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Abstract

Every person displays characteristic patterns of behavior, that can be used to verify
her or his identity. With the rise of personal smart devices, e.g. smartwatches or smart-
phones, these patterns can be recorded and analyzed. The resulting characteristics can
be used as an additional factor in Multi-Factor Authentication or used as an intrusion de-
tection system by reporting anomalies. In this thesis, we analyze the patterns for motion,
determined by measuring acceleration. We then evaluate how to efficiently, accurately,
and practically extract behavioral patterns, identifying individual users. Furthermore,
we developed Android smartphone and smartwatch app prototypes demonstrating the
identification capabilities.

Menschen besitzen charakteristische Verhaltensmuster, durch die sie eindeutig identi-
fiziert werden kdnnen. Mit standig mitgefiihrten Mobilgeraten wie Smartphones oder
Smartwatches, kdnnen diese Muster aufgezeichnet und analysiert werden. Die daraus
abgeleiteten Merkmale konnen als zusatzlicher Faktor bei Multi-Faktor-Authentifizie-
rungsverfahren oder als Angriffserkennungssystem eingesetzt werden. Im Rahmen
dieser Arbeit werden diese Muster anhand von Beschleunigungssensoren hinsichtlich
effizienter und praziser Verhaltensmustererkennung analysiert. Diese Mustererken-
nungsverfahren werden durch Prototypen einer Android Smartphone und Smartwatch
App demonstriert.
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1 Introduction

Modern computer systems are facing various threats of being attacked. Users are
one of the most commonly exploited gateways to computers, especially with social
engineering and fishing. Most systems currently rely on a standard combination of
username and password. In 2009, Aloul et al. described the most common security
concerns with passwords: “Users tend to use easy-to-guess passwords, use the same
password in multiple accounts, write the passwords or store them on their machines,
etc. Furthermore, hackers have the option of using many techniques to steal passwords
such as shoulder surfing, snooping, sniffing, guessing, etc.” [4] .

Additionally, many users are constantly logged in to services with their mobile devices,
despite not having appropriate security measures for their devices. On most Android
phones, full disk encryption is not enabled by default [33], which leads to another attack
vector for identity theft.

Aloul et al. introduced a system of One Time Passwords (OTPs) using mobile phones,
which significantly improves security by introducing a second factor of authentication.
However, for authentication situations on smartphones themselves the OTP mechanism
is rendered pretty much useless, as the second factor is in fact on the same device.

1.1 Vision

The vision of this thesis is to provide a way to easily detect individual users by a short
authentication sequence based on acceleration patterns. Even though this does not
necessarily qualify as cryptographically secure authentication, behavioural patterns
and keystroke recognition can be used as biometric authentication aids. For example,
Bhargav-Spantzel et al. [7] described a system to extract cryptographic biometric keys
from biometric data and showed how this can be combined with additional other proofs
of identity to provide strong authentication.

With acceleration pattern recognition, we are able to create an authentication mech-
anism with zero additional user interaction. This allows higher frequency user re-
authentication without disturbing or annoying the user. That means, instead of prompt-
ing the user with a login screen every 24 hours, we can measure his or her acceleration
patterns every single time sensitive information is accessed. Therefore we can not only
provide basic login authentication, but also provide a way for users to stay authenticated
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for longer sessions or even detect when someone else hijacks a valid session. Since
the time between two authentication requests can be arbitrarily small, an attacker who
gets control over the current session will be deauthenticated quickly, thus minimizing
the potential damage.

1.2 Single user licenses

Another application of this technique is to identify individual users, even when using
the same device. This might not only be useful in terms of individualizing the software
according to the current user, but also for monitoring software usage.

A common licensing model for software are per-user licenses, i.e. n licenses for n
users of the software. However, this license model currently can not be enforced since
software is installed on a single physical device, which may be shared among users.
This led to most software companies licensing their software per-installation instead
of per-user. As of 2016, many users tend to have multiple devices and also want to
use their licenses on all of them. This resulted in a trend to bind software licenses to
user accounts instead of devices. The trend is also prevailing in modern Software as a
service (SaaS) models, which do not require installation of the software on end-user
devices anymore. A possible circumvention of these account bound licenses is account
sharing. This imposes a real problem, not only for software licensors, but also for other
access providers. For example a consumer research from Parks Associates reports,
that “6% [of video streaming users] are exclusively using shared accounts to access
subscription” [29].

The methods described in this thesis provide a powerful way to detect individual
users, sharing physical devices or accounts. Thus with this approach we might reduce
copyright infringements that could not be detected beforehand.

1.3 Multi-factor authentication

Multi-factor authentication (MFA) is a technique to enhance security in access con-
trol situations. It combines multiple forms of authentication mechanisms, based on
conceptually different approaches: Knowledge, e.g. passwords or PINs; possessions,
e.g. keys or bank cards; and biometric characteristics, like fingerprints or behavioural
patterns.

A typical authentication attempt with MFA is only successful, when all needed factors
are present. The most common example for MFA is banking, where one individual needs
to be in possession of the banking card and also needs to know the card’s PIN. However,
an attack vector targeting this system is copying the banking card while the attacked




1 Introduction

person does not notice, that his card is being attacked. This attack vector is also
possible with biometric characteristics and even relatively easy, as many biometric
traits are publicly visible. Fingerprints have proven to be copyable with low cost [15]
and new high resolution cameras allow to photograph fingerprints and eyes in high
enough quality to spoof many scanners [16]. These attacks can be adapted to other
authentication systems based on visible biometric traits, such as iris recognition or
Android’s Face Unlock.

For biometric authentication to be sufficiently secure, the traits need to be intrinsic,
i.e. not publicly visible and hard to copy. Acceleration based motion detection matches
these requirements, as recording of these patterns is only possible with physical access
to the authentication device or extremely precise monitoring of all body movement of
the user.

1.4 Smart mobile devices

Smart devices are electronic devices, that feature wireless communication, e.g. WiFi or
Bluetooth. Smart mobile devices are smart devices, that are typically worn or kept in
close proximity to the user. This usage usually results in small form factors and little
weight. These devices are most often commodity devices and used frequently. Therefore,
smart mobile devices are ideal to provide authentication, since the authenticating user
is accustomed using the device.

Currently common examples for smart mobile devices are smartphones. With the
release of the Apple Watch last yearin 2015, smartwatches became increasingly popular.
With a rapid miniaturization of smart mobile devices, a consequent next step would
be even smaller devices, like smart-rings. In Figure 1.1 a size comparison between the
three mentioned categories is shown.

