert for the introduction into the AE-Manager and showing me how to deploy the
applications. Additionally, I would like to thank the whole development team (including
Norbert, Stefan, Carsten, Max and Dirk) for the good time and support.

vii

Abstract

Virtualization has established itself as a helpful concept in data centers as well as on
desktop clients. While hardware and operating system virtualization is very common on
servers and for test environments, the virtualization of applications on an end-user’s work-
station is not that widely used yet. Certainly, many company networks consist of various
programs that cause conflicts and require a high amount of management effort in solving
the problems that occur at installation time and those that appear much later without an
obvious correlation. Here, the vendors of application virtualization products are eager for
providing a way out.

This thesis will discuss the benefits of application virtualization and which advantages
arise for customers that apply such products in order to solve conflicts between programs.

The first part of the thesis will give an introduction to the topic by depicting how applica-
tion virtualization works and how it differs from other virtualization concepts. Thus, the
second chapter will describe how a virtualization layer intercepts function calls in order to
reach the isolation and abstraction from the operating system.

As the thesis includes an external cooperation with the bureau of information technology
at Munich’s department of education, the second part will cover the practical chapters.
Here, App-V, the application virtualization product of Microsoft will be explained in more
detail as well as its integration into the heterogeneous network of Munich’s school net-
work. There, it will be a part of the Windows 7 migration project and is intended be a so-
lution for conflicts that arise by installing incompatible applications on the same machine.
Thus, the thesis also observes the pitfalls that may arise when virtualizing programs and
it will show which applications cannot be transformed into isolated packages.

The last part will introduce application virtualization products from VMware, Citrix and
Symantec by outlining their differences to Microsoft App-V.

ix

Contents

Acknowledgements vii

Abstract ix

1. Introduction 1
1.1. Motivation . 1
1.2. Types of virtualization . 2

1.2.1. Hardware virtualization . 2
1.2.2. Operating system-level virtualization 3
1.2.3. Application virtualization . 3

1.3. Benefits of application virtualization . 5
1.4. Drawbacks of application virtualization . 6
1.5. History . 7

1.5.1. The time before the Windows Registry 7
1.5.2. After the release of the Windows Registry 8

1.6. Structure of this thesis . 9

2. Background 11
2.1. Architecture of Windows . 11
2.2. Placing the virtualization engine . 12

2.2.1. Interception in user mode . 12
2.2.2. Interception in kernel mode . 13

2.3. Functionality of a virtualization engine . 14
2.4. Windows API hooking . 16

2.4.1. Basic mechanism for intercepting function calls 16
2.4.2. Microsoft Detours . 17

2.5. Intercepting requests to the file system and registry 18

3. Microsoft Application Virtualization (App-V) 19
3.1. History . 19
3.2. Functionality of App-V . 20
3.3. Constraints of App-V . 23
3.4. Components . 25

3.4.1. Sequencer . 25
3.4.2. Management Server . 28
3.4.3. Web Service, Data Store, and Management Console 29
3.4.4. Streaming Server . 30
3.4.5. Client . 30

xi

Contents

3.4.6. App-V for Remote Desktop Services 32
3.5. Architecture . 33

3.5.1. Full infrastructure . 33
3.5.2. Stand-alone mode . 34

3.6. Interaction between isolated applications . 35
3.7. Server Application Virtualization . 37

4. Integrating App-V into a heterogeneous network 39
4.1. Infrastructure of Munich’s school network . 39
4.2. Reverse engineering the infrastructure of Microsoft App-V 40

4.2.1. Streaming and authorization . 40
4.2.2. Publishing and authentication . 41
4.2.3. Reporting . 42

4.3. App-V as part of the Windows 7 migration project 42
4.3.1. App-V Client . 44
4.3.2. Mobile users . 44

4.4. Software . 45
4.4.1. Adobe Reader . 45
4.4.2. Adobe Creative Suite and Adobe Acrobat 47
4.4.3. Hardcopy . 48
4.4.4. Microsoft Office . 48
4.4.5. Mozilla Firefox and Thunderbird . 49
4.4.6. Investigation of problems inside the virtual environment 51
4.4.7. Documentation of proceedings and troubleshooting 51

4.5. Categorization of applications . 52
4.5.1. Not virtualizable . 52
4.5.2. Virtualizable, with reservations . 53
4.5.3. Virtualizable . 54

5. App-V compared to other products 55
5.1. VMware ThinApp . 55
5.2. Citrix Application Streaming . 56
5.3. Symantec Workspace Virtualization . 57

6. Conclusion 59

Appendix 63

A. App-V documentation for ZIB 63

Bibliography 87

xii

List of figures

1.1. Native hypervisor . 3
1.2. Hosted hypervisor . 3
1.3. Operating system virtualization . 4
1.4. Application virtualization . 4

2.1. Simplified architecture of Windows . 12
2.2. Interception on the Native API level . 13
2.3. Interception in kernel mode . 14
2.4. Redirection of requests by the virtualization layer 15
2.5. Situation before and after the insertion of the detour 17
2.6. Positioning of the file system and registry filter 18

3.1. Virtualization layer of App-V . 20
3.2. Direct file requests to the virtual drive and redirected ones to the system drive 22
3.3. Monitoring an installation . 25
3.4. Launching process of an application . 31
3.5. Infrastructure of App-V . 33
3.6. Two independent Dynamic Suite Compositions 36

4.1. App-V integrated into the school network . 43

xiii

List of tables

4.1. List of software that is part of the Windows 7 pilot experiment 46

xv

Listings

3.1. Directory structure of the virtual drive . 22
3.2. Command for launching Microsoft Office Word 2010 31

4.1. Command for launching the registry editor inside the virtual environment . 51

xvii

1. Introduction

Installing applications on the personal computer at home normally works without noticing
any problems. Sometimes the operating system can be corrupted after an installation and
fail to start, which is mostly caused by device drivers. Certainly, it is more likely that
programs conflict with each other, rather than damaging the whole system.

However, in networks with many desktop clients and different applications the likelihood
for conflicts between programs is much higher than on a stand-alone computer that is used
at home. Oftentimes, companies and government agencies apply special software to fulfill
the daily work and thus have a high interest in running the programs on a machine in
parallel as much as possible. This is not always feasible because the software may have
unequal requirements, use different versions of libraries or modify the system in a way
that makes it incompatible to other applications. Also, running different versions of the
same product is mostly a problem but is sometimes required by the customers.

This is where application virtualization comes into play as it aims to eliminate conflicts be-
tween applications by isolating them from the operating system and other programs. Ap-
plication virtualization products like Microsoft App-V, VMware ThinApp or Citrix XenApp
promise to help businesses by solving most of the problems that arise with the installation
of programs [21, 56, 52].

This thesis will cover the application virtualization topic by explaining its functionality
and discussing Microsoft’s product with its components in more detail. As the topic was
offered by the bureau of information technology, which provides services for Munich’s
department of education, the thesis also includes the implementation of Microsoft App-V
into their network to analyze whether App-V can be used to solve the issue of conflict-
ing applications. Thereto, I researched on how to integrate the product into a heteroge-
neous network and investigated which applications are candidates for being virtualized
and which are not.

1.1. Motivation

The history of virtualization dates back to the 1960’s and there is still ongoing research
these days [82]. Today, the analysis of this topic is mainly focused on security and the op-
portunities of virtualization for cloud computing. Thus, since a few years, many adminis-
trators use virtualization in data centers to run several isolated systems on one machine.
This not only reduces the costs of operation because of the saved hardware, electricity, and
easier management. It also saves administration time and makes the systems more secure

1

1. Introduction

and portable.

Virtualization also enables server administrators to separate different services (like a data-
base and the web server) from each other by installing them into self-contained operating
systems. The big advantage is the possibility to use Windows beside Linux alongside
Solaris and any other operating systems without them affecting each other. This leads
to a higher flexibility because applications can be installed on the most suitable system.
These virtual machines can be taken down for maintenance independently without affect-
ing other systems or moved from one physical hardware to another without adaptations.

In the course of time different vendors produced virtualization products and implemented
more features to suit the customer’s needs. But all of these products were focused on
the need of data centers and none of them addressed the issues on the client computers
where desktop applications could not be installed along each other. Certainly, the idea
behind solving the conflicts between applications is very similar to the one that forms the
basis of virtualization in data centers: isolation and portability. Indeed, the virtualization
happens on a higher level because it is not necessary to virtualize hardware components
or a complete operating system for applications to be separated.

However, it took until the end of the 1990’s for vendors like VMware or Softricity to begin
the development of an application virtualization product.

1.2. Types of virtualization

To better understand what application virtualization is and how it differs from the other
types, this section will outline the main forms of virtualization.

1.2.1. Hardware virtualization

The concept of this virtualization type is to have a virtual machine monitor (VMM, also
hypervisor) that provides a virtual operating platform which enables the execution of sev-
eral guest operating systems on one host computer at the same time. Thereto, all available
resources have to be shared between the host and guest operating systems in a way that
guaranties a good hardware utilization. As every guest is isolated from the physical hard-
ware as well as from the other guests, the hypervisor needs to provide a special interface
which routes the guest’s system calls to the physical hardware. This is also necessary be-
cause the virtualized machines are not aware of running on the real physical hardware
and are not having direct access to it. This implies a loss in performance but allows the
guest operating system to run on many different host computers without any adaptations,
as long as the hypervisor is installed.

The hypervisor can be classified into two types: [4]

1. the native (or bare metal) hypervisor that runs directly on the host’s hardware, like
shown in figure 1.1.

2

1.2. Types of virtualization

Physical hardware

Hypervisor

Guest operating
system 1

Application

Guest operating
system 3

Application

Guest operating
system 2

Application

Figure 1.1.: Native hypervisor

Physical hardware

Hypervisor

Guest operating
system 1

Application

Guest operating
system 3

Application

Guest operating
system 2

Application

Host operating system

Figure 1.2.: Hosted hypervisor

2. the hosted hypervisor that depends on an installed operating system as depicted in
figure 1.2.

In both figures the green border around the guest operating systems symbolizes the isola-
tion that separates all virtual machines from each other as well as from the host operating
system (in the case of figure 1.2).

1.2.2. Operating system-level virtualization

This type is one level of abstraction higher, as now the kernel of an operating host system
is shared between several isolated guest systems. The overhead is very little compared
to hardware virtualization because it is not necessary to provide a virtual set of hardware
to every guest. One disadvantage is the fact that every kernel inside a container must be
based on the host kernel. Since the latter takes over the hypervisor’s job it has to regulate
the guest’s access to the resources. This implies that it is impossible to virtualize a Win-
dows operating system on a Linux kernel and vice versa because of the kernel incompati-
bility. Another drawback is that some guest operating systems need a few modifications to
become virtualizable. Furthermore, it also requires the host kernel to contain every kernel
component (like drivers) the guests will need because there is no possibility to install and
load these in the virtual environment [65].

Figure 1.3 shows the virtualization layer that is part of the operating system and isolates
the user-space instances, which is implied by the green border.

1.2.3. Application virtualization

Virtualizing applications means to isolate the next higher layer following the operating
system-level. So it decouples the application from the operating system and makes it pos-
sible to offer programs in a network as Click-To-Run applications [85]. This means that
no installation is required to run a program which abolishes conflicts in the system and

3

1. Introduction

Physical hardware

Guest operating
system instance 1

Application

Guest operating
system instance 3

Application

Guest operating
system instance 2

Application

Host operating system
with virtualization layer

Figure 1.3.: Operating system virtualization

makes software deployment much simpler. In addition, the deployment process requires
less time because the applications do not need to be configured for different types of hard-
ware. Even a mandatory reboot that a software installation may prescribe is no longer
needed and thus saves time for administrators and users.

Like the easy-to-move operating system in the sections above, it is possible to copy an ap-
plication from one computer to another without causing impacts on the package integrity.
This is because the virtual applications contain their own environment with all resources
(like files, registry keys, services and settings) they need. As all changes are captured in-
side the virtual environment, a virtualized application cannot harm other virtualized or
natively installed software. Even the operating system with all its core libraries stays un-
touched.

The concept is depicted in figure 1.4 and shows the integration of virtualized and natively
installed applications. Here, instead of operating systems, the applications are isolated,
which is symbolized by the yellow border around applications A to D.

Physical hardware

Application B

Host operating system

Virtualization layer

Application A

Application D

Application C

Application

Application

Figure 1.4.: Application virtualization

To achieve and maintain such self-contained environments it needs a virtualization layer
on top of the operating system. Its job is to provide a virtual registry and virtual file system
which the application assumes to be the real ones. Hence, the application’s system calls
have to be intercepted and modified, which will be explained in more detail in chapter 2.

4

1.3. Benefits of application virtualization

As the virtualization of applications does not require to create an abstraction for the hard-
ware components, it is very resource-conserving. Instead, the virtualization layer has to
provide a mechanism that is capable of several things [54]:

• An application reads or modifies files that were placed into the file system at installa-
tion time. Because of the isolation, these files are not located in the same place on the
client. Thus, the layer has to make the application believe that all files reside where
it expects them. Thereto, it has to merge the files with the local file system or it has
to override existing ones that are different to the ones of the virtual application.

• The same applies to the registry which has to be readable and writable by the appli-
cation like if it was installed locally. But instead, the changes have to be saved in a
separate place to keep the real one clean.

• If an application creates a new file, the layer has to decide if it is a part of the virtual
application and thus needs to be captured and isolated as well. On the other side,
the file could be a document that needs to be saved to the native file system which
means that the layer must not redirect this request to the virtual counterpart.

• Configuration settings that are made by the user have to be user-specific and cannot
be placed into the virtual application. Therefor, the layer must create a special data
store where all the changes are saved as deltas. Later on, at runtime, the virtual
application and the user’s adaptations have to be merged again.

• Also changes to environment variables need to be respected and have to be applied
only for the virtual application.

Chapter 2 will explain how the virtualization layer works in order to achieve these require-
ments, while a concrete example is covered on the basis of the Microsoft App-V function-
ality in chapter 3.

1.3. Benefits of application virtualization

With the virtualization of applications and the concomitant isolation not only conflicts
between programs and the operating system are a thing of the past. Also the need for an
installation is obsolete and thus the waiting time of an user is greatly reduced because he
does not have to wait for program updates and new applications to be finished before he
can use the workstation. From a technical point of view this simplifies the deployment of
software because a virtual application consists of one single file that includes everything
the program requires.

Thus, also the streaming of an application from a server to the client is possible which
changes the software deployment from a “push” to a “pull” method where the user only
streams the applications he really needs [35].

Furthermore, the isolation also means an abstraction from the operating system which

5

1. Introduction

not only enables easier migrations to another version of an operating system [84]. This
is because virtualized applications can be recycled by copying them to the new platform
without having them repackaged before. Normally, companies have a complex application
lifecycle management that involves much time for regression testing. With application vir-
tualization the management is simplified because the potential risk of conflicts is reduced
and thus crashes that resulted of such problems are avoided.

Hence, application updates are becoming easier because they do not have to be tested
on different machines. With the streaming technology the deployment of a new program
version does not require a removal of the older version as with the next launch the program
will automatically be streamed in the latest version. Thus, the application only has to be
interchanged on the server-side, which means a higher level of security as patches can be
applied promptly [83].

Certainly, with the isolation the removal of old version is not necessary anymore. If prod-
ucts have to be available in different versions on the same machine, application virtual-
ization will make this scenario possible because program files, libraries or unequal depen-
dencies cannot conflict with each other.

As all changes to a virtual application are saved in the user’s roaming profile, the con-
figuration settings will follow the user from one workstation to another. This is a huge
difference to natively installed programs where some of them are not capable of a multi-
user environment with network clients and store all settings on the local machine.

Through the separation of the application and the user’s adjustments, the support becomes
easier for help desks and administrators because the application can be reset to its original
state if an user experiences problems with his application [74].

In spite of the virtualization the applications are still able to access devices like USB flash
drives, printers, scanners, the local disc and the like. This is an advantage over the other
virtualization types because there not all devices can be accessed directly.

1.4. Drawbacks of application virtualization

When a company decides to virtualize at least the programs that conflict with each other,
the administrators have to become familiar with a new technology which needs some time
and training. They have to learn the differences between their current deployment of soft-
ware and the way how application virtualization works. Furthermore, the new product
must be integrated into the existing network which may require adaptations and exten-
sive tests to servers and clients. In complex networks it might be a good idea to do a pilot
experiment with only a few workstations and briefed users to become acquainted with the
product.

Moreover, the problems that may arise while creating a virtual application can differ from
the standard software packaging process. Some vendors might not support those prob-
lems because the application was not designed to run in virtual environments. Thus, in

6

1.5. History

such cases, the problem solving can become more complicated because of the execution in
a virtual environment which will cost more time or even result in the conclusion that the
application is not virtualizable.

Additionally, another product means to pay more money for licenses, which depends on
the amount of clients that will run the virtual applications [75]. So it must be considered
whether application virtualization is a benefit for the company or if the costs outweigh the
advantage.

If applications are streamed from the server to the client on demand, the server might be-
come a single point of failure when it is not available [48]. Microsoft App-V caches the ap-
plications locally on the client which allows the execution of a program even if the server is
not on-line, as long as it is still cached. Other vendors do not offer such a fallback solution
and require high availability on the server-side. In some smaller networks this might not
be the case, so the network administrators have to plan beforehand which virtualization
product suites most of their needs and think about products that offer stand-alone modes.

1.5. History

To understand why there is a growing demand on application virtualization it is necessary
to clarify the root cause of today’s application conflicts.

1.5.1. The time before the Windows Registry

The first versions of Microsoft Windows installed applications into separate directories
that contained everything the program needed to run. Hence, all configuration parame-
ters were put into configuration files (recognizable on the filename extension .ini) and
dependencies (such as libraries) had to reside in the program’s directory [88]. This not
only enabled administrators to just copy the directory from one machine to another with-
out missing mandatory components. It also made it possible to have various applications
using different versions of the same software and use differing settings.

So there was a natural isolation between the programs on the file system level but shared
dynamic link libraries (DLLs) could cause incompatibility problems of running programs.
This is because there was only one shared address space and, therefore, no chance to use
different versions of the same library for differing programs [31].

The configuration files also had the drawback that they were not designed to support user-
specific settings which meant for multi-user environments that end-users had full access
to the application and were able to override the settings of other users [29].

7

1. Introduction

1.5.2. After the release of the Windows Registry

With the release of Windows 95, Microsoft established the concept of the Windows Registry
as a central place for saving configuration settings. This allowed programmers to store
user-based settings in the user’s part of the registry, share settings between applications
and make use of system options [49]. The downside of this new design was – and still
is – that applications can override each others’ settings if they use the same paths in the
registry. This can lead to a significant problem when a program consults the registry to
determine the location of a component and loads a different version of the required library
as it had registered in the installation process. The consequence of this conflict can be
one or more damaged application installations or – in the worst case – an instable or even
unusable operating system.

Furthermore, since Windows 95 every process is executed in its own address space which
allows an isolation of its data in memory as long as they are not shared with other processes
[29]. Certainly, the file system is still not able to handle programs that override or require
different libraries in the system folder.

This problem is commonly known as “DLL Hell” which is a Windows-specific phrase, but
the general term “dependency hell” also applies to other operating systems [88]. The root
cause is that Windows uses one single namespace for all files and thus it is impossible to
have two different versions of one DLL installed in the system32 folder if they need to
have the same filename [81].

Normally, an issue with file conflicts is solved by installing the different versions of a
software into separate locations, for example, onto distinct partitions. But this would not
solve the whole problem because system components are always installed into the same
destination and let the latest installation override the existing libraries. The same applies
to the Component Object Model (COM), which allows interprocess communication and
the creation of dynamic objects. As all COM classes are saved in the Windows Registry
with a specific name and there also is only one namespace there is no possibility to register
a COM with a particular name in more than one program.

Not only the installation of a program can lead to a system instability, also the uninstal-
lation is very risky. This is because a software may remove all the files it placed into the
system during the installation phase, regardless of other programs meanwhile depending
on them.

But there is also software that does not cause problems during the installation and still
faces conflicts that prevent their execution. Such incompatibility problems are called “dy-
namic conflicts” because they only appear at runtime and under certain circumstances. An
example for these is the use of the same mutual exclusions or semaphores [5].

Without application virtualization such conflicts can only be solved by installing the pro-
grams onto different machines, or at least into different operating system instances. This
approach has several downsides for both, the administrator and the end-user. For the
administrator the management of additionally machines means a more complex software
deployment and additive sources of error. On the other side, the user has to switch be-

8

1.6. Structure of this thesis

tween different machines or operating systems in order to use the swapped programs
which decreases his efficiency and makes it more complicated.

Using terminal servers instead reduces the number of distributed machines and thus saves
some support time. Nonetheless, the problem of conflicting applications stays the same if
a remote desktop infrastructure is used. Hence, these applications have to be separated
into different remote desktop sessions and users have to choose which session they need
to open in order to use a specific application [37].

With Windows Vista, Microsoft introduced a file and registry virtualization concept that is
part of the new User Account Control (UAC) technology. It ensures that only administra-
tors have the right to write into the application folder in C:\Program Files. Thus, if an
application is executed in the context of a standard user it cannot write to the application
folder because of missing permissions. Instead, the UAC redirects the file or registry oper-
ations to a specific location within the user’s profile which is called the Virtual Store
[22]. This technique must not be mistaken for application virtualization as it only protects
the application from being changed by normal users. Certainly, a virtual application is
protected from user-specific modifications, too, which is based on the same idea.

With the Virtual Store, Microsoft reduced the likelihood that users override the settings of
other users inside the file system or registry but the issue of conflicts between applications
is still there. Also, it does not protect the program directory at the installation time of an-
other application as the setup runs in a privileged mode and thus the installer can override
files and registry keys of other programs.

1.6. Structure of this thesis

The structure is as follows: the next chapter explains the technical background behind
application virtualization and the functionality of a virtualization layer. Thereto, a short
introduction is given into the Windows architecture and the technique of intercepting func-
tion calls in order to show how the virtualization layer organizes the redirects.

Chapter 3 will introduce the virtualization product of Microsoft in more detail. Thus, the
components of Microsoft App-V and its functionality as well as its advantages and draw-
backs are outlined here. The addressed features will be picked in the following chapter to
demonstrate if and how they can be used in networks without Microsoft’s server infras-
tructure.

The practical part of this thesis is represented in chapter 4 which contains the integration
of App-V into Munich’s school network. There, the concept of application virtualization
is intended to solve conflicts between complex software products that need to be installed
on the workstations without problems. Thus, App-V is part of the upcoming Windows 7
pilot experiment which will prove whether it can fulfill the needs or not.

As there are several other application virtualization products beside App-V that partly
take a different approach, chapter 5 compares three other products to App-V. Some of

9

1. Introduction

them have interesting attributes that can be of interest for companies where Microsoft’s
proposition is not compatible with the network infrastructure.

The last chapter sums up the previous sections and estimates whether application virtu-
alization is appropriate for everyone or if there are scenarios where the commitment is in
dispute.

10

2. Background

As mentioned earlier, in versions starting from Windows 95 every program has its own
address space and thus cannot read or write the data of other processes. Given that it is
impossible to implement the virtualization layer as a piece of code that manipulates the
virtualized program’s library at runtime by just changing a few pointers in memory or by
replacing some functions with adjusted system calls.

The simplest way would be to modify the source code and change the original function
and point it to a modified version inside the application programming interface (API) of
the virtualization layer. Obviously, this approach is very time-consuming, requires human
interaction and cannot be done at runtime because the program has to be recompiled.
As most of the applications are licensed as proprietary software, there is no possibility to
adjust the source code in this way [50].

