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Abstract

Google’s Android has grown into one of the most popular mobile operating systems on the market

also due to the rapidly increasing smartphone usage over the past few years. So called “Apps”

can be installed through online stores; the most popular “Google Play Store” is being installed

by default on most devices. Those Apps are being used for all kind of every day problems and

even for online banking and other sensitive tasks. In order to protect intellectual property of used

algorithms or to prevent insertion of malicious code, these apps need to be secured in terms of

copy protection resistance as well as reverse engineering capabilities.

Static and dynamic obfuscation is a common technique to provide some barriers for attackers.

Google’s concept of distributing Apps through machine independent code (Dalvik Executables,

DEX) and using Just-In-Time (JIT) compiling, simplifies the reverse engineering of Apps massively

and opens an enormous gate for patching and repackaging.

This master’s thesis presents new concepts in order to avoid App copying, patching and reverse

engineering.

Android’s runtime architecture changes very frequently and recently from a Dalvik Virtual

Machine JIT concept to a new Android Runtime (ART) using Ahead-Of-Time (AOT) compiling.

Those changes are affecting the use of DEX and its optimized native code version (OAT). Therefore,

they are investigated with regard to their copy protection domain.

A great part deals with dynamic code loading using JNI possibilities and its corresponding

copy protection applications. It complicates the reverse code engineering of Apps enormously,

but cannot avoid it completely. Another concept are Trusted Execution Environments that do

create a trusted world. Unfortunately due to a high fee, it is not accessible for most developers

and therefore not extraordinary useful for common copy protection techniques.

The possibility of distributing native code, like being routine in desktop environments, will also

be analyzed.

This master’s thesis provides application examples regarding dynamic code loading, natively

as well as in the Java world. They address concrete solutions like string encryption and licensing
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improving. Since there is an AOT compiling step, the performance is nearly independent from its

implemented language.

Developed concepts in this master’s thesis provide a general understanding of different copy

protection approaches in conjunction with ART.
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Chapter 1
Introduction

1.1 Popularity of Android

Android is an operating system by Google, designed for mobile devices. Version 1.0 was released

in 2008 and the most recent version is 6.0 as this thesis is written. With a remarkable market

share of 82.8% it has grown into the most important mobile operating system followed by Apple’s

iOS with 13.9% and Microsoft’s Windows Phone with 2.6%. See [Inc15] for a full list of mobile

operating system market shares. While the smartphone market is still growing, Android did also

adapt to new rising platforms like wearables, TV’s, cars and to embedded devices in general.

Android is built on a Linux kernel and because of that, Android is open source and freely available.

Everyone is allowed to adopt it to it’s own needs (except Android Wear) which is another reason

for it’s rising popularity.

The daily use of smartphones and therefore Android is increasing rapidly in nearly every field of

application. Right now, the usages are reaching from simply surfing the web to security sensitive

tasks like banking transactions, the organization of all kinds of tickets and wireless payment

methods. One of the main factors of success are App Stores who provide simple installable

applications for nearly every imaginable task so far.

1.2 Demand of App Protection Mechanisms

The popularity of operating systems generally result in an increasing interaction between devel-

opers and a large variety of Apps. At the same time it attracts malware and virus developers,

which try to exploit the system due to its market size and the resulting high possible illegal

profit. Although Google has established their own App Store “Google Play Store” where Apps are
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Chapter 1 Introduction

getting inspected by Google’s “Bouncer”, it is possible to install Apps from so called “unknown

sources” like websites and alternative App Stores.

There are different attack vectors that can be considered by attackers. The main ones are

summarized into three following scenarios:

Scenario 1: Piracy/Intellectual Property Theft

Something that is present in every domain where program code is being written and can be sold,

is illegal copying of a whole executable program or copying and adapting its source code. Not

every Android App is available for free. So being able to copy an App to another device and get

it to run is a serious threat for developers. However, there do exist licensing mechanisms to check

if a user is authorized to use the App. If he is not, the App can be exited. Another possibility

for attackers would be to disassemble the App into its source code to copy and adapt the App.

Afterwards, the attacker could release it on its own (for instance with a different name and layout).

This scenario is hazardous for Apps that do contain a lot of know-how in form of written code.

Scenario 2: App Patching

Many Apps these days are free of charge in their basic version and do offer “In-App Purchases”

for additional content or services. An attacker could try to circumvent the licensing mechanism

by “patching” the App. This means injecting code at runtime or trying to obtain its source code

followed by adding code with the goal to bypass the implemented licensing mechanism. The

attacker can then repackage and reinstall the changed App with extended access rights. This leads

to a financial loss for developers.

Scenario 3: Malicious Code Injection

Quite similar to scenario one, the attacker chooses a popular App he wants to exploit but this time

the focus lies on getting sensitive data from users. So a good example would be a banking App

where users can do transactions and have to enter pins and TANS. To be able to sniff sensitive

data, one possibility is to get the App’s source code like in scenario one and injecting own code

that implements the malicious functionality. After repackaging it, potential users need to be

tricked into installing the App, which appears to be the official banking App. This can be done

using common social engineering techniques since it should not be possible to upload the App to

an official App store if the original App is present.
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Chapter 1 Introduction

Therefore there is an urgent need of copy protection mechanisms for Android Apps. This

basically means in most cases, to prevent reverse code engineering of the distributed Application

packages. The goal is to hinder the repackaging of an App that includes malicious or generally

altered code.

3



Chapter 2
Fundamentals/Basics

2.1 Android Architecture

To provide copy protection mechanisms for Android Apps, a deep understanding of the Android

system itself is necessary or at least helpful. Android is built on the Linux kernel. Android

does provide not only shell binaries (Linux kernel) but also a GUI environment as well as

predefined frameworks. It offers a complete environment for developers to write Apps in the Java

programming language. That’s why Android is considered to be a “full software stack” [Lev15,

p.7f]. Although it’s built on Linux, Google did modify the Linux kernel according to their needs.

As a result, the Android kernel differs and is incompatible with the Linux kernel since version

2.6.27.

The difference at kernel-level is not that big compared to the differences at user-mode where

Android does have entirely new components, which are:

• Dalvik Runtime including the Dalvik Virtual Machine (DVM) respectively the Android

Runtime (ART) since Android version > 5.0.

• The Bionic C-Library instead of the GNU C Library (GlibC)

• Hardware Abstraction Layer (HAL)

• Java Native Interface (JNI)

• Android specific frameworks

Figure 2.1 visually summarizes the difference between Android and Linux. The Android specific

frameworks are the core components that make Android special. They simplify the creation

process of applications massively. Developers can use the higher level language Java rather than
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Chapter 2 Fundamentals/Basics

Figure 2.1: Android and Linux comparison taken from [Lev15, p.9]

developing in C/C++. Additionally, there is a rich set of APIs to solve most of programmers

everyday problems.

In order to get Java programs run on Android, the DVM is introduced which is quite similar

to a Java Virtual Machine (JVM) but more simple. The reason for choosing a virtual machine

in the first place was due to the limited storage capacity of mobile devices, especially in their

early days [Lev15, p.11f]. The DVM provides an interface between the operating system and

the Java application world, after all the execution of Java written programs. The difference

between the DVM and the JVM is the alternative form of bytecode which gets executed in the VM.

Another difference is that Dalvik is register-based in contrast to JVM’s stack based architecture.

DVM is optimized for mobile devices in terms of efficiency and sharing memory. It uses device

independent Dalvik Executable format files (DEX), which is one reason for choosing a VM design

in the first place [Lev15, p.11f]. DEX files can be packed into Java libraries (JAR) or into Android

Application Packages (APK). They will get created automatically by the official Android Studio

IDE from Google with Java code as its source.

Generally, a runtime’s purpose is to provide interpretation of machine independent code, in

other words, transforming Java byte-code into machine-code (pure 1’s and 0’s a CPU understands).

With Android version 5.0, Google did introduce ART which is an alternative runtime. Like Dalvik,

it does use a VM but with a different compile timing concept. The prior Dalvik runtime does

use Just-In-Time (JIT) compiling where executable machine code is not created before the App

runtime. ART on the other hand, uses Ahead-Of-Time (AOT) compilation which compiles an

App to machine code at installation time. As a result, the ART Apps installation time as well as

5



Chapter 2 Fundamentals/Basics

the required storage space are increased. This is a trade-off between the App startup time and

runtime performance.

The JNI provides an opportunity to write Java programs with embedded native processor

specific code to escape from the VM world to, for instance, access hardware directly. It is mostly

used to optimize the performance for Apps (e.g. games) or to impede reverse engineering of

the application code. Google does provide a Native Development Kit (NDK) to help developers

create native libraries [Goo16b]. It includes cross compiling toolchains for all supported Android

architectures. The officially supported language for the NDK is C/C++.

Bionic is the Android corresponding GlibC library which was created for license and simplicity

reasons. Overall, it is more lightweight than the GlibC and well adapted for Android’s needs.

Since Android is likely to run on a great variety of devices, it has to support a big amount of

different hardware versions. The HAL addresses this problem and standardizes the interface by

allowing hardware vendors to implement their own drivers [Lev15, p.18f]. It helps developers to

use the same programming interface to hardware even when the device architecture and hardware

components differ.

2.2 Android Apps

Apps are the most abstract level of the Android software stack. Generally, there are either

system-apps (mostly pre-installed, like a browser) or user-apps (everything installed by user).

The system-apps storage location (/system/apps/) differs from the user-apps (/data/apps/).

System-apps are included into the distributed OS whereas user-apps can be installed and updated

via the Android Debug Bridge (ADB), App stores like the Google Play Store or directly on the

device by opening downloaded App files (APKs). The most common way for consumers is

downloading/installing Apps via an App Store.

Every App has its own sandboxed environment. That means that Apps cannot access data from

other Apps and they can only access resources those permissions were granted during installation

time. This is one of the basic Android security concepts, the privilege separation and the principle

of the least privileges [Ele15, ch.1] which can be applied through Linux group and user permission

concepts.

Apps do have several components, the main ones are:

• Activities

• Services
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• Content Providers

• Broadcast Receivers

Activities do represent a screen view in the UI ready for user interaction. They can be started

independently even though one Activity is chosen to be the one that starts when the user clicks

on the App icon. Services are purely functional and are not represented at the UI compared to

Activities. Their utilization are mostly time consuming operations in the background of an App

like server communication or computational tasks.

Since Apps are sandboxed, they can’t access each others data which can be seen as a limitation

if Apps should be able to communicate with each other. That’s why Content Providers offer an

interface to the App data which is chosen to be exchanged. They use a lower level Inter Process

Communication (IPC) protocol provided by the Android Stack which, like the name indicates,

operates on process level in Linux. With Broadcast Receivers, an App can react to system-wide

events (broadcasts) [Ele15, ch.1].

Apps are distributed in form of machine independent .apk files. The APK file is a file container

and is an extension to JAR which is in turn an extension to the ZIP file format. Thus, the content

of the APK can be extracted with standard ZIP decompression tools [Ele15].

Figure 2.2 lists the content of an APK container after extraction.

The AndroidManifest.xml file holds meta-data information about the App like the package

name, its version, a list of activities (one of them is marked as the action MAIN activity) and

required permissions. resources.arsc contains precompiled resources like strings, styles or

binary XML. Developers can use the assets/ folder to store raw data needed for the App like

music files, fonts, additional DEX files and every other arbitrary data. If the App does make

use of the JNI, the lib/ folder contains compiled library directories for every supported CPU

architecture (armeabi, x86, . . . ). Every resource which is directly addressed from Android code, is

stored in the res/ folder including XML files for layouts and menus. The META-INF/ directory

holds the signatures for the specific App, similar to a JAR file. The heart of every App is the

classes.dex that contains the application code in form of the machine independent DEX format

specified by Google [Goo16d] which is comparable to Java byte code. The Java Development Kit

(JDK) tool “javac” creates a JAR out of every inputted .java file while the Google build tool “dx”

takes over the transition from .jar to .dex [Goo16a]. An ApkBuilder takes the DEX file, adding

.so files and other resources and finally builds the base.apk that gets signed afterwards by the

jarsigner.
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apk/ (=.jar = .zip)
AndroidManifest.xml
res/

anim/
color/
drawable/
layout/
menu/
raw/
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lib/

armeabi/
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x86/
..

classes.dex
META-INF/

CERT.RSA
CERT.SF
MANIFEST.MF .2 assets/

Figure 2.2: APK Content Tree

2.3 App Installation Process

As in section 2.2 described, Apps are distributed in form of APK files. This chapter describes

what happens next with the APK file.

The APK file gets forwarded to the Android “Package Manager”(pm) which then calls the

installPackage() method for this APK. Among other things, the pm copies the original *.

apk to the path /data/app/<package>.<appname>-1/base.apk. This location is used in order

to get the needed resources for the App to run (layout, drawables, . . . ). The lib/ directory

is extracted and gets copied into that path. classes.dex is optimized by either “dexopt” or

“dex2oat” depending which runtime is present (DVM or ART). In both cases, the outcoming file

is no more machine independent and is stored at /data/dalvik-cache/<arch>/ with the name

data@app@<packagename>.<appname>-1@base.apk@classes.dex. That path however, did change

with Android version 6 to /data/app/oat/<pachagename>.<appname>/<arch>/base.odex. It is

more straight forward since the whole data of an App is being stored at the same place (except

for the internal storage an App can use, which is located at /data/data/...). It does represent

the last stored unit of an App that will be executed in the next step. Attention should be paid

to the file extension. It is the same (.dex) with both runtimes but is actually a totally different

file format. Therefore, the name of the file is just a reference to the path of its source when
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replacing the “@” characters with “/” (prior Android 6). Since Android 6, it became a little more

convenient since the file extension changed to “.odex” which corresponds to its actual content

since it is an optimized version of the DEX. If the present runtime is DVM, thus Android < 5.0,

the generated file format is ODEX (Optimized DEX) and in later versions ELF 32/64 (Executable

Linking Format) although the responsible tool for that conversion step is called “dex2oat”. Still,

the file is named the same way and won’t change to “.elf” so the naming convention is more

like a semantic information rather than making an explicit statement about its content. This ELF

file will be analyzed later in this thesis (it does however hold an “OAT” file among other things

so that the tool name actually does makes sense). To give an App the possibility to store some

data, a /data/data/<appname> directory is finally created which is a storage whose permissions

are limited to its owning App.

Last but not least, the pm adds entries to the /data/system/packages.xml as well as the /data/

system/packages.list files. They do contain meta information about the installed packages like

required permissions and the UID/GID of that instance. Android uses that UID/GID to enforce

the sandboxing model [Ele15, ch.1]. Figure 2.3 shows the explained relevant actions the pm

performs.

Figure 2.3: App installation process
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2.4 App Execution Process

This chapter is supposed to give a short introduction to the main concept of the App execution

process, without going into great detail about it. However, a detailed inspection will be performed

in subsection 3.1.2. When describing the execution process of an App, again the runtime must

be considered (Dalvik or ART) since the execution process obviously differs. In both cases, the

entry-point of the App is the file stored at /data/dalvik-cache/...@classes.dex as described

in section 2.3 (Again differs depending on the Android version). “Zygote” is the name of one

of the first processes Android starts when booting. The process is responsible for loading more

services and libraries of the Android framework and holds precompiled resources that nearly

every App instance will need. By starting an App, it is therefore much more efficient to fork the

Zygote process on the Linux layer and to include the App specific parts afterwards rather than

creating a whole new process for every App. This will also be investigated in greater detail in

section 3.1 [JDr14, ch.2].