One common trait of almost all smart mobile devices is the presence of acceler-
ation and gyroscope sensors. These sensors are reasonable small and available as
integrated circuits to fit in even the smallest devices. For this thesis, we are focusing
on acceleration sensors to detect behavioural patterns.

1.4.1 Smartphones

Smartphones are the most capable of the smart mobile devices discussed herein.
Smartphones usually have numerous wireless communication possibilities and thus
function are a personal data-hub, to which other personal devices connect and com-
municate over. Typical connections for Smartphones are: Cellular network (e.g. GSM,
UMTS), WiFi, Bluetooth and Near Field Communication. Smartphones are also packed
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Figure 1.1: Examples for smart mobile devices that are worn in close proximity of the
user (from left to right): A OnePlus One smartphone, a Sony SmartWatch 3,
Smarty Ring concept design [1, 2, 3]

with sensors, which can be utilized in apps and typically include acceleration as well as
gyroscopic sensors for movement detection.

The three major operating systems of smartphones are Android, iOS and Windows.
As shown in Figure 1.2, Android has the biggest market share of over 80% and an app
targeting both Android as well as iOS can reach about 98% of the smartphone market.

1.4.2 Smartwatches

Smartwatches, as displayed in the middle of Figure 1.1, are a newer iteration of wearable
smart mobile devices. Early designs of smartwatches (essentially calculators) came
up in the 1980’s and first prototypes were released in the 1990's. However, modern
smartwatches feature network connectivity and are usually paired with smartphones
via Bluetooth.

Currently, the biggest market share, as shown in Figure 1.3, with over 50% in smart-
watches has Apple with the Apple Watch, running watchOS. Android Wear, an adapted
version of the Android operating system for smartwatches, has the second highest
market share. All in all, the smartwatch market is more diverse than the smartphone
market, with several independently developed operating systems like Pebble OS or
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Figure 1.3: Market share of wristware operating systems in 2015 [19]
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Samsung’s Tizen. Nonetheless, Android Wear has the advantage of having consistent
Application Programming Interfaces (APIs) with Android.

With developing apps for Android in combination with small adaptions to Android
Wear, developers can target a huge percentage of smartphones and also develop smart-
watch apps with virtually no overhead.

1.4.3 Smart-rings

Smart-rings are the next step towards even smaller wearables. The concept of these
rings is to provide the same basic “smart” functionality comparable to a smartwatch,
without the need to actually wear a watch. For example displaying notifications or
providing authentication for payment processes can also be done solely on a smart
ring.

However, there are no commercially available smart-rings yet, but only design con-
cepts and prototypes. Specially developed smart-rings with acceleration sensors should
be able to identify users based on their motion patterns. Future work might provide
basic functionality on smart-rings, but definitely will need adaption to special purpose
operating systems.

1.5 Pattern recognition

Pattern recognition is a branch of machine learning, that is focused on determining the
similarity of data sets. This is usually used to detect predefined patterns, e.g. reading
numbers or detecting gestures. However, this approach can also be used to generally
group similar data sets and classify these without predefined categories. Grouping
acceleration patterns is the main goal of this thesis, so pattern recognition algorithms
are a main focus.

The pattern recognition concepts and techniques are largely based on Bishop's book
“Pattern Recognition and Machine Learning” [8]. We are especially using the concept
of a three staged data processing, as shown in Figure 1.4. In this concept, we are first
record the raw data, then preprocess it and extract a set of predefined features before
using a standard classification algorithm.

1.5.1 Preprocessing

In theory, pattern recognition algorithms can work on raw data. However, preprocessing
steps can significantly improve the results of these algorithms. In practical applications,
preprocessing is used to transform the data, so that the complexity of the problem is
reduced.
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Figure 1.4: The three staged pattern recognition approach, implemented in this thesis
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A common example using this technique is recognising digits in images. The digit
recognition get significantly easier, when the image is cropped to a square around the
digit and reduced to a black and white image. Generally speaking, preprocessing steps
usually scale the problem to a fixed size and eliminate random noise. As a result, all
data is transformed to have similar shape and in general gains predictability.

The preprocessing steps usually operate on the raw input data and do not result in a
loss of information.

1.5.2 Feature extraction

The next step, feature extraction, uses more aggressive means to extract the relevant
data for our specific use-case. The feature extraction step usually reduces the data set
by several orders of magnitude, which makes subsequent categorization much faster
and increases reliability. As a note, we are making a distinction between preprocessing
and feature extraction, whereas Bishop [8] treats them as the same.

Feature extraction is a core component of this thesis, since the performance of the
pattern recognition algorithms scales with the amount of data needed to process. The
main idea of this step is, that we do not need to compare the whole data from the
acceleration sensors, but only “features” we identify in the feature extraction step.

However, this feature extraction can also result in information loss. This means, that
a precise and accurate feature extraction algorithm is essential. A too broad feature
extraction algorithm can result in not recognizing legitimate authentication attempts,
while a too narrow algorithm allows attackers to easily bypass this system. Also, for
the data to be comparable, all data must undergo the same preprocessing and feature
extracting steps. Even slight changes in the algorithms can spoil previous training
steps.
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1.5.3 Classification

In the end, a pattern recognition algorithm is used to classify the data into various
categories. This is usually done by training the algorithm with known categories first.
Then, based on this training, the algorithm can decide to which category new data, with
a previously unknown category, belongs to. This form of training is called “supervised”
training.

In general, the training can also be done unsupervised, i.e. the initial categories are
unknown and the algorithm finds best-fit categories itself. However for this thesis, we
implemented a supervised algorithm, which only identifies previously learned users.
Automatically recognising new users might be possible as a future enhancement.
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2.1 Key stroke pattern recognition

Timings and patterns in key strokes are individual characteristics, that can serve as
biometric user identification. Individual typing patterns can be extracted from typing
samples and later be used to verify a users identity. The patterns, so called keystroke
dynamics, are usually extracted via the key down / up events. Dholi and Chaudhari
[12] classified several features from those events, as shown in Figure 2.1: The interval
between two key presses, the dwell time of a single key press, the latency between
consecutive keystrokes, the flight time and the time from one up event to another.