Hence, the virtualization layer has to use another technique of making an application in-
dependent from the operating system at runtime. The functionality of intercepting the
application’s function calls is described in this chapter.

2.1. Architecture of Windows

To understand where the program’s function calls occur and at which level the virtualiza-
tion layer should be implemented to intercept those, it is best to have a look at a simplified
architecture of the Windows operating system. The basic items are shown in figure 2.1 and
span user as well as kernel mode.

Generally, applications run in user mode and perform operations on system services that
reside in kernel mode. This, for example, can be a system call to open a file for writing.
Thereto, the application normally uses a function inside the kernel32.dll library that is part
of the Windows API. This subsystem also provides libraries like user32.dll (for the user
interface) and gdi32.dll (for the usage of graphics devices) which are commonly used by
almost every program. Then, if the function is completely implemented inside the Win32
API and does not require any additional services outside the Win32 subsystem, it will
be executed. Otherwise, the system call has to be handed over into kernel mode. This
transition is done by the Native API which is a largely undocumented library that was
compiled into Ntdll.dll inside the system32 directory [78]. It offers many functions that are
used as a gateway to access the Windows Executive services which are contained in the
Kernel (ntoskrnl.exe). With it, the application can make use of the I/O Manager, Cache
Manager, Process Manager, and some other subsystems [77].

11

2. Background

Application

Windows API

Native API (Ntdll.dll)

Kernel (ntoskrnl.exe)

System services

Kernel
mode

User
mode

Figure 2.1.: Simplified architecture of Windows

2.2. Placing the virtualization engine

To intercept a system call it requires a virtualization engine that provides functions for
capturing an application’s system call and manipulating it where needed. As there are
several libraries involved which are passed by the system call on its way to the Windows
Executive services, it has to be considered where the interception may happen.

First, it has to be decided if the engine will run and intercept in user or kernel mode. The
choice is important as it will determine how the layer has to be implemented and with
which permissions it will do the filtering.

2.2.1. Interception in user mode

When the interception is done in user mode the virtualization engine has to be placed
over the Native API layer like shown in figure 2.2. This is because there are some applica-
tions that are not using the Windows API and instead call the functions of the Native API
directly. There are a few reasons why the layer in between may be omitted:

• The Native API exports functions that are not offered by the Win32 subsystem and
thus need to be accessed directly [78].

• Some programs are started before the Win32 subsystem is available and hence have
to hark back to the Native API [79].

• Using native APIs is sometimes a little less overhead than calling another abstraction
layer prior to that.

12

2.2. Placing the virtualization engine

Thus, placing the engine above the Windows API would imply that some function calls
could not be intercepted and the virtualization of these programs would fail.

Application

Windows API

Native API (Ntdll.dll)

Kernel (ntoskrnl.exe)

System services

Kernel
mode

User
mode

Virtualization engine

Application

Windows API

Native API (Ntdll.dll)

Virtualization engine

Virtual environmentVirtual environment

Figure 2.2.: Interception on the Native API level

One advantage of the user mode strategy is that the virtualization engine does not have
to filter between system calls of different applications as it only receives the ones of the
application that it built the virtual environment for. This enables virtualization products
to include the agent that is responsible for the virtualization inside the virtual package.
Thus, it is not necessary to install a client on the end-user’s machine and it is even possible
to generate one portable executable that contains everything to run the virtual application
[6]. Another advantage is that the virtual application is running with user privileges and
thus does not require administrative rights nor can it break the system when it crashes
[83].

2.2.2. Interception in kernel mode

In contrast, if the engine operates in kernel mode it can intercept all system calls before
they reach the Windows Executive services. This scenario is shown in figure 2.3.

The advantage is that it is easy to loosen the isolation of applications and let them share
the same virtual environment. This enables to create dependencies between packages, for
example, when working with middleware or plug-ins.

13

2. Background

A drawback is that the agent that builds the virtual environment has to be installed na-
tively on the machine to gain the required privileges for the interception in kernel mode.
This implicates that an error of an application that runs in kernel mode can lead to a crash
of the agent which would have an impact to all running virtual applications. It even could
harm the whole operating system.

Furthermore, the virtualization layer will capture system calls from all applications and
has to filter the processes in order to treat every call correctly [6].

Application

Windows API

Native API (Ntdll.dll)

Kernel (ntoskrnl.exe)

Virtualization engine

Kernel
mode

User
mode

System services

Application

Windows API

Native API (Ntdll.dll)

Virtual environment

Figure 2.3.: Interception in kernel mode

Depending on the problems that a virtualization product should solve, one of these two
modes will be chosen. But it is also possible to combine both ideas and make the loca-
tion of interception dependent on where the application needs to be executed. This hybrid
approach was implemented by Microsoft App-V while VMware ThinApp decided to in-
tercept in user mode only [28, 57].

2.3. Functionality of a virtualization engine

In order to decide which function calls to intercept and which have to be handled as usual,
the virtualization layer needs some kind of rules. These are generated at the time when
the application’s installation is monitored by a special software that is shipped with the
virtualization product. This program will collect all the files and registry keys that the

14

2.3. Functionality of a virtualization engine

installer creates or modifies. Then, at the application’s runtime the virtualization engine
uses the information to ensure that function calls are only modified if they request a path
inside the virtual file system or a key inside the virtual registry.

When the engine runs in kernel mode, it must additionally check which package needs
to be consulted to find the rules, as it will receive function calls from several running
applications that belong to different packages. This can be achieved by maintaining a
list that assigns a running process to a package and then looking up to which package a
process belongs to.

So, the virtualization layer has to intercept and redirect requests to the file system and
registry to virtual counterparts that contain the files and keys that belong to a certain ap-
plication. Like shown in figure 2.4 the engine also must ensure that requests to the native
components are still possible in order to use files in “My Documents” or locally installed
middleware or drivers. Certainly, the isolated application must not have write access to
the native components to ensure that it cannot change or break the system. But saving a
document is one exception where the application must be able to write to the file system.

Application

Virtualization engine

File system Registry

Virtual file system

Virtual registry

Application package

Read + Write

Read only

Allow a
write access
on rare
occasions

Figure 2.4.: Redirection of requests by the virtualization layer

Furthermore, application-specific environment variables must be provided inside the vir-
tual container. Thus, the software which creates the virtual application must collect the
variables that have been set by the installer. One way to do this is to export the list of
environment variables before the installation and after the monitoring phase. Then, the
changes between both lists can be taken as the virtual application’s environment variables
[51]. At runtime, the virtualization layer creates an environment block for the new process
in memory and passes the pointer as an argument to the CreateProcess function [12].

15

2. Background

2.4. Windows API hooking

This section will explain how function calls are intercepted in general and it shows the
functionality of an API hooking library that is sold by Microsoft. Furthermore it will
describe a way for file system and registry filtering that is easier then the API hooking
approach.

2.4.1. Basic mechanism for intercepting function calls

Instead of modifying a program’s source code or manipulating its code segment in mem-
ory, the layer has to intercept specific system messages and handle these on his own where
necessary. This is done by a technique called hooking which allows the injection of spe-
cial DLLs into the context of a running program [70]. Typically, this method is used to
extend the functionality of a function or to insert code for debugging purpose. But it is
also possible to inject a hook that modifies the return value of a function, which is the
basic idea behind the virtualization layer.

The user-defined library that will be injected into the target process must contain a replace-
ment for the target function which has to be hooked. Therefor, the DLL can be placed into
a special registry key (HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\
CurrentVersion\Windows\AppInit_DLLs) that will be attached to every process that
uses user32.dll [33]. The downside of this approach is that even not virtualized applica-
tions will get the library attached. This is because user32.dll includes standard elements of
the Windows user interface which is imported by most of the programs that implement a
graphical user interface.

Instead, the virtualization layer must provide a functionality that creates the target process
or opens it to get a handle. After it has an entry point to the process, some memory is allo-
cated in the target process and the name of the replacement DLL is written to it. Then the
launching function has to create a remote thread and pass the DLL’s name as an argument
to get it loaded by the target process [63]. After that, every call to the target function will
execute the replacement function that has been injected with the DLL.

In order to hook the Windows registry, the virtualization layer has to implement functions
like RegOpenKey, RegCreateKey, RegSetValue, and RegDeleteKey, but there are
many more functions that need to be observed to find out if all of them have to be imple-
mented [26]. On the other hand, to intercept function calls in the I/O stack, the layer has
to hook methods like CreateFile, ReadFile, and DeleteFile [14]. These will over-
ride the existing functions and replace a path with the new location of a file in the isolated
area where the virtual application’s files are stored. Thereto, the before mentioned list of
collected rules is used to find the storage location of a requested file. If the file is not part
of the virtual application, the layer can pass the request on to the operating system which
will return the file from the native file system.

16

2.4. Windows API hooking

2.4.2. Microsoft Detours

As an example for a library that makes API hooking easier, Microsoft Detours will be
introduced in order to explain how the injection of a replacement function works.

Detours is a product by Microsoft Research that can be used to intercept Win32 functions
on 32-bit and 64-bit machines dynamically at runtime [76]. When a function is hooked,
Detours modifies the target function in memory without having to touch the binary on
disk. Therefor, it has to locate the original function (also target function) in memory
and replace the first 5 bytes with an unconditional jump instruction to the user-defined
detour function that implements the new functionality. Prior to that it copies the tar-
get function’s instructions to a newly allocated space (so called trampoline function)
in memory to preserve them. This way it is either possible to replace the target function
completely by the detour function without calling the original code or to jump into the
trampoline function afterwards, which will additionally run the original function [50].

The insertion of a detour is shown in figure 2.5. When a hooked target function is called by
a source function (step 1) the detour function will be executed and behave like described
above. If it replaces the target function, the detour function will return to the source func-
tion at the end (blue path in the figure). Otherwise, it calls the trampoline function (step
3b) and executes the original code (equates to the orange path in the figure).

JMP DetourFunction

Code for preprocessing

JMP SourceFunction

OR

JMP TrampolineFunction

Code for postprocessing

First 5 bytes of
TargetFunction

JMP TargetFunction + 5

TargetFunction TrampolineFunctionDetourFunction

3b

SourceFunction

1

2

3a

5

4

TargetFunction

SourceFunction

6

Figure 2.5.: Situation before and after the insertion of the detour

17

2. Background

2.5. Intercepting requests to the file system and registry

In order to filter or intercept requests to the file system, Windows offers an easier way
as hooking the Windows API, which is also documented. Thereto, one can write a File
System Filter Driver that is registered in the operating system and will be executed
in kernel mode. The so called minifilter is linked to the Filter Manager which is
responsible for intercepting the system calls to the file system and calling the registered
minifilter. Thus, the filter driver is able to monitor all requests between the I/O manager
and the file system like shown in figure 2.6 [16, 17].

I/O manager

Filter manager

Kernel
mode

User
mode

Native API (Ntdll.dll)

File system driver

Minifilter A

Minifilter B

Minifilter C

Application

Configuration manager

Registry filtering driver

Windows registry

Figure 2.6.: Positioning of the file system and registry filter

Since Windows XP the Filter Manager is part of the operating system and minifilters can
be written by using a special driver kit which is provided by Microsoft [15].

For the interception of the registry, Windows provides a Registry Filtering Driver
which can be used to register a callback routine that will be executed at every registry
operation before the request is handled by the Configuration Manager [18].

18

3. Microsoft Application Virtualization
(App-V)

Microsoft’s product for application virtualization aims to remove conflicts between pro-
grams and thus to reduce the costs for compatibility tests. Therefor, they provide a set
of different software components that allow network administrators to generate virtual
applications and publish them dynamically to the users through a built-in deployment
infrastructure. As the program settings are saved separately, the user’s environment be-
comes independent from the machine and thus the IT department can react to changes in
the business process very fast. Hence, also the migration from one operating system to
another becomes an easy task because the virtual applications do not have to be installed
or adapted to the new system.

This chapter will explain Microsoft’s product in more detail and outline its advantages and
drawbacks.

3.1. History

The development of App-V was started by a company called SoftwareWow in the late
1990’s and early 2000. At first, they sold application streaming software to their customers
by hosting all applications in their own data centers. These times, the applications were
not virtualized but have already been streamed to the customer’s computer over the In-
ternet where the program was executed without an installation. Thereto, they provided
a client that had to be installed on the end-user’s machine once. Then, to start applica-
tions, the customers had to grab them from special websites that had a partnership with
SoftwareWow. The streaming was initiated by clicking on an application and executing
a JavaScript routine that handed the control over to the locally installed client. Later on,
they realized that more and more customers experienced both conflicts with the applica-
tions and problems with the streaming over the Internet. Thus, they began to implement
a new product called SoftGrid, which included application virtualization and the caching
functionality on the end-user’s client. Furthermore, the streaming feature was improved
by downloading the necessary parts first, in order to start the program as quickly as pos-
sible [69].

This happened around the end of 2000 and early 2001, and came along with the company’s
rename to Softricity [68]. In the year 2006 Microsoft acquired the company to extended
their virtualization product family with SoftGrid [32]. With the release of version 4.5 Mi-
crosoft changed the product name to Microsoft Application Virtualization (App-V), but

19

3. Microsoft Application Virtualization (App-V)

there are still remains of the old name, like in the registry, to ensure backwards compati-
bility.

Today, App-V is part of the Microsoft Desktop Optimization Pack (MDOP) and hence only
available to subscribed Software Assurance customers.

3.2. Functionality of App-V

As already mentioned in the introduction chapter, Windows uses one single namespace
for all files. To circumvent the conflicts that arise by this scenario, App-V provides a sep-
arate namespace for every single package. At runtime App-V layers it on top of the local
namespace to build the virtual environment. However, this is not enough as no program is
capable of using more than one namespace, so the virtualization layer has to combine the
local and virtual namespace to one single environment. The obvious problem that needs
to be solved is to present the correct file and registry key to the application when it sends
a request. This includes the necessity to hide a local file inside the virtual environment
when it is deleted by the virtual application.

The virtualization layer is integrated into the App-V Client and spans user and kernel
mode as illustrated in figure 3.1.

sftlist.exe

Virtual
registry

Virtual file
system

File systemSystemGuard

User
mode

Kernel
mode

Client core Transport

Service agent

sftvsa.exe

Figure 3.1.: Virtualization layer of App-V

20

3.2. Functionality of App-V

A Windows service called the “Listener” is running in user mode and contains an or-
chestration engine besides a transport component. As App-V consists of loosely coupled
components, the orchestration engine (which is also the client core) has to manage
the various subsystems. The transport component handles all network traffic, both the
virtual application’s one and the traffic that is part of the streaming process. At installation
time of App-V the Listener is registered as a background service named “sftlist.exe” and
is started by the operating system at boot time.

Also, the Virtual Service Agent (VSA) is installed as a process called sftvsa.exe that
starts at boot time. This component handles all services that are part of the virtual applica-
tion and thus running inside the virtual environment. As the services cannot be registered
in the native operating system, the service agent is responsible for controlling the commu-
nication between processes and services inside the virtual environment [80].

The virtualization engine called SystemGuard and a special file system named App-V
volume file-system [38] are executed in kernel mode. The latter is handling pag-
ing I/O operations for streaming and thus sends requests over the network to fulfill the
paging. Furthermore, it offers a copy-on-write feature that comes into play when a user
modifies a file inside the virtual environment. Such a change triggers the file’s duplication
and subsequent storage in the user’s delta file. Afterwards, the modification is written to
the copied file and henceforward the user’s delta is used to fulfill the request for the file
handle. Although it is a custom-made file system, it is registered as usual in the operating
system and stores all the files that are part of the virtual application.

On the workstation the drive is created at the installation time of App-V and from then on
standardly associated with the drive letter Q, but it is left free to be chosen. The drive is
also present on the machine that creates the virtual applications. There it plays a role in the
installation phase of a program when it comes to choose an installation directory for the
application. Here, the drive Q is preferred over the system drive because file requests to
the Q drive do not have to be redirected by the virtualization layer at runtime. This makes
the program startup a little faster and requires less computing time. The direct access of
an application to files inside the Q drive is shown in figure 3.2.

Certainly, the Q drive is more like a virtual drive that contains all the files and registry
keys an application needs. Thus, in order to protect the so called “golden image” of an
application, the drive can only be accessed by the App-V Client. So it is not possible
to browse the drive within the Windows Explorer although the App-V Client is allowed
to write to the drive in order to place new applications or remove the ones that a user
is not allowed to use. A virtual application itself has only read permissions to its own
package folder or to root folders of other applications that have been marked to run in the
same virtual environment. The delta file that contains all the changes that a user makes
to the application, is stored in the user’s profile directory. Thus, the golden image stays
untouched and all configuration settings can stick to a user if he switches the workstation
by using roaming profiles that are saved on a server.

The SystemGuard contains a virtual registry, virtual file system (VFS) and
a virtual environment manager. Contrary to the App-V volume file-system, the

21

3. Microsoft Application Virtualization (App-V)

Application

Virtualization engine

Files inside the
system drive (C:)

Files inside the virtual drive (Q:)

Application package

X

Q:\AppPackage*.*

Q:\AppPackage\VFS*.*

Virtual file system

Fallback to read files
or write documents

Read-only
access

Application-specific delta file

User profile

File
system

Registry

Read and write
user-specific

changes

Figure 3.2.: Direct file requests to the virtual drive and redirected ones to the system drive

virtual file system does not store any files but is responsible for the composition and redi-
rection of files, directories and registry keys. This feature is necessary because many ap-
plications install files to the system drive, although the installation folder was chosen to be
the virtual drive of App-V. At runtime those files have to appear where the application ex-
pects them. Thus, the virtual file system filters the file system traffic and redirects requests
to such files to the VFS folder in the virtual drive Q like shown in figure 3.2. Only if the
request does not find an entry inside the virtual file system catalog, it is passed to the op-
erating system and processed there. This way the application can use a natively installed
middleware software or drivers besides opening documents from the real file system.

Q:\
AppPackage\

VFS\
CSIDL WINDOWS\

foo . d l l
a p p l i c a t i o n . exe
osguard . cp

Listing 3.1: Directory structure of the virtual drive

Listing 3.1 shows the directory structure of the virtual drive. For every application pack-
age exists one directory in the root of the drive. The package folder contains a file called
osguard.cp which includes the virtual file system and virtual registry mappings that de-
fine which paths and keys need to be redirected to the VFS folder. Furthermore, all files
that have been installed to the Q drive are located there, for example, the executable file of

22

3.3. Constraints of App-V

the application. Inside the VFS folder all files are stored that could not be installed to the
virtual drive and are the target files for the redirects.

If, for example, the application sends an open request to the file C:\Windows\foo.dll
the virtualization layer captures the call and determines whether it has to redirect it. Given
that the file belongs to the application it will be part of the VFS mappings inside os-
guard.cp and thus will be redirected to Q:\AppPackage\VFS\CSIDL_WINDOWS\foo.
dll, at which the directory name CSIDL WINDOWS depicts a system-independent way
to identify special folders [13].

The redirection is done by a minifilter called sftredir which is registered in the Filter
Manager like described in section 2.5. So, the whole application resides in the virtual drive
Q and all files and registry keys that belong to the program never leave that drive, which
ensures its isolation.

Running a virtualized application is very lightweight, because the redirection is not done
at every read and write access but only once for the first access of a file. Thereto, it inter-
cepts the function call and replaces the parameter that contains the file path and replaces
it with a new one that points to the VFS folder or to the virtual registry. This replacement
is done by using the metadata of the virtual file system inside the osguard.cp file [67]. Af-
terwards, when the file handle is established, the I/O works without additional redirects.
This way an application can access the hardware like if it was installed locally, which is
a huge difference compared to hardware virtualization. Thus, it is no problem to virtu-
alize programs that utilize the CPU or graphics card a lot, which is a plus for application
virtualization.

The virtual environment manager maintains the virtual environment and instructs Sys-
temGuard to put the application’s process inside this environment. It additionally con-
trols the lifetime of the virtual environment and ensures that all changes are saved and the
environment is shut down when there is no process left inside it [81].

3.3. Constraints of App-V

However, there are a few things that cannot be achieved with App-V: applications and
components that are part of the operating system and thus are integrated into the ker-
nel are not technically supported to be virtualized. This means that driver, COM+ and
COM DLL surrogate virtualization is also not possible with App-V. This further includes
Microsoft Internet Explorer which is highly integrated into Windows and thus is also no
candidate for virtualization [11].

The virtualization of device drivers is not supported by App-V [41] because an isolation
would make them unusable and thus they have to be integrated very tightly into the oper-
ating system by an virtualization layer. This means, that a driver cannot be that isolated as
normal virtual applications and thus it makes no big difference to a native installation pro-
cess. Additionally, it is even more problematic to virtualize device drivers because if the
interception and redirection is not done right, the driver could crash and cause a system

23

3. Microsoft Application Virtualization (App-V)

failure because of its execution in kernel mode.

Even though Windows services are supported, services that require to be started at boot
time are not. This is because of the isolation as it is no longer possible to register the
service in the usual way. Also a virtualized service cannot exist without the corresponding
virtual environment. Thus, it is required to launch the service like normal virtualized
applications and have it started after the virtual environment has been created [41]. A
fairly simple workaround to this problem is to put a virtual application’s shortcut item
into the startup folder of Windows’ Start Menu. This will launch the application, build the
virtual environment and automatically start the service if it was configured to behave this
way.

Another thing to mention is that App-V is not a security product like, for example, a sand-
box software. As the virtual application is still able to make changes to the local file system,
a computer virus would cause the same harm like in unvirtualized circumstances. This be-
havior of local interaction is necessary in case a user saves a document or browses the file
system to open a file, the virtualization layer has to bypass these operations. It would not
make sense to decouple the application completely from the native file system because it is
very important that the user experience is the same as if the application would be installed
natively. Furthermore, virtualizing not only the necessary parts of the application would
result in a huge overhead that could be compared with an operating system virtualization.
Thus, it only redirects file accesses that have been monitored at installation time and are
part of the virtual application.

Although App-V generates portable applications that are abstracted from the operating
system, it does not offer a compatibility layer. This means that if a program is not de-
signed to run under a specific version of Microsoft Windows, it is very likely to have the
same incompatibility issues when it runs virtualized. But if a program is supported for
Windows XP and upwards, it is possible to build the virtual application on the lowest ver-
sion that is used in the network and run it on all other versions above. This is because
the App-V Client transforms the virtual application’s components accordingly to the Win-
dows version at runtime. Thus, it does not matter if the application package was built on
Windows XP and is afterwards executed on Windows 7 as the App-V Client will trans-
late paths like C:\Documents and Settings\username to the appropriate counter-
part (C:\Users\username) [61].

Hence, App-V cannot be used to run 16-bit applications on a 64-bit version of Windows
because on these platforms Windows does not support such applications [7]. Certainly,
32-bit applications that have been virtualized can be executed with the App-V Client on a
64-bit machines because of the WOW64 (Windows-32-on-Windows-64) subsystem which
offers the compatibility layer.

24

3.4. Components

3.4. Components

3.4.1. Sequencer

The App-V Sequencer is a graphical component of the App-V software package that mon-
itors the installation of an application and captures the changes that are made to the sys-
tem. This includes the creation, modification and deletion of files and directories in the file
system, the edits that happen to keys in the registry and the registration of file type associ-
ations. Furthermore, it captures installed services and file permissions besides changes to
environment variables. The term “sequencing” means the process of creating the virtual
environment.