2.4.1 Dalvik

As in section 2.3 described, an ODEX file is created at the first startup of an App. Even though

the pure DEX file is runnable in the DVM, it still gets optimized into ODEX to get the most

performance out of the VM constraints. It then gets processed by the actual Dalvik runtime to

produce native code (machine code) that in the end is executable by the CPU (JIT). This native code

has to be linked with libraries of the App (/data/app/<pkg>.<name>-1/lib/*.so) implemented

via the JNI and additionally with Android framework libraries to result in a complete executable

that can be executed by the CPU. It does reference resources out of the corresponding base.apk

file (layouts, drawables, assets, . . . ). The execution process is also depicted in Figure 2.4.

2.4.2 ART

The difference of ART in comparison to Dalvik is the missing JIT compiling step which ART

performs at installation time (AOT). Therefore, the ELF file contains the executable that only

needs to be extracted by the ART followed by the same linking steps that Dalvik does after JIT.

Figure 2.4 shows a direct comparison of those two runtimes.
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Figure 2.4: App execution process
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Chapter 3
Copy Protection Status Quo

This chapter will first provide some detailed information about the ART runtime since basic

knowledge of the internal mechanics is a precondition to understand the more complex copy

protection mechanisms and obfuscation techniques. Common existing techniques will be sketched

afterwards. Most of them, are based on the Dalvik runtime. It will then be determined whether a

specific method is also applicable to ART. A great focus will rely on the DEX format since it is still

the distribution format of every App (inside of an APK named as classes.dex). Unless explicitly

written otherwise, investigations performed do rely on an AOSP and device version running

Android 5.1.1. Therefore, they may vary on different Android versions since Google applies

changes at runtime layer very frequently. Those changes usually do not affect App developers

who are writing code at Java layer but may affect developers using the NDK.

3.1 ART Internals

3.1.1 APP Executable Format

A core element of the recently introduced ART is the file that gets created by “dex2oat” during

the installation time of an App, described in section 2.3. Since ART does use AOT compilation,

the file format is expected to be an executable or at least a native code container. Therefore, it is

worth to have a closer look at that file format especially since Google does not provide any further

information about its content. It might have the potential of revolutionizing the available copy

protection mechanisms for Android or having at least a great impact.

By applying the Unix command “file” (which can classify files to MIME-types) to the resulting

file of the “dex2oat” tool it comes apparent that it is a particular ELF file (32 or 64 bit) called OAT

file from now on.
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ELF File Format

ELF was originally specified by UNIX System Laboratories (USL) and later by Tool Interface

Standards (TIS) and is a common standard for executables, object code and shared libraries on

UNIX systems. It is a quite flexible format for different CPUs and architectures and serves as a

container for different executable binary formats.

Figure 3.1: ELF file format taken from [Com93]

Figure 3.1 shows the file structure. One has to differentiate how this file is viewed based on

its context. While a linker does care about sections, sections may be glued together to segments

when executing the file. Meta data about the file can be read out of the “ELF header” that starts

at address 0x00 and contains information about the version, file type, target machine and offsets

to the program- and section header tables. In ART, the file is marked as an shared object with

LSB encoding and not as an executable. That makes clear, that this file is not supposed to get

executed directly, but to be linked first (An open question that remains so far is which process is

responsible for the App start). Segments are referenced by the program header table and sections

by the section header table. For an execution process, only the header and the information out of

the program header table is needed [Kov12].

Let’s first have a look at the used sections in case of the specific Android implementation,

the OAT file: Table 3.1 shows the output of “readelf -S <ELF-App-File>”, listing all available

sections.

It does follow a short description of sections that are implemented [Kov12]:

• .dynsym holds a dynamic linking symbol table that contains information for locating and

relocating a program’s symbol definitions and references. It contains “oatdata”, “oatexec”

and “oatlastword” in case of an OAT file.
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• .dynstr holds strings for dynamic linking, mostly names that are referenced by .dynsym.

• .hash is a hash table that supports symbol table access

• .rodata stands for “Read-Only data” and contains arbitrary data whose interpretation is

solely determined by the program itself. We will see that in case of Android it does hold the

actual OAT file that will be further described in section 3.1.1.

• .text is the only region that is marked as executable and holds the main body of program

code.

• .dynamic includes dynamic linking information.

• .shstrtab stands for “Section header string table” and contains the previous described

section names including its own (e.g. “.shstrtab”).

Table 3.1: ELF section headers

Secion Headers:

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al

[ 0] NULL 00000000 000000 000000 00 0 0 0

[ 1] .dynsym DYNSYM 000000d4 0000d4 000040 10 A 2 0 4

[ 2] .dynstr STRTAB 00000114 000114 000029 01 A 0 0 1

[ 3] .hash HASH 00000140 000140 000020 04 A 1 0 4

[ 4] .rodata PROGBITS 00001000 001000 002000 00 A 0 0 4096

[ 5] .text PROGBITS 00003000 003000 000228 00 AX 0 0 4096

[ 6] .dynamic DYNAMIC 00004000 004000 000038 08 A 1 0 4096

[ 7] .shstrtab STRTAB 00000000 004038 000038 01 0 0 1

Table 3.2 shows the alternative view on the file by having a look at segments (“readelf -l

<ELF-App-File>”) . Type “PHDR” stands for “Program header”. Segments with type “LOAD”

are supposed to be loaded from disk into memory while a “DYNAMIC” segment is a part of a

“LOAD” segment and is equal to the “.dynamic” section. The mapping of “LOAD” segments into

memory is performed by respecting the alignment of 0x1000 which means that only chunks of

that size (or a multiple) are being read (e.g. reading the segment at 0x3000 will copy the content

from 0x3000-0x4000 even if the size only equals 0x340). The difference between “FileSiz” which

stands for the file size and “MemSiz” which stands for memory size, is the space that is reserved

for uninitialized variables.
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Table 3.2: ELF program headers

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000034 0x00000034 0x00000034 0x000a0 0x000a0 R 0x4

LOAD 0x000000 0x00000000 0x00000000 0x03000 0x03000 R 0x1000

LOAD 0x003000 0x00003000 0x00003000 0x00340 0x00340 R E 0x1000

LOAD 0x004000 0x00004000 0x00004000 0x00038 0x00038 RW 0x1000

DYNAMIC 0x004000 0x00004000 0x00004000 0x00038 0x00038 RW 0x1000

The “readelf” tool is also capable of showing the resulting mapping of sections to segments

(Table 3.3).

Table 3.3: ELF section segment mapping

00

01 .dynsym .dynstr .hash .rodata

02 .text

03 .dynamic

04 .dynamic

It is interesting to note, that the Android usage of ELF for Apps is very minimalistic and contains

very few sections/segments compared to a common program written in C/C++ (helloWorld.c

does include over 30 sections). As described before, .dynsym contains entries which tell us where

to find the OAT data, specifically the “oatdata”(equals .rodata) and the “oatexec” (equals .text)

section that will be analyzed now.

OAT File

Google does not provide any official documentation about the OAT file format other than the

source code itself (art/runtime/oat[_file].h[c]). [Sab15] however gives a helpful introduction.

An overview is given in Figure 3.2 that shows the content of “oatdata” and “oatexec” which are

scattered among the superordinate ELF sections.

Important attributes that the “OAT Header” contains are the checksum over itself, the instruction

set (ARM, ARM64, MIPS, . . . ), the native code offset relative to the beginning of “oatdata” (located

in “oatexec”) and the quantity of embedded DEX files (in case of Apps it always equals one, other
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Figure 3.2: OAT format

system files like “boot.oat” may contain several DEX files). It follows the “OAT Dex Header”,

containing the absolute path of its “source” file (=input file of “dex2oat”, means DEX), the

checksum, the embedded DEX file’s offset as well as an offset to the “OAT Class Headers”. Those

“OAT Class Headers” do offer information about defined classes. It includes the type of class,

indicating how many methods in the class are compiled to native code (can be “all”, “some” or

“none” but should be “all” in almost every case) and additionally the offsets from the beginning of

native code of every compiled method. The actual code is located in a superordinate section .text,

as already explained, labeled as “oatexec” which is separated but referenced from “oatdata”.

DEX File Format

For the sake of completeness, a description and explanation of the DEX format is also given,

which is officially documented by Google [Goo16d]. Before the introduction of ART, DEX was

the last unit before execution of an App (besides ODEX which can be easily converted back to

DEX). The DVM however, accepts both formats and therefore, it is possible to execute DEX files

without the optimization step. As a consequence, DEX files, which are not a part of the distributed

App, can be loaded dynamically at runtime. That enables new possibilities for dynamic code

obfuscation techniques that will be described in section 3.3. DEX as it is, does not only contain

VM instructions, but also some meta data to locate higher abstraction level sections of the file like

classes, methods and fields. Figure 3.3 shows the file layout. The header includes a checksum

of the whole file (checksum field excluded), the overall size as well as the offsets and sizes of

every section. Sections with “ids” ending are arrays of id type items and reference a data item
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Figure 3.3: DEX format

in the “data” section or are specifying an index to another “ids” section. A “string_id” item for

instance, just contains an offset from the file beginning that should be located in “data” whereas

the “type_id” item includes an index into the “string_ids” field. So every attribute that can be

described as a string is concentrated in “string_ids”. The principle of the file structure is therefore

a architecture of referencing sections.

A part that puts everything together is the “class_defs” section. Classes in this context stand

for object oriented programming classes. They include methods, which in turn include strings,

fields and so on. Actual content like strings, VM instructions or arbitrary programming data, is

being stored exclusively in the data section. In the end, executable instructions are referenced

from encoded methods and defined in “class_data_items” which in turn are referenced from

“class_defs”.

Conclusion

The runtime transition from DVM to ART had to result in a new file that is interpreted/executed

when an App starts. However, the change is not as smooth as expected since the new file format is

not pure executable code but, as explained, a combination of compiled native code and embedded

DEX code as well as a new OAT file format which references parts of the native code. Also, there

is some confusion for what part the name “OAT file” stands for. On the one hand, Google’s

documentation files and the naming convention of the “dex2oat” tool are giving the impression

that the file as a whole is an “OAT file”. On the other hand, the file is a valid implementation

of the well known ELF and contains a section that starts with bytes known by MIME types with

“.oat” as file format (.rodata section). Additionally, the “oatexec” section is controlled via the

hierarchically higher ELF. Therefore, “OAT file” most likely stands for for both, the Android App

specific and minimalistic implementation of the ELF as well as the combination of the “oatdata”
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and “oatexec” section to a file alike entity. Figure 3.4 provides an overall view of the file format of

ART App executables.

Figure 3.4: ART App executable format

The awareness of the detailed executable file format pops new questions about the ART internal

functioning. Since the file is marked as an shared object, it will not be executed as a standalone

program but most likely, invoked in a forked Zygote process like in the Dalvik runtime. However,

it is not clear which parts of the OAT file are needed to run an App adequately. Is the embedded

DEX for instance mandatory for the App to work correctly? As it will be described in a later

chapter, DEX files are a crucial part of applications to protect. What if that part can be left out by

distributing a minimal stub application followed by a dynamic native code injection at runtime?

It would also be interesting to elaborate if and how common obfuscation techniques designed

for Dalvik, described in section 3.3, can be applied to ART. A deep understanding for the App

initialization and execution process under ART, is a precondition to answer those questions.
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Therefore, a more detailed explanation of that process than previously described in section 2.4

follows.

3.1.2 App Execution

To get behind the scenes of the App execution, one can start at the resulting Linux process that

exists for every running App. The Linux tool “ps” can be used to display running processes and

therefore running Apps. To investigate the App execution, a root shell at the target device has

to be opened (device should be rooted) with “adb shell” followed by an “su” command after

getting the device prompt (“shell@flounder:/ $”), where adb is the Android Debug Bridge to

interact with connected devices. The prompt will change to “root@flounder:/ #”, signaling that

it’s a root shell. A “ps” command displays process information like its “USER”, the numerical

process id “PID”, the process id of its parent “PPID” and of course the process name. Interesting

entries for further inspection are being displayed in Table 3.4, showing the init, Zygote, the

chrome and a sample “hello world” application.

Table 3.4: Android processes

USER PID PPID ... NAME

root 1 0 ... /init

root 211 1 ... zygote64

root 212 1 ... zygote

u0_a137 10072 211 ... ma.schleemilch.helloandroid

u0_a35 11017 212 ... com.android.chrome

The process “/init” is the first process of Android (although it has a parent with PPID “0”

which is the process scheduler at kernel level). It can be derived that every user and system App

has either the process “zygote” or “zygote64” as its parent process if the App can be converted at

the “dexopt” step to 32 or 64 bit. That makes clear, that Apps are forked from the Zygote process

which in turn is a fork of “/init”. Even more detailed information about processes can be pulled

out of the “/proc” directory (an abbreviation for “process”). The directory offers an interface to

the kernel space and does contain a folder for every process, named after its PID [Kal16]. The

most attractive attribute for this investigation purpose of that folder is the “exe” attribute. It is a

symbolic link to the executable that started the process. Since Apps are a fork of Zygote, they

should also point to the same executable, which they do (see Table 3.5).
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Table 3.5: Process starting executables

root@flounder:/ # ls -la /proc/10072/exe

... exe -> /system/bin/app_process64_original

root@flounder:/ # ls -la /proc/211/exe

... exe -> /system/bin/app_process64_original

root@flounder:/ # ls -la /proc/11017/exe

... exe -> /system/bin/app_process32

root@flounder:/ # ls -la /proc/212/exe

... exe -> /system/bin/app_process32

An executable named “app_process32/64” seems to be the entry-point for Apps (or at least

Zygote) to get started. The responsible program of that executable can be found in the Android

Open Source Project (AOSP) where “app_main.cpp” is the name of the source code file that gets

compiled into the 32 or 64 bit version and can be found at “/frameworks/base/cmds/app_process/

”. Although its implementation allows Apps to get started directly without Zygote, they are not

supposed to, meaning it’s not the common way when a user clicks on an App icon. Instead, it

will get clear that Zygote is capable of forking and transforming itself into a new App. The App

process is therefore responsible for starting Zygote and other system related processes that have a

similar structure like Apps. The “/init” process arranges the start of Zygote via an “app_process”

program start with specific parameters for a Zygote start (init is responsible for far more, like

starting native daemon system services and other things).

A common way to analyze source code is to start with its “main()” method. One of the first

things the program does is creating a new “AppRuntime runtime” object that inherits from the

AndroidRuntime class but overwrites a few functions. As parameters, it will expect the argv[0]

which is the program name itself, as well as the total length of arguments. In case of a Zygote start,

the program will transfer the flow control to this object by calling runtime.start(com.android.

internal.os.ZygoteInit, args). “args” contains information about whether to start the system

server,an ABI list as well as remaining arguments that were not used for the app_process program.

The runtime start() method initializes a VM and finally calls the main method of the ZygoteInit.

java program in case of a Zygote start. So there is a first transition into the Java programmed

system.
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Zygote

ZygoteInit’s main starts with parsing arguments such as if a system server should get started,

the ABI list and the socket name that Zygote will create. That defined socket (LocalServerSocket

sServerSocket) is a core functionality of Zygote whose purpose is to listen to a socket for

App start requests and finally fork Zygote and specialize it. After registering that socket, a

preloaded method loads classes resources, OpenGL and shared libraries and a explicit garbage

collection gc() will be performed to clean up after startup. After the optional start of the

system server, the program will enter its main loop runSelectLoop(abiList). Garbage col-

lection is called explicitly after GC_LOOP_COUNT iterations. Right before entering a loop, an

array list for file descriptors (ArrayList<FileDescriptor> fds) as well as for socket connections

(ArrayList<ZyogteConnection> peers) are being created and fds gets filled with the server

socket file descriptor. Listing 3.1 displays the logic of the main loop.