2.1.1 Related work

The idea of authentication by keystroke timings started as early as 1980 with Gaines et
al. [17] to evaluate the effectiveness experimentally. In their experiment, the scientists
gave seven professional typists, i.e. secretaries, a text to type and examined their
patterns in typing. Gaines et al. looked at the time to type pairs of successively typed
letters, so called “digraphs”. From five of these digraph timings, all of the seven typists
in this study could be identified.

In 1997, Dieter Bartmann presented PSYLOCK [6], a system that analyzed the key-
stroke rhythm of text input and identified users according to these rhythms. The system
claimed to work with an arbitrary text of aprox. 100 characters. PSYLOCK used an
approach based on statistical models in combination with support vector machines.

In 1999, Monrose and Rubin [27] proposed a new approach at keystroke identification:
Continuous keystroke verification. Previous attempts to keystroke verification only
used static verification, i.e. they verified the characteristics only at specific times, for
example during login. Monrose’s and Rubin’s system monitored the user’s typing be-
haviour continuously and thus could provide a significant improvement of security. The
basic approach in their classification algorithm was clustering feature sets, determined
through factor analysis, with a k-Nearest Neighbors (k-NN) approach.

Clarke and Furnell [10] published a paper on identifying mobile phone users using
keystroke analysis in 2006. In this paper, users were identified by typical handset inter-
actions: entering telephone numbers and writing text messages. Clarke and Furnell also
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Figure 2.1: The five temporal features of keystroke dynamics [12]

compared several multi-layered neuronal networks of different flavour, all of which per-
formed approximately the same. Since the form factor of mobile phones has drastically
evolved in the last 10 years, their approach is largely obsolete for modern smartphones
lacking physical buttons.

2.1.2 Identification of keystrokes based on acceleration data

Since smartphones lack physical buttons, but contain several high accuracy motion
sensors, correlating taps on the screen with keystrokes seems not far fetched. Typical
character input on phones is done via on-screen keyboards controlled via taps on the
screen.

In the approach of this thesis, identifying keystroke patterns with acceleration sensor
data, we are not limited to simple character and text input, but can also identify arbitrary
tap sequences, that might occur in authentication scenarios. For example reading
emails or messages is equally or even more secure-worthy than writing messages.
Our approach can also extract and match patterns to authenticate users in simple
navigation flow.

As a side note, typically the access to the on-screen keyboard is significantly restricted
for apps to hinder keyloggers from sniffing passwords. However, access to acceleration
sensors is pretty much unrestricted and can also be done in web-browsers such as
Google Chrome via an Javascript API [9].

10
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Figure 2.2: Detected peaks in sensor measurements (marked in red), as described in
Section 3.2.4

In 2012, Miluzzo et al. [26] introduced TapPrints, a mechanism to extract the location
of screen taps solely from accelerometer and gyroscope data. With a machine learning
approach, the system is able to detect taps with a bagged decision tree classifier to
almost 100%. Furthermore they were even able to guess individual letters in about 50%
of the cases.

In this thesis, we are following the same basic idea, but for the scope of this bachelor’s
thesis, a training with machine learning algorithms to detect taps is unnecessarly
complex. We can detect individual taps via a simple peak detection algorithm, as
described by Palishkar et al. [28]. An example for peak recognition on the time series of
sensor measurements is shown in Figure 2.2. In this Figure, ten peaks corresponding
to a ten tap sequence are detected using Palischkar’s algorithm. Eventual inaccuracies
in identification of individual taps are not necessarily considered negative to the overall
pattern recognition scheme, because those peaks are also part of the user’s individual
behaviour.

Palishkar’s peak detection algorithm identifies peaks (also called spikes) in a given
time-series of values. These peaks represent keystrokes or simply “values of interest”
in our acceleration data. Between the detected peaks, no disturbance in the phones
acceleration is found, i.e. the user did not touch or move the phone. A point in our data
is a local peak, if it is a maximum value within a defined window and not too many other

11
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points in the window have similar values.

Palishkar’s algorithm is a parametric algorithm, that can be adapted to the individual
structure of the time series data. The algorithm takes two additional parameters to the
time series: the window size k around the peak to detect and a stringency & that rejects
“low” peaks based on Chebyshev's inequality. Chebyshev’s inequality states that for a
random variable X with mean p and standard deviation o: P[|X — | > ho| < % Based
on this inequality, we can make a sophisticated guess, that a peak x with |x — | < (h*0)
is “small” in a global context and thus not a significant enough peak.

The window size k restricts the amount of peaks detected within k data points. To
optimize the peak detection, we need to adapt k to the typical time of a key press. Is k
too small, we might face the problem of detecting back-swings in the sensor data as
additional peaks; is k too big, subsequent keystrokes might not be recognized. Therefore
we analyzed typical usages to find a good k for our implementation in Section 3.2.4.

2.1.3 Features of keystrokes

Historically, the features of key strokes were only extracted from the events keyboards
reported to the operating system. In example the X.Org Server, the de-facto standard
input handling system in UNIX-like operating systems, handles a single key press via two
separate events: A KeyPress event, whenever a key is pressed down and a KeyRelease
event, when the key is lifted up again.

These two events can be measured according to several metrics, as defined by Dholi
and Chaudhari [12] (cf. Figure 2.1). Furthermore, when considering more than two
keystrokes, we can gather additional possible measurements:

« Overall typing speed, usually measured in Characters per minute (CPM)
* Overall typing rhythm and flow, measured in base frequencies
* Intensity of taps, measured by the amplitude of acceleration

To recognize typing patterns in arbitrary text, the typing patterns are usually broken
down to di-graph, tri-graph or generally n-graph segments. This means, that the overall
typing pattern is reduced to sequences of 2,3, ..., n key presses and only the features of
these n-graphs are analyzed.

In our approach, we are monitoring the user’s input in a controlled environment, i.e.
we only monitor input of the same sequence of characters, for example a password or a
defined navigation sequence. This allows our approach to compare the whole sequence
and we don't need to identify n—graphs in user input. Extending our implementation
to also extract these graphs might be a next step to improve the generality of the
implementation in subsequent work.

12
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Figure 2.3: Inertial coordinate system of Android devices [5]

2.1.4 Adaption to phones

For the implementation of keystroke recognition on smartphones, we first need to iden-
tify how to efficiently identify individual keystrokes. In this approach, we are considering
text input directly on a smartphone with no additional devices, i.e. the on-screen key-
board. In Android, the inertial coordinate system for the acceleration sensors is oriented
as displayed in Figure 2.3. The coordinate system, according to which the acceleration
sensors report their measurements is defined relative to the default orientation of the
device and static, despite orientation changes of the devices display. The X-axis points
horizontally to the right, the Y-axis vertically up and the Z-axis points towards the outside
of the front face of the screen [5].