User
mode

Kernel
mode

Installation
program

Virtual file
system

Virtual
registry

Setup.exe

Windows
installer

Setup.msi

Windows shell

Changes to
registry keys

Changes to the
file system

Launch

Figure 3.3.: Monitoring an installation

Figure 3.3 illustrates the installation of an application and what the App-V Sequencer must
be aware of. Instead of doing a snapshot before and after the installation and taking all the
changes that were made in between, the Sequencer monitors every single process that is
part of the setup. This ensures that changes not relevant for the application’s virtualization
are not captured. Thus, the Sequencer also relies on the sftredir minifilter that will filter
all file system traffic and redirect calls for special processes. In order to monitor only the
relevant processes the process manager component of the App-V Sequencer keeps a list of
process identifiers, including the process ID of the Windows Explorer (explorer.exe), the
command prompt (cmd.exe) and the Service Control Manager (services.exe). All of these
have to be monitored because they may be a starting point of an application’s installation.
The process manager also ensures that child processes are taken into account in order to
be able to capture the setup process that was launched by the Windows Explorer or the
Windows Installer service, too [80].

25

3. Microsoft Application Virtualization (App-V)

At the end of the sequencing process the software builds the before mentioned namespace.
Thereto, it generates the virtual application file which holds all the metadata
that are required to construct the namespace. This file has a .SFT (Softricity) file exten-
sion and includes files, registry keys, fonts, environment variables and the information
about which files and registry keys form special components like services [55]. Option-
ally, it creates an installation package (also known as “MSI file”) for networks that do not
have Microsoft’s infrastructure or servers to offer another solution for alternative deploy-
ment systems. This file registers the virtual application on the App-V Client and contains
amongst others the instructions on where to create shortcuts and which file type associa-
tions to register.

Arrangements to the sequencing system

It is best to use the Sequencer on a clean machine which means that no disturbing pro-
grams, like antivirus software or indexing services, should run in the background while
the application’s installation is monitored. This is because such programs are changing the
system while they are executed and these changes would unnecessarily be captured into
the virtual application. For this reason it is recommended to do all sequencing and testing
in separate virtual machines that have a minimal setup. Therefor, products like Microsoft
VirtualPC or VMware Workstation are a good choice because they also allow to reset the
virtualized guest operating system to a specific snapshot and thus save an amount of time
when it comes to restore the machine to a clean state. As an alternative it is possible to
work with disk images that are used to reset the system.

Moreover, the machine’s setup should not differ from the productive environment where
the application is going to be used. This does not mean that the hardware has to be iden-
tical but the initial software installed on the clients should be equal as it simplifies testing
a lot when the conflicts arise before the application is rolled out.

As mentioned earlier, App-V uses a virtual drive labeled as Q on the client from which the
application is executed. On the Sequencer there must also be a Q drive in order to install
applications into this location. But here it is a real NTFS formatted file system that does
not differ from other drives. The only specialty about it is the fact, that App-V uses the Q
drive as a temporary folder for all files, including the virtual file system and the files of the
application if the installation path was changed to the Q drive. So in the monitoring phase
it redirects everything to this location which is also known as the App-V mount point drive
[11].

Preliminary considerations before virtualizing a program

The whole process of building a virtual application is guided by a graphical user interface
which makes it quite simple for beginners to start with. However, before a program is
virtualized it is a good idea to become familiar with its installer, the possible configuration
settings and the application’s documentation. Also searching the Internet for tutorials

26

3.4. Components

on virtualizing the software is recommendable as some applications need very specific
modifications to get them running inside the virtual environment. This will give a first hint
on how complex the sequencing will be and if the program is a candidate for a successful
virtualization at all.

Thus, the program should be installed at least once without running the Sequencer and
examined on where it stores user settings and how it integrates itself into the system. This
information is important for defining the exclusion list which needs to be adjusted for
every program. Some installed files need to be excluded if they have to reside outside the
virtual environment. Such is the case, for example, with user profiles that have to be saved
in the native file system to allow the usage even with natively installed applications which
would be impossible otherwise.

As the Sequencer allows the modification of captured files and directories after the pack-
age was built, it is easy to remove included and unneeded data items afterwards. It is
even possible to add excluded files manually afterwards if one realizes that the virtual ap-
plication file is missing important components. But normally, when files are missing, the
program does not work properly and the complete sequencing process has to be redone
with an adapted exclusion list.

Sequencing process

Once the application has been tested enough, the sequencing process begins with ensur-
ing that all unnecessary background services are stopped. Therefor, the software checks
if Windows Update and Windows Defender are disabled. It also informs the user of a
previously made installation to indicate that there might have been unwanted changes to
the system which could cause conflicts afterwards. This normally happens very rarely, for
example, if the virtual machine has not been reset to a clean state after the last sequencing.

If all requirements are fulfilled, one can specify if the setup file should be launched by the
Sequencer or executed manually. The latter can be useful if the setup needs to be started
with special parameters (like a silent installation). After defining the package name, the
monitoring phase begins and the Sequencer captures all changes that are made to the sys-
tem. It even takes excluded directories into account but only logs such changes to a pro-
tocol file. This can be quite helpful if the virtual application does not work as expected,
because it provides the information about whether the exclusion list contains paths where
the installer saved files to and which have thus not been captured into the virtual package.

When the installation is over, the monitoring phase has to be stopped and then all changes
that were made to the registry and file system are collected. Depending on the software
complexity and the hardware equipment, this process can take a few seconds or even an
hour. The subsequent configuration phase is meant to customize the program and prepare
a default configuration that applies to every user. This includes deactivating the automatic
update feature and performing product registrations.

Once the configuration is done, the Sequencer again collects the changes, but this time the

27

3. Microsoft Application Virtualization (App-V)

process is much quicker as the program configuration typically affects only a few registry
keys and files.

The last step provides the modification of shortcuts and file type associations as well as
the creation of Feature Block 1 which is the first part of the application that is down-
loaded over the network when streaming is used [19]. Finally, all captured files and meta-
data are bundled into the virtual application file that can be deployed to the clients or
placed on a server for being streamed.

Customizations after the sequencing process

When a project is opened for customization it is possible to change the behavior of the vir-
tual registry and virtual file system. One can specify if a registry key in the virtual environ-
ment has to be merged with the native counterpart or if it overrides the local namespace at
this area. The same applies to the virtual file system where a directory can be merged with
the local file system or it can override the files completely to ensure that the application
does not see any files from the native file system.

Furthermore, an application can be updated by opening the package in the Sequencer and
letting it unpack the application to the App-V mount point drive. After that, the appli-
cation can be used like if it was installed because the App-V minifilter will again redirect
all file requests and registry keys to the virtual components. Thus, the application can be
launched to start an integrated update mechanism manually if there is one. Otherwise,
the setup routine can be executed to make the changes that are required for the software
update. Once everything is finished the monitoring phase can be stopped which will pro-
voke the Sequencer to save all modifications into the existing virtual application file. Af-
terwards, this file has to be copied to the server and will then be streamed to the clients
with the updated application.

The Sequencer also offers the chance to compress a virtual application file so that the client
has to stream less data over the network [36]. This setting is automatically enabled if
the file is greater than 4 GB, otherwise the compression is optional. This is because it
requires more computing time on the client to decompress the data. Certainly, the virtual
application file has a limit of 4 GB so it is not possible to create applications that are greater
than that limit [41].

3.4.2. Management Server

The core component of Microsoft’s Application Virtualization Management System is the
centralized Management Server. It serves the deployment of all virtual packages through
streaming and offers the management of applications, licenses, and reporting [23].

The Management Server can only be installed on a Windows Server operating system and
thus cannot be used in networks that run Linux on their servers [10]. As it is also responsi-
ble for authentication and authorization, the administrator has to set-up an Active Direc-

28

3.4. Components

tory that handles the users and groups as well as the group policies. These are required to
control access to applications and administrative functions.

The main protocol for streaming from the Management Server is the Real Time Streaming
Protocol (RTSP) which was designed for media streaming servers. As it is not stateless
like HTTP, the connection can be re-established if the client got disconnected [45]. This is
very important because the streamed files oftentimes have several hundreds of megabytes
and would have to be streamed again from the very beginning if the connection was inter-
rupted. Thereby, the transfer time would be much longer and the user would have to wait
a long time until the application starts.

Additionally, App-V supports the HTTP and SMB protocol for streaming, which can be
utilized to build an infrastructure that does not have Microsoft Servers or cannot be used
because of firewall policies or the like.

In order to make applications available to the user, the Management Server offers a way
to let the App-V Client connect to the server and retrieve a list of applications that he is
allowed to use. This mechanism is called the Publishing Process because it lets the
App-V Client create all the shortcuts and file type associations that are published to the
user by processing the list. Later on, when the program is launched, the client streams the
application file from the server’s content share that contains all available applications [34].

3.4.3. Web Service, Data Store, and Management Console

The Data Store is a Microsoft SQL Server which holds a list of all virtual applications
that can be assigned to users. Thus, it also saves the assignment and permissions for each
user and application. Furthermore, if the reporting feature is enabled, it stores the usage
information that have been sent by the App-V Clients.

As App-V provides the ability to configure how many licenses of a program are available,
it has to store this configuration in the database and must also keep track of occupied
licenses. If the pool of licenses is empty, App-V takes care that no further instances of this
application can be launched, until another client finishes its execution.

In Microsoft’s infrastructure, the Web Service component uses the web server applica-
tion called “Internet Information Services” (IIS) which is the interface for all read and write
requests that have to go to the database. Thereto, it handles the communication between
the Management Console and Management Server as well as the Data Store [23]. Further-
more, it can be used for streaming over HTTP(S) instead of using the Management Server
and RTSP(S) [9]. This enables companies to connect a central office where the Management
Server is hosted, with several branch offices that are using the App-V Client to stream ap-
plications over the Internet. Thus, no new infrastructure has to be created, as most fire-
walls are already configured for HTTP. This also makes the integration of roaming users
very easy and enables them to stream applications to their home computer or even to their
laptop while working external. Last but not least the troubleshooting is much easier as
administrators know HTTP better than RTSP and are familiar with the configuration of a

29

3. Microsoft Application Virtualization (App-V)

web server.

The Management Console is used to manage the App-V environment and offers to add
or remove applications, assign them to users, and configure licenses.

3.4.4. Streaming Server

The streaming feature loads a virtual application from a server into the local cache of the
client. This happens on demand when the application is started the first time and thus
is not cached yet. Moreover, an application is streamed when the cached version is older
than the one on the server.

As the size of a virtual application file can be several hundreds of megabytes or even a few
gigabytes, the streaming process over the network can take a very long time, until every
bit is on the client. This is where the two feature blocks come into play: after the applica-
tion’s launch Feature Block 1 is streamed first because it only includes the necessary
blocks a program needs to get started. Typically, the primary feature block is 20 to 40 %
of the virtual application file [55]. Thus, the user can begin to use the software after a few
seconds and does not have to wait for the whole package. Afterwards, the rest (also called
Feature Block 2) of the application file is downloaded into the client’s cache. Con-
cerning, the block-wise storage and the RTSP protocol a client can request special blocks
inside the virtual application file when the program requires files or registry keys that have
not been transmitted yet.

The next time the application is launched, the App-V Client checks for a new version and
updates the cache if necessary. Otherwise, the program is started directly from the cache
[41].

As the Management Server also offers the streaming feature, a separate Streaming Server
is optional. But it can be more effective to host a server nearer to the clients if the Manage-
ment Server is not hosted inside the same network. Thus, a Streaming Server can act like a
caching machine that mirrors all virtual applications. In order to always serve the newest
packages the Streaming Server has to synchronize its content share with the Management
Server.

3.4.5. Client

As App-V is not able to execute the virtual applications without an agent it is necessary to
distribute the App-V Desktop Client by a deployment system. Therefor, the setup provides
a silent installation with many parameters to customize the client’s behavior [8]. This
includes the settings for the infrastructure type (off-line as stand-alone or on-line with
streaming), the cache size and configuration options for the streaming, like the protocol
and the address of the server from which the applications are streamed.

The Client can be considered as a launcher which handles the request to run the desired

30

3.4. Components

application and build the necessary virtual environment. So there is no way to start a
program directly by executing the virtual application file like an EXE file. Instead, the
App-V Client (in the case the publishing method is used) or the MSI file (in case of the
stand-alone architecture) create special shortcuts that execute the App-V launcher and tell
it by a parameter which application it has to start. Listing 3.2 shows an example of how a
shortcut target looks like for the Word component of Microsoft Office 2010.

s f t t r a y . exe /LAUNCH ‘ ‘ Microsof t O f f i c e Word 2010 ’ ’

Listing 3.2: Command for launching Microsoft Office Word 2010

The send-to menu items work just the same, as they are only normal shortcuts in a spe-
cial folder. Also file type associations like *.doc are handled this way, where App-V, for
example, has to launch Microsoft Office when the document is double-clicked. Therefor,
the App-V Client is registered as a launcher for the filename extension and has to start
the virtual application for this specific extension by creating the virtual environment and
running the program in there. These changes have to be made in the operating system and
thus cannot be isolated as they have to be available to the native system.

Of course, the name of an application must be unique in order to start a program this
way. The Sequencer identifies every application automatically and generates a name for
it which can be adjusted at sequencing time if necessary (for example if a name conflict
occurs).

sftlist.exe

Virtual
registry

Virtual file
system

File systemSystemGuard

User
mode

Kernel
mode

Client core TransportLauncher

sfttray.exe

Windows
shell

File request Upcall

File server

explorer.exe

Workstation

Service agent

sftvsa.exe

/LAUNCH "…"

Download block(s)
Request b

lock(s)

Figure 3.4.: Launching process of an application

31

3. Microsoft Application Virtualization (App-V)

The process of launching an application is shown in figure 3.4. If the user clicks on the
application’s shortcut item, the Windows shell respectively the process of Windows Ex-
plorer will start the App-V Launcher. This component decides with the help of the given
parameter which application it has to start. It then creates a process for the App-V Listener
which will send a request to the App-V volume file-system in order to get the required files
that are needed to launch the application. If the application is not cached on disk and the
streaming mechanism is used, the file system will send an upcall from kernel mode to the
transport component that runs in user mode. This will fetch the requested blocks of the
virtual application file from a server over the specified network protocol (RTSP, HTTP, or
SMB) and hand it back to the file system [80]. After that, when the necessary blocks have
been transmitted and are available in the file system, the Virtual Environment Manager
will create the virtual environment. Then, the App-V Listener creates the application’s
process in user mode and hands it over to SystemGuard, which will transfer the process
into the virtual environment. Even though the process is not created directly by the Win-
dows shell as well as executed in the isolated environment, the application is represented
in the process list with the same process name as if it would run directly on the system.
SystemGuard will also ensure that every child process that is created will also be executed
in the same environment. After the process has exited, the Virtual Environment Manager
ensures that all configuration settings are written to the user’s delta file in the roaming
profile directory and destroys the environment [81].

3.4.6. App-V for Remote Desktop Services

The Remote Desktop Services Client provides the same functionality as the Desktop Client
but is adjusted to run on terminal servers. These have to be hosts that have the Windows
Server operating system installed, which means that it cannot be used with alternative
operating systems like Linux or Solaris.

Here, too, App-V can solve common conflicts that appear with many programs, because an
application often only works for the first user, for example, if it locks resources exclusively.
This behavior is acceptable in single-user scenarios as only one person at a time can use the
installed software, but on terminal servers with many users this is a knock-out criterion.
Normally, conflicting applications have to be separated into different Remote Desktop Ses-
sion Host servers which is very time-consuming and needs extensive tests. With App-V
all conflicting applications are virtualized and thus can be located on the same server.

Thereto, the administrator installs the Remote Desktop Services Client on the terminal
server to make it available for all users that start a remote desktop session. Then, the
virtual applications can be used like any other program that is installed locally on the
server [37].

32

3.5. Architecture

App-V Clients
(streaming mode)

App-V Streaming
Server

App-V Data Store

App-V Management
Server

App-V Sequencer
Virtualized
application

Windows
application

App-V Management
Console

App-V Client
(stand-alone

mode)

App-V
Management
Web Service

Figure 3.5.: Infrastructure of App-V

3.5. Architecture

The stations that an application passes on the way to the client are illustrated in figure 3.5.
It also covers the full infrastructure with all components that are required therefor and the
stand-alone mode as the opposite way of designing the environment without Microsoft’s
servers.

3.5.1. Full infrastructure

This type requires all components that were mentioned before. Therefor, the client needs
to be configured to run in an on-line mode and talk to a server, whose job is to host the
applications on a network share or a web server and provide a way for the client to stream
the blocks over the RTSP(S), SMB or HTTP(S) protocol.

Publishing Refresh

In order to publish an application to the end-user, the App-V Client has to download a
list from the server that contains all applications the user is allowed to use. The list is
returned as an Extensible Markup Language (XML) file that contains several elements for

33

3. Microsoft Application Virtualization (App-V)

every application. Including the path to the virtual application file, shortcut locations and
file type associations.

The Publishing Refresh is the process of collecting the user-specific applications, building
the XML file and establishing the application on the client. It is initiated at logon time or
in an interval that periodically checks for updates to the list. When the client sends the
request to download the list, the client computer has to be authenticated first by using
the Kerberos protocol. Afterwards, the Management Server retrieves the applications that
have been assigned to the user from the Data Store and builds the XML file. The App-V
Client then evaluates the list and creates shortcuts as well as file type associations [34].

If the client was configured to cache all applications immediately after the publishing re-
fresh instead of doing it at the first execution, the App-V Client will stream the virtual
applications to the client and cache them locally.

Streaming

When a virtual application is executed by the user, the App-V Client checks if the locally
cached version is up-to-date. In this case, the application will be started without any ad-
ditional data transfer over the network. Otherwise, the new virtual application file will be
streamed into the client’s cache by first downloading the Feature Block 1.

Usage reporting and licensing

If activated, the client will send statistics on the application’s usage to the Management
Server as part of the publishing process. These reports include the name of the applica-
tion and the user’s account alongside the computer name and the time slot in which the
application was in use. Such statistics can be helpful to manage the amount of available
licenses. If the management discovers that too many licenses are unused, then money can
be saved. On the other hand, if more users need to work with licensed programs than
licenses are available, they can buy more.

3.5.2. Stand-alone mode

As a counterpart to the full infrastructure it is possible to run the client in two different
stand-alone modes. Both scenarios require ways to create the necessary shortcuts and file
type associations in a from the client decoupled manner. This can either be the MSI file
that was generated by the Sequencer or a scripting language called SFTMIME. The latter
offers ways to publish an application to an end-user or repair the application by resetting
the user’s delta file.

34

3.6. Interaction between isolated applications

With streaming

Although the client operates in an on-line mode, this infrastructure type does not provide
the publishing refresh and usage statistics, nor does it support licensing control. Therefore,
shortcuts and file type associations cannot be generated by the App-V Client by fetching a
list from the server. Instead, they have to be created by the application-specific MSI file or
a SFTMIME script that is represented as a batch file and executed by the software deploy-
ment system. When using the MSI file it is necessary to specify a parameter at installation
time in order to tell it that the streaming functionality is used and where the virtual ap-
plication file is located. Thus, the App-V Client is able to decide which applications have
to be streamed and which applications were directly cached. This enables the usage of
streamed and only locally cached applications at the same time.

Without streaming

In this mode the client completely operates off-line and thus is not able to stream the ap-
plications from a server. This requires the MSI file or SFTMIME script to additionally load
the virtual application into the cache as it would not be possible to execute the program
otherwise. Therefor, the virtual application file has to be deployed to the client along with
the MSI file or SFTMIME script which can be done by any type of software deployment
system.

One disadvantage of this mode is that the cache might run out of capacity and thus appli-
cations have to be removed from the cache if a new one has to be imported. Thereto, the
App-V Client uses a Least Recently Used (LRU) algorithm to decide which application will
be removed [34]. Those programs will then be unusable until the MSI file is reinstalled or
a SFTMIME command is used to cache a displaced application again. Thereby, the prob-
lem is only temporarily solved because then another application will be removed from the
cache. When streaming is used, the cache can be refilled automatically if it is not present,
but in the case without streaming App-V cannot determine the package location in order
to cache it again.

3.6. Interaction between isolated applications

Obviously, one goal of application virtualization is to isolate programs from each other.
But sometimes the separation of applications might not be desirable because they depend
on each other. This is mostly the case when middleware or plug-ins are virtualized and
have to be used by other virtual applications. By default it is impossible that, for example,
a virtualized web browser uses a virtualized Java Runtime Environment that resides in
another package because they do not share the same virtual environment while they are
running.

To allow the interaction between virtual applications App-V provides a concept called

35

3. Microsoft Application Virtualization (App-V)

Dynamic Suite Composition. Therewith, a package can be defined as a primary ap-
plication that uses several secondary packages as dependencies. So, for example, the glob-
ally unique identifier (GUID) that identifies the Java Runtime Environment (JRE) package
will be used as a reference inside the Firefox package, which depicts the primary appli-
cation. When Firefox is launched, App-V utilizes the dependencies of this package and
executes them in the same virtual environment. This enables all applications that have
been grouped into the same environment to communicate with each other and access files
that belong to another package.

Primary
application

Secondary packages

Firefox

JRE Flash PDF

Dynamic Suite Composition for Firefox

Primary
applicationEclipse

Dynamic Suite Composition for Eclipse

Figure 3.6.: Two independent Dynamic Suite Compositions

The concept of grouping packages to suites makes it possible to use an application as a
dependency with many primary packages, which is illustrated in figure 3.6. Thus, it is
not necessary to include a middleware like the Java Runtime Environment inside every
package that depends on it. Hereby, the primary packages can be kept small because they
only need to contain the main application while all the dependencies are sourced out into
separate packages. This also makes it fairly easy to update a secondary package as it has
to be done only once.

In addition, besides specifying the GUID it is possible to flag the referenced dependency
as mandatory. This means, that if the streaming feature is used, the primary feature blocks
of all packages, on which the primary application is depending on, must be present in
the local cache. However, there might be situations where a secondary package cannot

36

3.7. Server Application Virtualization

be loaded and thus fails to start. If it was defined as being mandatory for the primary
application the program will also fail to launch [20].

3.7. Server Application Virtualization

To not only virtualize client programs but also server applications, Microsoft is currently
working on a new product called Server App-V. At this time it is available as a release
candidate and will be included in the System Center Virtual Machine Manager (SCVMM)
2012 [86]. So it will not be part of the App-V software bundle which is part of the Microsoft
Desktop Optimization Pack (MDOP).

Server App-V has the same goal as the Desktop Client. It creates applications abstracted
from the operating system that cannot cause conflicts and are easily portable to other
servers. The main difference to the Desktop Client is that the server variant allows vir-
tual applications to communicate with natively installed ones. It also integrates virtual
applications seamlessly into the operating system if necessary, which is not supported
by the desktop version yet. Thus, Windows Services are registered as if they were in-
stalled locally, but they are still virtualized. Also the interprocess communication like
COM, DCOM, and COM+ is supported which is an essential component for server appli-
cations that need to exchange data [62].

37

4. Integrating App-V into a heterogeneous
network

In the year 2000 Munich’s department of education started to equip the public schools and
urban nurseries with a local network, a server and workstations. Thereto, a new bureau
was founded that today is called “Zentrum für Informationstechnologie im Bildungsbere-
ich” (ZIB) [47]. All these school networks are connected and are centrally managed by
this IT department. The goal of this project was to build a consistent environment which
allows teachers and students the use of computers and educational software in class.

It is obvious that applications and users at some point require better hardware and soft-
ware. Also the support for an operating system ends at some time and thus no more
updates are available from this point on, which causes high security risks if an upgrade
is delayed. These are the main reasons why the system needs adaptations over and over
again. This is why the Windows clients had to be migrated from Windows 2000 to Win-
dows XP recently [64]. At this, not only the 28,000 clients that have to be migrated are a
challenge, also the over 700 applications need to be adjusted, tested and deployed [46].
Therefor, ZIB holds amongst others a partnership with T-Systems whose developers sup-
port the currently deployed system as well as working on its improvement by designing
the next version based on the specifications of ZIB.