Listing 3.1: ZygoteInit main loop
try {

fdArray = fds.toArray(fdArray);
index = selectReadable(fdArray);

} catch (IOException ex) {
throw new RuntimeException("Error␣in␣select()", ex);

}

if (index < 0) {
throw new RuntimeException("Error␣in␣select()");

} else if (index == 0) {
ZygoteConnection newPeer = acceptCommandPeer(abiList);
peers.add(newPeer);
fds.add(newPeer.getFileDescriptor());

} else {
boolean done;
done = peers.get(index).runOnce();

if (done) {
peers.remove(index);
fds.remove(index);

}
}

}

First, the file descriptor list is converted to an array and the index gets filled with a readable

file descriptor. If that index is zero, a new ZygoteConnection is established which is listening

on its defined socket and accepting pending connections. Afterwards, it gets added to the

peer and fds list. The acceptComandPeer() method does call the ZygoteConnection constructor

with sServerSocket.accept() as transfer parameter which is an extension to the LocalSocket

implementation. Its accept() method accepts a new connection to the socket and is blocking

processes until a new socket arrives. Therefore the next iteration delivers an index greater than
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zero so that the last else branch of Listing 3.1 is executed. The ZygoteConnection object of peers

located at that index calls the runOnce() method and gets removed out of the array lists afterwards.

Finally, the runOnce() method will call Zygote.forkAndSpecialize() that forks a child within

an exception which is being called to invoke the child’s main(). But first, the given arguments

from the command socket must be parsed with the aid of an Arguments class. Attributes that are

needed for the later fork() call are shown in Table 3.6.

Table 3.6: Arguments Class Attributes

Given Argument Attribute Description

--setuid int uid UNIX uid for the child

--setgid int gid UNIX gid for the child

--setgroups int gids[] additional groups

--enable-debugger int debugFlags debug information

--enable-checkjni int debugFlags debug information

--enable-assert int debugFlags debug information

--enable-safemode int debugFlags debug information

--enable-jni-logging int debugFlags debug information

--mount-external int mountExternal storage to mount

--target-sdk-version int targetSdkVersion target version

--classpath String classpath absolute classpath

--runtime-init boolean runtimeInit new runtime init

--nice-name String niceName process renaming

--instruction-set String instructionSet instruction set to use

--seinfo String seInfo SELinux infos

--rlimit ArrayList<int[]> rlimits resource limitations

--app-data-dir String appDataDir data directory

Afterwards, all the defined security policies are being applied. To avoid bad file descriptor mes-

sages after forking a child, a native code has to close the open sockets before (sServerSocket and

the local socket mSocket of the ZygoteConnection class whose FDs are written into an fdsToClose

array). Now, all prerequisites for forking are fulfilled and the static method forkAndSpecialize

of the Zygote.java file can be called (see Listing 3.2) returning the new process PID.
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Listing 3.2: Zygote Fork Call
pid = Zygote.forkAndSpecialize(parsedArgs.uid, parsedArgs.gid,

parsedArgs.gids, parsedArgs.debugFlags, rlimits,
parsedArgs.mountExternal, parsedArgs.seInfo,
parsedArgs.niceName, fdsToClose,
parsedArgs.instructionSet,
parsedArgs.appDataDir);

Zygote.java is quite compact since it mainly defines the transition to native code whereas the

actual forking is being applied on Linux level. That is why a native version of the fork and

specialize method are defined and executed which in turn returns the resulting PID after forking

(com_android_internal_os_Zygote.cpp). The native implementation does finally call the effective

fork() method that copies the actual Linux process. Afterwards, the child is being specialized

(selected by the resulting PID of fork()). Transfered FDs are closed and capability boundaries are

applied. UID and GID are being set (Linux setresgid/setresuid) and resource limits are added

via strlimit(2). If necessary, a native bridge will be initialized and scheduler policies are being

set up. SELinux properties are applied and the thread name gets changed to a name other than

“app_process”, usually the package name of the App.

Back in the Java world, ZygoteConnection checks the returned PID and either calls handle

ChildProc() in case of the child or handleParentProc() in case of the parent (Zygote itself).

These methods are handling the post fork setup. In case of the child, sockets are being closed

on Java level (since the child should not listen on sockets like the parent Zygote) and remaining

arguments are being evaluated. When forking an App, a class name will be defined at the same

time. Remaining arguments are copied to mainArgs and a class loader (ClassLoader cloader)

is being defined before calling invokeStaticMain() of ZygoteInit with cloader, className and

mainArgs as parameters. The class loader cloader is defined either with the PathClassLoader()

or ClassLoader() constructor depending on if a classpath is given (path to APK or raw *.dex)

where PathClassLoader is a specialized version of ClassLoader. However, when looking into the

class loading code at this point, it becomes clear, that the DEX file of an App is used to represent

a class and later finding its main method, so that it can be said for sure that an App’s DEX file is

needed at least as an entry point under ART.

The invokeStaticMain() loads the specified class via the className string and furthermore

searches for the main method, storing it as a Java Method object and finally throwing an MethodAnd

ArgsCaller() exception. This exception gets caught by the main method of ZygoteInit. Remem-

ber that the Zygote itself is “trapped” in a loop whereas the child process can escape from it by

throwing that exception. So as a result, Zygote will remain in the loop offering a socket to fork

itself again (=starting a new App) while the child process (=the App to start) escapes from that
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loop invoking the main method of the class specified over the socket connection. To clarify the

program flow, Figure 3.5 displays the object and file interaction during the forking process.

Figure 3.5: Zygote Forking

The current state of the child process is the one right after the main loop breakout of ZygoteInit

induced by the exception. The exception is actually defined as a class that extends Exception

and implements Runnable. Therefore it is viable to call the exception callers run() method (see

Listing 3.3, taken out of the main method of Zygote).

Listing 3.3: Zygote Child Loop Breakout Exception
} catch (MethodAndArgsCaller caller) {

caller.run();
} catch (RuntimeException ex) {

Log.e(TAG, "Zygote␣died␣with␣exception", ex);
closeServerSocket();
throw ex;

}

Invocation means basically injecting the code of a method into the current process. That is

the next and final thing that will be performed and it won’t be explained in greater detail what

happens.

Since most of the steps are performed in Java and class loaders are being used to represent the

class and main method to be loaded, it is pretty clear that the DEX file is mandatory to locate the

native code methods even at ART. If the reader is interested in checking the AOSP by himself,
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Table 3.7 shows the explained source files and their paths inside of the AOSP branch of Android

version 6 in this case.

Table 3.7: Zygote/App Start AOSP(6.0) Files

Path Filename

/frameworks/base/cmds/app_process app_main.cpp

/frameworks/base/core/java/com/android/internal/os/ ZygoteInit.java

/frameworks/base/core/java/com/android/internal/os/ ZygoteConnection.java

/frameworks/base/core/java/com/android/internal/os/ Zygote.java

/frameworks/base/core/jni/ com_..._os_Zygote.cpp

/frameworks/base/core/jni/ com_..._os_ZygoteInit.cpp

So what actually happens when a user clicks on an App icon? The Launcher App that is

packaged with the AOSP takes care of the interface responsible for showing App icons, the home

screen and so on. The App icon click will call the corresponding onClick() method that will

in turn call startActivity() of the Activity Manager service through the Android Binder. The

service will start startViaZygote() which opens a socket to the Zygote process requesting to

start the new Activity/App [Yag13, ch.2, System Services].

3.2 DEX Disassembly and Repackaging

As explained in chapter 1 there are different goals of copy protection mechanisms starting from

preventing reverse code engineering to protect intellectual property and reaching to hinder

patching to get prohibited access. The common ground of those goals, is the protection of the

DEX file of every App, since every distributed App includes it. A variety of tools exist that are

able to transform DEX into different readable formats, modify it and repack it again since DEX

contains a lot of meta data about its contents (classes, methods, . . . ) [Goo16d]. Generally, there

are two possible outcomes of DEX disassembling - Java code (*.java) and Smali code (*.smali).

Since the DEX format is more or less just a different mapping of a JAR and its containing .class

files, the transformation to JAR is quite simple [Bor08]. One of many tools that is able to perform

this step is “dex2jar” [Pan16]. Along with this JAR, standard Java decompilers like “JD-GUI”

[Unk16] can be used to produce the *.java source code. If the *.java is supposed to change and

to be repacked, it can be compiled into JAR with Oracle’s “javac” [Ora16] followed by Google’s

“dx” tool [Goo16a] to produce the new manipulated DEX.
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An alternative way is the use of the “smali/baksmali” tool [Gru16] which is a direct assembler

and disassembler for DEX files rather than taking the Java code detour. There is also a tool

included that can convert the ODEX back to DEX (which is interesting for Dalvik Runtime

systems).

Overall, the disassembly of unchanged DEX is quite easy and its main tools and possible

conversions are shown as a concluding overview in Figure 3.6

Therefore, several countermeasures were established, which are described in the following

sections.

Figure 3.6: DEX Assembly/Disassembly

3.3 Obfuscation Techniques

Obfuscation in the context of copy protection for applications, is generally the term for hardening

an application against reverse code engineering techniques. It can be achieved by different

methods, that can be separated in two main groups, static and dynamic obfuscation. Static

means, that the obfuscation technique is applied to code units (source code, binaries, ...), while

the application is not being executed. Therefore, an attacker could possibly successfully analyze

the application, without executing it, if he manages to break this obfuscation. An upside of static

techniques in general is, that they are independent of the used runtime, if two compared runtimes

are using the same input files which they do in case of Android with its DEX formatted files.
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Applications that are dynamically obfuscated on the other hand, are much harder to analyze. The

behavior of the application is not determined until its execution. An attacker needs to connect to

the process of the running application followed by a just-in-time inspection. Dynamical methods

have the downside that they are highly dependent on the runtime.

It follows a list of common static and dynamic obfuscation techniques for Android applications.

However, this list is mainly focused on the Dalvik runtime since ART has been released quite

recently. Where static obfuscation techniques show the same behavior in both runtimes, the

dynamic solutions don’t necessarily since the execution process of Apps in ART differs (described

in subsection 3.1.2). The impact of those techniques to ART will get analyzed at every specific

case.

3.3.1 Static

Common Source Code Obfuscation

The most common and simple way to harden source code is to remove any kind of meta data that

has been added during the development process. This means destroying/modifying information

that originally was present in the source code. Possible approaches of doing this are the renaming

of string identifiers of classes, variables, methods and functions, artificially inserting irreducible

code, creating artificial parallelization, performing method inlining/outlining, unrolling loops,

encoding strings or changing the control flow in order to confuse code analysts by keeping the

original behavior [Mun14, p.87].

Popular tools for that purpose are Google’s “ProGuard” [Goo16f] which is included in the

Android build system and can be enabled easily as well as “DexGuard” by GuardSquare [Gua16].

“ProGuard” does operate on source code level while “DexGuard” operates on DEX. Since the

first “layer” of Android applications is Java code, classical Java obfuscators also can be used.

Those tools do operate on the DEX file layer, meaning that they can be applied at ART without

restrictions.

Junk-Byte-Insertion

Junk-Byte-Insertion’s goal is to prohibit the use of program analyzing disassembling tools. It

works for tools using the “linear sweep” method to analyze a program. That means the tools

are processing every instruction from the entry-point till the end without interpreting them (e.g.

not following jumps). That examining technique can be exploited to break the disassembling
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procedure. Let’s assume we do have the DVM instructions shown in Listing 3.4(Example taken

out of [Mun14, p.67]).

Listing 3.4: Junk-Byte-Insertion
if "true" goto line 4
load_array_into v1, line_3
array_size 10
set v2, 1
set v3, 1
add v1, v2, v4
return v4

Because of the if-statement that performs a jump to line four, the array_size 10 command will

never be reached. Since “linear sweep” does not perform jumps, the analyzing tool will interpret

the ten following bytes of that array initialization as payload and will therefore not be able to

disassemble the actual instructions.

Enhanced tools will use the “recursive traversal” technique to analyze a program, which is

capable of detecting dead branches and conditional jumps like in the example above. These tools

also may be tricked by choosing a more complicated condition in the if-conditions, that can only

be evaluated at runtime. This would result in the tool trying to evaluate the whole conditional

branch (including the breaking byte sequence). Actually, this technique could already be counted

to dynamic obfuscation [Mun14, p.68].

This example was based on DVM instructions and was therefore designed for Dalvik/Android

prior version five. The Junk-Byte Insertion will no more be possible in ART. Why? Even if one

would insert Junk-Bytes into the DEX file, there is still a conversion step into the new OAT format

applied in ART, which compiles into native code so that none of the inserted bytes will be adopted.

In summary, Junk-Bytes can still be inserted into DEX to prevent an attacker from disassembling

of DEX but those Junk-Bytes will not apply to the compiled code. However, since the compiled

code is native code and therefore not that easy to disassemble, Junk-Bytes might still be usefull at

DEX layer.

3.3.2 Dynamic

Hidden Methods Invocation

In [Mun14, p.82f], a technique is described to hide a whole method in .dex files. This hiding

method is highly dependent on the DEX specification from Google [Goo16d] that has been

described in section 3.1.1. It is based on the fact that the actual instructions of methods residing

in the data section of a DEX are referenced but not parsed directly by sweeping over that file

area, so that the meta data section of methods includes an offset to its actual instructions. These
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references (which are offsets in the data section), can be manipulated to hide specific methods

when the DEX gets parsed. Like shown in Figure 3.7, one could manipulate an offset pointer (in

this example the offset from method one) to hide its implementation. In order to achieve this

effect, the offset value needs to be changed. Since the DEX format includes a checksum to be

resistant against transmission errors, a revaluation is necessary. After that hiding step, the method

is invisible for static analyzing tools but of course also for the DVM itself, meaning it can’t be run

anymore. Thats why the changes to the DEX need to be reversed at runtime.

Figure 3.7: Hidden Methods Invocation Principle (Method1 gets hidden)

A precondition for the Hidden Methods Invocation technique is the possibility to load DEX

files dynamically at runtime in order to revert those changes. Otherwise a manipulation of the

DVM bytes in a running App in RAM would be necessary to revert them.

The next section deals with dynamic code loading in general and will therefore cover the

feasibility for Dalvik and ART.

Dynamic Code Loading

The principle of Dynamic Code Loading is to reveal the actual program code only after running

the application. This behavior can be achieved by implementing a stub code that will then load the

actual application followed by its execution. The format of that distributed application is in DEX

format, at least in Dalvik. If DEX still can be used in combination with ART, has to be determined.

In [Goo16e] a practical sample implementation for Dalvik is given. To provide a copy protection

benefit, an additional application file can either be distributed encrypted within the App stored in

the assets folder, or it can be fetched from a server. Android provides a public method within the

DexFile class to dynamically load DEX files (loadDex(String sourceName, String outputName,

int flags)) and loading included classes. The sourceName parameter accepts a path to a JAR or
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an APK and outputPathName specifies the file in which the optimized DEX version will be saved

(ODEX in Dalvik). That behavior however is a problem, because the created ODEX will still persist

also after closing the App and therefore can be analyzed after a one time execution. Unfortunately

it also can’t be deleted because of missing writing permissions. In [Sch12], a circumvention for

that problem is described by using the JNI. The libdvm.so library offers a private method to

open DEX files that accepts DEX content in form of a byte array. By establishing this own JNI

implementation of openDexFile(byte[]content) the loaded dex file is only present in volatile

memory and does not create an ODEX [Sch12] which makes that method very robust. So the big

question here is if that method also can be applied to ART since libdvm has been replaced with

libart.

First it will be tried to load a DEX in ART with given Java APIs. As mentioned, loadDex() is a

possible method but should be called through a DexClassLoader(). The method expects a dexPath

String which defines where to look for DEX files, an optimizedDirectory String specifying a path

to store the optimized version as well as a parent ClassLoader. The DEX to being load can be

shipped within the assets folder. So to begin with, a DEX is needed. For simplicity reasons a

simple Java class will be used, shown in Listing 3.5.