The main force of taps on a touchscreen is opposite to the direction of the Z-Axis as
displayed in Figure 2.4. Thus, we can safely neglect the X- and Y-axis for our use-case
of identifying individual taps on the screen.

Our basic approach in keystroke classification on smartphones is to use Palishkar’s
peak detection algorithm, as described in Section 2.1.2. We can apply this algorithm to
the Z-axis acceleration sensor records of the phone, which promises sufficiently good
data for individual taps.

13
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Figure 2.4: Model of touches on Android devices

2.1.5 Adaption to watches and keyboards

For recognition of key presses with smartwatches, we examined a scenario of a user
wearing a smartwatch while typing on a physical keyboard. In this scenario, the X,Y-
plane of the watch’s inertial coordinate system is almost parallel to the keyboard (cf.
Figure 2.5).

Wang et al. [36] discussed in their paper on MotionLeaks for MobiCom’15, that the
key press timings on keyboards can be extracted by the Z-axis movement of the watch.
When the user presses a key on the keyboard, the user’s finger dips and the wrist
also undergoes a partial dipping motion. This motion can be detected by the Z-axis
acceleration, in combination with a peak detection algorithm, similar to the one used in
Section 2.1.4.

Wang et al. also improved their peak detection algorithm by chaining a peak detection
tool with a bagged decision classifier. Since their goal was to guess individual typed
keys instead of analysing the pattern as whole, the additional computational overhead
might be worthwhile. However, this does not hold true for our approach of matching
the whole input pattern, thus we use a simple peak detection algorithm.

Additionally to keystroke pattern recognition the overall movement of the watch while
typing can be used as an authentication vector (i.e. feature). Different users might move
their hands differently for text input. However we are not aware of scientific studies

14
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Figure 2.5: The coordinate system of a smartwatch while typing on a keyboard

measuring the effectiveness of this approach as of early 2016.

2.2 Gait recognition

Gait is defined as “the way in which a person (...) walks” in the Cambridge Dictionary.
Various scientific papers analyzed the specifics of human gait [20, 23, 21] and concluded,
that individual gait can be used as a biometrical recognition mechanism. The steps a
user walks throughout the day can for example be used to generate user profiles and
extract an identifying pattern.

As early as 1975, Johansson [20] has shown, that observers could identify individuals
just by watching videos of lights mounted to joints of otherwise invisible walking people.
Additionally, the observers were able to not only identify previously known people, but
also identify the gender of unknown persons. However human gait is influenced by
many more personal aspects, as the individual weight, leg length, posture and speed of
walking. Thus gait patterns are highly individual and are usually unique.

15
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Figure 2.6: Motion circle and corresponding measured acceleration data [32]

2.2.1 Related work

Early attempts to gait recognition used video footage and moving light displays to
extract the gait information. This approach worked quite well, but is largely unpractical
nowadays, since face and shape recognition algorithms work even more precise on
videos. Starting in 2005 with Mantyjarvi et al. [25], researchers used accelerometers
to extract gait information of users. These sensors were attached to different body
parts, such as hip, arms and feet to evaluate the recordable data. Optimal positioning of
these accelerometers is still disputed, but recent studies showed, that portable devices
such as commercial phones [11] or smartwatches [21] are sufficiently good sensors for
gait recognition. For gait recognition with mobile phones, Schmidtbartel [32] already
implemented a framework to recognise specific user-device combinations. His model
accumulated sensor data of the user’s gait and aggregates a median step pattern,
as shown in Figure 2.6. Each individual recorded step circle may vary due to signal
noise or different user behaviour. Shown in the bottom half of the figure as individual
lines, individual step circles are recorded in light grey. In black, the calculated median is
shown. To calculate this value, multiple steps are clustered, according to the similarity
of those steps. As a result, there might be multiple clusters of gait signals, i.e. for
walking, jogging or running.

Schmidtbartel is using an Manhattan-Distance metric in his implementation, however
other researchers [11] suggest, that Dynamic time warping (DTW) and an extension of
DTW, called Cross DTW Metric result in even better gait recognition performance.

16
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2.2.2 General limitations

To monitor the gait patterns of users, constant monitoring of the devices sensors is
necessary, even though the user is not actively using the device. This prevents the
device to go in so called “deep sleep” state where less energy is consumed. Since
battery is a big concern on mobile devices, this is a major deal-breaker.

For authentication purposes, a timely responses to whether or not an authentication
attempt was successful is required. However, gait is not available all the time and
certainly not on demand. Prompting the user to take a walk to get access to his data is
not a viable option.

2.2.3 Conclusion

As consequence of these limitations, we decided against using an gait recognition
approach as personal authentication factor. Nonetheless, gait recognition might be an
additional approach for intrusion detection, e.g. the device itself can recognise it being
stolen by detecting other gait patterns. This allows the device to take counter-measures,
e.g. lock itself, alert the user and activate “Find My Device” functionality. In contrast,
gait recognition is not suitable for concrete, immediate authentication needs, as it is
the vision of this thesis and Schmidtbartel already analyzed other usages in his thesis.
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For this thesis, we implemented app prototypes to demonstrate the capability of pat-
tern recognition as a personal authentication factor. We chose Android as the main
smart device platform, since access to development tools and documentation is freely
available. Android applications are developed using Java, which allows to use many
existing libraries. Android code also is portable across different form factors of devices,
such as phones, tablets and smartwatches running Android-Wear.

The development and testing of the Android application was conducted on the au-
thor's personal devices, a OnePlus One and a Nexus 10. To be able to develop an Android
Wear app, the Chair of Operating Systems kindly provided a Sony Smartwatch 3.

For the implementation we also used SQL as a platform-independent data storage.
To visualize and plot the sensor measurements and their correlation to keystrokes, we
used Python with the excellent matplotlib (cf. Figure 1.4).

3.1 Platform identification: Device vs. Server

As one of the first steps, we analyzed the target platform the application should run
on. For an authentication scenario, we can identify two distinct platforms: A client, in
our case an Android device, and a server, which wants to authenticate a user. For our
approach, we can use both platforms, to implement pattern recognition of acceleration
data. Thus we can gather arguments pro and contra each platform.