To make things easier with the upcoming migration to Windows 7 and to enable schools
the usage of different versions of the same product without running into conflicts, one part
of the migration plan is to integrate an application virtualization strategy.

4.1. Infrastructure of Munich’s school network

The network as a whole consists of about 400 school servers [46] that are hosted decentral-
ized and have SUSE Linux as an operating system installed. Every campus, especially if it
is a school, has at least one server and a few hundred workstations that are mostly running
Windows XP at the moment. Some schools (like vocational schools) have special needs in
software and thus already have Windows 7 installed on a few unmanaged machines.

All deployed software is either packaged as a MSI file or by a proprietary packaging prod-
uct. Both are processed by an enterprise software deployment product that installs, up-
dates and removes programs as well as drivers. Teachers with special rights are allowed
to assign software to users or workstations which gives them the freedom to define differ-
ent software sets for every user (pupils as well as teachers). For the administration of the

39

4. Integrating App-V into a heterogeneous network

network this freedom makes it hard to ensure that no conflicts arise with the installation
of software because the potential combinations of applications cannot be tested anymore.
Here, the virtualization of applications would be a great benefit for the maintenance of
workstations.

4.2. Reverse engineering the infrastructure of Microsoft App-V

App-V provides the integration into networks that do not have the full infrastructure with
all Microsoft Windows Servers. But the documentation does not contain a complete strat-
egy on how to replace their components with alternative ones. So, for example, Microsoft
does not offer any information about the authentication process between the App-V Client
and Management Server. They claim, this is only possible when using their full infrastruc-
ture, but there is a way to get the client authenticated even without a Windows server.

This section will explain how the documented features are integrated into an existing net-
work that does not use Windows servers and how some of the undocumented features can
also be achieved.

4.2.1. Streaming and authorization

As the school servers do not have a Windows Server operating system installed, these
cannot be used as Streaming Servers as suggested by Microsoft. Thus, to get the streaming
feature working with a Linux server, App-V offers the HTTP and Server Message Block
(SMB) protocol. The first requires a web server for Linux, like the Apache HTTP Server,
while the latter requires a file service like Samba.

Using the HTTP protocol offers the opportunity to stream applications outside the net-
work over the Internet. As this is a potential security issue, the secure HTTP(S) protocol
should be used to ensure the client only streams applications from a trusted origin. There-
for, a certificate has to be established between the web server and the App-V Client. The
documentation of Microsoft describes how a Management Server or the Internet Informa-
tion Services (IIS) software has to be configured in order to use a secure communication
[24]. But there is no official documentation or even a tutorial on the Internet, on how to
set-up an alternative web server for (secure) streaming. Furthermore, the IIS offers the
Integrated Windows Authentication which ensures that only authorized users gain access
to the applications and that they only can stream applications that have been assigned to
them.

As the configuration of the web server requires more effort than the file service, I chose
to research the SMB protocol for streaming in more depth. This variant is easier to imple-
ment because the authorization can be controlled by access control lists (ACLs). Thereto,
the standard ACLs of Linux are used by creating an individual group for every virtual
application. Then, the group has to be assigned to the directory that contains the applica-
tion and the file system permissions have to be set to read and execute. Thereby, every

40

4.2. Reverse engineering the infrastructure of Microsoft App-V

user that has the right to use the application needs to be assigned to the application group.
The App-V Client then needs to be configured to stream the packages from a specific net-
work share that is located on the file server. As the Samba file service is mostly used as
a Primary Domain Controller (PDC), it will authenticate the user when he logs in on the
workstation or if he accesses a network share. This is an easy way to protect the applica-
tion on the server and to make sure that only authorized people can access it. The PDC
currently acts as a replacement for the Active Directory which would require a Windows
Server operating system on the school servers.

4.2.2. Publishing and authentication

The only alternative to implement the publishing feature without a Management Server
is to use a web server and the HTTP(S) protocol. Thereto, the App-V Client is configured
to get the list of applications from a specific Uniform Resource Locator (URL). Beside the
before mentioned security risk of HTTP and missing authentication, there is also a tech-
nical downside when using a web server that is not the IIS. As the URL is the same on
every App-V Client and does not contain any user-related information, there is no way
to generate a user-specific XML file with the applications he is allowed to use. So on the
server-side each request is anonymous and thus allows only one application list for all
users in the network.

The documentation of App-V stated that the Management Server uses the Integrated Win-
dows Authentication mechanism to authenticate the Client. This functionality is also of-
fered by the Apache web server through a module and allows to authenticate an user
over a website by using the workstation logon credentials instead of prompting the user
to provide his user name and password. A test with the Apache2::AuthenNTLM mod-
ule1 showed that the App-V Client can be authenticated against Apache in the same way,
which solved two problems:

1. The list of applications is protected and only accessible by users that are authorized.

2. After a successful authentication the web server opens a session and saves some
user-related information, including the user name. This makes it very easy to write
a script in PHP or Perl that reads the user name from the session and generates a
dynamic application list by collecting the data from a database and building the XML
file out of it.

As the current system already saves user information, group memberships, applications
and assignments of users to applications in a directory service that is accessed with the
Lightweight Directory Access Protocol (LDAP), the integration of a script that generates
the XML does not require big changes to the existing configuration. It only needs a way
to differentiate between virtual applications that come into consideration for the XML and
those application that are not virtualized and must be installed in the traditional way.

1http://search.cpan.org/˜speeves/Apache2-AuthenNTLM-0.02/AuthenNTLM.pm

41

http://search.cpan.org/~speeves/Apache2-AuthenNTLM-0.02/AuthenNTLM.pm

4. Integrating App-V into a heterogeneous network

4.2.3. Reporting

The reporting feature can be enabled either by changing a registry setting for the App-V
Client or by adjusting the publishing XML file which provides an attribute for this config-
uration.

Normally, the Management Server would collect the reporting data that is sent by the
client. To clone this feature with an alternative web server it requires some script that ac-
cepts the HTTP POST request and processes the incoming data by parsing the XML and
storing the information in a database. As the POST request happens directly after the Pub-
lishing Refresh GET request, it has to be the same script that handles both consecutively.

4.3. App-V as part of the Windows 7 migration project

As already mentioned, the application virtualization has to solve conflicts between the
installed software. This are programs like Adobe Creative Suite in version 2 and 5 or Office
2000 and 2010. They have to be installed side by side because of educational reasons. As
the programs install dynamic link libraries in different versions it is impossible to use them
at the same time when they are installed natively.

With App-V this problem should be solved primarily. But it, furthermore, makes it easy
to port the applications from one operating system to the next higher version without the
need to sequence them again. This is possible because the virtualization layer overtakes
the job to adopt the virtual application’s system calls, file system paths and registry keys
to the native ones provided by the Windows library. When there are required changes for
the application to meet the new library version, Microsoft releases a new version of App-V
with an adapted virtualization layer. The administrators only have to deploy the new
version of App-V to the workstations without having to re-sequence the packages. When
the MSI deployment is used, it is necessary to edit the packages and adjust the supported
operating systems to the newer version. This is a simple task and it is by far not as time
consuming as it would be to sequence all programs from the scratch.

But it is still necessary to test the packages for compatibility with the new version of Win-
dows because App-V does not solve incompatibility issues of the software with the oper-
ating system. This is a very important thing to mention as some might think this problem
can be solved with App-V, too. For example, it is not possible to get QuickTime version 3
running on Windows 7 64-bit because the setup refuses the installation on a non 32-bit ar-
chitecture. Also registering the DLLs manually does not work because they were compiled
to an old version of the Windows library.

Furthermore, applications like Autodesk AutoCAD which are complex and install a lot of
libraries in the system folder are intended to be virtualized with App-V, too, because the
software packaging process for such programs is very hard and time-consuming.

In order to find out if App-V can accomplish all those needs and to test its feasibility, it is

42

4.3. App-V as part of the Windows 7 migration project

part of the Windows 7 pilot experiment that will be carried out on a few schools. This test
run is used to let some pupils and teachers test the current state of the new system and to
find out the things that are not working as expected yet.

Based on my research on how to integrate App-V into a heterogeneous network, the inte-
gration into the school network can be summarized like shown in figure 4.1.

App-V Clients
(streaming mode)

Linux school server

App-V Sequencer
Virtualized
application

Windows
application

App-V Client
(stand-alone

mode)

A specific school network

Administrative network

Linux server

Figure 4.1.: App-V integrated into the school network

Like in the full infrastructure of App-V, the application is virtualized with the help of
the App-V Sequencer. After that, the virtual package will be placed on a special Linux
server instead of the App-V Management Server. This Linux server is responsible for the
deployment of all software packages to the school servers, including the copying of the
virtual application file and MSI file as well as the creation of a record for this application
in the LDAP directory service. The deployment process does not have to be adjusted for
the integration of App-V, but it might be of interest to extend the entry for applications in
the directory service with a new attribute to differentiate between virtual applications and
others. But this is not required if the stand-alone mode (with or without streaming) is used
as they do not support the Publishing Refresh.

After the files have been copied and the application is registered in the system, the new
application can be assigned to users and machines. Depending on the type of distribution,
the software deployment system or the App-V Client will then publish the shortcuts to the
users.

43

4. Integrating App-V into a heterogeneous network

4.3.1. App-V Client

The client software is installed on all workstation computers and notebooks by the exist-
ing software deployment product. As App-V has to proof in the field if it can fulfill the
needs, the stand-alone mode has been chosen to be implemented at first. This is because
it requires no special changes to the existing server configuration and integrates with the
least effort. Thus, the App-V Client’s network setting is set to “offline” at installation time.

Certainly, the stand-alone mode can be changed very easily later on if the decision is to use
streaming or even the publishing method. Therefor, the registry settings for the App-V
Client must be adjusted accordingly and the configuration on the server-side has to be
fulfilled in order to support streaming.

To keep the likelihood of a full cache small, the App-V Client is configured to increase the
cache size as long as the remaining free disk space is at least 5 GB. As mentioned in chapter
3, the least recently used applications are displaced if a new application is cached and if
the free space is not enough. This is, what the support team and help desk must be aware
of if a user reports a problem about applications that cannot be launched. The first thing
they always have to do in order to solve this problem is to reduce the number of assigned
virtual applications. Secondly, to fill the cache again, the application has to be removed
from the system and then installed again. A new installation in this case means that the
MSI file has to be installed again to initiate the caching.

Alternatively, the problem could be solved by a script that queries the LDAP directory
service and executes SFTMIME commands to cache the applications again which are cur-
rently assigned to the user and machine. The advantage of this approach is that the user
does not have to log off from the workstation and go through the process of a reinstallation
afterwards which saves him time. As the manually execution of a script is not user-friendly
this approach might be too complicated for teachers and pupils but is feasible for the sup-
port team.

The same process could also be initiated through the web interface which provides the
assignment of applications, too. Thereby, the web interface could offer an option to repair
the cache on a specific workstation by clicking a button. This action would result in a
command on the server that establishes a connection to a special background service on the
client that waits for instructions from the server. Then, the server could send the SFTMIME
commands which are executed by the client. Therefor, the already existing background
service on the client and the web interface would require a few adaptations.

4.3.2. Mobile users

The school network also includes notebooks that can be used as a network-connected or
off-line driven machine. These are treated like the always connected workstation comput-
ers with the difference that they allow the user logon without having a connection to the
server, so everyone is able to use the installed software even in off-line mode. In order that
the logon works without contacting the server, the user has to do the login procedure once

44

4.4. Software

while the notebook is connected, to cache the user profile and login credentials.

When application virtualization is used it must still be possible to use the programs in off-
line mode. With the stand-alone mode of App-V there is nothing special to consider for
notebooks, as the virtual packages are deployed like the other programs.

The situation is different when the streaming functionality is used as all the necessary
applications have to be cached locally before the notebook is taken off-line. Otherwise, the
user will not be able to use the programs.

Thereto, is is possible to set the cache behavior at the installation time of App-V. Per de-
fault, only applications are streamed to the client’s cache that have been recently used. This
configuration is good for workstations but not feasible for notebooks as the applications
have to be available when the user starts to use them in off-line mode. One solution is to
let the user launch all applications that he is going to need which however is very time-
consuming and not user-friendly. The far better way is to change the mentioned cache
setting to AUTO LOADING which means that all applications are streamed and cached lo-
cally right after the user logs on to the machine. So afterwards every program can be
started when the laptop is disconnected from the network.

In order to have different versions of the App-V Client for desktop clients and notebooks, it
requires to deploy two different software packages that include the necessary parameters
for each configuration.

4.4. Software

Table 4.1 lists all applications that will be part of the pilot experiment momentarily and
thus I researched them to analyze if they can be virtualized. The IT department will decide
which of the successfully virtualized applications will be deployed to the workstations to
test App-V and which are going to be installed natively. A “X” indicates a successful
virtualization while a “–” means that the application could not be virtualized. The sign
“(X)” denotes that the application could be virtualized but with limitations.

This section will outline several pitfalls that arise with the virtualization of software, es-
pecially with the commitment of App-V. For that purpose I will cover different software
products of table 4.1 that will exemplify the common problems. Additionally, this section
will present solutions on how to circumvent the problems and drawbacks, where possible.

4.4.1. Adobe Reader

Virtualizing Adobe Reader means that all other software that depends on it, cannot use it
anymore because they cannot access the application inside the virtual environment. Thus,
the feature of viewing a PDF embedded in the browser will stop to work. This can be
circumvented by also virtualizing all the programs that interact with Adobe Reader, for
example, Mozilla Firefox or Microsoft Internet Explorer, and then defining dependencies

45

4. Integrating App-V into a heterogeneous network

Application Virtualized Comments

7-Zip (X) No context menu integration
ActiveState ActivePerl1 – Required by several programs that can-

not be virtualized
Adobe Creative Suite X
Adobe Flash Player X Requires a virtual browser
Adobe Shockwave Player X Requires a virtual browser
Adobe Reader (X) Requires a virtual browser in order to

use the plug-in
Apple Quicktime X Requires a virtual browser in order to

use the plug-in
AutoCAD Design Academy X
FileZilla X
GIMP X
Hardcopy2 – No interaction with natively installed

applications possible
Hot Potatoes3 X
iTALC4 – Uses a boot-time service and needs local

interaction
IT Hit Map WebDAV Drive – Uses a boot-time service
IrfanView X
Java Runtime Environment X
Kaspersky Anti-Virus – Antivirus software must not be virtual-

ized
LibreOffice X
Microsoft .NET Framework – Required by the App-V Client, must be

installed natively
Microsoft Office 2010 X Requires a Deployment Kit for App-V

and an extensive documentation to get
it virtualized

Microsoft Visual C++ Runtime – Required by the App-V Client
Mozilla Firefox (X) No default browser and Jump List
Mozilla Thunderbird (X) No default client and Jump List
PDFCreator – Printer drivers must be installed na-

tively
Phase 55 X
RealNetworks RealPlayer X
VLC Player X
WS FTP LE X
WinSCP X
1 Perl language distribution for Windows
2 Screenshot tool
3 Creates exercises
4 Remote desktop control based on VNC (Virtual Network Computing)
5 HTML editor

Table 4.1.: List of software that is part of the Windows 7 pilot experiment

46

4.4. Software

between the Reader and any other secondary package. As mentioned earlier, it is not sup-
ported by Microsoft to virtualize the Internet Explorer, so it is necessary to just launch
it inside the virtual environment of the Adobe Reader package. Thereby the natively in-
stalled browser shares the same namespace and has access to the isolated application. This
requires to change all shortcuts on the system and the various ways of launching the Inter-
net Explorer in order to have it executed by the App-V Client and placed inside a particu-
lar virtual environment. So, instead of calling iexplore.exe directly, the program invocation
needs to be handled by the App-V Listener Service. For that purpose the adjusted browser
shortcut has to be placed into the Adobe Reader package during sequencing [73].

For this reason it is not recommended to virtualize such a standard system component that
may be used as a plug-in by several other applications, especially those that are like the
Internet Explorer.

Nonetheless, this software can be virtualized and integrated into the system as the stan-
dard viewer for PDF documents. However, to get the program running inside the virtual
environment, one has to manually set two registry keys to disable updates and a security
feature called the “protected mode”. To also remove the update service that would other-
wise be running in the background while the virtual environment exists, one needs to edit
the package in the sequencer and delete the service.

The deactivation of an update service is very important because a program update mod-
ifies the current state of the application. This means that files and registry keys are al-
tered which are captured inside the user’s delta file because the golden image must not be
changed. Thereby, the update grows the user’s profile and implicates that the user may
encounter problems with this unmaintained state.

4.4.2. Adobe Creative Suite and Adobe Acrobat

When virtualizing Adobe Acrobat one has to keep in mind that it installs a printer driver
which will not work inside the virtual environment. Thus, it is necessary to separate the
PDF printer from the installation and deploy the driver natively.

The reason for virtualizing a complex bundle such as the Adobe Creative Suite is that some
schools require to use two different versions of it in parallel on the same machine. Without
virtualization this task is impossible to complete as the software installs many libraries
that are incompatible to each other.

Certainly, a few problems arose that made the sequencing very time-consuming and com-
plex. One issue was that the Help Center could not be started without local administration
rights. Normally, when an application needs higher rights, the Windows 7 User Account
Control (UAC) takes control and elevates the user’s privileges. In this case it even did
not work when the virtual application was launched as an administrator. The solution to
this problem was to edit the virtual package and set an environment variable to tell the
application to execute without any demand [40].

Adobe Bridge and Adobe Illustrator both caused an error message at launch time. The first

47

4. Integrating App-V into a heterogeneous network

could not load start scripts from the application data folder in the virtual file system. Like
all folders in the application data profile the start script files are user-specific and thus will
be recreated by Adobe Bridge at runtime. So the solution was to exclude the start scripts
from being captured in the monitoring phase respectively deleting them afterwards from
the virtual file system.

The problem that caused the Illustrator’s error message was not that obvious as it claimed
that the machine does not have enough memory. Luckily, a thread in the Adobe software
board covered this issue, which was not a specific virtualization problem. After follow-
ing the recommendations of deleting a preferences file in the application data folder, the
problem was solved.

4.4.3. Hardcopy

Hardcopy is a tool for taking screenshots and therefor it extends the Windows-integrated
command for capturing the screen and saving it to the clipboard with several more fea-
tures. Including a possibility to directly send the screenshot to a printer and adding an
icon into the active window’s titlebar for taking a screenshot with one mouse click.

So virtualizing this program with all its functions is impossible, because Hardcopy can
only integrate the icon into windows that are also virtualized and share the same virtual
environment. As this is typically not the case, this function will be lost because of the
application’s isolation and separation from the natively installed programs. Furthermore,
capturing the keyboard shortcut for the print screen feature will only work when changing
the LOCAL INTERACTION setting of the virtual application to “true”. Otherwise, the App-V
Client will not pass the command to the program while it is listening in the background.

For this reason we decided to install Hardcopy natively because it needs a better interac-
tion with the operating system and other programs as App-V admits.

4.4.4. Microsoft Office

Like almost all Microsoft products the Office suite is well supported by App-V, but the
effort of virtualizing them is very dissimilar between different versions.

The virtualization of Office 2000 is fairly easy as it does not install any license service
like the newer versions. Thus, the sequencing was straightforward and encountered no
problems.

In contrast, Office 2010 is much more complicated as it requires a few preparations before
the sequencing phase can begin. In addition, to get the application running virtualized on
the end-user’s computer, it is necessary to install a middleware software called Microsoft
Office 2010 Deployment Kit for App-V. The distribution can be achieved the same way as
the App-V Client is installed on the machine. The Deployment Kit allows the integration of
the virtualized Office into the system and enables interaction between the suite and other

48

4.4. Software

applications.

Following Microsoft’s documentation on how to prepare the machine setup and installing
Office 2010 it is possible to sequence the application successfully [42]. That said, it would
not work out if Microsoft did not support virtualizing their big products, because they
are too complex and could not be sequenced without assistance. Furthermore, a virtual-
ized Office would miss features like the integration of the Windows Desktop search if the
Deployment Kit was not there.

4.4.5. Mozilla Firefox and Thunderbird

I thought that Firefox and Thunderbird will be good programs to become familiar with
sequencing because they have no dependencies or known components that would cause
huge conflicts in the system. As there are also existing unofficial portable versions of these
applications, my presumption was strengthened.

However, these programs already raised a few points that needed a deeper exploration of
App-V’s functionality as I might have expected.

Setting a program as default

Normally, at installation time, Firefox can be set as the default browser while Thunderbird
can be the preferred mail client. With App-V these settings cannot be applied to the op-
erating system, even though the Sequencer recognizes them. This is because neither the
publishing process nor the MSI file currently support the integration of an application as
default. In the stand-alone infrastructure this drawback can be circumvented by adjusting
the MSI file with an editor like Wise Package Studio2 and adding the functionality this
way. Alternatively, as this setting consists of adding or changing keys in the registry, this
modification can be accomplished by the software deployment tool as well if it supports
the modification of the registry.

Application profile

The two programs are using locations in the user’s Windows profile, where user-specific
data like extensions, configuration settings, bookmarks or mails are stored. At sequencing
time it is important to known if the application profile should be a part of the virtual
environment or if it can be saved into the default location in the native file system.

The fundamental difference between these two options is that including the profile into
the virtual environment prevents other (locally or virtualized) applications from accessing
it. Sometimes it could be desirable to use different versions of the Mozilla software with

2http://www.symantec.com/business/package-studio

49

http://www.symantec.com/business/package-studio

4. Integrating App-V into a heterogeneous network

the same profile. Thus, the application profile has to reside in the user’s profile and must
be excluded from the virtual package.

Certainly, this has the drawback that there is no possibility to create a default profile for
the virtual application inside the package that presets a configuration for all users. This,
for example, is necessary to provide a preset home page, to customize the program for the
school network and to disable the update feature. However, as Firefox and Thunderbird
can be configured to use a centralized stored configuration file on the server [71], there
is no need to prepare a default profile. This auto-configuration is already implemented
into the school network and can be used for a virtual as well as for a natively installed
application.

Plug-ins

As mentioned before, Firefox does not have special software requirements or dependen-
cies, but it can use plug-ins of other applications to play embedded media or display PDF
documents inside the browser. This requires the local interaction of the virtualized Firefox
package and the software that provides the plug-in.

Alternatively, such plug-ins can also be virtualized and defined as dependencies of the
Firefox package, which enables all packages of the Dynamic Suite Composition to share
the same environment and see each other.

Jump Lists

Virtualizing Mozilla’s web browser and mail client showed up another program-related
limitation of App-V: the integration of a virtual application’s Jump List into the taskbar.
Such Jump Lists were newly introduced by Windows 7 and can be seen as special context
menus that are used individually by every program that offers support for this feature.

Firefox not only offers shortcuts to the most common tasks like opening a new tab or win-
dow. Its Jump List also displays the most frequently visited pages to make them quickly
accessible for the user.

All entries in the Jump List that link to the program’s executable are not working because
the shortcut points to the virtual drive of App-V. As applications have access to their own
package folder only inside the virtual environment, clicking on the shortcut results in an
access restriction because the shortcut is integrated into the taskbar outside the virtual
environment and thus the user is not able to run the program from the protected virtual
drive.

The same applies to Thunderbird, but it is not a general problem of App-V because the
Jump List is working in other virtualized products like Office 2010 or Adobe Reader.

It is likely that the Mozilla Foundation implemented the Jump List in a way that App-V is
not aware of. Normally, the App-V Client would modify the shortcut targets and replace

50

4.4. Software

them with the App-V launcher executable, like it does to the shortcuts on the desktop or
in the program menu.