Listing 3.5: Java Class to load
public class ToLoad{

public int exampleMulMethod(int a, int b){
return a * b;

}
}

A DEX can be created with a “javac ToLoad.java” call followed by using the dx tool with “dx

--dex --output="toload.dex" ToLoad.class”. Be sure to use a Java version < 1.8, otherwise

the dx command will fail since Java 1.8 is not yet officially supported by Android at the time

of writing this thesis. The dexPath has to be readable by the App itself. Therefore, the DEX

should be stored in the private App data directory where dexPath should then search for it. Same

goes for the optimized directory. getDir() can create a private folder with a chosen name and

privileges. With getAssets().open(), the DEX can be copied out of the assets folder to the new

data location by using buffered Java streams (see Listing 3.6).
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Listing 3.6: Dex Internal Storage
File dexInternalStoragePath = new File(getDir("dex", Context.MODE_PRIVATE), "

toload.dex");
BufferedInputStream bis = null;
OutputStream dexWriter = null;
final int BUF_SIZE = 8 * 1024;
try {
bis = new BufferedInputStream(getAssets().open("toload.dex"));
dexWriter = new BufferedOutputStream(new FileOutputStream(

dexInternalStoragePath));
byte[] buf = new byte[BUF_SIZE];
int len;
while ((len = bis.read(buf, 0, BUF_SIZE)) > 0){

dexWriter.write(buf, 0, len);
}
dexWriter.close();
bis.close();

}catch (IOException e){
e.printStackTrace();

}

Now, the DexClassLoader() constructor can be called with the recently created paths and the

context class loader. After that, the class can be loaded using its name and the method can

be received together with defining its argument classes. Finally, invoke() can be called with a

reference of the object of being called from (null if method is static, newInstance() if not) and its

arguments (Listing 3.7).

Listing 3.7: Dex Method Invocation
final File optimizedDexOutputPath = getDir("outdex", Context.MODE_PRIVATE);
DexClassLoader dcl = new DexClassLoader(dexInternalStoragePath.getAbsolutePath

(), optimizedDexOutputPath.getAbsolutePath(), null, getClassLoader());
Class classToLoad = null;
Method m;
try {
classToLoad = dcl.loadClass("ToLoad");
m = classToLoad.getDeclaredMethod("exampleMulMethod", int.class, int.class);
TextView textView = (TextView) findViewById(R.id.invokeResult);
textView.setText("8*9=" + m.invoke(classToLoad.newInstance(), 8, 9));

} catch ...

The optimized output file is in OAT format. This way, the dynamic DEX loading is generally

possible in ART with purely official Android Java methods. However, the execution of code

loaded that way should be very slow since the DEX file is optimized in an ART way (=compilation

into native code) and it doesn’t really fit into the ART AOT compilation philosophy. Of course,

when using this method to initialize an App right after installation, it still might be useful for

copy protection applications. With that in mind, it should be clear that it is not possible to load a

DEX file into a byte array and execute it directly like it was possible at Dalvik using the “libdvm”

library via JNI. The reason should be clear, since ART does not operate on DVM byte-code and

therefore cannot execute those DVM instructions. So in the scope of copy protection mechanisms
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with ART, dynamic code loading at Java layer is not that useful anymore but can still be used

to dynamically load App parts in general. Nevertheless it needs to be analyzed how code can

be loaded dynamically in ART which will be explained in chapter 4. To come to the point right

away: Dynamically loading code is possible, mainly by using native code and therefore JNI

functionalities.

Self Modifying Code

Quite similar to dynamic code loading described in section 3.3.2 is self modifying code with the

goal of altering the instructions of an App during runtime. Instead of loading additional code

snippets, the focus lies on manipulating the executing Dalvik byte code stream directly. The DVM

is limited in terms of instructions for modifying byte code and therefore the byte code world has

to be bypassed with native code using the JNI. To find the position in the byte code that should be

changed, a predefined value must be set in order to be recognized by the native code function.

That value is often called “egg” and the search process “egg-hunting”. Let’s assume we have the

code snippet shown in Listing 3.8 that exists in the context of an Android App activity [Sch12].

Listing 3.8: Self Modifying Code Example
...
modifyVariable();
int egg = 0x12345678;
Integer toChange = 5;
...
native private void modifyVariable();
...

The modifyVariable() is a native code method defined over the JNI and sweeps over the

process memory (detectable by evaluating /proc/self/maps) in order to find the egg value. After

skipping the assignment of the egg value, the next instruction is responsible for allocating the

toChange variable. In this case, it is “0x13 0x21” and does stand for the mnemonic “const/16

vAA, #+BBBB” [Goo16c]. Therefore the next byte specifies the register that needs to be saved

followed by two bytes of the signed integer value (“0x05 0x00” in our case). By changing the

“0x05” to “0x09” the goal of dynamically changing the value at runtime is fulfilled.

This example was again for DVM instructions and is described in [Sch12]. So an interesting

question is if code manipulation on the fly is still possible at ART. It will get analyzed in great

detail in the next chapter. What should be clear by now is that the dynamic code loading

or manipulation on the fly can only be done in native code so that there might be a way to

dynamically load whole code snippets.
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This chapter will shortly cover how to write native code in Android, how the connection between

Java and C/C++ is being established as well as the native code integration into Android Studio.

Then there will be a sample application that shows a dynamic native code execution of a native

code shared library, a binary or machine code that can either be shipped within assets/ or can

be pulled in from external sources like the web, Secure Elements (SE) and so on. It will also be

covered if and to what extent an Android App has access to its own memory location as well as to

its mapped files considering its writing and execution permissions. With C/C++ there should be

multifarious possibilities to do that if sandboxing/permission concept mechanisms do play along.

4.1 NDK and Android Studio Integration

A complete documentation and starting guide about the NDK can be found at [Goo16b] and a

guide to the integration into Android Studio at [Glo15]. There is more than one way to integrate

the NDK into Android Studio. The one described in this thesis uses the platform build tools

script ndk-build. Another possible integration is the use of the Gradle experimental plugin

and is described in [too15]. The NDK allows to embed compiled C/C++ in an application. It

can be installed via Android Studio which is the default and recommended IDE for Android

development. The result of compiled C/C++ code is CPU dependent. Therefore the library has to

be cross compiled for every possible CPU supported by Android. Currently possible architectures

supported by the NDK are:

• arm64-v8a

• armeabi

• armeabi-v7a
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• mips

• mips64

• x86

• x86_64

The common way is that Android compiles every native source code into shared libraries (*.so)

that can then be loaded from Java code. Theoretically, it is also possible to build executable

binaries with NDK. Entry point for the build process is an ndk-build script inside of the installed

ndk-bundle/ folder that takes care of calling the cross-compiling toolchains. It can be controlled

by Android makefiles (Android.mk) and requires a specific folder structure to work which is

partially created when using Android Studio. An additional jni/ folder has to be created that

will hold all the native source code (right click on app/ and choose New->Folder->JNI Folder).

The compiled library can be loaded from Java by using a System.loadLibrary("MyLib") call.

In order to be able to call methods out of that library, the method signatures have to be known.

They can be declared with a native keyword in addition to the common Java method declaration.

It is also a common practice to create a new Java class specifying all NDK functions but it is not a

must have. When doing so, a header file for the native source code (*.h) can be automatically

created by using the javah command line tool. It includes the necessary JNI declarations for the

specified methods (including the JNIEnv pointer for instance) and can then be included in the

C/C++ source file that can afterwards be implemented as a common C/C++ project.

The last necessary step is to create an Android.mk makefile for every library as well as

anApplication.mk. The Android.mk file defines the library name that loadLibrary() expects,

lists the source files and defines the outcome (shared library or executable). Application.mk

includes the libraries to build (APP_MODULES) and the architectures to build for (APP_ABI). The

build.gradle has to be adapted as well, defining the outcome directory path relative to jni/

and android.useDeprecatedNdk = true needs to be added to gradle.properties to suppress

an error message. A ndk-build call will then compile all sources and creates the libraries at

libs/<archs>. They can be used out of the box without need to load them by hand at runtime.

All that’s needed is the loadLibrary() call. Physically those libraries are stored at the same path

as the App APK file as introduced earlier. By applying this method, those native libs to load

are shipped together within the application that might not be the intended goal. A whole NDK

sample project including the explained adaptations can be found in Appendix A.
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4.2 Dynamic Shared Library Loading out of a File

The process demonstrated in section 4.1 is common practice to integrate native code into an App

but is not really dynamically loaded. Instead the main idea of dynamical code loading is the

distribution of code after licensing the App or to apply some sort of copy protection mechanisms

by hiding the true functionality. One approach is to use native code as a loading mechanism.

C/C++ has the ability to load shared objects (*.so) with a method called dlopen() (=“Dynamic

Library Open”). Its signature is shown in Listing 4.1.

Listing 4.1: dlopen() Signature
void *dlopen(const char *path, int flag)

In order to enable dynamical loading, a path to the library file is needed as well as a flag that

defines the binding of variables and methods (lazy, global, . . . see dlopen()-reference for more

information). But what path should and can be used in the context of Apps? A path inside of

the APK for example is not referenceable as a path string. So generally, Apps can use different

storage options that are described below. They can also be looked up in [Goo16g].

• Shared Preferences can store data in form of key-value pairs

• Internal Storage stores private arbitrary data on the device memory at the path /data/

data/<appPackage>/ that is only accessible by the App itself.

• External Storage can also store arbitrary data on /sdcard/ but it is not exclusively readable

by the initializing App and needs a permission declaration in the manifest file.

• SQLite Database provides support for powerful private databases

• Network Connection can store data on the web

The most suitable option should be the internal storage since the App has unlimited read/write

rights and the content is safe from other non-root applications. For simplicity and demonstration

purposes, the library to load will be stored in the assets/ folder of the App that also only exists

in the APK. It is not referenceable through a path but can be opened through Asset-Manager. It

will therefore be copied into the internal storage first. Listing 4.2 shows the Java initialization of

the path to the final library to load. The getDir() call generates a new folder within the internal

App storage and a file container for the library to load gets created.

Listing 4.2: Internal Storage Initialization
File internalStoragePath = new File(getDir("dynamic", Context.MODE_PRIVATE), "

mul.so");
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As a next step, the library has to be copied out of the assets folder in the container which

has been created for it in a previous step. Any file within the assets can be opened with an

getAssets().open("file") call. For the read/write process one can use BufferedInputStream

and BufferedOutputStreams, shown in Listing 4.3.

Listing 4.3: Buffered Input/Output
BufferedInputStream bis = null;
OutputStream soWriter = null;
final int BUF_SIZE = 8 * 1024;
try {

bis = new BufferedInputStream(getAssets().open("mul.so"));
sWrite = new BufferedOutputStream(new FileOutputStream(internalStoragePath)

);
byte [] buf = new byte[BUF_SIZE];
int len;
while ((len = bis.read(buf, 0, BUF_SIZE)) > 0){

sWrite.write(buf, 0, len);
}
sWrite.close();
bis.close();

} catch (IOException e) {
e.printStackTrace();

}

Now, the program is ready to transform the transition into the native (C/C++) world. The

signature of the native method to call contains at least the path to the internal stored file as a

string that can be printed with a getAbsolutePath() call via the internalStoragePath file object.

Remember, that dlopen() needs that path to load the actual library. A class “MyNDK” is created

and contains the native declaration of the “libExe(String path)” method as well as a static call

of System.loadLibrary(“MyLib”) that takes care of the binding. The implementation of libExe()

is shown in Listing 4.4.
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Listing 4.4: Native libExe()
JNIEXPORT void JNICALL Java_ma_schleemilch_nativestuff_MyNDK_libExe

(JNIEnv * env, jobject jobj, jstring path){
const char *libpath = env->GetStringUTFChars(path, NULL);
LOGD("Received␣Path:␣%s", libpath);
void* handle;
const char* error;
long (*mul)(int, int);

handle = dlopen(libpath, RTLD_LAZY);
if (!handle) {

LOGE("DL␣Open␣failed:␣%s", dlerror());
return;

}
dlerror();
*(void**)(&mul) = dlsym(handle, "mul");
if ((error = dlerror())!= NULL) {

LOGE("DL␣Error␣after␣DLSYM:␣%s", error);
return;

}
LOGD("#␣9*5␣=␣%ld", (*mul)(9,5));
dlclose(handle);
remove(libpath);

}

A short remark about logging/debugging: The common printf() writes to the standard output.

A better way of viewing C++ outputs is to use the ADB logging mechanism. Google includes a

__android_log_print() function that has the same behavior as printf() but writes to the Logcat

output where LOGD() is a defined makro calling that function.

The library that will get loaded is a simple multiplication function and a pointer for it is

initialized at line seven. dlopen() returns a void pointer and dlsym() searches the symbol table

of the handle pointed file for the function handed over as a string. That call is interesting when

comparing C to C++. In [Iso06], the problem of name mangling in C++ and the combined

usage of dlopen() is described in detail. In short, one will need an “extern "C"” at the mul()

definition in order to enable the dlsym() function to find the method because C++ does not only

use the method name as its symbol but additionally a unique created ID. So without that extern

keyword, dlsym() will fail. Finally, the mul() function can be called from the library. After that

call, dlclose() has to be executed. It is also possible to remove the library file after that process

which might be useful for copy protection usage. From the Java perspective, a MyNDK object needs

to be created followed by a call of its libExe() to call and execute the library.

To be able to load a shared object library like this one, it obviously needs to be generated first.

One could use an own cross compiler to do so or just use the NDK since it includes all necessary

toolchains. However, some project structure changes have to be made to be able to compile two

independent libraries. Each library to compile should have its own folder inside of jni/ with

an Android.mk each. The greater Android.mk in jni/ has to be changed to call all subsequent
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make files with “include $(call all-subdir-makefiles)” and each module to build has to be

added to Application.mk. Gradle needs to know the names of the sub- directories of jni/ so that

“jni.srcDirs=[]” has to be filled with those folder name strings. As a result of that structure, the

compiled library that will be loaded afterwards also will be saved in the libs/ folder and shipped

within the App if not deleted beforehand. For instance, in a scenario where an App requests new

parts and gets them from a server, these libraries should only be present on the server side. In

order to receive the right compiled shared object for every device, the request needs to contain

CPU information (e.g. by sending the output of “System.getProperty("os.arch")”).

It is also possible to do that kind of shared object loading directly out of the Java code. Like

shown in section 4.1, a static call of System.loadLibrary("MyLib") does the heavy lifting of

invoking the library. The loadLibrary() function however does only check specific paths for

the given library name which are specified in java.library.path, containing /vendor/lib and

/system/lib as well as the path of the App’s APK lib folder. So for dynamic loading, this loading

method is not suitable since these locations can’t be accessed without root rights. Fortunately there

is another loading function System.load(String s) that accepts an absolute path to the shared

object file like the C++ equivalent dlopen(). Attention must be paid to naming conventions in

loadLibrary() in comparison to load(). If libraries are compiled by the NDK a lib prefix is

automatically added to the module name. In short, it means that System.loadLibrary("MyLib")

invokes a file that’s called libMyLib.so while the load() requires the physical stored path name.

Even though Java is also capable of loading shared object libraries at runtime, the signatures of

the library to load have to be implemented beforehand to be able to call library methods. This is a

different procedure compared to C/C++, where symbols can be resolved dynamically.

It can also be tried to call a whole native activity with the C/C++ method since a native activity

project can be compiled into an shared object (see NDK examples “native-activity”). To invoke the

activity, one needs to call the android_main() method but when doing so, but this will cause a

segmentation fault (SIGSEV).

4.3 Dynamic Binary Execution out of a File

It could be also interesting to execute binaries directly instead of loading shared objects. To

compile them, the NDK can be used again but the module’s Android.mk file needs to be adapted by

replacing include $(BUILD_SHARED_LIBRARY) with include $(BUILD_EXECUTABLE). When doing

so, it needs to be taken into account that all modules compiled for 32 Bit systems are directly

executables while modules compiled for 64 Bit are shared objects (by checking the output of
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the Linux file command line program). Either way they are dedicated to their interpreters

(/system/bin/linker and /system/bin/linker64) that will execute them. It does however make

a difference since Android seems like to only support position independent executables (PIE).