We could process all the data locally on the device, since we already need an Android
App to record the accelerometer data. When we do the data processing client-side, we
can keep the server application as small as possible. Since typical Android devices have
multi-core processors, they also should be computationally powerful enough to process
the data. In our test scope, all sensor processing work was handled fast enough to not
create any user noticeable wait times (cf. Section 4.2). Moreover, decentralized data
processing on the individual devices also has significant advantages of reducing server
load. This allows the authentication approach to easily scale to a big number of users.

Local processing of the acceleration data also reduces the size of the data that needs
to be transmitted to the server. The raw data can easily reach several megabytes, which
is especially troublesome for mobile devices. When the networking connectivity of
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mobile devices is slow, e.g. in cellular networks, raw data transmission can take several
seconds.

There are also approaches to privacy protecting biometric authentication by locally
generating cryptographic bio-keys [7, 35, 31]. Since handling personal identification
information requires special precautions to not loose the data, these bio-keys can be
used to implement so called “zero-knowledge proof of knowledge” protocols. This is
especially useful, since only the information needed to verify the proof of knowledge
needs to be stored on the server. If an attacker acquires this information, he can only
verify the identity of the user but is not able to extract personal data about the user,
thus preserving the users privacy.

A client-side data processing can also be used to authenticate the user locally, e.g.
when entering the phones unlock code. This can be used for intrusion detection or
for locking stolen devices. However, server side authentication is easier to deploy,
since changes in the authentication algorithms only need to be made in a single place.
Especially changes in the feature extraction seps are hard to deploy. Authentication
spoofing is also harder, since an attacker can analyze locally installed apps, but does
not have access to the server application.

For this thesis, we implemented a client-side authentication mechanism. In our opin-
ion, the privacy of a user is very important and personal data should not be transmitted
over a network, when better alternatives exist.

3.2 General purpose Android acceleration pattern detection
module

Since we are creating two different apps, a normal Android and an Android Wear variant,
sharing code among those apps is a necessity. To do this, we created a general purpose
acceleration pattern detection module for Android. This also allows rapid prototyping
and testing of the different approaches outlined in Chapter 2.

The main goal of this module is to allow easy integration into existing apps to enhance
the authentication security without the need for specially crafted implementations.
With our module, apps can compose their own pattern recognition implementations in
a modular way, based on well known algorithms, as discussed in Section 2.

3.2.1 Sensor recording in Android

In Android, accessing the device’s sensors is managed by the SensorManager class. The
process of obtaining the SensorManager, acquiring the default acceleration sensor and
registering a custom SensorEventListener is shown in Listing 3.1. The mechanic of
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Listing 3.1: Obtaining the default acceleration sensor data in Android

SensorManager mgr = (SensorManager) context

.getSystemService (Context.SENSOR_SERVICE) ;
Sensor s = (manager.getDefaultSensor (Sensor.TYPE_ACCELEROMETER)) ;
mgr.registerListener(myListener, s, SensorManager.SENSOR_DELAY_FASTEST);

receiving data is then defined in this SensorEventListener, which is periodically called
by the Android system with new data.

The rate at which the SensorEventListener gets callbacks is defined via the third
parameter of the SensorManager.registerListener() function. In our case, we are
using the fastest rate possible, since we don't want to miss even the slightest features
of the movement pattern. Miluzzo et al. [26] have shown in their paper about guessing
letters from device movement, that their results drastically improve with higher sensor
sampling rate. Hence, we chose to poll the sensor at the fastest rate possible namely
SensorManager . SENSOR_DELAY_FASTEST. In our tests, this corresponded to a sampling
rate of about 200 Hz on a OnePlus One.

3.2.2 Sensor measurement framework

Within the module, we provide a simple way to record sensor values into a predefined
data structure, called SensorData. This class, as well as all other classes defined to
measure and record the sensors are organized in the measurement package.

The SensorData, as shown in Listing 3.2, consists of a two-dimensional array of floats,
called data. The first dimension of this defines the direction of the sensor measurement,
i.e. X- Y- and Z-acceleration, while the second dimension defines the series of individual
measurements. We also record a timestamp of the individual measurements in the
timestamps array. This is necessary, since the time between measurements can vary,
depending on the current load of the processor. For example, if we access data[0] [41],
we get the 42" measurement of the X-acceleration in the series. The corresponding
timestamp can be accessed via timestamps [41].

Since arrays with static size are not suitable for dynamically building up data, we
also defined a corresponding SensorDataBuilder, that uses lists of dynamic size to
append new measurements. We can do this by calling the SensorDataBuilder.append ()
instance method, that dynamically grows the list as needed. When we completed
recording of measurements, we can create a SensorData object of these measurements
with the SensorDataBuilder.toSensorData() method.

The reasoning behind converting the data from lists to arrays is, that arrays have
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Listing 3.2: Class SensorData containing the raw sensor readings

public class SensorData {

public final float[][] data;
public final long [] timestamps;

public SensorData(float[][] data, long[] timestamps) {
this.data = data;
this.timestamps = timestamps;

public int getDimension() {
return data.length;

significantly less overhead in accessing random data as well as memory consumption.
Also the preprocessing and feature extraction algorithms usually operate on simple
arrays. So instead of converting the data for each step, we only use dynamic lists for
buildup and use simple arrays afterwards.

3.2.3 Preprocessing of SensorData

To create meaningful and comparable sensor measurements, we needed to implement
a preprocessing step after recording the sensor data. Since the measured acceleration
includes gravity, we need to factor it out, depending on how the user holds the device.

To negate the effect gravity has on the measured data, we assume, that the device is
relatively static in overall acceleration. This holds true for most applications, such as
the device is lying on a desk or a user is carrying it around. We neglect the fact, that we
cannot simply factor out gravity when we are measuring in a changing acceleration
environment, which should happen infrequenty.

To factor out gravity, we normalize the measured data to get a mean value of 0.
We can do this by simply calculating the mean value and shift all sensor values by
the negative mean, which results in a mean of 0. This results in an overall formula of:
Xnew = X — p With p as the mean.

To enhance the sensor recordings, we also implemented smoothing functions, that
are able to dampen sensor noise. As for this thesis, we implemented a simple moving
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average and exponential smoothing filters. The simple moving average algorithm works
by averaging a certain number of measurements in a so called “window size”. For
comparison, we also implemented a simple moving average filter, which factors in the
last smoothed value with a factor « with 0 < a < 1.