4.4.6. Investigation of problems inside the virtual environment

Sometimes it might be of interest to have a look inside the virtual environment in order
to investigate problems of a virtual application after the sequencing. As App-V restricts
the access to the virtual drive, there is no way to browse the file system with the Windows
Explorer. Instead, an alternative file manager must be used and opened inside the virtual
environment. Therewith, it is possible to observe the files inside the package directory and
even those that are redirected by the virtualization layer are discoverable in the system
folders.

On the other side, to have a look into the virtual registry, the registry editor can be launched
inside the virtual environment. Therefor, App-V provides a special command like shown
in listing 4.1. In this example, the App-V Launcher (sfttray.exe) creates the virtual environ-
ment for Microsoft Word and executes the registry editor (regedit.exe) inside of it. Thus,
the editor will present all registry keys of the native namespace as well as the ones that are
only available inside the virtual environment of Word.

s f t t r a y . exe /EXE r e g e d i t . exe ” Microsof t O f f i c e Word 2010”
Listing 4.1: Command for launching the registry editor inside the virtual environment

Instead of the registry editor executable any other program can be used as a parameter
as long as it is not the Windows Explorer (explorer.exe). This can be useful in order to
find out file conflicts and access restrictions that may occur inside the virtual environment.
Thereto, the Process Monitor of Windows Sysinternals is a very helpful tool because it
shows the real-time file system activity as well as requests to the registry and it allows to
monitor processes and threads [25]. In order to have the virtual application monitored by
the Process Monitor, it has to be launched like shown above because it would otherwise
capture the redirected requests.

One solution for a file conflict could be to exclude the file from the environment if there is
a way to provide it outside the virtual application. This, for example, might be the case for
application profiles that can be placed into the user profile instead.

4.4.7. Documentation of proceedings and troubleshooting

In order to document the proceedings that are necessary for the virtualization of each ap-
plication I installed a wiki for that purpose. Therefor, I chose the MediaWiki software ap-
plication because it is highly customizable and still easy to use. Furthermore, as Wikipedia
also uses this wiki it will be enhanced and supported over a long period of time.

This wiki not only includes the information for App-V applications but also the specifica-
tions for the installation and configuration of the applications that have been made by the

51

4. Integrating App-V into a heterogeneous network

IT department. An employee of T-System also contributed to this list as he was responsible
for creating all of the applications as unvirtualized packages. In cooperation we collected
the parameters for the silent installation of the programs and created both an unvirtualized
application and an App-V package where possible.

Additionally, I documented the pitfalls and troubleshooting of problems that occurred
while sequencing the applications. This not only was helpful for myself because I could
check up which approaches to a problem I already had tried. First and foremost the docu-
mentation shall help the ones that adopt the sequencing of App-V in the future. Thereby,
they do not have to solve the same problems again and they will have an easier start with
virtualization because they have several examples of packages that are ready.

Moreover, I wrote a documentation (see appendix A) about the App-V development en-
vironment, how App-V works and how it is integrated into the school network. It also
describes the sequencing process as well as the management of existing packages, includ-
ing software updates and modifications. This document is intended to be a manual for
those that do the network administration as well as for the software packaging engineers
which will create applications with App-V.

4.5. Categorization of applications

This section will give an overview about which programs are good candidates for applica-
tion virtualization and which are not.

4.5.1. Not virtualizable

Some software should not be virtualized or is technically not supported to be virtualized.
Including Windows updates and operating system service packs which would have no
effect if they were isolated from the operating system. Additionally, it would cause a secu-
rity problem to virtualize those components. Furthermore, operating system components
like the Windows Update Service or the Windows Firewall may not be virtualized because
of security reasons. The same applies to third-party security software like client firewalls,
antivirus software, and encryption software. All of these must have direct access to the
operating system and its components, including the file system and registry. If they were
virtualized, the redirection of files and registry keys would separate them too much from
the system.

Most of the aforementioned could even be virtualized with kernel mode agents only, be-
cause such software needs to run with higher privileges in order to have access to all parts
of the system.

Moreover, device drivers are not supported to be virtualized because of their integration
into the operating system. In addition, applications could not communicate with isolated
drivers and thus it only makes sense to install them locally. Besides that, if the virtualiza-

52

4.5. Categorization of applications

tion layer fails the driver would not behave the way it should and might cause a system
crash.

Also the Internet Explorer can be considered as an operating system component that is
highly integrated into Windows. Although Microsoft supports the virtualization of the
Internet Explorer with terminal services, the Windows XP Mode, and MED-V3, they do
not support it with application virtualization [39]. It even violates the end-user licensing
agreement when multiple versions of Internet Explorer are running on the same instance
of Windows [27].

Applications that are dependencies for other programs might not be virtualized if one of
those primary programs cannot be virtualized. This is because a locally installed program
does not have access to a virtualized application and thus cannot use it. If all programs
can be placed into the same virtual environment without any reservations, then there is
nothing to be said against it. Otherwise, all applications should be installed natively. For
example, the Microsoft .NET Framework is used by many applications and thus should
not be virtualized. Most notably, the framework is required by the App-V Client and must
be installed locally. Certainly, the .NET Framework allows the usage of different versions
side by side which renders its virtualization unnecessary [30]. Another example is the
Java Runtime Environment which cannot be used in a command-line interface (CLI) like
the cmd.exe or the Windows PowerShell if it is virtualized. This is because the CLI is not
able to access the binaries like the Java compiler (javac) outside the virtual environment.

The interprocess communication between applications is also not possible when they are
not running in the same virtual environment. Those programs must also be installed na-
tively.

4.5.2. Virtualizable, with reservations

Services are mostly supported inside virtual environments but do have some limitations
when it comes to services that need to be started at boot time. This cannot be achieved
in the traditional way because isolated services are not registered as the ones that are lo-
cally installed. Thus, it is not possible to let them automatically start or define them as
dependencies for other services. The first drawback can be circumvented but an identical
behavior will not be achieved.

Furthermore, applications that install drivers have to be separated from those components
in order to virtualize the application on its own and install the driver natively. This, for
example, might be a printer driver like Adobe PDF (formerly known as Adobe Distiller)
which creates PDF files. Certainly, the separation of such parts is not always an easy task
and will take some time. It also needs more testing of the virtual application and the na-
tively installed component in order to find out if they play together without problems. In
addition, the decoupled component can cause conflicts that need to be addressed without
the help of application virtualization.

3Microsoft Enterprise Desktop Virtualization, a centrally managed desktop virtualization solution

53

4. Integrating App-V into a heterogeneous network

Moreover, applications that require special hardware like software protection dongles or
a specific media access control address for licensing can be virtualized with App-V but
they are bound to a certain hardware or workstation [1]. This limits the abstraction and
reusability of a virtualized package but it sticks to the licensing agreements that a software
brings along.

Also the integration of a virtualized application into the operating system is not fully sup-
ported by App-V yet. For example, the registration as the default browser or the integra-
tion into the context menu does not work. The latter is not supported because the Windows
Explorer would require access to the virtual environment [87]. This cuts some features of
an application which the user would expect to function and behave as he is familiar with.

Additionally, applications with a high utilization of the disk could be candidates for this
category because the redirection that has to be made for a file handle at every request slows
down the working. This, for example, is the case for database applications which would
not be virtualized on a server then [48]. However, on a desktop with modern hardware
it should be feasible to run the Microsoft SQL Server virtualized. Admittedly, for servers
and terminal services the Server Application Virtualization (see section 3.7) will be a much
better solution.

Further, applications that use hard-coded paths can cause problems, as it was seen in the
Firefox example. This one only resulted in an unusable Jump List, but there are other pro-
grams that use configuration files with pre-defined locations or access files in the program
code by using hard-coded paths which then might not work as expected. Those programs
have to be recognized and must be installed to the default location instead of the virtual
drive Q.

4.5.3. Virtualizable

There are programs, especially middleware like the Adobe Flash Player, that can only be
installed to the system drive. As mentioned in chapter 3, Microsoft proposes to install
software to the virtual drive Q to gain the best performance. However, the difference
between an installation to the Q drive and the standard location is mostly not noticeable.
Especially not with middleware software that includes a small number of files that need to
be redirected by the virtualization engine. It is more drastic when complex programs like
Microsoft Office or Adobe Creative Suite are accessing most of their files from the system
drive because those requests have to be intercepted and redirected to the virtual drive.

54

5. App-V compared to other products

This chapter will introduce a few products of other competitors in the application virtu-
alization market and explain how they differ from Microsoft App-V. As the main focus
of this thesis is App-V, the following comparison is based on whitepapers and product
reviews without having them tested on my own.

5.1. VMware ThinApp

Like Microsoft did with SoftGrid, in 2008 VMware acquired the company Jitit Inc. that
developed an application virtualization product called Thinstall [59]. Afterwards they
renamed it to ThinApp, that is – contrary to Microsoft App-V – also available as a trial
version.

The fundamental difference to App-V is that ThinApp is an agentless virtualization prod-
uct, which means that it does not require any client software or requirements being in-
stalled on the desktop machine to run the virtual applications. Thus, all applications are
bundled to EXE files that include everything the program needs to run. However, this
requires ThinApp to encapsulate an agent-like Virtual Operating System (VOS) into ev-
ery virtual application for building the environment and starting the program inside of
it. Certainly, ThinApp executes its VOS and the application in user mode which does not
require administrative permissions for the user to run an application nor can a crash affect
the operating system [58]. A drawback of this agentless approach is that every package
must be changed if VMware releases a new version of ThinApp in order to be able to use
the new features.

ThinApp also offers a streaming functionality but does not cache the applications locally
on disk. Instead, only the necessary parts of the executed application are loaded block-
wise from a server or any other network drive into the memory. Alternatively, the portable
executables can be distributed by a software deployment system or even on a data storage
device like a USB flash drive. This is possible because it does not require any rights to
run the program or install a MSI file like with App-V. Thus, an application can also be
executed by external users that do not have anything special like an agent installed on
their notebook.

As a counterpart to App-V’s Publishing Refresh, ThinApp uses login scripts to publish the
shortcuts and register the file type associations. Therefor, it requires an existing infrastruc-
ture with a file server, where the applications are streamed from, and a user management
with group policies to take advantage of the login scripts.

55

5. App-V compared to other products

To create virtual applications VMware ships a stand-alone executable called Setup Capture
that makes a pre-scan snapshot before the program’s installation and a post-scan snapshot
afterwards. All changes that were made in this period are bundled to the virtual applica-
tion. As the executable will run without contacting any server, it has to include everything
that is related to the application. This includes not only the files and registry keys but also
permissions and user groups that are required to run the program. Furthermore, defining
dependencies to other packages that are loaded at runtime is also supported [66].

That said, there is no central management of applications, assignments and licenses like
with App-V. Thus, the administrators have less control over the executables if they are
handed out to users.

In spite of Microsoft’s statements on the unsupported and unlicensed virtualization of
Internet Explorer, ThinApp is able to run Internet Explorer 6 on Windows 7 by virtualizing
it [2]. Furthermore, they offer a special component called ThinDirect which redirects
predefined URLs to the appropriate web browser. So, they can switch between a virtual
Internet Explorer 6 and a newer version that is installed natively without interrupting the
user’s work-flow [60]. This enables a company to use the older browser version for pages
that are not compatible with the newer one.

5.2. Citrix Application Streaming

The Citrix Application Streaming is a part of the Citrix XenApp (formerly known as Pre-
sentation Server) product [53]. XenApp requires the Citrix Streaming Client software for
executing and streaming the applications from a centralized server to the user’s machine.
Thus, XenApp requires an agent that is installed on the workstation and which handles the
file system filtering in kernel mode. Certainly, the registry filtering is done in user mode
which means that it also uses a hybrid approach like App-V [72].

It differs from App-V and ThinApp in that way, as it not only offers the streaming function-
ality but also can host applications remotely on a server. This feature is called session
virtualization and comes into play when a client is not capable of running the virtual
application locally because the device does not meet the requirements. Then, the XenApp
Client executes the application entirely on the server and redirects keyboard and mouse
inputs to it. That also enables different operating systems besides Windows to use the vir-
tual applications remotely, as long as the XenApp Client is supported on the system. Thus,
also Linux, Mac, thin clients, and even mobile devices are able to use the hosted programs
as if they were running natively, including the direct access to printers and drivers of the
local hardware [52].

The infrastructure includes

• the XenApp Profiler which creates the virtual applications and prepares them for
streaming,

• a XenApp Farm that requires at least one server for the data store, a web interface,

56

5.3. Symantec Workspace Virtualization

and a management console,

• a license server that regulates the number of users that can concurrently use an ap-
plication,

• the XenApp Plugins for Hosted and Streamed Apps (formerly known as Streaming
Client) which provide a gateway to the published applications.

Furthermore, the applications can be accessed through a web interface which will execute
the applications on the server and enable the before mentioned platform independence
[53].

5.3. Symantec Workspace Virtualization

In 2007 Symantec aquired the company Altiris which developed a product called Software
Virtualization Solution [43]. Afterwards, it was renamed to Symantec Workspace Virtu-
alization (SWV) and is now integrated into several other products, such as the Symantec
Endpoint Virtualization Suite, Symantec Workspace Streaming, or Software Management
Solution.

SWV virtualizes applications by putting virtual software layers on top of the operating
system. These layers can be activated and deactivated in order to make an application
available to the user or not. To manage the layers it requires the Workspace Virtualization
Agent to be installed on the workstations, which makes it a kernel mode product.

When an application’s layer is activated, the agent publishes all files, registry keys, short-
cuts, file type associations, and context menus like if the program was installed natively.
So, SWV integrates an application more seamlessly into the system than App-V, ThinApp
or XenApp. Thus, the user will find all files, registry keys and settings at their regular place
as if the application would not have been virtualized. In order to accomplish this, SWV
also relies on the redirection of files and registry keys to a protected place on the hard drive
where the virtual application package is located. So, for example, the user can browse to
a program directory in C:\Program Files in the Windows Explorer but SWV redirects
the virtual directories to the protected virtual file system. This is not possible with neither
of the other products because they make the virtual file system only visible to the specific
virtual packages instead making it system-wide available.

SWV provides a writable user-specific layer that stores all the changes that a user makes to
an application. Furthermore, a virtual package can contain a data layer that will capture all
files that a user creates. This can be, for example, .doc files of Microsoft Word which will
be redirected to the layer and which are hidden if the virtual application is deactivated.
The special data layer has its advantage when the application layer has to be reset because
this way the documents are not lost.

Symantec Workspace Virtualization can be used in a stand-alone mode or with one of the
Symantec respectively Altiris server environments. Thus, not only streaming of applica-

57

5. App-V compared to other products

tions is possible but also the integration of SWV into an existing network infrastructure
because the agent provides different interfaces for managing the virtual software layers
[44].

Unlike App-V, Symantec technically supports the virtualization of the Internet Explorer
[3] but they also do not virtualize drivers and operating system components like service
packs or Windows updates [44]. Certainly, the virtualization of the Internet Explorer may
still be an unlicensed solution and thus is not supported by Microsoft [27].

58

6. Conclusion

The goal of this thesis was to research the application virtualization product of Microsoft
and to find out whether it has the ability to fulfill the requirements of Munich’s school
network. There, Microsoft App-V is intended to solve most of the conflicts between ap-
plications and thus it was part of this thesis to analyze the options for its integration into
the existing heterogeneous network. Furthermore, the virtualization of some varying soft-
ware products that are already known to cause conflicts contributed to a categorization of
software in order to summarize which applications are good candidates for virtualization
and which cause problems.

The research showed that Microsoft App-V is a complex product that has to be under-
stood when it comes to the virtualization of software. Thus, it is best to read the extensive
documentation first before the sequencing is started. This thesis has given an overview
of the App-V infrastructure and the main components as well as a summary on how the
virtualization technically works. Therewith, a comprehensive view about drawbacks and
opportunities of App-V and application virtualization in general is established.

The mere fact that applications can be executed without an installation is a huge benefit.
Not only that the conflicts of files and registry keys are a thing of the past but also the
option for streaming an application to the client on demand makes the administration
of workstations easier. Thereby, updates can be deployed very fast by changing one file
on a server and being sure that all users work with the newest version. This ensures a
higher level of security and reduces the maintenance time that has to be dedicated when a
software installation or removal causes problems.

For companies with a long list of applications the isolation of software that is achieved with
virtualization is one promising way to solve conflicts. Certainly, it depends on the products
whether all or at least most of the problems can be solved with application virtualization.
So, this type of virtualization might not be appropriate for every network and it requires
additional skills from administrators to solve the problems that occur in the virtualization
process.

Furthermore, if the decision for one virtualization product has been made the migration
from one product to another means to start at the very beginning because the virtual ap-
plications are not interchangeable. Thus, the long-term decision has to be deliberate and
several products should be tested in researches and pilot experiments.

The integration of App-V into the school network has shown that it is possible to resign
on the full infrastructure that is offered by the vendor and use the existing components
without greater adaptations. Certainly, the pilot experiment has to show if everything

59

6. Conclusion

works as planed and expected but it is already clear that all of the features that App-V
offers are only available with the full infrastructure. It depends on the customer’s need
whether the absence is a loss or not.

For the end-user at home the before mentioned products are too expensive and some of
them are only offered to enterprises. Many users did not experience application conflicts
in the past because they only had a few programs installed on the computer. Today, there
are much more software products available and users are working on different devices at
differing locations. There, they would like to use the same software with their custom-
made adjustments, too. More and more programs are offered as portable versions but
most of the commercial software cannot be used this way. With application virtualization
even the private users could generate portable programs that run from a USB flash drive
and can be used on different computers without having them installed locally. Cameyo1

is a freeware product that offers Windows users the fundamental features of application
virtualization and might be a good start to provide a software even for the private sector.

The development and research on application virtualization is not at the end for a long
time yet and thus the vendors will continue to improve their products. Microsoft’s Server
App-V shows that not only workstations are an interesting market but there is also a need
on servers. Hence, there will be a better integration of virtual applications into the operat-
ing system in the future in order to allow interprocess communication especially on servers
as well as on terminal services. The latter is an interesting area when it comes to thin clients
and cloud computing. As the movement towards software as a service is upcoming, the
abstract and isolated virtual applications are a good concept for this model. Furthermore,
the workstations can be replaced by thin clients if applications can be executed completely
on the server which reduces the maintenance-time enormously.

1http://www.cameyo.com

60

Appendix

61

A. App-V documentation for ZIB

63

Microsoft App-V für M@School

Windows 7 Client Entwicklungsprojekt

Inhaltsverzeichnis

1 Einleitung 5
1.1 Hintergrund . 5
1.2 Überblick Entwicklungsumgebung . 5
1.3 Hinweis . 6

2 Begriffsklärung 6

3 Entwicklungsumgebung 8
3.1 Host-System . 8

3.1.1 Hardware . 8
3.1.2 Software . 8
3.1.3 Benutzerkonten . 9

3.2 Virtuelle Maschinen . 9
3.2.1 Virtuelle Maschine für die Sequenzierung 9
3.2.2 Virtuelle Maschine für den Test 9

4 Konfiguration der Clients 10
4.1 Verschiedene Modi der Verteilung . 10

4.1.1 Stand-Alone ohne Streaming 10
4.1.2 Stand-Alone mit Streaming . 10
4.1.3 Publishing und Streaming . 11

4.2 Installation des App-V-Clients . 11
4.2.1 Stand-Alone ohne Streaming 11
4.2.2 Stand-Alone mit Streaming . 12
4.2.3 Publishing und Streaming . 12

4.3 Ausblenden des virtuellen Laufwerks B 13
4.4 Voraussetzungen für die Verteilung der MSI-Pakete 14
4.5 Korrekte Wahl der Cache-Größe . 14
4.6 Integration von mobilen Geräten . 14
4.7 Management Console . 15
4.8 Funktionsweise von benutzerdefinierten Einstellungen 15
4.9 Inhalte im Systemverzeichnis des App-V Clients 16

5 Setup des Sequenzers 16

6 Pakete erstellen und bearbeiten 17
6.1 Vorüberlegungen . 17
6.2 Programm-Updates deaktivieren . 17
6.3 Neues Paket erstellen (Ablauf einer Sequenzierung) 17
6.4 Update eines Pakets erstellen . 18
6.5 Verknüpfungen nachträglich ändern 18

6.6 Abhängigkeiten zwischen Applikationen mit dem DSC eintragen . . 19

7 Installation eines virtuellen Pakets 19
7.1 Installation in der Entwicklungsumgebung 19
7.2 Installation mit dem VI-Client . 20

8 Ablauf des Publishing-Vorgangs 20
8.1 Dynamische Applikationsliste . 21
8.2 Nutzungsstatistiken (Reporting) . 22

9 Deinstallation/Entzug einer Anwendung 22

4

1 Einleitung

1.1 Hintergrund

Die LHM möchte mit der Migration auf Windows 7 weitere Formen der Software-
bereitstellung testen, um vor allem Konflikte zwischen einzelnen Applikationen zu
minimieren. Um zu untersuchen, welche Möglichkeiten eine Virtualisierungstech-
nik bieten kann und wie sich diese in das bestehende Konzept integrieren lässt,
wurde im Rahmen einer Bachelorarbeit der Einsatz von Microsoft App-V näher
untersucht und ein Vorschlag für die Integration implementiert.

Im Rahmen des LHM Windows 7 Client Entwicklungsprojekts wurde seitens T-
Systems ein App-V Client V4.6 (64-bit) für den Windows 7 Client der LHM als VI-
Paket paketiert. Dieser App-V Client ist für den stand-alone Modus konfiguriert,
da die Serverumgebung den Einsatz der vollen Microsoft Infrastruktur momentan
nicht ermöglicht. Allerdings wurden in der Bachelorarbeit Wege aufgezeigt, wie
diese Infrastruktur nachgebildet und die Streaming-Funktionalität bereitgestellt
werden kann. Außerdem wurde eine App-V Entwicklungsumgebung für die Er-
stellung und den Test virtualisierter Pakete aufgebaut, die hier näher beschrieben
wird.

1.2 Überblick Entwicklungsumgebung

Für den Aufbau einer Entwicklungsumgebung wurde auf einem stand-alone Rech-
ner ein Windows 7 64-bit installiert, welches als Host für virtuelle Maschinen der
VMware Workstation dient. Diese sind für den Test und die Paketierung beson-
ders gut geeignet, da mittels Snapshots die Maschine auf einen sauberen Zustand
zurückgesetzt werden kann. Dies erspart die Neuinstallation des Rechners und
ermöglicht auch die Sicherung von Zwischenständen während der Erstellung ei-
nes virtuellen Pakets.

Es wurden drei virtuelle Maschinen erzeugt:

1. App-V Sequencer: erstellt die virtuellen Pakete

2. App-V Test-Maschine: hier werden die virtuellen Pakete ausgeführt und ge-
testet

3. Linux Server: dient mit einem Samba als Share für die Pakete, um das Strea-
ming zu testen bzw. um die Pakete von der Sequencer-VM auf die Test-VM
zu kopieren. Darüber hinaus ist auch ein Apache installiert, welcher dafür
verwendet wurde, um die Publishing-Funktionalität nachzubilden.

Die beiden Erstgenannten sind ebenfalls Windows 7 64-bit Betriebssysteme, da
dieses später in der Produktivumgebung auf den Clients zum Einsatz kommen
wird. Damit es zu keinen Problemen bei der Verwendung der virtuellen Anwen-
dungen kommt, sollten diese unter demselben Betriebssystem erstellt werden, un-
ter dem sie auch später verwendet werden.

1.3 Hinweis

Momentan gibt es eine Unverträglichkeit zwischen App-V und dem bei der LHM
eingesetzten Softwareverteilungssystem. Letztgenanntes steht mit dem von App-
V verwendeten und gesperrten Laufwerksbuchstaben Q: in Konflikt und generiert
einen Fehler.