PIE’s purpose is to be able to execute its code regardless of its absolute address. If the reader is

interested in more information about PIEs, [Mur12] is an good article about the impact of PIEs.

Shared objects are a specific implementation of PIEs.

In case of 32 Bit systems, there will be an error message “error: only position independent

executables (PIE) are supported.” when compiled as executable without any additions. A

solution for this issue is adding a LOCAL_CFLAGS entry -fPIE as well as the LOCAL_LDFLAGS entries

-fPIE and -pie to the Android makefile. In fact, after adding those attributes, there is no difference

between the compiled executable and the shared library counterpart anymore other than it has to

contain a main() in order to be executed.

Again, binary execution can be implemented in Java as well as in native C/C++ code. Java will

be used in both cases to fetch the binary file from an arbitrary location that can be determined at

runtime or statically (again assets/ for demonstration) and to write it into the internal private

storage path. When checking the outcome file of that process via adb shell and “ls -l”, the

file is by default not marked as executable but at least the owner and the group is set right so

there should not be any permission issues. If the file is not marked as an executable, it will

result in a “can’t execute: Permission denied” message in case of a C++ implementation or an

“IOException” in case of a Java implementation. Fortunately, this can be fixed by simply calling

setExecutable(true) of the Java File object which represents the binary.

4.3.1 Java Implementation

The preparation procedure for executing is the same as in the shared object loading case, which

means the file is saved in the App’s internal storage and a File object to work with is delivered.

A Java Runtime object has an exec(String s) function that is capable of executing code given

its absolute path. It returns a Process object. In Android, the current runtime can be accessed

with a static access of the Runtime’s getRuntime() function. That is basically everything needed

to make it work. However, there are not any outputs (like printf()) of that separately started

process. The documentation of Process reveals that the subprocess output can be fetched with

getInputStream() and its error output with getErrorStream(). The waitFor() function can be

used to check and wait for the subprocess to finish which should be done when calling a native

binary. The final, very compact implementation is shown in Listing 4.5.
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Listing 4.5: Java Native Exec()
Process nativeExe = Runtime.getRuntime().exec(internalPath);
BufferedReader reader = new BufferedReader(new InputStreamReader(nativeExe.

getInputStream()));
int read;
char[] buffer = new char[4096];
StringBuffer output = new StringBuffer();
while ((read = reader.read(buffer)) > 0) {

output.append(buffer, 0, read);
}
reader.close();
// Waits for the command to finish.
nativeExe.waitFor();
String nativeOutput = output.toString();
Log.d(TAG, "nativeOut:␣" + nativeOutput);

4.3.2 C/C++ Implementation

As for C/C++, the implementation is not much more complicated compared to the Java imple-

mentation. The main part of the execution is a calling popen() (man printed at [Ker15]) which

requires a command given as a char array and the type of its created pipe (read “r” or write

“w”). Internally, it uses fork() and pipe() for creating the new process and executing the given

program at its path. It returns a FILE pointer whose stream can be read out using fgets(). The

complete C++ implementation of the behavior is shown in Listing 4.6. In order to catch stderr,

the program path string can be extended with the string “2>&1” to detour the error channel (2)

and route it to the common output channel stdout (1).

Listing 4.6: C++ Native Exec()
JNIEXPORT void JNICALL Java_ma_schleemilch_nativestuff_MyNDK_binExe (JNIEnv *

env, object obj, jstring path)
{

const char *exepath = env->GetStringUTFChars(path, NULL);
FILE* fpipe;
char* command = new char[strlen(exepath) + strlen("␣2>&1") + 1];
int ind = 0;
for (int i = 0; i < strlen(exepath); i++){

command[ind] = exepath[i];
ind++;

}
command[ind++] = ’␣’;
command[ind++] = ’2’;
command[ind++] = ’>’;
command[ind++] = ’&’;
command[ind++] = ’1’;
command[ind++] = ’\0’;
char line[256];
if (!(fpipe = (FILE*)popen(command, "r"))) return;
while(fgets(line, sizeof(line), fpipe)){

LOGD("%s", line);
}

}
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4.4 Dynamic Code Execution from Memory

Until now, dynamic code execution or loading via shared libraries was done by downloading/-

copying a file into the internal storage of the App followed by its invocation. This is a detour

since that file has to be fetched and written to a local file followed by loading it again. Instead,

it would be also interesting to know if program code can be executed directly out of memory.

Memory in this context means the RAM section of the App’s process. So it needs to be inspected

if an Android App process has even access to memory and if it is feasible to read/write/execute

program code in self allocated memory.

4.4.1 Android Memory Mapping

Let’s have a look at the general memory mapping of a common Android App. When printing

the content of /proc/<PID>/maps of the App’s Linux process, virtual memory locations that are

assigned to the process are revealed. The keyword “self” is the specific PID that can be used as a

path in a process to access its own proc/ directory. Otherwise, root rights are needed to read maps

of processes other than its own. An example output of a map entry is shown in Table 4.1 [Con09].

The address shows the absolute physical start and end of its mapped section. Permissions (perms)

Table 4.1: Content of /proc/<PID>/maps

address perms offset dev inode pathname

6feed000-708ca000 rw-p 00000000 b3:1c 105876 /data/.../framework@boot.art

contains information about how this region can be accessed (common Linux “rwx” permission

triple) and can be marked as private p (exclusively accessible by its mapped process) or shared

s (accessible from other processes). If the section was mapped from a file, offset describes the

offset in bytes to the specific region of the mapped file. Device (dev) only applies if mapped from

a file and includes the device number while inode holds the mapped file number. The pathname

shows the path to its source file.

When looking at an Android App process in particular, it reveals all kinds of mapped libraries

like fonts, its own base.apk as well as regions that don’t have a pathname or just a pseudo

pathname like “[anon:linker_alloc]” or “[stack]”. A great amount of libraries are mapped

this way and are not using an own App specific copy of those libraries. Only if they are being

used they will be copied. That behavior emphasizes that forking Zygote is way more efficient

rather than copying all those libraries every time an App starts.
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Generally, a stack contains data that only persist inside of a function call for example initialized

arrays or variables. Their content are getting released automatically after returning from that

function. The heap however can be used by the programmer to allocate memory manually for

example with malloc() but has to be freed up explicitly. Let’s evaluate which mapping sections

are used to store heap as well as common stack elements by creating a native function with a

buffer using malloc() and a common local integer variable. While malloc() creates raw memory

areas without any additional flags, mmap() can map a whole file, returns a pointer to its start

address and can set memory protection flags of the mapped area that are necessary when it shall

be executed, written or read later in the process (PROT_EXEC, PROT_READ, PROT_WRITE). Executing

code out of the heap is forbidden by default. Listing 4.7 shows how to read and print the mapped

content from C++ on Logcat.

Listing 4.7: Reading /proc/self/maps
FILE* fp;
char line[2048];
fp = fopen("/proc/self/maps", "r");
if (fp == NULL){

LOGE("Could␣not␣open␣/proc/self/maps");
return;

}
LOGD("Before:\n");
while (fgets(line, 2048, fp) != NULL) {

if (strstr(line,"triggeredString")){
LOGD("%s", line);

}
}
fp->_close;

Unfortunately, the amount of output lines is limited when using logging via Logcat which

implements a ring buffer with a device dependent size (“adb logcat -g”). That is a problem

when printing the whole memory mapping and can make an inspection confusing since a ring

buffer overwrites itself when overflowing. A possible solution would be to use an adb shell

executing “cat /proc/<PID>/maps” by hand (root rights needed) or to trigger the Logcat output

for specific strings. Getting an overview using the whole output and triggering it for specific parts

via Logcat afterward might be the best solution. To find the mapping of the executing library,

triggering the name library is enough. Its output is shown in the top three lines of Table 4.2. Three

regions of the library are mapped, with reading, writing and executing respectively. When creating

an integer variable and printing its address afterwards, it appears that it is located in a “[stack]”

marked region that is not included in the mapped ranges of the library and memory allocations by

the malloc() as well as the mmap() function are listed in areas marked as “[anon:libc_malloc]”

(printed in Table 4.2).
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Table 4.2: Memory Allocation Mapping

address perms offset dev inode pathname

b39f5000-b39f8000 r-xp 00000000 b3:1c 187593 .../lib/arm/libMemory.so

b39f8000-b39f9000 r–p 00000000 b3:1c 187593 .../lib/arm/libMemory.so

b39f9000-b39fa000 rw-p 00000000 b3:1c 187593 .../lib/arm/libMemory.so

be0c3000-be8c2000 rw-p 00000000 00:00 0 [stack]

b3940000-b39c0000 rw-p 00000000 00:00 0 [anon:libc_malloc]

4.4.2 Code Execution

So which function (malloc or mmap) is more suitable for just-in-time (JIT) code execution? As

explained in [Ben13], one should go with mmap() over malloc(). This is because of protection bits

that can only be set at memory page boundaries. The reason behind that is that with malloc()

it needs to be ensured manually that the allocation is aligned at a page boundary. If this is not

the case, a mprotect() call will have the side effect of disabling/enabling more memory than

actually required. Since mmap() is designed for mapping whole files, it will take care of that issue

by default.

In the end, “code” like in “Executing Code” stands for machine code that will get executed,

which isn’t anything more than a sequence of bytes (actually only a 1 and 0 stream and no

partitioned bytes). Up to this point, dynamic loading was performed through files that do have a

specific format that contains far more than just raw bytes that are getting executed (like shared

objects or ELF binaries, partially described in section 3.1.1) and API calls. There is a reason for

those kinds of formats to be used since they offer information to the linker which enables them to

function properly on every system using them. Generally there are two possibilities of invoking

and executing code and therefore native instructions. The first one is to map a well known format

like a shared object or an executable into memory but this would mean that the running “host”

process needs to be adapted in order to find those executable parts in the memory. The linker is

normally responsible for doing that before the program is executed. If a program is using external

libraries, a linker is responsible for linking them into the main binary, statically or dynamically.

So one would end up needing to write linker functionalities or patching the one mapped into

the process. It exists a proof of concept for a Linux x86_64 system shown in [Mim15] that can

load shared objects out of a file or an Internet socket right into the process space. A key part of

this program is the patching of “ld-2.19.so” that is already mapped in the process. Porting that

43



Chapter 4 Android Dynamic Native Code

library to Android is not that simple since Android is not using this library but an own linker at

/system/bin/linker. It would have to be investigated how that linker can be called/adapted in

order to achieve a similar behavior.

So let’s first try to invoke machine code directly without using any file format overhead like in

ELF binaries and shared objects. Again, a simple multiplication function can be implemented to

show a proof of concept, shown in Listing 4.8.

Listing 4.8: machineCodeMul.c
int mul(int a, int b){

return a*b;
}

This time, a cross-compiler and its included tools like objdump are useful. For this explicit

purpose, the arm-none-eabi toolchain was used in combination with an Arch Linux 64 Bit

system. It contains a gcc to compile C-Code as well as objdump to analyze object files. A

“arm-none-eabi-gcc -O3 -c machineCodeMul.c -o machineCodeMul.o” call outputs an object

file with a C source input. Objdump can then show mnemonics as well as its corresponding

machine code for every function which will be written to memory in the next step (output for

machineCodeMul.o’s mul() function shown in Table 4.3). The byte sequence 0xe0000091 represents

Table 4.3: arm-none-eabi-objdump -D machineCodeMul.o

00000000 <mul>:

0: e0000091 mul r0, r1, r0

4: e12fff1e bx lr

the raw machine code for the mnemonic equivalent of a multiplication (r0 = r1 * r0) and the

following sequence is responsible for exiting the function and returning the value. Since object

files are normally Little Endian, the bytes written to memory have to be reordered (0xe0000091

turns to 0x910000e0) before execution.

At first, a memory location will be needed and allocated. For that purpose a function is written

which takes the regions size as an input as shown in Listing 4.9.

44



Chapter 4 Android Dynamic Native Code

Listing 4.9: alloc_executable_memory()
void* alloc_executable_memory(size_t size) {

void* ptr = mmap(0, size, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE |
MAP_ANONYMOUS, -1, 0);

if (ptr == (void*)-1) {
LOGE("mmap");
return NULL;

}
return ptr;

}

It returns a void pointer to the starting address of the allocated region. Note that if no file is

being specified as a mmap() parameter (instead a “-1”), the MAP_ANONYMOUS flag has to be set.

Additionally, even though size can be specified in mmap(), it is limited to page size constraints.

This way it will allocate memory that is greater or equal to the given size. Also to mention is

that there might be a security hole since that allocated memory is already marked as writable

and also that region is likely to be bigger than the actual code that will get executed later. This

situation could be exploited by an attacker. Therefore it is slightly more secure to allocate memory

without execution permission at first since copying machine code to that location does only need

write permissions. The execution permission can be granted right before the function is called via

mprotect().

The next thing to do is to copy the bytes to be executed to that location. In order to do so,

a function is used that takes a pointer, specifying some bytes and finally calling memcpy() (see

Listing 4.10).

Listing 4.10: emit_code_into_memory()
void emit_code_into_memory(unsigned char* m) {

unsigned char code[] = {
0x91, 0x00, 0x00, 0xe0, // mul r0,r1,r0
0x1e, 0xff, 0x2f, 0xe1, // bx lr

};
memcpy(m, code, sizeof(code));

}

But how can this code actually be executed? A typedef is used to specify the function’s signature

matching the C source function that will get executed afterwards. It can be initialized by pointing

to the allocated memory region the way it does when writing a function the common way. The

function name is then a pointer to the process region, including the actual machine code. After

that, all that’s left to do is calling it like a common function. Listing 4.11 shows the actual

implementation via JNI C++ using the predefined methods from before and showing some

additional output information about the allocated memory spots.
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Listing 4.11: executeMachineCode()
JNIEXPORT void JNICALL

Java_schleemilch_ma_nativememory_MyNDK_executeMachineCode (JNIEnv *env,
jobject obj){
typedef int (*JittedFunc)(int, int);
size_t SIZE = 8;

void* m = alloc_executable_memory(SIZE);
LOGD("MALLOC␣ADDR:␣%p", m);
emit_code_into_memory((unsigned char*)m);

JittedFunc func = (JittedFunc) m;
LOGD("FUNC␣ADDR:␣%p", &func);

int a = 20;
int b = 4;
LOGD("Result␣of␣%d␣*␣%d␣=␣%d", a, b, func(a, b));

}

Note that the function typedef variable func is just treated as a variable, meaning its address lies

on the stack (like it is supposed to be) and the m’s address allocated by mmap() is displayed in the

/proc/self/maps output without any “[libc_malloc]” annotation or path but just left blank.

If the original C function does not contain any external library calls, the execution of machine

code directly out of memory is pretty straight forward, at least for one specific function like

demonstrated above for a multiplication. When library calls are performed inside of that method,

it gets much more complicated. Even for function calls within the same C file it is not a simple

task since the linker functionality is completely missing. Therefore, addresses to jump to, have to

be adapted by hand.

So in general, executing code out of memory is possible in Android ART but to be able to use it

productively, some more work has to be done in order to invoke whole shared objects or whole

binaries instead of machine code chunks. Just implementing an ELF parser at runtime to extract

all kinds of defined methods, would not be enough but additional alterations to the machine code

need to be done to adjust jump addresses to point to the the manually allocated memory address

containing the machine code.