Since the rate of sensor measurements can vary with the processor load, we also
could interpolate the measurements to a continuous function or simply a fixed rate. A
technique to implement this would for example be cubic spline interpolation. However
our sensor measurements were fairly regular in all conducted tests and sufficient for a
proof-of-concept, with a standard variance in measurements < 0.01ms. In real world
applications with varying loads and background activity during sensor measurements,
a more sophisticated approach might be needed.

Since there might be multiple preprocessing steps needed, we also implemented a
simple ComposingPreprocessor, which can combine multiple preprocessing steps to a
single one. We apply the given preprocessing steps sequentially as specified. Thus we
can for example first normalize the data to a mean of 0 and then smooth it with one of
the implemented smoothing functions.

3.2.4 Feature extraction from SensorData

After the data is in a comparable shape, we can proceed to extract certain features.
This is done by measuring the features of the data and storing those features in
FeatureVectors. Those FeatureVectors have the advantage of being more condensed
and smaller in file size than the raw data.

In our approach of detecting keystrokes, we first utilize a peak detection algorithm
to locate the individual keystrokes as outlined in Section 2.1.2. For this, we are using
Palshikar’s peak detection algorithm, which was implemented in the Fiji image process-
ing library [28, 34]. Since this library is open-source, we adapted it to our needs. For
best results, we used a window size of 67 measurements to detect keystrokes. The
window size is based on the average keystroke frequency, which we measured to about
3 Hz. We then can calculate an appropriate size of the window to detect, as shown in
Equation 3.1.

windowsize * sampling frequency = keystroke frequency
x*200Hz = 3Hz
200H
‘= z (3.1)
3Hz

2 _
= 66= = 66,6 ~ 67
X 3 6/

22



3 Implementation
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Figure 3.1: Comparison between a euclidean distance and a DTW distance [22]

Based on this algorithm, we implemented a PhoneKeystrokeFeatureExtractor, which
classifies the features of detected keystrokes on conventional Android devices, such
as phones or tablets. As a proof of concept, we are extracting the tap intensity and the
individual interval of the keystrokes.

We did not implement a separate feature extraction mechanism for watches due to
time limitations. Future approaches could be to record the lateral movement additionally
to the tap intensity and the interval. This should result in better and more distinctive
wear features.

3.2.5 Classification and machine learning

To allow an identification of users according to the entered data, we need a way to
compare and classify the features mentioned above. As comparison algorithms, we can
use an euclidean distance in n dimensions. In this distance, we compare two equal sized
FeatureVectors by taking the square root of the distance of the individual features,
squared. This formula is shown in Equation 3.2.

d(a,b) = \/(a1 = b1)> + ...+ (a0, — by)? (3.2)

Since our feature vectors are not necessarily equal in size, we decided to use a
DTW distance measurement, as several other papers conclude, that DTW distances
give significantly better results in comparing time series data [13]. This allows our
implementation to be resilient to erroneously detected keystrokes. To visualize the idea,
the difference in the two comparisons is displayed in Figure 3.1. In this Figure, two
very similar time series are compared, but the euclidean distance is rather large, since
the lower signal is shifted to the left and slightly stretched, where the DTW algorithm
compensates the fluctuations.

The standard DTW algorithm uses dynamic programming, which fills a matrix of
distance measurements and optimizes the path through it. There are also other imple-
mentations like SparseDTW or FastDTW available that require less computation time for
big inputs. We decided to stay with a simple approach, since we already condensed the
feature vectors to relatively small size and the dynamic programming implementation
is fast enough for these small inputs.
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Figure 3.2: 2D visualization of the k-NN algorithm. On the left: Distances between points,
defining nearness to neighbors; On the right: Nearest neighbors of hand
drawn digits [24]

To classify the feature vectors, we implemented a k-NN algorithm according to Du-
dani's paper on this behalf [14]. With this algorithm, we can compare a new, uncatego-
rized feature vector to all other vectors and record the distance to those vectors. We
can then decide depending on the nearest neighbors (i.e. smallest distance) to which
category (i.e. user) the new feature vector belongs. To do this, we look at the k vectors
with the smallest distance to the new vector and count, which category is present most
often.

To illustrate the k-NN algorithm, a two dimensional example, as shown in Figure 3.2,
is better suited. On the left, we can see a plot of the already present data, represented as
circles. These data-points are already categorized in three classes, shown as different
colored points. To categorize a new data-point x, we can now calculate the distance
of x to all other points via a distance measurement. The simple euclidean distance for
two points is plotted as arrows in this example.

With the distances between the data, we can now determine the nearest neighbors, i.e.
the data-points with the smallest distance. We can then decide, based on the majority
of points in the k-nearest neighbors, to which class the new data-point belongs. The
effect of this parameter k is visualized on the right side of Figure 3.2. In most examples,
the nearest neighbors have a strong tendency towards a class, however, in edge cases k
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can influence the final decision towards a certain class. Tests determining the optimal
size of k can be found in Section 4.3.

Another approach would be to define and train neuronal networks to classify the
available data. One open source framework for neuronal networks is Encog [30]. Due to
the complexity and time requirement, this approach exceeds the scope of this Bachelor's
thesis, but presumably is a promising future approach, which needs to be evaluated.

3.3 Data storage and processing

Since we are generating many individual data sets with recording acceleration data, we
need a way to store the persistently. This storage is needed for later analysis, as the
lifetime of Android apps is mostly controlled by the user. Therefore, we need a way to
safely and persistently store the recorded data. With this data, we also can compare
different preprocessing and classification approaches on the same test data.

3.3.1 SQLite Database

To store the data on the device, we use a SQLite database. SQLite is the standard
Android SQL database for persistent storage on the device. SQLite also is an extremely
lightweight database with little to no unnecessary features. Since we do not need extra
database features except inserting and querying the data, SQLite is a good fit for our
use case.

SQLite also stores the database in a single standardized file with a user-defined
name, in our case SensorMeasurements.db. This allows to share the data between
devices for debugging and data visualization. In our example prototype, the database is
regularly copied to a folder accessible via USB, since the usual storage of the database
is inaccessible for other processes running on the device. We then can access the
database copy from a connected PC, where we can visualize the algorithms with a
Python script.