Dieses Problem muss entweder seitens des Herstellers gelöst oder dadurch um-
gangen werden, dass ein anderer Laufwerksbuchstabe verwendet wird.

Letzteres ist die schnellste Lösung, daher wurde für den Windows-7-Piloten das
Laufwerk B: gewählt, da der Softwareverteilungs-Client die Laufwerke A und B
nicht beachtet.

Es ist davon auszugehen, dass keine Rechner mit mehr als einem Diskettenlauf-
werk verwendet werden und auch sonst keine Belegung des Laufwerksbuchsta-
bens B zu erwarten ist, weshalb die Lösung konfliktfrei sein sollte.

2 Begriffsklärung

App-V Client Anwendung auf dem Desktop eines Windows-basierten Rechners,
der die Authentifizierung sowie Kommunikation mit einem Server (sofern
im Online-Modus) übernimmt. Ohne diesen können die virtuellen Anwen-
dungen nicht ausgeführt werden.

App-V Sequencer Anwendung zur Erstellung der virtuellen Applikationen. Die
Sequenzierung kann sowohl über eine graphische Oberfläche als auch über
Kommandozeile erfolgen.

DSC (Dynamic Suite Composition) Dieses Feature ermöglicht die Realisierung
von Abhängigkeiten zwischen Applikationen und das Zusammenspiel von
verschiedenen, normalerweise isolierten Anwendungen. Hierfür steht ein
Tool namens ”Microsoft Application Virtualization Dynamic Suite Compo-
sition Tool“ zur Verfügung, über das man mittels graphischer Oberfläche die
Abhängigkeiten eines Pakets eintragen kann.

6

Feature Block 1 und 2 Der erste Feature Block wird auch ”Primärer Feature Block“
genannt und stellt den Mindestinhalt eines virtuellen Anwendungspakets
dar, um die Applikation auf dem Client ausführen zu können. Er wird beim
Sequenzierungsvorgang gebildet und umfasst die am häufigsten verwende-
ten Anwendungskomponenten. Der zweite Feature Block (auch Sekundärer
Feature Block) enthält den Rest der virtuellen Anwendung, der anschließend
auf den Client übertragen wird.

ICO-Datei Symboldatei, die beim Publishing-Vorgang verwendet wird, um das
Icon einer Verknüpfung zu bilden. Im Stand-Alone-Modus wird diese Datei
bzw. der Ordner, in dem sich alle ICO-Dateien befinden, nicht benötigt.

OSD-Datei (Open Software Descriptor) XML-Datei, die Anweisungen enthält,
wie die Applikation vom Streaming-Server abgerufen und in der virtuellen
Umgebung ausgeführt werden soll.

Dort wird der Name, die Version und die eindeutige GUID der Applikation
festgelegt. Weiterhin befindet sich dort die Angabe zum Speicherort der SFT-
Datei und die Betriebssystem-Kompatibilität (Windows XP/7 32-bit/64-bit).

Package-GUID Eindeutiger Identifikationsstring (z. B. ”3D726A15-719F-4952-BB74-
AE7ED06D35F5“) unter dem die Applikation registriert wird. Mit dieser ID
werden auch die benutzerspezifischen Einstellungen im Dateisystem abge-
legt.

Publishing-Vorgang Kommunikationsvorgang zwischen Client und Server, um
eine XML-Datei vom Server abzurufen, welche die Anwendungen enthält,
die der Anwender nutzen darf.

Report-Datei Nicht zu verwechseln mit dem Reporting-Feature beim Publishing.
Diese XML-Datei enthält das Log des Sequenziervorgangs und kann bei Pro-
blemen konsultiert werden, um herauszufinden, welche Verzeichnisse we-
gen der Ausnahmeliste nicht hinzugefügt werden konnten oder wenn Ein-
stellungen erkannt wurden, die App-V nicht unterstützt (z. B. Shellerweite-
rungen).

Reporting-Feature Dieses Feature ist Teil des Publishing-Vorgangs und überträgt
Nutzungsstatistiken (Name der Anwendung, Username und Domäne, Zeit-
punkt des Anwendungsstarts, Zeitpunkt der Beendung) per POST-Request
an den Server.

SFT-Datei Enthält die sequenzierte(n) Anwendung(en), welche in Streamingblöcke
eingeteilt ist.

SFTMIME Eine Befehlszeilenschnittstelle für das Verwalten von Anwendungen,
Verknüpfungen, Dateierweiterungen und Veröffentlichungsservern. Hiermit

7

können die Schritte des MSI-Pakets eigenständig geskriptet werden.

SPRJ-Datei XML-Projektdatei des Sequencers, welche alle Projektkonfiguratio-
nen (MSI erstellen, Paket komprimieren, ...) und Ausnahmeverzeichnisse enthält.
Hier kann im Nachhinein eine Ausnahme entfernt werden, um eine Datei
nachträglich zum Paket hinzuzufügen.

Streaming Blockweise Übertragung der virtuellen Applikationsdatei (SFT) vom
Server zum Client. Zuerst wird der Primäre Feature Block übertragen, um
die Anwendung so schnell wie möglich betriebsbereit zu bekommen. Dies
ermöglicht die zentrale Verwaltung von SFTs und erspart das Kopieren der
virtuellen Applikation auf den Client. Der Streaming-Vorgang sorgt dafür,
dass der lokale Cache befüllt wird.

3 Entwicklungsumgebung

3.1 Host-System

3.1.1 Hardware

Modell: HP Compaq DC7900 CMT
RAM: 4 GB
HDD: 150 GB

Damit die 64-bit Version von Windows virtualisiert werden kann, musste im BIOS
die Virtualisierungsfunktion (VT-x) aktiviert werden.

3.1.2 Software

Betriebssystem
Microsoft Windows 7 Enterprise 64-bit, SP1, Deutsch

Konfiguration
Standardinstallation, eine System-Partition, Arbeitsgruppe: WORKGROUP

Sonstige Software

• Adobe Reader X

• 7-Zip 9.20

8

• Mozilla Firefox

• VMware Workstation Version 7

3.1.3 Benutzerkonten

• Administrator-Konto ist deaktiviert (Windows Voreinstellung)

• nimda (mit dem Standard-Passwort der LHM) als Administrator; gilt auch
für virtuelle Maschinen

• manuel (Manuel Söhner)

3.2 Virtuelle Maschinen

Es wird die Software VMware Workstation mit einer LHM-Lizenz eingesetzt, da
VirtualPC für die Verwendung eines 64-bit Betriebssystems nicht ausgelegt ist.

Der Datenaustausch zwischen dem Host und den VMs erfolgt über VMware Sha-
red Folders beziehungsweise über den Share des Linux-Servers, der ebenfalls in
einer virtuellen Maschine installiert wurde.

3.2.1 Virtuelle Maschine für die Sequenzierung

Name: Windows7SEQ
Beschreibung: Windows 7 Enterprise 64-bit, SP1, Deutsch
Standardinstallation mit App-V V4.6 SP1, Sequenzer
Snapshot vorhanden, Maschine kann nach jedem Sequenzierungsvorgang wieder
auf den Ausgangszustand zurückgesetzt werden.

Diese VM benutzt eine zweite Partition (B:), welche mit NTFS formatiert wurde.
Dieses Laufwerk wird von App-V verwendet, um die Dateien zu speichern, wel-
che eine Anwendung installiert hat. Hier hat man vollen Zugriff auf das Laufwerk.

3.2.2 Virtuelle Maschine für den Test

Name: Windows7 Test
Beschreibung: Windows 7 Enterprise 64-bit, SP1, Deutsch
Standardinstallation mit App-V V4.6 SP1, Client
Snapshot vohanden, Maschine kann nach jedem Test wieder auf den Ausgangszu-
stand zurückgesetzt werden.

9

In dieser VM muss keine extra Partition angelegt werden. Das virtuelle Laufwerk
(B:) wird von App-V erzeugt und ist vor Zugriffen geschützt.

Zwischenzeitlich wurde der App-V Client auch im Online-Modus getestet, um die
Infrastruktur von Microsoft nachzubilden, allerdings wird diese von der LHM für
den Piloten zunächst nicht angestrebt. Daher ist der Client im stand-alone Modus
konfiguriert und setzt somit voraus, dass die virtuellen Pakete über den Shared
Folder von VMware oder den Linux Samba-Share auf die Test-Maschine kopiert
und über das MSI installiert werden.

4 Konfiguration der Clients

4.1 Verschiedene Modi der Verteilung

4.1.1 Stand-Alone ohne Streaming

Da der Client im Offline-Modus arbeitet, müssen die Applikationspakete (MSI und
SFT) manuell oder über eine Softwareverteilung verteilt werden. Hierfür erzeugt
der Sequencer ein MSI, welches bei der Installation

1. Dateierweiterungen registriert,

2. Verknüpfungen erstellt,

3. das Send-to-Menü erweitert und

4. den lokalen Cache mit der SFT befüllt.

4.1.2 Stand-Alone mit Streaming

Der Client arbeitet im Online-Modus und streamt beim Start der Anwendung das
SFT von einem Server auf den Client, sofern sich diese noch nicht im Cache befin-
det. Dabei wird zunächst der Feature Block 1 übertragen, welcher die für den Start
der Applikation relevanten Teile enthält, um einen schnellen Start gewährleisten
zu können. Anschließend wird der Feature Block 2 sukzessive nachgeladen.

Als Übertragungsprotokoll kann HTTP(S), SMB oder RTSP verwendet werden. Je
nachdem muss die zu streamende SFT-Datei über einen geeigneten Dienst zur Ver-
fügung gestellt werden.

10

4.1.3 Publishing und Streaming

Bei dieser Methode wird komplett auf das MSI verzichtet und eine zentrale XML-
Datei verwendet, welche die verfügbaren Applikationen enthält.

4.2 Installation des App-V-Clients

Für alle Modi müssen folgende Systemvoraussetzungen1 geschaffen sein:

• Microsoft Visual C++ 2005 SP1 Redistributable Package (x86)

• Microsoft Core XML Services (MSXML) 6.0 SP1 (x86)

• Microsoft Application Error Reporting

• Microsoft Visual C++ 2008 SP1 Redistributable Package (x86)

Diese werden bei der Verwendung der setup.exe automatisch installiert, bei der
Verwendung der MSI müssen diese separat installiert werden.

4.2.1 Stand-Alone ohne Streaming

setup . exe /s /v”/qn REQUIREAUTHORIZATIONIFCACHED=\” Fa l s e \”
ALLOWINDEPENDENTFILESTREAMING=\”True\” MINFREESPACEMB=\”5000\”
SWIFSDRIVE=\”B\””

Auflistung 1: Installationsparameter

reg add ”HKEY LOCAL MACHINE\SOFTWARE\Microsof t \ SoftGrid \4 . 5\
C l i e n t \Network” /v LimitDisconnectedOperation / t REG DWORD
/d 0

reg add ”HKEY LOCAL MACHINE\SOFTWARE\Microsof t \ SoftGrid \4 . 5\
C l i e n t \Network” /v Online / t REG DWORD /d 0

reg add ”HKEY LOCAL MACHINE\SOFTWARE\Microsof t \ SoftGrid \4 . 5\
C l i e n t \Permissions ” /v ToggleOfflineMode / t REG DWORD /d 0

Auflistung 2: Registry-Änderungen

1http://technet.microsoft.com/en-us/library/cc843822.aspx

11

4.2.2 Stand-Alone mit Streaming

1 . setup . exe /s /v”/qn REQUIREAUTHORIZATIONIFCACHED=\”True\”
ALLOWINDEPENDENTFILESTREAMING=\”True\” MINFREESPACEMB=\”5000\”
SWIFSDRIVE=\”B\””

Auflistung 3: Installationsparameter

reg add ”HKEY LOCAL MACHINE\SOFTWARE\Microsof t \ SoftGrid \4 . 5\
C l i e n t \Configurat ion ” /v Applicat ionSourceRoot / t REG SZ
/d ”\\SERVERNAME\SHARE”

reg add ”HKEY LOCAL MACHINE\SOFTWARE\Microsof t \ SoftGrid \4 . 5\
C l i e n t \Network” /v LimitDisconnectedOperation / t REG DWORD
/d 1

reg add ”HKEY LOCAL MACHINE\SOFTWARE\Microsof t \ SoftGrid \4 . 5\
C l i e n t \Network” /v Online / t REG DWORD /d 1

reg add ”HKEY LOCAL MACHINE\SOFTWARE\Microsof t \ SoftGrid \4 . 5\
C l i e n t \Permissions ” /v ToggleOfflineMode / t REG DWORD /d 0

Auflistung 4: Registry-Änderungen

4.2.3 Publishing und Streaming

1 . setup . exe /s /v”/qn REQUIREAUTHORIZATIONIFCACHED=\”True\”
ALLOWINDEPENDENTFILESTREAMING=\”True\” MINFREESPACEMB=\”5000\”
SWIFSDRIVE=\”B\””

Auflistung 5: Installationsparameter

reg add ”HKEY LOCAL MACHINE\SOFTWARE\Microsof t \ SoftGrid \4 . 5\
C l i e n t \Configurat ion ” /v Applicat ionSourceRoot / t REG SZ
/d ”\\SERVERNAME\SHARE”

reg add ”HKEY LOCAL MACHINE\SOFTWARE\Microsof t \ SoftGrid \4 . 5\
C l i e n t \Network” /v LimitDisconnectedOperation / t REG DWORD
/d 1

reg add ”HKEY LOCAL MACHINE\SOFTWARE\Microsof t \ SoftGrid \4 . 5\
C l i e n t \Network” /v Online / t REG DWORD /d 1

12

reg add ”HKEY LOCAL MACHINE\SOFTWARE\Microsof t \ SoftGrid \4 . 5\
C l i e n t \Permissions ” /v ToggleOfflineMode / t REG DWORD /d 0

reg add ”HKEY LOCAL MACHINE\SOFTWARE\Microsof t \ SoftGrid \4 . 5\
DC Servers \ Schulserver ” /v ID / t REG DWORD /d 1

reg add ”HKEY LOCAL MACHINE\SOFTWARE\Microsof t \ SoftGrid \4 . 5\
DC Servers \ Schulserver ” /v Type / t REG SZ /d ”HTTP”

reg add ”HKEY LOCAL MACHINE\SOFTWARE\Microsof t \ SoftGrid \4 . 5\
DC Servers \ Schulserver ” /v Host / t REG SZ /d ”SERVERNAME”

reg add ”HKEY LOCAL MACHINE\SOFTWARE\Microsof t \ SoftGrid \4 . 5\
DC Servers \ Schulserver ” /v Path / t REG SZ /d ”/ a p p l i s t . php”

reg add ”HKEY LOCAL MACHINE\SOFTWARE\Microsof t \ SoftGrid \4 . 5\
DC Servers \ Schulserver ” /v Port / t REG DWORD /d 80

reg add ”HKEY LOCAL MACHINE\SOFTWARE\Microsof t \ SoftGrid \4 . 5\
DC Servers \ Schulserver ” /v Reporting / t REG DWORD /d 0

reg add ”HKEY LOCAL MACHINE\SOFTWARE\Microsof t \ SoftGrid \4 . 5\
DC Servers \ Schulserver ” /v Refresh / t REG DWORD /d 1

reg add ”HKEY LOCAL MACHINE\SOFTWARE\Microsof t \ SoftGrid \4 . 5\
DC Servers \ Schulserver ” /v Period / t REG DWORD /d 0

Auflistung 6: Registry-Änderungen

4.3 Ausblenden des virtuellen Laufwerks B

Um das zugriffsgeschützte Laufwerk nicht mehr im Explorer anzeigen zu lassen,
muss ein Registry-Key gesetzt bzw. die Group Policy für den User angepasst wer-
den.

reg add ”HKEY CURRENT USER\Software\Microsof t \Windows\
CurrentVersion\ P o l i c i e s \Explorer ” /v NoDrives / t REG DWORD
/d 2

Auflistung 7: Registry-Key zum Verstecken des Laufwerks B

13

4.4 Voraussetzungen für die Verteilung der MSI-Pakete

Bei der Verteilung sollte darauf geachtet werden, dass sämtliche Voraussetzungen
erfüllt sind, bevor die Anwendungen installiert werden.

Dies setzt voraus, dass die Pakete in einer bestimmten Reihenfolge installiert wer-
den. Zunächst müssen die Voraussetzungen für den App-V-Client installiert wer-
den (siehe oben: Systemvoraussetzungen).

Außerdem sollte sichergestellt werden, dass der App-V-Client vor den virtuellen
Applikationen installiert wird, da diese sonst nicht verarbeitet werden können.

Hierfür bietet der AE-Manager eine Sortierreihenfolge an, über die festgelegt wer-
den kann, welche Reihenfolge durch den VI-Client bei der Installation einzuhalten
ist.

4.5 Korrekte Wahl der Cache-Größe

Der Cache sollte so konfiguriert werden, dass er wachsen kann, bis die Festplatte
fast voll ist. Dies senkt das Risiko, dass der Cache voll läuft und die am längsten
nicht mehr verwendeten Applikationen verdrängt werden.

Bei ”Stand-Alone ohne Streaming“ führt dies zu einem Problem, da der Cache im
Nachhinein mit der Anwendung nicht mehr initialisiert werden kann. Dies führt
dazu, dass die Anwendung nicht mehr verwendbar ist.

4.6 Integration von mobilen Geräten

Die Variante von Stand-Alone ohne Streaming benötigt bei Notebooks keinerlei
zusätzliche Anpassungen, da sich die virtuelle Applikation komplett im Cache
befindet, nachdem sie installiert wurde.

Beim Einsatz von Streaming muss man beachten, dass das Notebook nur dann
offline betrieben und die Applikationen genutzt werden können, wenn der Cache
bereits gefüllt ist.

Dies geschieht bei der Standardinstallation des App-V-Clients erst bei der ersten
Verwendung einer Anwendung. Sollen stattdessen sämtliche Applikationen sofort
bei der ersten Anmeldung am Notebook in den Cache geladen werden, müssen in
der Registry unter

HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Microsoft\SoftGrid\4.
5\Client\Configuration

14

die Keys AutoLoadTriggers und AutoLoadTarget gemäß der Dokumentati-
on2 angepasst werden. Bei Notebooks würde man AutoLoadTarget auf den Wert

”2“ setzen und AutoLoadTriggers vermutlich bei ”5“ belassen.

4.7 Management Console

C:\Program Files (x86)\Microsoft Application Virtualization Client\
SftCMC.msc

Hier können, sofern die Berechtigungen vorliegen, die Applikationen, Dateierwei-
terungen und Publishing-Server verwaltet werden.

Eine Applikation kann

1. auf Aktivität/Ausführung hin überprüft,

2. über den Ladezustand im Cache befragt,

3. gelöscht,

4. repariert,

5. zurückgesetzt,

6. vor dem Verdrängen aus dem Cache geschützt,

7. in den Cache importiert und

8. aus dem Cache entladen

werden. Außerdem lässt sich hier nachträglich eine Verknüpfung oder Dateierwei-
terung einfügen sowie bestehende bearbeiten.

Der Veröffentlichungsserver wird in der Regel bei der Installation eingetragen und
nachträglich nicht mehr verändert werden.

In den Eigenschaften können Berechtigungen, Speicherorte, Anzeigeverhalten und
die Protokollierungsstufe festgelegt werden. Allerdings werden auch diese Ein-
stellungen einmal definiert und bei der Installation per Registry-Werte festgeschrie-
ben.

2http://technet.microsoft.com/en-us/library/dd464849.aspx

15

4.8 Funktionsweise von benutzerdefinierten Einstellungen

An der virtuellen Applikation selbst werden keine Änderungen vorgenommen,
wenn der Anwender Einstellungen vornimmt. Stattdessen wird im Profil im Ord-
ner

%AppData%\SoftGrid Client

für jede Anwendung eine UsrVol sftfs v1.pkg-Datei erstellt, welche die Anpassun-
gen enthält.

Bei der Ausführung des Programms werden somit immer die benutzerspezifi-
schen Einstellungen hinzugeladen und überschreiben die Systemvorgaben in der
virtuellen Applikation.

Somit ist sichergestellt, dass die virtuelle Applikation intakt bleibt und jeder An-
wender individuell mit der Applikation arbeiten kann.

Sollte es im Betrieb zu Problemen mit der Anwendung kommen, kann das Pro-
fil des Anwenders repariert werden, wodurch sämtliche Einstellungen verloren
gehen. Alternativ lässt sich (über die Management Console oder durch gezieltes
Löschen des Verzeichnisses aus dem Dateisystem) für eine bestimmte Anwen-
dung die Datei zurücksetzen. Beim manuellen Vorgehen muss jedoch zunächst
die Package-GUID der Applikation ausfindig gemacht werden.

Außerdem werden im Anwendungsverzeichnis auch die Icons zwischengespei-
chert, die von den Verknüpfungen benötigt werden.

4.9 Inhalte im Systemverzeichnis des App-V Clients

Im Verzeichnis

C:\Program Data\Microsoft\Application Virtualization Client

befindet sich die Log-Datei (sftlog.txt), welche bei Problemen darüber Aufschluss
geben kann, was die Ursache dafür sein könnte.

Hier werden außerdem die OSD-Dateien und Icons gecachet.

5 Setup des Sequenzers

Wie beim App-V-Client müssen die Systemvoraussetzungen installiert werden.
Diese werden nur bei der Verwendung der Setup-Datei automatisch installiert.

16

Beim MSI müssen diese separat installiert werden. Außer der Einstellung des Lauf-
werks ”B“ muss bei der Installation auf nichts weiter geachtet werden.

6 Pakete erstellen und bearbeiten

6.1 Vorüberlegungen

Sollen mehrere Versionen (lokal und/oder virtualisiert) parallel betrieben werden,
muss darauf geachtet werden, dass die Verknüpfungen eindeutig sind.

Am besten erzeugt man im Startmenü für alle virtuellen Applikationen einen Ein-
trag im Ordner ”Virtualisierung“, damit diese nicht mit lokal installierten Pro-
grammen kollidieren.

Für Verknüpfungen auf dem Desktop muss ein ähnliches Namensschema gefun-
den werden.

Bei den Dateierweiterung ist zu bedenken, dass diese immer nur einem Programm
zugeordnet sein können.

Wird ein Paket per MSI über die Softwareverteilung installiert, überschreibt die
zuletzt installierte Anwendung die Verknüpfungen und Dateierweiterung.

6.2 Programm-Updates deaktivieren

Da ein aktives Update immer in den App-V Benutzereinstellungen gespeichert
wird und nie die virtuelle Anwendung an sich betrifft, würde die Datei durch das
Update unnötig vergrößert werden.

6.3 Neues Paket erstellen (Ablauf einer Sequenzierung)

Die ”Best practices to use for sequencing in Microsoft App-V (SoftGrid)“3 sind ein
guter Einstieg zur Vermeidung von Fehlern beim Sequenzieren.

1. Installationsquellen nach C:\packages kopieren (oder einen anderen vom
Monitoring ausgenommenen Ordner)

2. Standardanwendung

3http://support.microsoft.com/kb/932137/en-us

17

3. Installer auswählen oder manuelle Installation verwenden

4. Namen vergeben (Hersteller_Produktname_Version_[MNT|VFS])
MNT, falls die Installation nach B: erfolgt, sonst VFS (Virtual File System)

5. Programm, Updates, etwaige Addons installieren

6. Monitoring beenden

7. Programm konfigurieren (Einstellungen, Updates deaktivieren!)

8. Verknüpfungen kontrollieren, gegebenenfalls unnötige löschen

9. Dateierweiterungen kontrollieren

10. Feature Block 1 beim Streaming erstellen

11. Beenden und speichern lassen

12. Paket bearbeiten und Registry überprüfen, unnötige Einträge entfernen

13. Namen gegebenenfalls anpassen (z. B. Bei Mozilla-Produkten), um keine Na-
menskonflikte bei der Installation des MSI zu erhalten

6.4 Update eines Pakets erstellen

Hierfür bestehen zwei Möglichkeiten:

1. Erstellen eines neuen Pakets, welches das Update enthält

2. Erweitern eines bestehenden Pakets

Die erste Variante verläuft wie ein normaler Sequenziervorgang einer neuen Ap-
plikation, bei der zweiten öffnet man das Paket und wählt ”Anwendung im vor-
handenen Paket aktualisieren“.