4.5 Performance Comparison

Table 4.4 shows a performance comparison of described methods with regards to dynamic

code loading via DEX, shared objects and executables using Java and C/C++. While DEX

and the shared object rely on the same testing multiplication function, the tested executable

implemented a printf(). That means, that the measured values do not make any statement about

invoking executables versus invoking shared objects and DEX files but instead about the different
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implementation. As expected, loading a method out of a DEX at runtime is significantly slower

Table 4.4: Dynamic Code Performance Comparison

Object to Load Function Loading Implementation Time (ms)

DEX mul(int, int) Java 6-9

Shared object mul(int, int) Java 3-4

Shared object mul(int, int) C/C++ 2-4

Executable printf() Java 23-27

Executable printf() C/C++ 24-26

(takes nearly twice as long) than invoking from a shared object. The reason behind that is the

compiling step that has to be performed in order to produce the native code ODEX since ART can

not execute DEX byte instructions. However, the language used for invocation does not matter at

all. That makes sense since Apps are being compiled by the ART VM at installation time and the

output is native code in both cases (Java or C++). Differences should therefore only occur due to

the implementation of the transformation step - meaning the compiler.

4.6 General Memory Access

In general, an App can write into every memory section which is mapped with writing permission.

To find writable locations in the mapped space, the output of /proc/self/maps can be used via

triggering the permission triple “rw-p” string. Listing 4.12 for instance triggers the specific

writable /system/bin/linker entry. The size of the memory region can be parsed from the

matching line. “strtoll” can be used to do the actual parsing from a hexadecimal char sequence

to its “long long int” number to be casted to a pointer (=memory address) at the next step.

Usually a char pointer is used for the actual reading/writing process since char always has the

size of one byte. This way, when using array notation, each byte of the memory can be easily

accessed.
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Listing 4.12: memoryWriting()
JNIEXPORT void JNICALL Java_schleemilch_ma_nativememory_MyNDK_memoryWriting
(JNIEnv *env, jobject obj){

FILE * fp;
char line[2048];
fp = fopen("/proc/self/maps", "r");
if (fp == NULL){

LOGE("Could␣not␣open␣/proc/self/maps");
return;

}
while (fgets(line, 2048, fp) != NULL) {

if(strstr(line, "rw-p␣0001d000␣b3:19␣366") != NULL){
LOGD("%s", line);
break;

}
}
fp->_close;

char address[9];
strncpy(address,line,8);
address[8] = ’\0’;

long long int mp = (long long int)strtoll(address, NULL, 16);
void* vp = (void*)mp;
char* cp = (char*) vp;
LOGD("%p", cp);

LOGD("Print/Write␣Memory:");
for (int i = 0; i < 10; i++){

LOGD("%x", cp[i]);
cp[i] = i; //writing

}
LOGD("Print␣Memory:");
for (int i = 0; i < 10; i++){

LOGD("%x", cp[i]);
}

}

Being able to write to memory is generally a necessary precondition for advanced patching

techniques like adapting the linker and is therefore doable in ART.

4.7 Utilizations

The question is how those gathered methods of dynamically loading code can be used practically.

A few examples of how those dynamic code loading methods can be used are shown in the

following. These methods are meant to inspire the reader to investigate even more advanced

solutions.
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4.7.1 Licensing Improving

Licensing is a common way of controlling additional paid features of an App. The main attacking

point of licensing mechanisms is the one function call that checks the licensing status of its user.

As pointed out in [Ber15], the call which checks the license can be easily patched. In many cases it

is enough to use Lucky Patcher or similar software so that the function call automatically always

returns “licensed == true” or gets skipped entirely. How to solve this problem? A good practice

would be to deliver necessary parts of an App only when the licensing mechanism was called

successfully, meaning that a connection was successfully established between the App and the

licensing server that in turn will distribute the additional App content (see Figure 4.1). So even if

Figure 4.1: Dynamic App Content Loading

an attacker manages to skip the license call and trick the App into thinking it is licensed, he still

would not have access to additional functionalities because of missing application files that will

not be transmitted from the licensing server. As shown in this chapter, that kind of behavior could

be implemented in native code as well as in Java and is also relatively independent in terms of the

type of code to be loaded (DEX, shared library, binary). Nevertheless, if those additional App

code pieces are being downloaded successfully, with root rights, they can be pulled out of the

device. This means that an advanced attacker could again circumvent the licensing mechanism for

several devices after purchasing the App once and afterwards patching the license/code fetching

calls. A possible remedy for that issue could be continuous license checking calls that run in the

background and which are implemented as a service whenever there is an Internet connection

present (e.g. every 10 minutes). That service could not only delete files that should not be present

on a certain device but could also lead to an App crash with a meaningless message in case of a

missing legitimate license.

A simple way of crashing an application is to trigger a segmentation fault (SIGSEV) for instance

by writing to the NULL-pointer. In C/C++ that is simple since pointers do exist (see Listing 4.13).
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Listing 4.13: crashApp()
unsigned char *p = 0x00000000;
*p = 1;

That will cause an Android GUI message “<AppName> has stopped working”, but the ADB

interface will reveal the actual cause “Fatal signal 11 (SIGSEGV), code 1, fault addr 0x0 in tid

25271 (ma.nativememory)”. Additionally, debug information of all the CPU registers and their

Table 4.5: ADB SIGSEV Debugging

*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

Build fingerprint: ’google/.../2554798:user/release-keys’

Revision: ’0’

ABI: ’arm’

pid: 25515, tid: 25515, name:ma.nativememory

signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 0x0

r0 b4d56a80 r1 bea34ffc r2 00430000 r3 00000000

r4 7045ea08 r5 12c5b800 r6 00000000 r7 00000000

r8 12d8e100 r9 b4d76500 sl 12c5b800 fp 6fe4d244

ip b3b01259 sp bea34ff0 lr a211dee1 pc b3b0125a cpsr 600e0030

#00 pc 0000125a /data/app/<AppName>/lib/arm/libMemory.so

(Java_<package>_MyNDK_crashApp+1)

#01 pc 0044eedf /data/app/<AppName>/oat/arm/base.odex

(offset 0x2d5000) (void <package>.MyNDK.crashApp()+74)

#02 pc 0059dc9b /data/app/<AppName>/oat/arm/base.odex

(offset 0x2d5000) (void <package>.MainActivity.onCreate(android.os.Bundle)+854)

#03 pc 72da30a9 /data/dalvik-cache/arm/system@framework@boot.oat

(offset 0x1ec9000)

contents as well as the program counters (pc) and their corresponding methods that lead to the

crash will be displayed (output is shown in Table 4.5). With this information, an attacker can

find the entry-point (=the method) that leads to the crash from a Java perspective (onCreate()

-> MyNDK.crashApp()) as well as from a native perspective (library “libMemory.so” and function

name “Java_..._crashApp()”). So in turn, he could again try to patch those function calls in order

to prevent the App from crashing. Therefore, it is kind of a race between who can come up with

the smarter solution, the attacker or the protector of an App.
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4.7.2 String Encryption

Another idea of an dynamic code application would be the encryption of arbitrary strings that are

used inside of an App and which makes the content unreadable.

First it will be investigated if those strings can be decrypted on the fly using native code after

fetching the secret key from a trusted source (e.g. via HTTPS, a SE or the like). A precondition of

that concept is being able to locate those defined strings in the process memory and access them

using the NDK and therefore C/C++. The main idea is to define a priorly known value (“egg

value”) which is placed right before the actual string to locate it like shown in Listing 4.14 at Java

layer because in the end a string are just bytes and can not be identified by itself.

Listing 4.14: Egg Value Defining
int egg = 0x11223344;
String anyString = "toBeEncrypted";

To find the egg value, all the mapped areas can be swept to find about their current addresses

and triggering them to investigate the egg value as well as the actual string. The implementation

is shown in Listing 4.15 where the mapped frame has to be parsed to find the memory range to

sweep over.

Listing 4.15: Egg Value and String Memory Sweep
char adress[9];
FILE* fp;
char line[2048];

fp = fopen("/proc/self/maps", "r");
if (fp == NULL){

LOGE("Could␣not␣open␣/proc/self/maps");
return;

}
long long int mp;
void* vp;
char* lowerLimit;
char* upperLimit;
while (fgets(line, 2048, fp) != NULL) {

if(strstr(line, "rw-p") != NULL){
strncpy(adress,line,8);
adress[8] = ’\0’;
mp = (long long int)strtoll(adress, NULL, 16);
vp = (void*)mp;
lowerLimit = (char*) vp;

strncpy(adress,line+9,8);
adress[8] = ’\0’;
mp = (long long int)strtoll(adress, NULL, 16);
vp = (void*)mp;
upperLimit = (char*) vp;

for (char* i = lowerLimit; i < upperLimit - 4; i++){
if (i[0] == 0x44 && i[1] == 0x33 && i[2] == 0x22 && i[3] == 0x11){

LOGD("FOUND␣EGG␣at␣%p",i);
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LOGD("%s",line);
}

}
for (char* i = lowerLimit; i < upperLimit - 13; i++){

if (i[0] == ’t’ && i[1] == ’o’ && i[2] == ’B’ && i[3] == ’e’ && i[4]
== ’E’ && i[5] ==’n’ && i[6] ==’c’ && i[7] ==’r’ &&
i[8] ==’y’ && i[9] ==’p’ && i[10] ==’t’ && i[11] ==’e’ &&
i[12] ==’d’){

LOGD("FOUND␣STRING␣␣at␣%p",i);
LOGD("%s",line););
//Change something:
i[0] = ’S’;

}
}

}
}
fp->_close;

This makes sense only to trigger for regions that are marked as “rw-p”. Since values are stored as

Little Endian, the egg value bytes have to be reverted. The string itself cannot be found this way

(considered Little and Big Endian UTF-8, UTF-16 and Unicode). A reason could be that strings on

Java layer as well as on C/C++ are no primitive data types and there is also the conversion step of

dex2oat. However, that can be circumvented by using a byte array to store the string (“byte[]

strBytes = "toBeEncrypted".getBytes();”). When doing so and running the program, the

output will look like shown in Table 4.6.

Table 4.6: Egg String Hunting Output

FOUND EGG at 0x12c41390

12c00000-12de3000 rw-p 00000000 00:04 7019 /dev/ashmem/dalvik-main space

FOUND STRING at 0x12d3b22c

12c00000-12de3000 rw-p 00000000 00:04 7019 /dev/ashmem/dalvik-main space

It makes clear that the address difference between the egg value and the string is huge.

Additionally, the difference between those addresses is not stable when rerunning the program

so that the egg value misses its purpose completely (most likely due to Address Space Layout

Randomization (ASLR) that is completely implemented in Android since version 4.1). Since a

byte array is used, the egg value can be integrated into the array by simply merging them. So

how to apply changes of the found string bytes to the Android App? Changing in C++ shouldn’t

challenge since array indexing can simply be used (e.g i[0] = ‘S’ when the string is found).

Back in Java there are two options to apply the changes of used strings in TextViews and the

like. The first option is calling the setText() function manually of every changed item and

the second option is restarting the whole activity after the change occurred via finish() and

52



Chapter 4 Android Dynamic Native Code

startActivity(getIntent()). The second option would need variables that are initialized as

static to persist after the activity recreation. Otherwise the changes that have been made would

be overwritten. Listing 4.16 shows a Java App implementation of a string that will be changed

through native code as shown in Listing 4.15 (=function eggHunting()) and updated afterwards.

Listing 4.16: Native Code String Change
public class MainActivity extends AppCompatActivity {

byte[] cbytes = "toBeEncrypted".getBytes();
//static byte[] cbytes = "toBeEncrypted".getBytes();

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
final MyNDK ndk = new MyNDK();
final TextView eggText = (TextView)findViewById(R.id.textView);
try{

eggText.setText(new String(cbytes,"UTF-8"));
} catch (UnsupportedEncodingException e){

e.getMessage();
}
Button eggButton = (Button) findViewById(R.id.btn_change_egg);
eggButton.setOnClickListener(new View.OnClickListener() {

@Override
public void onClick(View v) {

ndk.eggHunting();
try{

eggText.setText(new String(cbytes,"UTF-8"));
} catch (UnsupportedEncodingException e){

e.getMessage();
}
//Alternatively...
//finish();
//startActivity(getIntent());

}
});

}
}

The groundwork for an implementation is set. So the next thing to deal with is the encryption

itself that can be implemented in very different ways. Strings defined on the Java layer could be

encrypted in the Java world using for instance the Cipher module and AES. After the encryption,

the egg bytes need to be added so that the native code can find those encrypted bytes and decrypt

them on the fly. That concept however is a great detour and leads to issues like different AES

implementations in Java/C++ as well as changing byte array sizes at Java layer. This is due to

AES producing encrypted data that is always a multiple of the AES block size but the payload

would most likely be smaller or greater. This means the Java array sizes won’t match in the NDK

world after the decryption and therefore the concept would be very fault-prone. The NDK could

know the final array size from an additional value after the egg bytes, but the array size in Java

would still be the one including the encrypted bytes. The principle is being shown in Figure 4.2.
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Figure 4.2: Dynamic Content Decryption using Eggs

Another approach would be to perform the whole encryption/decryption in native code while

programming the logic in Java. The work flow for the developer would look like this: Strings

are defined as byte arrays which are initialized by calling the corresponding NDK method for

encryption and returning the encrypted bytes. App objects of the App can use those bytes as if

they were strings by using a “new String(bytes)” call. After checking the license of the App,

those byte arrays can be replaced with bytes returned by the NDK decryption method. Listing 4.17

shows the example App and the corresponding NDK calls to demonstrate their signature.

Listing 4.17: NDK Encryption/Decryption
static final MyNDK ndk = new MyNDK();
public class MainActivity extends AppCompatActivity {

byte[] cbytes = ndk.encrypt("toBeEncrypted","secretkeyxxxxxxx");

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
final TextView eggText = (TextView)findViewById(R.id.textView);
eggText.setText(new String(cbytes));

//license check
if (isLicensed()){

eggText.setText(ndk.decrypt(cbytes,"secretkeyxxxxxxx"));
}

}
}

Listing 4.17 makes clear that one call (isLicensed()) is responsible for transforming an App to

have readable content since the key is hard-coded in this case and would therefore be the weak

spot in this approach. AES was used for encryption/decryption which is a symmetric method

for a proof of concept. To make this technique more secure, one could fetch the decryption key

inside of the isLicensed() method so that even when avoiding the license call, the text would

still remain encrypted. This can be achieved by using an asymmetric encryption technique for
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example “ElGamal”. The encryption key could then be hard-coded since the private counterpart

to decrypt would not be available.

Another solution would be to not encrypt those strings by calling a function but with an-

other program/script and only assigning the outcome to byte arrays - the encrypted bytes.

Then also a symmetric technique like AES can be used after fetching the decryption key

when being licensed. In the authors opinion that would be the most secure solution since

the string to be encrypted would not appear anywhere in the DEX or in memory as clear

text (sweeping over the memory reveals that the string to be encrypted in the assignment ndk.

encrypt("toBeEncrypted","secretkeyxxxxxxx");”) which is present in memory and could also

be present in the DEX). The downside of this approach is a bit of extra work for the developer

since he would need to call an encryption script for every string he wants to use and has to copy

those bytes into his Java source code. The NDK C++ AES encryption/decryption methods can be

found in Appendix B.

OpenSSL libraries are present in Android but are not intended to be used by the NDK. So it can

either be built manually as explained in [Wik16] or a precompiled version can be used like the

one compiled in [emi16]. Android Studio’s makefiles needs to be adapted in order to link those

libraries. The AES implementations shown in Appendix B are based on the precompiled version

(it’s precompiled for armeabi-v7a as well as for x86).

Overall, string encryption can be implemented quite secure. The question is if strings are

really a crucial part of an App that needs to be protected. Generally, this technique is not

limited to strings but can also be applied to any other App content. Implementing crucial

security mechanisms in native code like for example fetching decryption keys or doing the actual

encryption/decryption should increase the reverse code engineering resistance. Due to time

constraints an in-depth evaluation cannot be performed. Of course the NDK is not mandatory for

such a encryption/decryption technique but adds another layer of complexity for an attacker to

cope with.