The schema of the database is displayed in Figure 3.3. With this schema, we are
storing the raw recorded data in so called “data sets”. N of the data points in a data set
form a measurement, which is linked to a single user. We also record the keystrokes in
each of the measurements, when the user is using the on-screen keyboard. We then
can correlate the “sensortime” we measured the individual acceleration in the data
set with the “keystroketime” to examine, if we correctly detected a keystroke. We also
deduced the average keystroke and sensor-measurement frequency used in calculation
the parameters for the algorithms mentioned in the last sections from these recordings.
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Figure 3.3: Schema of the SQLite database used by the prototypes

3.3.2 Background verification of patterns

Since the measurement data is persistently stored, we can also implement a background
verification and identification of the users. These background identity checks would
provide the benefits of additional authentication, without bothering or interrupting the
user. Currently, this is only planned for future improvements. As of now, we directly
check the measured data. However this can easily be implemented, depending on the
individual use-case.

3.4 App prototypes

The individual app prototypes and source code are available online via GitHub (https:
//github.com/pfent/GesturesID) or via the attached CD. The structure of the files is
as follows: In the “Android” folder, there is an Android Studio project called “GesturesID”,
which contains the source code of the prototypes. In the same folder, there are also two
.apk files, which can be installed on an Android, respectively an Android Wear device.
This project can be built via the Android Studio Integrated Development Environment
(IDE) or via executing the Gradle wrapper script gradlew.

The source code itself is structured in 3 different modules: app: the Android specific
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Figure 3.4: Screenshots of the prototype Android app, in sequence of execution. The
left three screenshots show the interface to enter training data, the right
two screenshots, how the data is being processed

fent.de.tum.in.ge
sturesid/cache/
CacheFeatures.db

source code; wear: the Android wear specific code and sensorprocessing: the code
that can be used in both apps. Loosely speaking, all the portable classes are located
in the sensorprocessing module. This includes the implementation for recording the
sensors, preprocessing, analyzing and classification. The corresponding classes are
structured in separate packages, which are accordingly named.

Additionally, the portable module also provides a MeasurementManager for persistently
storing the data to a database. To interface with platform specific code, we also provide
a Listener-interface, that is used for callbacks whenever a pattern has been recorded.

3.4.1 Android application

The standard Android app provides two Activitys. Both Activitys are launchable via
Android’s integrated app launcher, i.e. there are two different app icons. The first Activity
“GestureslID” is used to record training data. This activity can be seen in the screenshots
on the left of Figure 3.4.

In the current implementation, the user is first prompted to input a name, which is
later used to identify the individual measurements. Afterwards, the user is prompted to
enter a predefined sequence to generate acceleration data to test the pattern detection
algorithm. The start and end of measurements is determined by a PatternFocusChange-
Listener. This listener analyzes the “focus” of the user and generates events, whenever
the user taps into the EditText component to input text. When the user taps the enter
key or proceeds to the next input field, this “focus” is lost and the listener fires an end
event and we stop recording data.

In the second Activity, the data is processed with a specific configuration of al-
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Listing 3.3: Minimum working example to extract keystroke features

SensorData data = new ComposingPreprocessor(
new Selector(2), // Select Z-Axis
new Normalizer()
) .preprocess(
MeasurementManager.getInstance (context) .getSensorData(measurementID)
)3
FeatureVectors vectors = new
PhoneKeystrokeFeatureExtractor () .extractFeatures(data) ;

gorithms described in the last sections. For the prototype, we are only using the
normalized z-axis data. From this normalized data we then extract the features in
a PhoneKeystrokeFeatureExtractor, which first determines the peaks (i.e. keystrokes)
in this data. From these peaks we then can calculate the intensity of the individual taps
and the intervals, in which the keys were stroked. A small code sample, how this could
be implemented using our implementation can be seen in Listing 3.3.

Even though we implemented and tested smoothing of the sensor data, our tests
showed, that smoothing the measurements did not provide better keystroke recognition
rates, but decrease individuality of the tap intensity. With further investigation, we found
that smoothing the measurements is unnecessary overhead, since the peak detection
algorithm is specially engineered to ignore measurement noise, via factoring in the
standard deviation.

After this learning phase, we then can classify new measurements, which need to be
processed exactly the same as the training data. The classification process is displayed
in Listing 3.4. For this prototype, we are using a k-NN classifier with a DTW distance
measurement. The app then displays the time used to process all of the previously
recorded measurements and displays the location, where it stored the intermediate
results, as shown on the right of Figure 3.4.

3.4.2 Android Wear application

The Android Wear app is roughly built in the same shape as the Android app. The app has
two launchable Activitys, one to record patterns and one to process them. However, the
implementation is less elaborated, due to time constraints. The recording of patterns is
manually initiated by clicking a button, as displayed in the left half of Figure 3.5. After
starting the measurement, the button turns red and the measurement can be stopped
by clicking the button again.
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Listing 3.4: Minimum working example to classify given FeatureVectors according to
previously learened categories

int classify (FeatureVectors[][] categories, FeatureVectors
featureVectors)
Classifier classifier = new kNNClassifier(categories, new

dTWDistancer(3), 7);

int category = classifier.classify(featureVectors);
// category now contains the index of the category in categories[][],
// where featureVectors belongs to
return category

Evaluation of SensorData has
finished in

32766 ms.

The database with results
can be found at:

/data/data/
fent.de.tum.in.gesturesid/
cache/CacheFeatures.db

Start measurement  Stop measurement

Figure 3.5: Screenshots of the prototype Android Wear app, in sequence of execution.
The left two screenshots show the interface to record training data, the right
two screenshots, how the data is being processed
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While the Android app can automatically associate a user with a measurement by
prompting to enter a name, this is not possible on Android Wear due to the lack of text
entering methods on this platform. This would be possible, e.g. with a companion app
on a PC or a phone, but has not been implemented yet.

The previously recorded measurements can be processed directly on the device,
via the second Activity: EvaluationActivity, displayed on the right half of Figure 3.5.
Currently the implementation only processes the measurement in the same way as the
Android app. This might not result in the best user-detection results, but nevertheless
can serve as a approximate performance measurement.

3.4.3 Limitations

In the current state, both prototypes work as a proof of concept. They allow to record data
and compare different approaches and implementations of the algorithms described in
Chapter 2. To authenticate and validate user identities in individual use-cases, additional
work needs to be done, but can largely be based on the results of this thesis.
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In this chapter, we evaluate the currently implemented prototypes in regards to efficiently,
accurately, and practically extract behavioral patterns that identify individual users.
First of all, we are measuring the runtime and performance of our implementation to
verify, that the used approaches are practical. With a practical solution, we subsequently
compare different parameters for the used algorithms to measure how accurately users
can be identified with the app prototypes.