Hierbei wird die Anwendung wieder nach B:\ entpackt und kann anschließend
durch ein Setup oder Programm-interne Update-Routinen aktualisiert werden.

6.5 Verknüpfungen nachträglich ändern

• Paket öffnen und ”Hinzufügen einer neuen Anwendung“ wählen

• Der Prozess ist derselbe wie beim Sequenzieren, allerdings klickt man immer
nur auf Weiter und fügt keine neue Anwendung hinzu. Am Ende bearbeitet
man die Verknüpfungen wie gehabt.

18

• Dabei bleiben die vorher definierten Abhängigkeiten zu anderen Paketen er-
halten

• Die Abhängigkeiten (z. B. Java) müssen vorher nicht lokal installiert werden,
da die Anwendung nicht gestartet werden muss. Anderenfalls (bei einem
Update) müssten sie das, da die Applikation sonst nicht korrekt funktionie-
ren wird.

6.6 Abhängigkeiten zwischen Applikationen mit dem DSC
eintragen

Das Bearbeiten der OSD-Datei via Texteditor ist möglich, allerdings funktioniert
dieses Vorgehen nur bei ”Publishing und Streaming“, bei dem kein MSI zum Ein-
satz kommt.

Anderenfalls muss der Sequencer oder das DSC verwendet werden. Da der Weg
über DSC am einfachsten ist und hierbei keine Fehler (falsche Pfadangaben) un-
terlaufen können, ist dieses Vorgehen zu bevorzugen.

1. Microsoft Application Virtualization Dynamic Suite Composition Tool4 star-
ten

2. Als Package root(s) den Ort angeben, unter dem die Applikationspakete
gespeichert sind

3. Primary Package über das DropDown-Menü wählen

4. Auf der linken Seite aus der Liste eines oder mehrere Secondary Packages
mittels Add hinzufügen

5. Falls bei den Dependencies die Checkbox angehakt ist, ist die Abhängigkeit
für den Betrieb der Software unverzichtbar (”mandatory“)

6. Beim Speichern über Savewird die OSD-Datei der Primary-Applikation und
dessen MSI-Paket angepasst.

4http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=
6655

19

7 Installation eines virtuellen Pakets

7.1 Installation in der Entwicklungsumgebung

1. Die virtuelle Maschine ”Windows7 Test“ auf einen sauberen Snapshot zu-
rücksetzen

2. App-V Paket über den VMware Shared Folder oder vom Linux Samba-Share
holen und lokal ablegen. Die Installation direkt vom Freigabeverzeichnis ist
nicht möglich, da App-V die virtuelle Applikationsdatei (SFT-Datei) nicht
laden kann.

3. MSI-Datei ausführen, um die Anwendung zu registrieren und Verknüpfungen
sowie Dateierweiterungen zu erstellen

4. Anwendung mit verschiedenen Benutzerkonten (Administrator und einge-
schränktes Konto) testen. Darunter fällt das Vornehmen von Konfigurations-
einstellungen an der Anwendung, welche über den Neustart der Anwen-
dung hinaus erhalten bleiben sollen. Ist dies nicht der Fall, muss das Paket im
Sequencer bearbeitet und der Haken bei ”Sicherheitsbeschreibungen durch-
setzen“ entfernt werden.

7.2 Installation mit dem VI-Client

1. Die virtuelle Anwendung wird wie ein normales MSI-Paket im AE-Manager
angelegt.

2. Es muss allerdings im Konfigurationseditor die Option MANAGEDESKTO-
PICONS deaktiviert werden, da anderenfalls bei einer Deinstallation des Pa-
kets die Verknüpfungen nicht gelöscht werden.

3. Zusätzlich sollte die Sortierreihenfolge der virtuellen Applikation angepasst
werden, damit diese in der Abarbeitung erst am Ende installiert werden.

8 Ablauf des Publishing-Vorgangs

1. Client verbindet sich per HTTP(S) zum konfigurierten Publishing-Server und
fragt die Applikationsveröffentlichungsdatei (XML) per GET-Request an

2. Falls der Zugriff auf den Server eine NTLM-Authentifizierung (selbes Apa-
che Modul wie bei WebDAV) fordert, wird in einem Challenge-Response-

20

Verfahren die Authentizität des Users geklärt. Dies ermöglicht auch eine dy-
namische Generierung der XML-Applikationsliste, da nur hier der Userna-
me und die Domäne des Anwenders übertragen werden, anhand derer man
entscheiden kann, welche Anwendungen er nutzen darf.

3. Client schickt (falls aktiviert) die Reporting-XML per POST-Request zum Ser-
ver, der diese auswerten kann

4. Der Client erzeugt auf Basis der XML-Datei die eingetragenen Verknüpfungen
und Dateierweiterungen

8.1 Dynamische Applikationsliste

Die angesprochene XML-Datei lässt sich dynamisch mit einem Skript in Perl/PHP
generieren. Dazu könnten die virtuellen Anwendungen des Users aus dem LD-
AP ausgelesen und ein entsprechendes XML-Template für die Applikation von
diesem Skript eingebunden werden. Durch die Authentifikation über NTLM be-
kommt man in der Server-Variable REMOTE USER den Benutzernamen, anhand
dessen der spezifische LDAP-Query erzeugt werden kann.

Das Template für die Applikation kann auf Basis der Manifest.xml-Datei erstellt
werden, die vom Sequencer erzeugt wird und in jedem Applikationsverzeichnis
vorhanden ist. Es muss lediglich mit einem Parser alles zwischen dem <APPLIST>-
Element extrahiert werden, das dann als Template dient.

<APP NAME=” F i l e Z i l l a C l i e n t ” VERSION= ” 3 . 5 . 2 . 0 ”
ICON=”%SFT MIME SOURCE%/F i l e Z i l l a Icons/ F i l e Z i l l a . i c o ”
OSD=”%SFT MIME SOURCE%/F i l e Z i l l a . osd”>
<SHORTCUTLIST>

<SHORTCUT LOCATION=”%CSIDL DESKTOPDIRECTORY%”
ICON=”%SFT MIME SOURCE%/F i l e Z i l l a Icons/ F i l e Z i l l a . i c o ”
PARAMETERS=”” DISPLAY=” F i l e Z i l l a C l i e n t”/>

<SHORTCUT LOCATION=”%CSIDL PROGRAMS%\F i l e Z i l l a FTP C l i e n t ”
ICON=”%SFT MIME SOURCE%/F i l e Z i l l a Icons/ F i l e Z i l l a . i c o ”
PARAMETERS=”” DISPLAY=” F i l e Z i l l a C l i e n t”/>

</SHORTCUTLIST>
<TYPELIST/>

</APP>

Auflistung 8: Manifest von FileZilla als Template

Diese Templates müssen schließlich in ein neues Format gebracht werden:

21

<DESKTOPCONFIG>
<POLICY MANAGEDDESKTOP=”TRUE” REPORTING=”FALSE”>

<REFRESH ONLOGIN=”TRUE” PERIOD=”60”/>
</POLICY>

<APPLIST>
[. . . TEMPLATES . . .]

</APPLIST>
</DESKTOPCONFIG>

Auflistung 9: Manifest von FileZilla als Template

Anschließend wird dieser gesamte Inhalt an den anfragenden App-V Client zu-
rückgeliefert.

8.2 Nutzungsstatistiken (Reporting)

Wird das XML-Gerüst der obigen Auflistung dahingehend angepasst, dass

REPORTING="TRUE"

gesetzt ist, können vom Client Statistiken abgefragt werden. Alternativ kann das
Reporting auch auf dem Client in der Registry konfiguriert werden, ist über die
zentrale XML-Datei allerdings deutlich einfacher zu steuern.

Der Client schickt dann mit derselben Anfrage beim Publishing-Vorgang nach
dem GET (Anfrage der XML-Datei) ein POST, in dessen Nutzlast sich ein XML-
String befindet, welcher die Nutzungsstatistiken abbildet. Dieses XML muss ent-
sprechend geparst und die Daten gemäß der Datenschutzrichtlinien gespeichert
werden.

9 Deinstallation/Entzug einer Anwendung

Bei der Deinstallation werden die Verknüpfungen und Dateierweiterungen ent-
fernt, allerdings bleibt die Applikation im Cache.

Dies ermöglicht beim ”Publishing und Streaming“ jedoch das unerlaubte Ausführen
des Programms auch nach dem Entzug, wenn der Applikationsname für den Auf-
ruf bekannt ist. Dadurch könnte ein findiger Anwender eine neue Verknüpfung
erzeugen und den Aufruf der Applikation damit nachbilden.

Der Zugriff auf die Server-seitig gespeicherte SFT-Datei kann jedoch mittels ACL

22

unterbunden werden. Dazu muss für jede Anwendung eine Gruppe existieren, der
ein User zugewiesen wird, falls er das Recht auf Verwendung eingeräumt bekom-
men soll.

Im Dateisystem weist man dem Ordner des virtuellen Pakets die Gruppe zu und
setzt die Zugriffsrechte für die Gruppe auf read-only. Die Rechte für ”other“ sollten
komplett verweigert werden (chmod g=rx,o= dirname).

23

Bibliography

[1] Augusto Alvarez. Getting Started with Microsoft Application Virtualization 4.6. Packt
Publishing, January 2011.

[2] Peter Bjork. Step by step instructions on how to run internet explorer 6 on win-
dows 7. http://blogs.vmware.com/thinapp/2010/01/step-by-step-
instructions-on-how-to-thinapp-internet-explorer-6-to-work-
on-windows-7.html, January 2010. [Online; accessed 24-October-2011].

[3] Karl Bunnell. Running ie6, ie7 and ie8 side-by-side using symantec workspace vir-
tualization. http://www.symantec.com/connect/articles/running-ie6-
ie7-and-ie8-side-side-using-symantec-workspace-virtualization.
[Online; accessed 5-November-2011].

[4] J. P. Buzen and U. O. Gagliardi. The evolution of virtual machine architecture. In
Proceedings of the June 4-8, 1973, national computer conference and exposition, AFIPS ’73,
pages 291–299, New York, NY, USA, 1973. ACM.

[5] Focus Consulting. Focus solution profile: Microsoft application virtualiza-
tion. http://download.microsoft.com/download/B/1/3/B13CA428-
05C9-4327-8BB1-0D69302A5B24/Focus_SP_Microsoft_Application_
Virtualization.pdf, 2008. [Online; accessed 26-October-2011].

[6] Randy Cook. Application virtualization: Under the hood. http://www.
brianmadden.com/blogs/videos/archive/2009/08/25/A-Geeks-Look-
at-How-Application-Virtualizaton-Works-Under-the-Hood_2C00_-
a-video-from-BriForum-2009.aspx, 2009. [Online; accessed 26-October-2011].

[7] Microsoft Corporation. 64-bit versions of windows do not support 16-bit components,
16-bit processes, or 16-bit applications. http://support.microsoft.com/kb/
896458/en-us. [Online; accessed 04-November-2011].

[8] Microsoft Corporation. Application virtualization client installer command-line
parameters. http://technet.microsoft.com/en-us/library/cc843737.
aspx. [Online; accessed 10-October-2011].

[9] Microsoft Corporation. Application virtualization server-based scenario overview.
http://technet.microsoft.com/en-us/library/cc843686.aspx. [On-
line; accessed 29-October-2011].

[10] Microsoft Corporation. Application virtualization system requirements. http:
//technet.microsoft.com/en-us/library/cc843853.aspx. [Online; ac-

87

http://blogs.vmware.com/thinapp/2010/01/step-by-step-instructions-on-how-to-thinapp-internet-explorer-6-to-work-on-windows-7.html
http://blogs.vmware.com/thinapp/2010/01/step-by-step-instructions-on-how-to-thinapp-internet-explorer-6-to-work-on-windows-7.html
http://blogs.vmware.com/thinapp/2010/01/step-by-step-instructions-on-how-to-thinapp-internet-explorer-6-to-work-on-windows-7.html
http://www.symantec.com/connect/articles/running-ie6-ie7-and-ie8-side-side-using-symantec-workspace-virtualization
http://www.symantec.com/connect/articles/running-ie6-ie7-and-ie8-side-side-using-symantec-workspace-virtualization
http://download.microsoft.com/download/B/1/3/B13CA428-05C9-4327-8BB1-0D69302A5B24/Focus_SP_Microsoft_Application_Virtualization.pdf
http://download.microsoft.com/download/B/1/3/B13CA428-05C9-4327-8BB1-0D69302A5B24/Focus_SP_Microsoft_Application_Virtualization.pdf
http://download.microsoft.com/download/B/1/3/B13CA428-05C9-4327-8BB1-0D69302A5B24/Focus_SP_Microsoft_Application_Virtualization.pdf
http://www.brianmadden.com/blogs/videos/archive/2009/08/25/A-Geeks-Look-at-How-Application-Virtualizaton-Works-Under-the-Hood_2C00_-a-video-from-BriForum-2009.aspx
http://www.brianmadden.com/blogs/videos/archive/2009/08/25/A-Geeks-Look-at-How-Application-Virtualizaton-Works-Under-the-Hood_2C00_-a-video-from-BriForum-2009.aspx
http://www.brianmadden.com/blogs/videos/archive/2009/08/25/A-Geeks-Look-at-How-Application-Virtualizaton-Works-Under-the-Hood_2C00_-a-video-from-BriForum-2009.aspx
http://www.brianmadden.com/blogs/videos/archive/2009/08/25/A-Geeks-Look-at-How-Application-Virtualizaton-Works-Under-the-Hood_2C00_-a-video-from-BriForum-2009.aspx
http://support.microsoft.com/kb/896458/en-us
http://support.microsoft.com/kb/896458/en-us
http://technet.microsoft.com/en-us/library/cc843737.aspx
http://technet.microsoft.com/en-us/library/cc843737.aspx
http://technet.microsoft.com/en-us/library/cc843686.aspx
http://technet.microsoft.com/en-us/library/cc843853.aspx
http://technet.microsoft.com/en-us/library/cc843853.aspx

Bibliography

cessed 29-October-2011].

[11] Microsoft Corporation. Best practices to use for sequencing in microsoft app-v
(softgrid). http://support.microsoft.com/kb/932137/en-us/. [Online; ac-
cessed 15-October-2011].

[12] Microsoft Corporation. Changing environment variables. http://msdn.
microsoft.com/en-us/library/windows/desktop/ms682009%28v=vs.
85%29.aspx. [Online; accessed 03-November-2011].

[13] Microsoft Corporation. Csidl. http://msdn.microsoft.com/en-us/library/
windows/desktop/bb762494%28v=vs.85%29.aspx. [Online; accessed 14-
October-2011].

[14] Microsoft Corporation. File management functions. http://msdn.microsoft.
com/en-us/library/windows/desktop/aa364232%28v=VS.85%29.aspx.
[Online; accessed 03-November-2011].

[15] Microsoft Corporation. File system filter driver classes and class guids.
http://msdn.microsoft.com/en-us/library/windows/hardware/
ff540394%28v=vs.85%29.aspx. [Online; accessed 03-November-2011].

[16] Microsoft Corporation. File system filter drivers. http://msdn.microsoft.com/
en-us/windows/hardware/gg462968. [Online; accessed 03-November-2011].

[17] Microsoft Corporation. Filter manager concepts. http://msdn.microsoft.com/
en-us/library/windows/hardware/ff541610%28v=vs.85%29.aspx. [On-
line; accessed 03-November-2011].

[18] Microsoft Corporation. Filtering registry calls. http://msdn.microsoft.com/
en-us/library/windows/hardware/ff545879%28v=vs.85%29.aspx. [On-
line; accessed 03-November-2011].

[19] Microsoft Corporation. How to sequence an application. http://technet.
microsoft.com/en-us/library/cc817128.aspx. [Online; accessed 15-
October-2011].

[20] Microsoft Corporation. How to use dynamic suite composition. http:
//technet.microsoft.com/en-us/library/cc843662.aspx. [Online; ac-
cessed 22-October-2011].

[21] Microsoft Corporation. Microsoft application virtualization (app-v). http:
//www.microsoft.com/en-us/windows/enterprise/products-and-
technologies/virtualization/app-v.aspx. [Online; accessed 27-October-
2011].

[22] Microsoft Corporation. New uac technologies for windows vista. http://
msdn.microsoft.com/en-us/library/bb756960.aspx. [Online; accessed 26-
October-2011].

88

http://support.microsoft.com/kb/932137/en-us/
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682009%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682009%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682009%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb762494%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb762494%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa364232%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa364232%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff540394%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff540394%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/windows/hardware/gg462968
http://msdn.microsoft.com/en-us/windows/hardware/gg462968
http://msdn.microsoft.com/en-us/library/windows/hardware/ff541610%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff541610%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff545879%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff545879%28v=vs.85%29.aspx
http://technet.microsoft.com/en-us/library/cc817128.aspx
http://technet.microsoft.com/en-us/library/cc817128.aspx
http://technet.microsoft.com/en-us/library/cc843662.aspx
http://technet.microsoft.com/en-us/library/cc843662.aspx
http://www.microsoft.com/en-us/windows/enterprise/products-and-technologies/virtualization/app-v.aspx
http://www.microsoft.com/en-us/windows/enterprise/products-and-technologies/virtualization/app-v.aspx
http://www.microsoft.com/en-us/windows/enterprise/products-and-technologies/virtualization/app-v.aspx
http://msdn.microsoft.com/en-us/library/bb756960.aspx
http://msdn.microsoft.com/en-us/library/bb756960.aspx

Bibliography

[23] Microsoft Corporation. Overview of application virtualization. http://technet.
microsoft.com/en-us/library/ee958112.aspx. [Online; accessed 29-
October-2011].

[24] Microsoft Corporation. Planning for server security. http://technet.
microsoft.com/en-us/library/dd351448.aspx. [Online; accessed 29-
October-2011].

[25] Microsoft Corporation. Process monitor. http://technet.microsoft.com/en-
us/sysinternals/bb896645. [Online; accessed 09-November-2011].

[26] Microsoft Corporation. Registry functions. http://msdn.microsoft.com/en-
us/library/ms724875%28v=VS.85%29.aspx. [Online; accessed 12-October-
2011].

[27] Microsoft Corporation. Running multiple versions of internet explorer on a sin-
gle instance of windows is unsupported. http://support.microsoft.com/kb/
2020599/en-us. [Online; accessed 5-November-2011].

[28] Microsoft Corporation. Support for .net in microsoft application virtualization
4.5 (app-v). http://technet.microsoft.com/en-us/appvirtualization/
dd146065. [Online; accessed 27-October-2011].

[29] Microsoft Corporation. Windows 95 architecture components. http://technet.
microsoft.com/en-us/library/cc751120.aspx. [Online; accessed 01-
November-2011].

[30] Microsoft Corporation. Side-by-side execution of the .net framework. http:
//msdn.microsoft.com/en-us/library/ms994410.aspx, 2002. [Online; ac-
cessed 28-October-2011].

[31] Microsoft Corporation. General overview of win32s. http://support.
microsoft.com/kb/83520/en-us, April 2004. [Online; accessed 16-October-
2011].

[32] Microsoft Corporation. Microsoft completes acquisition of softricity.
http://www.microsoft.com/presspass/press/2006/jul06/07-
17softricitypr.mspx, June 2006. [Online; accessed 3-October-2011].

[33] Microsoft Corporation. Working with the appinit dlls registry value. http:
//support.microsoft.com/kb/197571/en-us, 2006. [Online; accessed 12-
October-2011].

[34] Microsoft Corporation. App-v application publishing and client interaction.
http://download.microsoft.com/download/f/7/8/f784a197-73be-
48ff-83da-4102c05a6d44/APP-V/AppPubandClientInteraction.docx,
2008. [Online; accessed 31-October-2011].

[35] Microsoft Corporation. Application virtualization cost reduction study.
http://download.microsoft.com/documents/France/windows/2010/

89

http://technet.microsoft.com/en-us/library/ee958112.aspx
http://technet.microsoft.com/en-us/library/ee958112.aspx
http://technet.microsoft.com/en-us/library/dd351448.aspx
http://technet.microsoft.com/en-us/library/dd351448.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896645
http://technet.microsoft.com/en-us/sysinternals/bb896645
http://msdn.microsoft.com/en-us/library/ms724875%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms724875%28v=VS.85%29.aspx
http://support.microsoft.com/kb/2020599/en-us
http://support.microsoft.com/kb/2020599/en-us
http://technet.microsoft.com/en-us/appvirtualization/dd146065
http://technet.microsoft.com/en-us/appvirtualization/dd146065
http://technet.microsoft.com/en-us/library/cc751120.aspx
http://technet.microsoft.com/en-us/library/cc751120.aspx
http://msdn.microsoft.com/en-us/library/ms994410.aspx
http://msdn.microsoft.com/en-us/library/ms994410.aspx
http://support.microsoft.com/kb/83520/en-us
http://support.microsoft.com/kb/83520/en-us
http://www.microsoft.com/presspass/press/2006/jul06/07-17softricitypr.mspx
http://www.microsoft.com/presspass/press/2006/jul06/07-17softricitypr.mspx
http://support.microsoft.com/kb/197571/en-us
http://support.microsoft.com/kb/197571/en-us
http://download.microsoft.com/download/f/7/8/f784a197-73be-48ff-83da-4102c05a6d44/APP-V/AppPubandClientInteraction.docx
http://download.microsoft.com/download/f/7/8/f784a197-73be-48ff-83da-4102c05a6d44/APP-V/AppPubandClientInteraction.docx
http://download.microsoft.com/documents/France/windows/2010/windows7/App-V%20Cost%20Reduction%20Study.pdf
http://download.microsoft.com/documents/France/windows/2010/windows7/App-V%20Cost%20Reduction%20Study.pdf
http://download.microsoft.com/documents/France/windows/2010/windows7/App-V%20Cost%20Reduction%20Study.pdf

Bibliography

windows7/App-V%20Cost%20Reduction%20Study.pdf, 2009. [Online; ac-
cessed 25-October-2011].

[36] Microsoft Corporation. Microsoft application virtualization file format specification.
http://download.microsoft.com/download/E/B/9/EB967B04-2F6E-
4DB2-B6A9-72782D3392E1/App-V_file_format_v1.doc, February 2009.
[Online; accessed 04-October-2011].

[37] Microsoft Corporation. Application virtualization 4.6 for windows server
2008 r2 remote desktop services. http://download.microsoft.com/
download/2/5/E/25EEFF4E-A81A-464F-9AB1-98FA1EF755AA/App-
V%20Remote%20Desktop%20Services.docx, 2010. [Online; accessed 30-
October-2011].

[38] Microsoft Corporation. Microsoft application virtualization volume format specifica-
tion. http://download.microsoft.com/download/7/7/D/77DC8335-
89FF-4054-96FE-52D1667EECC0/Application%20Virtualization%
20Volume%20Format%20Specification.exe, May 2010. [Online; accessed
15-October-2011].

[39] Microsoft Corporation. Solutions for virtualizing internet explorer. http://www.
microsoft.com/download/en/details.aspx?id=9242, 2010. [Online; ac-
cessed 28-October-2011].