4.8 Decompilation

From an attacker’s point of view it is interesting to know if and how those dynamic code loading

techniques can be decompiled. One of the best decompilers for ELF files and therefore theoretically

also for ART ODEXs as well as for shared libraries is the “Retargetable Decompiler” available

at [Kro16]. The decompiler is able to decompile machine code into assembly as well as into C

and Python source code. Additionally, control flow graphs for every method can be viewed and

55



Chapter 4 Android Dynamic Native Code

downloaded. The author offers a web interface for uploading and decompiling files. However,

the tool crashes when trying to decompile whole ART ODEX Apps. Having said that, it would

also not be very useful since DEX decompiling is much more reliable to produce Java code that

enables the understanding of the main App structure (assuming it is not a purely native App).

For native parts though, DEX decompiling will not be sufficient. First, those machine code files

(libraries, executables) need to be obtained from the device. If the NDK is used and files to be

reviewed are statically embedded, they can be pulled via the ADB and device root rights by first

copying those files to the /sdcard/ path and finally using adb pull.

The decompiled code is good in general but naturally more time consuming to understand

than its source code counterpart. Let’s take a look at the “encrypt()” function introduced in

subsection 4.7.2 and delineated in Appendix B. It has been chosen as reference function since it

uses the JNI as well the external AES library OpenSSL. Listing 4.18 shows the two signatures of

the function in original and decompiled source code.

Listing 4.18: Original vs Decompiled JNI Method Signatures
//Source...
JNIEXPORT jbyteArray JNICALL Java_schleemilch_ma_nativememory_MyNDK_encrypt (

JNIEnv *env, jobject obj, jstring str, jstring jkey);
//Decompiled...
int32_t Java_schleemilch_ma_nativememory_MyNDK_encrypt(struct struct_6 a1,

int32_t a2, int32_t a3, int32_t a4, int32_t a5, int32_t a6, int32_t a7,
int32_t a8, int32_t a9, int32_t a10, int32_t a11);

The first thing that attracts attention is that method names are maintained completely which offers

semantic information. A different story is the signature itself. While the original function returns a

byte array, the decompiled version only returns a 32-Bit integer value. The same thing holds for the

transferring parameters which cannot be recognized as strings. Structs handed over like “struct_6”

are defined on top of the file but then again only contain several int32_t values. CPU registers and

flags are represented by global variables starting with a “g” and are associated with their names

(R0, R1, LR, SP, . . . ). Since function names are equal to their original counterparts, calls using “env”

like “const char *input = env->GetStringUTFChars(str, NULL);” including its parameters,

can be interpreted quite good. The same goes for library calls like “AES_set_encrpyt_key()” but

in this case without parameters. The full decompilation of this native encrypt function can be

viewed in Appendix B.

So in general it is possible to understand those decompiled versions of source code especially

if a lot of function calls were used which helps to interpret the overall semantics. Especially

control flow graphs can help understanding the fundamental code intention. For untrained

readers though, the decompiled version looks very messy juggling with registers. A well versed
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programmer (maybe with assembler background), should be able to understand the code much

faster.

Going back to the develops that aim at protecting their source code, the author would suggest

to prevent attackers from obtaining crucial files in the first place, either by using encryption or

dynamically loading files. This approach is especially reliable if preconditions are fulfilled, but

not necessarily if an App needs to work reliable without internet access.
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ART Native Code Store

Since DEX code seems to be the vulnerable spot for Apps in terms of security topics as well as

for licensing and piracy issues, it makes sense to try to circumvent this file format by design.

When comparing the mobile device distribution system of Apps to desktop environments like

Linux, Windows or MacOS, it becomes clear that the main difference is the distribution of Java

like byte-code compared to binaries, at least for commercial software or the operating system

itself. So the question would be if it is possible to establish an App store that only distributes

native code instead of APKs. As derived in subsection 3.1.2, it is more than very likely that the

DEX file is still needed for addressing native code inside of an ELF. Nevertheless, that thought

experiment will be performed in order to investigate if it would generally be possible.

At first, an architecture that would be suitable for an alternative native code App store needs

to be defined. To keep the user experience as is, it would be beneficial to be able to still use

the Google Play App Store for distributing Apps. Therefore at least a bare-bone APK for the

application needs to be created that will then be placed into the Google Store. That application

can be installed the common Android way. At its first startup, it could connect to the actual

native code App store requesting the functional App in form of raw byte code or an ELF file that

somehow gets injected into the current bare-bone application. Since the Android ODEX ELF file

of an App has the DEX embedded, it would need to be adapted for instance leaving the DEX area

blank. So the skeleton version needs to implement at least the communication mechanism as well

as the self modifying code part that can handle the receiving code snippets (Figure 5.1 visually

shows the explained architecture). When assuming that no root rights are present, the possibilities

of injecting code and changing files are of course very limited. Remember that there exist two

identical DEX files after the installation process (post Android 5), one DEX inside of the original

base.apk package and one embedded inside the dex2oat output (ELF file). Let’s see to whom

those files belong at Linux layer and what permissions are set. Files stored at /data/app like the
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Figure 5.1: Native Code Store Architecture

base.apk, the lib/ folder as well as oat/ belong to the system user. So accessing the base.apk

container including its DEX should be impossible from the App context without root rights. The

same holds for the base.odex which also belongs to system and is marked as “rw-”.

Another way to check the possibilities of changing files dynamically at runtime are the mapped

files and their permissions that can be read out of /proc/self/maps using C/C++ as explained in

subsection 4.4.1. Remember that “mapped” means that those files are copied into the memory

and therefore changes made in mapped files are not taken over by the actual physical stored

counterparts. So changes written to mapped files would not be permanent. Since the last entity

of an App getting executed is the ODEX file, it is mapped into the process (Table 5.1 shows an

example). Several regions of the ODEX are mapped (offset marks the beginning relative to its file)

Table 5.1: App’s ODEX/ELF mapping

address perms offset dev inode rel. pathname

a1d05000-a1fda000 r–p 00000000 b3:1c 171546 app/.../oat/arm/base.odex

a1fda000-a22ab000 r-xp 002d5000 b3:1c 171546 app/.../oat/arm/base.odex

a22ab000-a22ac000 rw-p 005a6000 b3:1c 171546 app/.../oat/arm/base.odex

a22ac000-a2327000 r–p 006ed000 b3:1c 171546 app/.../oat/arm/base.odex

with different permissions. Interesting is the part including writing permissions and its content.

The corresponding ELF format was analyzed in section 3.1.1. To find out which specific section

is mapped as writable, a program can be written in order to dump the content of every section

including its offset. Other options would be to just use a hex editor or even the readelf tool. So

first, the ODEX has to be pulled out of the Android device for which root rights are required

(otherwise it is not possible to even navigate into the App directory). The file can then be moved

into the /sdcard path and copied from a computer using adb pull /sdcard/base.odex. It then
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becomes clear that the mapped file region marked as writable is located in the string table section

“.strtab”. That mapped section though is not useful in terms of altering the Apps own code since

it does not contain the DEX nor the ELF file. Therefore, a concept of distributing native code in

form of cross-compiled ELF files without root rights is not possible.
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Trusted Execution Environments (TEEs)

Trusted Execution Environments do have a great potential for achieving a new security level for

mobile devices. In [Jan13], an introduction to TEEs for the mobile domain is given and will be

recapped at this point. TEEs offer a parallel execution environment for applications including

storage. A crucial part is the isolation of the TEE from its counterpart, often called the Rich

Execution Environment (REE) running on top of an underlying Rich OS (Android, Windows

OS, Symbian OS). The main goal is to outsource sensitive operations from the REE to the TEE

so that sensitive data won’t leave the secure world and to prevent malicious code from the Rich

OS to interfere with this secure environment. Security applications often make usage of tokens

(hardware and software based, one-time tokens and two-factor authentication). TEEs do have

the potential of replacing them also with an increase of usability for users. Today, even every

smartphone includes a TEE. Since ARM CPUs are quite popular in mobile devices, it is likely

to find an ARM TrustZone TEE but there also exist implementations for Intel (TXT) and AMD

(Secure Execution Environment) that do behave quite similar. A general TEE overview is shown

in Figure 6.1. TEEs can therefore be seen as a direct copy of the common system, meaning that it

has for instance also its own Thread and Handler modes.

There do exist two main TrustZone technology concepts - the ARM TrustZone Technology for

Cortex-A and Cortex-M Processors as well as the ARM TrustZone CryptoCell [ARM16b]. As

mentioned before, the main concept of TEEs is to separate two worlds, for instance by choosing an

own physical CPU for each of them. A switch between them can be applied using a secure monitor

(application processor) or the hardware (microcontrollers). The separation however must not stop

with CPU separation but can also be applied to memory and software itself. The CryptoCell

expands the security possibilities by providing hardware support for the acceleration of security

processes. It includes more efficient cryptographic engines, secure boot options as well as a root
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Figure 6.1: General TEE Structure taken from [ARM16a]

of trust element including key management. It acts as a completely separate functional block to a

CPU. Let’s summarize the buzzwords like proposed in [Glo16]:

• Rich OS is the common environment/operating system of a mobile device which focuses

on applications and functionality but with a secondary concern for security matters. It is

therefore open for third party applications that can be downloaded by the user.

• TEE is built on top of the Rich OS and offers a trusted environment using software but most

importantly also hardware to achieve that goal. Only trusted applications are allowed to

execute code inside of that environment. Is is designed to overcome software attacks which

try to spread over from the Rich OS.

• Secure Element (SE) is a piece of hardware that is tamper-resistant within secure applica-

tions in which secure data can be stored. It has very limited functionality while offering a

high level of security.

Some relations between those technologies and their trade offs are shown in Table 6.1. The Rich

OS is trimmed for usability and therefore it has the best user interface support, it is easy to

develop Apps and the processing speed is as good as it can be on the specific hardware. What
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Table 6.1: Rich OS, TEE and SE Comparison taken from [Glo16]

Performance/Comfort

Technology User Interface Ease of Development Processing Speed

Rich OS ++ ++ ++

TEE + o ++

SE - o o

Security/Flexibility

Technology Attack Resistance Access Control Phys. Removable

Rich OS – - n.a

TEE + + n.a

SE ++ ++ ++

the TEE is lacking compared to the Rich OS is the ease of developing Apps and part of the user

interface possibilities. However, the processing speed is quite the same since there is no additional

abstraction layer but only a hardware separation. The Secure Element cannot be controlled via an

UI, it is not very intuitive to develop applications and the processing speed is limited to the SE

hardware which has likely the worst performance. When looking from a security perspective, the

Rich OS is as expected not as good as the comparing technologies that are designed especially for

that purpose. So the attack resistance is low compared to TEEs and SEs and is limited to SE Linux

and Android functionalities as well as to the Access Control. Physical removability does not make

sense for an operating system as well as for TEEs but is a benefit of SEs which are the most secure

solution.

TEEs are a great concept offering an environment that can be trusted for sure. For common

developers however it is not that simple to make use of TEEs. The crucial part is to be able to

write trusted applications (TAs) that are allowed to be run in the TEE. Right now, a fee must be

paid to receive the necessary framework for writing those Apps. So in theory it is a nice concept

but practically it lacks in terms of usability for common developers due to the fee barrier. TEEs

are based on ensuring that no malicious developer/App resides in its environment. However if

TEEs will open up to more and more developers, that will again be hard to guarantee.
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[Jeo12] introduces an anti-piracy mechanism that is based on class separation and dynamic loading

at Java level. The main concept is to separate the app source code into an “Incomplete Main

Application” (IMA) and a “Seperate Essential Class” (SEC) that gets downloaded at first use of

the app and is only decrypted after authentication. For loading, common DexClassLoading is

used as shown in section 3.3.2. This method is still possible after the ART transition but shas the

downside of enabling reverse code engineering of the additional SEC element after a one time

App execution. It should be vulnerable versus dynamic reverse code engineering.

[Fal15] addresses the problem of developers implementing unsafe variants of dynamic code

loading techniques by calling common Android APIs like dexClassLoader. The result is a wrapper

(SecureDexClassLoader) for dynamic code loading techniques again at Java layer that includes

security checks for fetching code from an URL, storing the code in an app-private directory,

ensuring integrity and developer authenticity of the code, and finally load it. It is a useful practical

tool for developers who are not familiar with all kinds of security risks associated with using

dynamic code loading techniques. In the scope of copy protection mechanisms, it is not that

revolutionary though but could be used when implementing a dynamic code loading mechanism

on Java layer.

Since dynamic DEX loading is still possible, Android Packers might still be a good choice of

protecting intellectual property. In [Yu14] an introduction to Android Packers is given, explaining

the difference between packers and obfuscation as well as introducing popular packers like

ApkProtect, Bangcle and Iliami and addressing future challenges in the packer domain. [Yue14]

on the other side analyzes the major techniques used by the most common packers also addressing

ART as well as Dalvik. The novel system “DexHunter” they developed is able to recover most

DEX files so their work indicates that packaging services are not as secure as they appear to be.
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Talking about the protection of intellectual property, [San12] shows a concept of inserting a

forensic mark to an App that inserts buyers information right into the classes.dex. It then

describes a technique of verifying the app license with the mark as a foundation. This technique

could be added to a license mechanism to increase its robustness.

[Ash15] proposes a visual method of analyzing Android executable files including ART to

reveal patterns. Although it focusses mainly on finding anomalies in malicious Apps, it could

also be used to classify common Apps and possibly gain additional information with less effort

compared to other reverse code engineering techniques. The authors are parsing the DEX file and

coloring its file structure, transfering the gained information to its corresponding binary.

[Tim14] explores secure key storage options in Android that are needed for instance for

encryption/decryption scenarios. It compares the built in feature to the Bouncy Castle key storage

solution. The security of the built in feature depends on the device and might not make use of

ARM TrustZone features. Bouncy Castle on the other hand can provide even stronger security

guarantees.

Since the Google Play Store aims to be malware free using the Google Bouncer that scans

new Apps for malicious code, [Dom] shows that it can be surpassed using a technique called

“Divide-and-Conquer” that is basically built on using dynamic code loading. The authors are

concluding that neither static nor dynamic analysis is sufficient since attackers can write malware

that behaves differently in analysis environments. They are called “split-personality” malware.

Anti-virus scanners can not detect them at runtime since monitoring of third party Apps at

runtime is not possible.

Already in 2008 there was a concept quite similar to todays TEEs that is described in the paper

[Jon08] and is called “Flicker”. A system is introduced that offers complete isolation from the

Rich OS (also from a hardware perspective) while trusting a very small code base. It can be seen

like a predecessor to TEEs.

“VirtualSwindle” is an App described in [Col14] that aims at automatically attacking in-app

purchasing with the goal of accessing the content the user should purchase for free. A specific

implementation of purchasing mechanism is being attacked in a Dalvik environment. Instead of

revers engineering Apps to be patched, a system is developed that can inject arbitrary code into

a process. The introduced app runs in the background and attacks every App using the in-app

billing mechanism. Authors do make clear that their App does not reveal a weakness in Google’s

in-app billing mechanism but in lazy implementations of developers. However, since it has been

developed for Dalvik byte-code, it should not be possible to use it under ART anymore.

65



Chapter 7 Related Work

In [Seb16] it is analyzed how effective obfuscation techniques are in comparison to their

counterpart, the code analysis and if it can keep up with its developing pace. It makes clear

that it is still an arms race between software developers and code analysts. A result indicates

that the effectiveness of obfuscation highly depends on the analyst and his available resources

(computational and financial). So the arms race between those two groups persists and obfuscation

versus a human analyst is an ongoing challenge. If an attacker has enough time and resources he

will very likely be able to reveal the actual program flow and intention.

Root checks are a possibility to add an additional layer of security by preventing App instal-

lations when a device is rooted. Despite the fact that it may offend power users, [Nat15] shows

possible circumventions for those root checks. The tool “AndroPoser” is introduced which can

suppress root checks and can make rooted devices appear as if they were non-rooted devices.