[40] Microsoft Corporation. Using the runasinvoker fix. http://technet.
microsoft.com/en-us/library/dd638389%28WS.10%29.aspx, June 2010.
[Online; accessed 23-October-2011].

[41] Microsoft Corporation. Microsoft application virtualization 4.6 sp1 sequencing guide.
http://download.microsoft.com/download/F/7/8/F784A197-73BE-
48FF-83DA-4102C05A6D44/App-V/App-V%204.6%20Service%20Pack%201%
20Sequencing%20Guide.docx, March 2011. [Online; accessed 16-October-2011].

[42] Microsoft Corporation. Prescriptive guidance for sequencing office 2010 using mi-
crosoft app-v 4.5 or 4.6. http://support.microsoft.com/kb/983462/en-us,
October 2011. [Online; accessed 20-October-2011].

[43] Symantec Corporation. Symantec completes acquisition of altiris. http://www.
symantec.com/about/news/release/article.jsp?prid=20070409_01,
April 2007. [Online; accessed 5-November-2011].

[44] Symantec Corporation. Symantec workspace virtualization 6.1 sp6 user’s
guide. http://www.symantec.com/business/support/resources/
sites/BUSINESS/content/live/DOCUMENTATION/3000/DOC3208/en_US/
Symantec_Workspace_Virtualization_6_1_SP6_User%27s_Guide.pdf,
2010. [Online; accessed 5-November-2011].

[45] Internet Engineering Task Force. Real time streaming protocol (rtsp). http://
tools.ietf.org/html/rfc2326, 1998. [Online; accessed 29-October-2011].

90

http://download.microsoft.com/documents/France/windows/2010/windows7/App-V%20Cost%20Reduction%20Study.pdf
http://download.microsoft.com/documents/France/windows/2010/windows7/App-V%20Cost%20Reduction%20Study.pdf
http://download.microsoft.com/documents/France/windows/2010/windows7/App-V%20Cost%20Reduction%20Study.pdf
http://download.microsoft.com/download/E/B/9/EB967B04-2F6E-4DB2-B6A9-72782D3392E1/App-V_file_format_v1.doc
http://download.microsoft.com/download/E/B/9/EB967B04-2F6E-4DB2-B6A9-72782D3392E1/App-V_file_format_v1.doc
http://download.microsoft.com/download/2/5/E/25EEFF4E-A81A-464F-9AB1-98FA1EF755AA/App-V%20Remote%20Desktop%20Services.docx
http://download.microsoft.com/download/2/5/E/25EEFF4E-A81A-464F-9AB1-98FA1EF755AA/App-V%20Remote%20Desktop%20Services.docx
http://download.microsoft.com/download/2/5/E/25EEFF4E-A81A-464F-9AB1-98FA1EF755AA/App-V%20Remote%20Desktop%20Services.docx
http://download.microsoft.com/download/7/7/D/77DC8335-89FF-4054-96FE-52D1667EECC0/Application%20Virtualization%20Volume%20Format%20Specification.exe
http://download.microsoft.com/download/7/7/D/77DC8335-89FF-4054-96FE-52D1667EECC0/Application%20Virtualization%20Volume%20Format%20Specification.exe
http://download.microsoft.com/download/7/7/D/77DC8335-89FF-4054-96FE-52D1667EECC0/Application%20Virtualization%20Volume%20Format%20Specification.exe
http://www.microsoft.com/download/en/details.aspx?id=9242
http://www.microsoft.com/download/en/details.aspx?id=9242
http://technet.microsoft.com/en-us/library/dd638389%28WS.10%29.aspx
http://technet.microsoft.com/en-us/library/dd638389%28WS.10%29.aspx
http://download.microsoft.com/download/F/7/8/F784A197-73BE-48FF-83DA-4102C05A6D44/App-V/App-V%204.6%20Service%20Pack%201%20Sequencing%20Guide.docx
http://download.microsoft.com/download/F/7/8/F784A197-73BE-48FF-83DA-4102C05A6D44/App-V/App-V%204.6%20Service%20Pack%201%20Sequencing%20Guide.docx
http://download.microsoft.com/download/F/7/8/F784A197-73BE-48FF-83DA-4102C05A6D44/App-V/App-V%204.6%20Service%20Pack%201%20Sequencing%20Guide.docx
http://support.microsoft.com/kb/983462/en-us
http://www.symantec.com/about/news/release/article.jsp?prid=20070409_01
http://www.symantec.com/about/news/release/article.jsp?prid=20070409_01
http://www.symantec.com/business/support/resources/sites/BUSINESS/content/live/DOCUMENTATION/3000/DOC3208/en_US/Symantec_Workspace_Virtualization_6_1_SP6_User%27s_Guide.pdf
http://www.symantec.com/business/support/resources/sites/BUSINESS/content/live/DOCUMENTATION/3000/DOC3208/en_US/Symantec_Workspace_Virtualization_6_1_SP6_User%27s_Guide.pdf
http://www.symantec.com/business/support/resources/sites/BUSINESS/content/live/DOCUMENTATION/3000/DOC3208/en_US/Symantec_Workspace_Virtualization_6_1_SP6_User%27s_Guide.pdf
http://tools.ietf.org/html/rfc2326
http://tools.ietf.org/html/rfc2326

Bibliography

[46] Zentrum für Informationstechnologie im Bildungsbereich. Die münchner lern-it in
harten zahlen. http://www.zib.musin.de/zib-das-sind-wir/eckdaten/.
[Online; accessed 3-October-2011].

[47] Zentrum für Informationstechnologie im Bildungsbereich. Historisches. http:
//www.zib.musin.de/zib-das-sind-wir/geschichte/. [Online; accessed
3-October-2011].

[48] Tsveti Georgieva. Disadvantages of virtualization. http://tsveti-georgieva.
suite101.com/disadvantages-of-virtualization-a170745, November
2009. [Online; accessed 26-October-2011].

[49] Scot Hillier. The system registry. http://msdn.microsoft.com/en-us/
library/ms970651.aspx, 1996. [Online; accessed 01-November-2011].

[50] Galen Hunt and Doug Brubacher. Detours: binary interception of win32 functions. In
Proceedings of the 3rd conference on USENIX Windows NT Symposium - Volume 3, pages
14–14, Berkeley, CA, USA, 1999. USENIX Association.

[51] Amir Husain. How to build an application virtualization framework. http://
vdiworks.com/wp/?p=15, July 2008. [Online; accessed 10-October-2011].

[52] Citrix Systems, Inc. How application virtualization and session virtualiza-
tion work. http://www.citrix.com/English/ps2/products/subfeature.
asp?contentID=1683975. [Online; accessed 24-October-2011].

[53] Citrix Systems, Inc. Citrix application streaming guide. http://support.citrix.
com/article/CTX116414, 2008. [Online; accessed 24-October-2011].

[54] Interra Information Technologies, Inc. Application virtualization - a whitepa-
per. http://www.interrait.com/download/whitepapers/Whitepaper-
ApplicationVirtualization.pdf. [Online; accessed 26-October-2011].

[55] Softricity, Inc. Inside the grid. http://www.softgridblog.com/storage/
Inside%20the%20Grid%20Self%20Study.pdf. [Online; accessed 14-October-
2011].

[56] VMware, Inc. Vmware thinapp for application virtualization. http://
www.vmware.com/products/thinapp/overview.html. [Online; accessed 27-
October-2011].

[57] VMware, Inc. Introduction to vmware thinapp. http://www.vmware.com/pdf/
thinapp_intro.pdf, 2008. [Online; accessed 27-October-2011].

[58] VMware, Inc. Vmware thinapp agentless application virtualization overview.
http://www.vmware.com/files/pdf/thinapp_intro_whitepaper.pdf,
2008. [Online; accessed 23-October-2011].

[59] VMware, Inc. Vmware to expand desktop virtualization solution with acquisition of
thinstall. http://www.vmware.com/company/news/releases/thinstall.

91

http://www.zib.musin.de/zib-das-sind-wir/eckdaten/
http://www.zib.musin.de/zib-das-sind-wir/geschichte/
http://www.zib.musin.de/zib-das-sind-wir/geschichte/
http://tsveti-georgieva.suite101.com/disadvantages-of-virtualization-a170745
http://tsveti-georgieva.suite101.com/disadvantages-of-virtualization-a170745
http://msdn.microsoft.com/en-us/library/ms970651.aspx
http://msdn.microsoft.com/en-us/library/ms970651.aspx
http://vdiworks.com/wp/?p=15
http://vdiworks.com/wp/?p=15
http://www.citrix.com/English/ps2/products/subfeature.asp?contentID=1683975
http://www.citrix.com/English/ps2/products/subfeature.asp?contentID=1683975
http://support.citrix.com/article/CTX116414
http://support.citrix.com/article/CTX116414
http://www.interrait.com/download/whitepapers/Whitepaper-ApplicationVirtualization.pdf
http://www.interrait.com/download/whitepapers/Whitepaper-ApplicationVirtualization.pdf
http://www.softgridblog.com/storage/Inside%20the%20Grid%20Self%20Study.pdf
http://www.softgridblog.com/storage/Inside%20the%20Grid%20Self%20Study.pdf
http://www.vmware.com/products/thinapp/overview.html
http://www.vmware.com/products/thinapp/overview.html
http://www.vmware.com/pdf/thinapp_intro.pdf
http://www.vmware.com/pdf/thinapp_intro.pdf
http://www.vmware.com/files/pdf/thinapp_intro_whitepaper.pdf
http://www.vmware.com/company/news/releases/thinstall.html
http://www.vmware.com/company/news/releases/thinstall.html
http://www.vmware.com/company/news/releases/thinstall.html

Bibliography

html, January 2008. [Online; accessed 23-October-2011].

[60] VMware, Inc. Vmware thinapp 4.6 – what’s new? http://blogs.vmware.com/
thinapp/2010/08/vmware-thinapp-46-whats-new.html, August 2010.
[Online; accessed 5-November-2011].

[61] Chris Jackson. Making applications compatible with windows 7 in a virtualized en-
vironment. http://technet.microsoft.com/en-gb/magazine/ff458340.
aspx. [Online; accessed 25-October-2011].

[62] Emre Kanlikilicer. What types of applications should i virtualize with server appli-
cation virtualization? http://blogs.technet.com/b/serverappv/archive/
2011/04/08/what-types-of-applications-should-i-virtualize-
with-server-app-v.aspx. [Online; accessed 30-October-2011].

[63] Seung-Woo Kim. Intercepting system api calls. http://software.intel.com/
en-us/articles/intercepting-system-api-calls/, August 2009. [Online;
accessed 16-October-2011].

[64] Stefan Krempl and Edward Henning. Munich school network to be migrated to win-
dows xp. http://h-online.com/-1195535, February 2011. [Online; accessed
3-October-2011].

[65] Oren Laadan and Jason Nieh. Operating system virtualization: practice and experi-
ence. In Proceedings of the 3rd Annual Haifa Experimental Systems Conference, SYSTOR
’10, pages 17:1–17:12, New York, NY, USA, 2010. ACM.

[66] Tolly Enterprises, LLC. Tolly test report - application virtualization comparison:
Vmware thinapp vs. microsoft app-v & citrix xenapp. http://www.vmware.com/
files/pdf/TollyGroup-ThinApp-Test-Report-Aug09.pdf, August 2009.
[Online; accessed 23-October-2011].

[67] Tim Mangan. Stories from the grid: osguard.cp. http://www.appvirtguru.com/
viewtopic.php?f=7&t=2030, February 2007. [Online; accessed 14-October-2011].

[68] Tim Mangan. 10 years after the wow! (a look back at softricity by an in-
sider, 10 years after their founding). http://www.brianmadden.com/blogs/
timmangan/archive/2011/02/25/10-years-after-the-wow.aspx, Febru-
ary 2011. [Online; accessed 30-October-2011].

[69] Tim Mangan. I was a cloud service provider, and didn’t know it! http://www.
tmurgent.com/TmBlog/?p=608, October 2011. [Online; accessed 30-October-
2011].

[70] Microsoft Developer Network. Hooks. http://msdn.microsoft.com/en-us/
library/ms632589%28VS.85%29.aspx. [Online; accessed 10-October-2011].

[71] Mozilla Developer Network. Mcd, mission control desktop, aka autoconfig. https:
//developer.mozilla.org/en/MCD. [Online; accessed 09-November-2011].

92

http://www.vmware.com/company/news/releases/thinstall.html
http://www.vmware.com/company/news/releases/thinstall.html
http://www.vmware.com/company/news/releases/thinstall.html
http://blogs.vmware.com/thinapp/2010/08/vmware-thinapp-46-whats-new.html
http://blogs.vmware.com/thinapp/2010/08/vmware-thinapp-46-whats-new.html
http://technet.microsoft.com/en-gb/magazine/ff458340.aspx
http://technet.microsoft.com/en-gb/magazine/ff458340.aspx
http://blogs.technet.com/b/serverappv/archive/2011/04/08/what-types-of-applications-should-i-virtualize-with-server-app-v.aspx
http://blogs.technet.com/b/serverappv/archive/2011/04/08/what-types-of-applications-should-i-virtualize-with-server-app-v.aspx
http://blogs.technet.com/b/serverappv/archive/2011/04/08/what-types-of-applications-should-i-virtualize-with-server-app-v.aspx
http://software.intel.com/en-us/articles/intercepting-system-api-calls/
http://software.intel.com/en-us/articles/intercepting-system-api-calls/
http://h-online.com/-1195535
http://www.vmware.com/files/pdf/TollyGroup-ThinApp-Test-Report-Aug09.pdf
http://www.vmware.com/files/pdf/TollyGroup-ThinApp-Test-Report-Aug09.pdf
http://www.appvirtguru.com/viewtopic.php?f=7&t=2030
http://www.appvirtguru.com/viewtopic.php?f=7&t=2030
http://www.brianmadden.com/blogs/timmangan/archive/2011/02/25/10-years-after-the-wow.aspx
http://www.brianmadden.com/blogs/timmangan/archive/2011/02/25/10-years-after-the-wow.aspx
http://www.tmurgent.com/TmBlog/?p=608
http://www.tmurgent.com/TmBlog/?p=608
http://msdn.microsoft.com/en-us/library/ms632589%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms632589%28VS.85%29.aspx
https://developer.mozilla.org/en/MCD
https://developer.mozilla.org/en/MCD

Bibliography

[72] Joseph Nord. App streaming – kernel agents vs. all user mode. http:
//blogs.citrix.com/2009/09/23/app-streaming-kernel-agents-
vs-all-user-mode/, September 2009. [Online; accessed 24-October-2011].

[73] Aaron Parker. Virtualizing adobe reader x. http://blog.stealthpuppy.com/
virtualisation/virtualising-adobe-reader-x/, October 2010. [Online;
accessed 19-October-2011].

[74] Michael Pietroforte. The advantages of application virtualization. http:
//4sysops.com/archives/the-advantages-of-application-
virtualization/, July 2008. [Online; accessed 26-October-2011].

[75] Michael Pietroforte. The disadvantages of application virtualization.
http://4sysops.com/archives/the-disadvantages-of-application-
virtualization/, July 2008. [Online; accessed 26-October-2011].

[76] Microsoft Research. Detours. http://research.microsoft.com/en-us/
projects/detours/. [Online; accessed 10-October-2011].

[77] Steven Roman. Win32 api programming with visual basic. http://technet.
microsoft.com/en-us/library/cc768129.aspx, 2000. [Online; accessed 26-
October-2011].

[78] Mark Russinovich. Inside the native api. http://netcode.cz/img/83/
nativeapi.html, November 2004. [Online; accessed 26-October-2011].

[79] Mark Russinovich. Inside native applications. http://technet.microsoft.
com/en-us/sysinternals/bb897447.aspx, November 2006. [Online; accessed
26-October-2011].

[80] John Sheehan. Architecture and engineering of microsoft application virtualiza-
tion (appvirt). http://channel9.msdn.com/Shows/Going+Deep/John-
Sheehan-Application-Virtualization-Redux-Inside-AppVirt-45.
[Online; accessed 27-October-2011].

[81] John Sheehan. Virtualization. http://channel9.msdn.com/Shows/Going+
Deep/Virtualization. [Online; accessed 27-October-2011].

[82] Amit Singh. An introduction to virtualization. http://www.kernelthread.com/
publications/virtualization/, January 2004. [Online; accessed 18-October-
2011].

[83] Ruben Spruijt. Application virtualization smackdown. http://www.virtuall.
nl/download-document/application-virtualization-smackdown, 2011.
[Online; accessed 26-October-2011].

[84] Credit Suisse. Desktop virtualization comes of age. http://www.dabcc.com/
documents/DesktopVirtualization_11_26_07.pdf, November 2007. [On-
line; accessed 01-November-2011].

93

http://blogs.citrix.com/2009/09/23/app-streaming-kernel-agents-vs-all-user-mode/
http://blogs.citrix.com/2009/09/23/app-streaming-kernel-agents-vs-all-user-mode/
http://blogs.citrix.com/2009/09/23/app-streaming-kernel-agents-vs-all-user-mode/
http://blog.stealthpuppy.com/virtualisation/virtualising-adobe-reader-x/
http://blog.stealthpuppy.com/virtualisation/virtualising-adobe-reader-x/
http://4sysops.com/archives/the-advantages-of-application-virtualization/
http://4sysops.com/archives/the-advantages-of-application-virtualization/
http://4sysops.com/archives/the-advantages-of-application-virtualization/
http://4sysops.com/archives/the-disadvantages-of-application-virtualization/
http://4sysops.com/archives/the-disadvantages-of-application-virtualization/
http://research.microsoft.com/en-us/projects/detours/
http://research.microsoft.com/en-us/projects/detours/
http://technet.microsoft.com/en-us/library/cc768129.aspx
http://technet.microsoft.com/en-us/library/cc768129.aspx
http://netcode.cz/img/83/nativeapi.html
http://netcode.cz/img/83/nativeapi.html
http://technet.microsoft.com/en-us/sysinternals/bb897447.aspx
http://technet.microsoft.com/en-us/sysinternals/bb897447.aspx
http://channel9.msdn.com/Shows/Going+Deep/John-Sheehan-Application-Virtualization-Redux-Inside-AppVirt-45
http://channel9.msdn.com/Shows/Going+Deep/John-Sheehan-Application-Virtualization-Redux-Inside-AppVirt-45
http://channel9.msdn.com/Shows/Going+Deep/Virtualization
http://channel9.msdn.com/Shows/Going+Deep/Virtualization
http://www.kernelthread.com/publications/virtualization/
http://www.kernelthread.com/publications/virtualization/
http://www.virtuall.nl/download-document/application-virtualization-smackdown
http://www.virtuall.nl/download-document/application-virtualization-smackdown
http://www.dabcc.com/documents/DesktopVirtualization_11_26_07.pdf
http://www.dabcc.com/documents/DesktopVirtualization_11_26_07.pdf

Bibliography

[85] Microsoft Office Team. Click-to-run: Delivering office in the 21st century. http:
//blogs.technet.com/b/office2010/archive/2009/11/06/click-to-
run-delivering-office-in-the-21st-century.aspx, November 2009.
[Online; accessed 12-October-2011].

[86] Microsoft VMM Team. Now available: The release candidate for system cen-
ter virtual machine manager 2012. http://blogs.technet.com/b/scvmm/
archive/2011/09/08/now-available-the-release-candidate-for-
system-center-virtual-machine-manager-2012.aspx. [Online; accessed
30-October-2011].

[87] Jim Truchon. App-v and support for applications with custom shell exten-
sions. http://blogs.technet.com/b/virtualworld/archive/2009/
12/09/app-v-and-support-for-applications-with-custom-shell-
extensions.aspx, 2009. [Online; accessed 28-October-2011].

[88] Franky Wong. Dll hell, the inside story. http://desaware.com/tech/dllhell.
aspxx, 1998. [Online; accessed 01-November-2011].

94

http://blogs.technet.com/b/office2010/archive/2009/11/06/click-to-run-delivering-office-in-the-21st-century.aspx
http://blogs.technet.com/b/office2010/archive/2009/11/06/click-to-run-delivering-office-in-the-21st-century.aspx
http://blogs.technet.com/b/office2010/archive/2009/11/06/click-to-run-delivering-office-in-the-21st-century.aspx
http://blogs.technet.com/b/scvmm/archive/2011/09/08/now-available-the-release-candidate-for-system-center-virtual-machine-manager-2012.aspx
http://blogs.technet.com/b/scvmm/archive/2011/09/08/now-available-the-release-candidate-for-system-center-virtual-machine-manager-2012.aspx
http://blogs.technet.com/b/scvmm/archive/2011/09/08/now-available-the-release-candidate-for-system-center-virtual-machine-manager-2012.aspx
http://blogs.technet.com/b/virtualworld/archive/2009/12/09/app-v-and-support-for-applications-with-custom-shell-extensions.aspx
http://blogs.technet.com/b/virtualworld/archive/2009/12/09/app-v-and-support-for-applications-with-custom-shell-extensions.aspx
http://blogs.technet.com/b/virtualworld/archive/2009/12/09/app-v-and-support-for-applications-with-custom-shell-extensions.aspx
http://desaware.com/tech/dllhell.aspxx
http://desaware.com/tech/dllhell.aspxx

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Types of virtualization
	1.2.1 Hardware virtualization
	1.2.2 Operating system-level virtualization
	1.2.3 Application virtualization

	1.3 Benefits of application virtualization
	1.4 Drawbacks of application virtualization
	1.5 History
	1.5.1 The time before the Windows Registry
	1.5.2 After the release of the Windows Registry

	1.6 Structure of this thesis

	2 Background
	2.1 Architecture of Windows
	2.2 Placing the virtualization engine
	2.2.1 Interception in user mode
	2.2.2 Interception in kernel mode

	2.3 Functionality of a virtualization engine
	2.4 Windows API hooking
	2.4.1 Basic mechanism for intercepting function calls
	2.4.2 Microsoft Detours

	2.5 Intercepting requests to the file system and registry

	3 Microsoft Application Virtualization (App-V)
	3.1 History
	3.2 Functionality of App-V
	3.3 Constraints of App-V
	3.4 Components
	3.4.1 Sequencer
	3.4.2 Management Server
	3.4.3 Web Service, Data Store, and Management Console
	3.4.4 Streaming Server
	3.4.5 Client
	3.4.6 App-V for Remote Desktop Services

	3.5 Architecture
	3.5.1 Full infrastructure
	3.5.2 Stand-alone mode

	3.6 Interaction between isolated applications
	3.7 Server Application Virtualization

	4 Integrating App-V into a heterogeneous network
	4.1 Infrastructure of Munich's school network
	4.2 Reverse engineering the infrastructure of Microsoft App-V
	4.2.1 Streaming and authorization
	4.2.2 Publishing and authentication
	4.2.3 Reporting

	4.3 App-V as part of the Windows 7 migration project
	4.3.1 App-V Client
	4.3.2 Mobile users

	4.4 Software
	4.4.1 Adobe Reader
	4.4.2 Adobe Creative Suite and Adobe Acrobat
	4.4.3 Hardcopy
	4.4.4 Microsoft Office
	4.4.5 Mozilla Firefox and Thunderbird
	4.4.6 Investigation of problems inside the virtual environment
	4.4.7 Documentation of proceedings and troubleshooting

	4.5 Categorization of applications
	4.5.1 Not virtualizable
	4.5.2 Virtualizable, with reservations
	4.5.3 Virtualizable

	5 App-V compared to other products
	5.1 VMware ThinApp
	5.2 Citrix Application Streaming
	5.3 Symantec Workspace Virtualization

	6 Conclusion
	Appendix
	A App-V documentation for ZIB
	Bibliography