Root checks often rely on path checks of tools that are only present when a device is rooted (like

the tool “su”). One very simple solution is to just rename that “su” binary. Other root check

methods and their circumventions are being described.
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Conclusion

The runtime transition from the Android specialized virtual machine (Dalvik VM) to the Android

Runtime ART, introduced as an option in Android 4.3, did not change the difficulty of reverse

engineering Android Apps. So they are in general still just as vulnerable to patching, theft and

code injection as they were before.

However, internal mechanisms of ART do change the feasibility of copy protection mechanisms

which are based on byte code interpreted by the virtual machine, like hiding whole methods in

the DEX or inserting Junk-Bytes.

Since Apps still are distributed via the DEX format, the file format is still very present under

ART. What the runtime transition changed, is the optimization step, that now produces an ELF

file with AOT compilation, compared to the optimized DEX (ODEX) that relied on JIT. Although

ELFs can normally run by themselves or are getting linked in another executable, the invocation

of methods still happens through DEX. Dynamic obfuscation techniques regarding DEX files are

still applicable in general. But it has to be kept in mind, that there is a conversion step between

loading that file and execution. That could lead to performance issues depending on the file size.

The possibility of using C/C++ via the Android NDK is a powerful tool to dynamically modify

the own code or loading additional content. Dynamic shared object loading from a file, as well as

executing an external binary, can be accomplished using Java or the NDK. For security reasons, it

would be interesting to dynamically load code directly out of memory, instead of writing it to a

file first. This is generally possible since memory can be allocated by the App as well as marking

its content as executable. As shown, that technique can be used to execute machine code directly.

Invoking whole file formats is more complex, since linker functionalities are missing and need

to be implemented manually. One idea was to distribute only native code instead of the reverse

engineering prune DEX format. This concept did not work due to missing permissions.
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The NDK provides a great contribution to copy protection mechanisms. Licensing can be

improved by concepts that make the license call mandatory for the App to work properly. License

mechanisms could include key fetching to decrypt App content.

Trusted execution environments are a great idea that has disadvantages in terms of usability for

everyday developers. However, the can be used to make safe license calls or to stream content. A

paid fee is required to write trusted Apps.

So, to achieve a secure copy protection mechanism, individual solutions using dynamic code or

encrypting content are promising but key fetching mechanisms as well as the key storage have to

be chosen wisely.

Nevertheless, it has to be kept also in mind, that obfuscation techniques, especially those that

are dynamically loading code, can be abused also by malware to hide its true intention from static

analysis tools.

8.1 Future Work

To provide a secure copy protection mechanism, some more work has to be done and it is an

ongoing task. It could be analyzed in greater detail than described in section 3.1, how the method

invocation of ELF methods into the forked Zygote process works. This may reveal new possibilities

of circumventing the DEX format or of sparing out crucial parts that are not needed.

Possibilities of dynamic native code shown here are proof of concepts and would need to be

used adequately. Especially more clever techniques regarding the licensing mechanism using

cross-interlocking of native and Java code could be analyzed. Also asymmetric encryption as well

as key handling needs more investigation.

A promising future work could include loading common files like executables right into

memory and executing them. That would introduce a new layer of complexity from an attackers

perspective, since there won’t be any files residing on the file-system. Finally, the security (reverse

engineering capability) of Java calls compared to Java calls through the JNI also needs further

evaluation.
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Appendix A
NDK Project

Figure A.1 shows the interesting part of the Android Studio project tree with parts that has to be

changed in order to make it work.

/
app/

src/
main/

assets/
java/

package.name/
MainActivity.java
MyNDK.java

jni/
Android.mk
Application.mk
mylib.cpp

libs/
arm64-v8a/

libmylib.so
armeabi/

libmylib.so
armeabi-v7a/

libmylib.so
mips/

libmylib.so
mips64/

libmylib.so
x86/

libmylib.so
x86_64/

libmylib.so
build.gradle

gradle.properties

Figure A.1: NDK Project Tree Cutout
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Listing A.1: MainActivity.java

package ma.schleemilch.nativestuff;

import android.content.Context;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;

public class MainActivity extends AppCompatActivity {

public static String TAG = "MYLOG";

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

MyNDK ndk = new MyNDK();
ndk.showNativeMessage("Success");

}
}

Listing A.2: MyNDK.java
package ma.schleemilch.nativestuff;

public class MyNDK {
static {

System.loadLibrary("MyLib");
}
public native void showNativeMessage(String msg);

}

Listing A.3: mylib.cpp
#include "ma_schleemilch_nativestuff_MyNDK.h"
#include <string.h>

#include <android/log.h>

#define LOG_TAG "MYLOG"

#define LOGD(...) __android_log_print(ANDROID_LOG_DEBUG, LOG_TAG, __VA_ARGS__)
#define LOGE(...) __android_log_print(ANDROID_LOG_ERROR, LOG_TAG, __VA_ARGS__)

JNIEXPORT void JNICALL Java_ma_schleemilch_nativestuff_MyNDK_libExe
(JNIEnv * env, jobject jobj, jstring msg){

const char *msg = env->GetStringUTFChars(msg, NULL);
LOGD("My␣native␣message:␣%s", msg);

}

iii



Appendix A NDK Project

Listing A.4: Android.mk
LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := mylib
LOCAL_SRC_FILES := mylib.cpp
LOCAL_LDLIBS := -llog
include $(BUILD_SHARED_LIBRARY)

Listing A.5: Application.mk
APP_MODULES := mylib
APP_ABI := all

Just showing the adapted part inside of defaultConfig{...}:

Listing A.6: build.gradle
ndk {

moduleName "schleemilch"
}
sourceSets.main {

jni.srcDirs = []
jniLibs.srcDir "src/main/libs"

}
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NDK AES Implementation

Listing B.1: AES Encrypt()
#include "openssl/aes.h"
uint8_t iv[16] = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10};
uint8_t inputslength;

JNIEXPORT jbyteArray JNICALL Java_schleemilch_ma_nativememory_MyNDK_encrypt (
JNIEnv *env, jobject obj, jstring str, jstring jkey){
const char *input = env->GetStringUTFChars(str, NULL);
const char *tkey = env->GetStringUTFChars(jkey, NULL);
int keylength = env->GetStringLength(jkey)*8;
uint8_t key[keylength/8];
memcpy(key, tkey, keylength/8);

uint8_t aes_key[keylength/8];
memset(aes_key, 0, keylength/8);
inputslength = env->GetStringLength(str);
uint8_t aes_input[inputslength];
memcpy(aes_input,input,inputslength);

uint8_t iv_enc[AES_BLOCK_SIZE];
memcpy(iv_enc,iv,AES_BLOCK_SIZE);

const size_t encslength = ((inputslength + AES_BLOCK_SIZE) / AES_BLOCK_SIZE
) * AES_BLOCK_SIZE;

unsigned char enc_out[encslength];
memset(enc_out, 0, sizeof(enc_out));

AES_KEY enc_key, dec_key;
AES_set_encrypt_key(aes_key, keylength, &enc_key);
AES_cbc_encrypt(aes_input, enc_out, inputslength, &enc_key, iv_enc,

AES_ENCRYPT);

jbyteArray ret = env->NewByteArray(AES_BLOCK_SIZE);
env->SetByteArrayRegion(ret,0,AES_BLOCK_SIZE, reinterpret_cast<jbyte *>(

enc_out));
return ret;

}
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Listing B.2: AES Decrypt()
JNIEXPORT jbyteArray JNICALL Java_schleemilch_ma_nativememory_MyNDK_decrypt (

JNIEnv *env, jobject obj, jbyteArray jencrypted, jstring jkey){
const char *tkey = env->GetStringUTFChars(jkey, NULL);
int keylength = env->GetStringLength(jkey)*8;
uint8_t key[keylength/8];
memcpy(key, tkey, keylength/8);

uint8_t aes_key[keylength/8];
memset(aes_key, 0, keylength/8);

uint8_t iv_dec[AES_BLOCK_SIZE];
memcpy(iv_dec,iv,AES_BLOCK_SIZE);

unsigned char dec_out[inputslength];
memset(dec_out, 0, sizeof(dec_out));

const size_t encslength = ((inputslength + AES_BLOCK_SIZE) / AES_BLOCK_SIZE
) * AES_BLOCK_SIZE;

unsigned char enc_out[env->GetArrayLength(jencrypted)];
env->GetByteArrayRegion(jencrypted,0, sizeof(enc_out), reinterpret_cast<

jbyte*>(enc_out));

AES_KEY dec_key;
AES_set_decrypt_key(aes_key, keylength, &dec_key);
AES_cbc_encrypt(enc_out, dec_out, encslength, &dec_key, iv_dec, AES_DECRYPT

);

jbyteArray ret = env->NewByteArray(sizeof(dec_out));
env->SetByteArrayRegion(ret,0, sizeof(dec_out), reinterpret_cast<jbyte *>(

dec_out));
return ret;

}

jni/
Memory/

armeabi-v7a/
lib/

libcrypto.a
libcrypto.so
libssl.a
libssl.so

openssl/
aes.h
...

x86/
Android.mk
memory.cpp
schleemilch_ma_nativememory_MyNDK.h

Android.mk
Application.mk

Figure B.1: NDK AES Implementation JNI Tree
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Listing B.3: Memory/Android.mk
LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)
LOCAL_MODULE := opencrypto_static
LOCAL_SRC_FILES := $(TARGET_ARCH_ABI)/lib/libcrypto.a
include $(PREBUILT_STATIC_LIBRARY)

include $(CLEAR_VARS)
LOCAL_MODULE := Memory
LOCAL_SRC_FILES := memory.cpp
LOCAL_LDLIBS := -llog
LOCAL_C_INCLUDES:= openssl
LOCAL_SHARED_LIBRARIES := opencrypto_static
include $(BUILD_SHARED_LIBRARY)

Listing B.4: Decompiled AES Encrypt()
int32_t Java_schleemilch_ma_nativememory_MyNDK_encrypt(struct struct_6 a1,

int32_t a2, int32_t a3, int32_t a4, int32_t a5, int32_t a6, int32_t a7,
int32_t a8, int32_t a9, int32_t a10, int32_t a11) {
struct struct_6 v1; // 0x1560_7
struct struct_6 v2; // 0x1594_8
g32 = a4;
struct struct_6 * v3;
g34 = (int32_t)&v3;
g35 = *(int32_t *)0x6f78;
g33 = a3;
g29 = 0;
g2 = false;
g4 = true;
_ZN7_JNIEnv17GetStringUTFCharsEP8_jstringPh((struct struct_6 *)a1.e0, (char

*)a3);
g2 = false;
g4 = true;
int32_t v4 = g31; // 0x1552
_ZN7_JNIEnv17GetStringUTFCharsEP8_jstringPh((struct struct_6 *)v4, (char *)

g32);
g26 = v4;
int32_t v5 = g31; // 0x155e
v1 = (struct struct_6){

.e0 = 0,

.e1 = 0
};
v1.e0 = v5;
_ZN7_JNIEnv15GetStringLengthEP8_jstring(v1, g32, g5);
g32 = v5;
int32_t v6 = v5 + 7 & -8; // 0x156c
g36 = v6;
int32_t v7 = g37 - v6; // 0x1572
memcpy((char *)(v7 + 8), (char *)g26, v5);
int32_t v8 = v7 - g36; // 0x157c
g37 = v8;
int32_t v9 = v8 + 8; // 0x1580
g26 = v9;
int32_t v10 = g32; // 0x1584
g2 = false;
g4 = true;
memset((char *)v9, g5, v10);
int32_t v11 = g33; // 0x158e
int32_t v12 = g31; // 0x1590
g33 = 0x59e0;
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v2 = (struct struct_6){
.e0 = 0,
.e1 = 0

};
v2.e0 = v12;
_ZN7_JNIEnv15GetStringLengthEP8_jstring(v2, v11, v10);
int32_t v13 = g33 + 0x159c; // 0x1598
g33 = v13;
int32_t v14 = *(int32_t *)v13; // 0x159a
g33 = v14;
int32_t v15 = v12 % 256; // R11
*(char *)v14 = (char)v12;
int32_t v16 = g37 - (v15 + 7 & 504); // 0x15ac
int32_t v17 = v16 + 8; // 0x15b2
g36 = v17;
memcpy((char *)v17, (char *)v3, v15);
int32_t v18;
int32_t v19 = &v18; // 0x15c0_0
int32_t v20 = *(int32_t *)0x6f80; // 0x15ca
g35 = v19;
int32_t v21 = v20; // 0x15d2
// branch -> 0x15d2
while (true) {

int32_t v22 = v21 + 8; // 0x15d4
*(int32_t *)v19 = *(int32_t *)v21;
*(int32_t *)(v19 + 4) = *(int32_t *)(v21 + 4);
int32_t v23 = v19 + 8; // 0x15de
g28 = v23;
g23 = v23;
if (v22 == v20 + 16) {

int32_t v24 = v15 + 16 & 496; // 0x15ec
int32_t v25 = v16 - v24; // 0x15f0
g37 = v25;
int32_t v26 = v25 + 8; // 0x15f4
g27 = v26;
memset((char *)v26, g5, v24);
g25 = 8 * g32;
int32_t v27;
int32_t v28 = &v27; // 0x1600_0
g32 = v28;
g24 = g26;
g29 = v28;
AES_set_encrypt_key();
g29 = (int32_t)*(char *)g33;
*(int32_t *)(g37 + 4) = 1;
g30 = v28;
*(int32_t *)g37 = g35;
AES_cbc_encrypt(g36, g27);
int32_t v29 = g31; // 0x1620
g25 = 16;
g2 = false;
g4 = false;
g24 = v29;
int32_t v30 = *(int32_t *)(*(int32_t *)v29 + 704); // 0x1626
g30 = v30;
g23 = 0x162d;
((int32_t (*)())(v30 & -2))();
int32_t v31 = g31; // 0x162c
g29 = 0;
int32_t v32 = *(int32_t *)(*(int32_t *)v31 + 832); // 0x1634
g33 = v32;
g30 = 16;
g2 = false;
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g4 = false;
int32_t v33 = g24; // 0x163a
g32 = v33;
g24 = v31;
g25 = v33;
g23 = 0x1643;
((int32_t (*)())(v32 & -2))();
int32_t v34 = g34; // 0x1642
int32_t v35 = *(int32_t *)(v34 + 4); // 0x1642
g25 = v35;
uint32_t v36 = *(int32_t *)(v34 + 268); // 0x1644
g29 = v36;
g24 = g32;
int32_t v37 = *(int32_t *)v35; // 0x164a
g30 = v37;
uint32_t v38 = -2 - v37 + v36; // 0x164c
g3 = ((v38 ^ v36) & (v38 ^ -v37)) < 0;
g2 = v36 - v37 < 0;
g4 = v36 == v37;
g1 = v38 <= v36;
int32_t v39; // 0x1654
if (v36 != v37) {

// 0x1650
__stack_chk_fail();
v39 = g34;
// branch -> 0x1654

} else {
v39 = v34;

}
// 0x1654
g31 = *(int32_t *)(v39 + 276);
g32 = *(int32_t *)(v39 + 280);
g33 = *(int32_t *)(v39 + 284);
g34 = *(int32_t *)(v39 + 288);
g35 = *(int32_t *)(v39 + 292);
g36 = *(int32_t *)(v39 + 296);
g26 = *(int32_t *)(v39 + 300);
g27 = *(int32_t *)(v39 + 304);
g37 = v39 + 312;
((int32_t (*)())*(int32_t *)(v39 + 308))();
return *(int32_t *)(g31 + g34);

}
// 0x15d2
v19 = v23;
v21 = v22;
// branch -> 0x15d2

}
}

ix
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