4.1 Test setup

For testing and comparing different approaches, we implemented a test setup that
easily allows replication and validation of tests. In order to provide such a test setup,
we are using test data generated by 5 students of the Android Practical course. The raw
motion data of the users has been recorded to a database, which can be found on the
attached CD, called SensorMeasurements_tablet_usertest.db, respectively Sensor-
Measurements_wear_usertest.db. In this database we recorded 5 users with 10 mea-
surements each.

The Android measurements have been conducted on a Nexus 10 Android tablet. In
this test, each user first entered his name, then ten times the sequence of characters:
“helloworld”. The recorded data then was saved to the SensorMeasurements_tablet_-
usertest.db database. For the Android Wear app, we used a Sony Smartwatch 3 to
record the data. In our test setup, we did not individualize the measurements promtly,
but simply edited the userID in the database according to the users afterwards. In the
Android Wear test, the users each entered the character sequence: “correcthorsebat-
terystaple” ten times.

To replicate these tests, the databases can be copied to the apps databases folder as
SensorMeasurements.db. Executing the EvaluationActivity will process the data and
write any intermediate results to a CacheFeatures.db database, located in the cache
folder of the app. The Android app also logs detected users to Android’s logging system,
which can be viewed with adb logcat.

The code test setup is to first run the preprocess and feature extraction steps on all
measurements. With these features we can train our classification algorithm. For this
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we use all but one data set for each user. With this trained classifier, we can measure
our detection rate for the remaining data set.

4.2 Runtime efficiency

Since the current setup is mainly used for debugging, we are logging the results and
itermediates to an additional database. This results in a relatively poor performance
of 4.3 measurements per second on a OnePlus One smartphone. However this test is
not limited by the processor, but by the database and the storage write speeds. In an
optimized environment, where we turn of writing to the database and thus keep all data
in memory only, we get much better results. Our tests showed, that with optimizations,
we can reach ~21 measurements per second.

We now reached an almost 100% CPU utilization of one core. A possible additional
optimization would be parallelization. An evaluation showed, that the preprocessing
and feature extraction can completely be done independently from one another. This
could potentially speed up the learning phase by a factor of 4 x.

On Smartwatches, significantly less processing power is available, thus processing
the measurements should take proportionally longer. Expectedly, measurements on a
Sony Smartwatch 3 showed a throughput of 1.8 measurements per second with logging
enabled. This is roughly proportional to the clock speed of the smartwatch'’s processor.
Potential optimizations are the same as on a smartphone, i.e. disable database writing
and parallelization, with potential speedups of ~5x.

As a note, transferring the data from the watch to the smartphone for processing
would not speed up the computation time, since measured Bluetooth transfer rates of
~15MBps are slower than the processing throughput on the watch itself.

4.3 Optimal parameters for accuracy

In our test setup, there are in total four tunable parameters, that influence the clas-
sification results. Starting with feature extraction, we can set the window size and
the stringency for the peak detection algorithm. The window size is essentially the
time between two detected peak and thus limits the maximum detected features. On
the other hand the stringency defines, how “big” a peak needs to be in order to be
recognized.

For classification, we can influence the window size of the DTW algorithm, i.e. how
many false detections we can tolerate. We can also set the k parameter in the k-NN
algorithm, influencing cluster sizes.
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We found, that the window size of 67 we calculated in Equation 3.1, is in fact outper-
forming bigger or smaller window sizes. With the stringency however, it was not exactly
clear, what the optimal value looks like. Palshikar [28] recommends, that the stringency
h should typically be 1 < h < 3. Comparing the overall results of the stringency, we
found that a value of 2 resulted in the best extracted features. The DTW window size
did not affect the results positively with bigger window sizes, so we used a relatively
small value of 3. With the nearest neighbor algorithm, we got the best results with a
k=7.

With these optimal parameters, we reached an peak detection rate of 80%, i.e. 4 out
of 5 users correctly classified.
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As summarization, our implementation serves as a proof of concept. We reached the
goal of identifying users based solely on acceleration data and showed how to efficiently
extract individual features from acceleration data, that was gathered on mobile devices.

5.1 Current state

The tests we conducted had a relatively small sample size, thus the results are not
universally applicable. Nevertheless, a 80% detection rate of our system shows, that it
can be used for safer and more convenient authentication mechanisms.

The performance of processing and classification of acceleration data is in a realistic
range for practical use. Entering a password takes several seconds, i.e. the same
duration needed to process and train a classification algorithm with >100 previous
measurements. For real usages, the processing and training phase does not need to
take place every time, but can be cached and afterwards simply read from storage.

Even without caching and therefore calculating everything each time, our system
performs reasonable well on smartphones as well as on a smartwatch. Authentication
on the Sony Smartwatch 3 takes aproximately 30 seconds, which is not great, but still in
an acceptable time-frame for watch apps. Our implementation is however not suitable
for smartrings, because with even lower powered processors, they are probably too
slow for data processing directly on the ring. Since smartrings are still in a concept
phase, there are good chances that future development in low power processor speeds
will result in smartrings with comparable processing speed to smartwatches nowadays.

5.2 Future prospects

For future projects, our implementation can be used with small adaptions to the individ-
ual use case. Nevertheless, there are still many possible extensions and improvements
left for future work. Currently all of the parameters are statically determined and might
not perform the same on all device configurations, especially with fluctuating sensor
recording rates. An attempt to work with different recording rates would be interpolation
of measurements, e.g. cubic spline interpolation to get continuous sensor values.
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Overall the Feature extraction steps are in a good shape, but especially implementing
specific feature extractions for Android Wear should make it more practical. The biggest
potential improvement left to evaluate are neuronal networks to classify measurements.
Neuronal networks resulted in immense improvements for speech and image recog-
nition in the last years and many neuronal network implementations have been open
sourced recently.
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Glossary

Acceleration sensor An acceleration sensor (also called accelerometer) is a device
that is capable of measuring the forces accelerating devices. These forces are
often called “g-forces” from the gravitational force..

Activity An Android Activity is the basic user interface of an Android app. Activities
can usually be launched from other apps or the start menu.

app An application program. A computer program designed for a specific type of
application.

Dynamic Time Warping An algorithm measuring the similarity between time series
data as a distance, compensating variations in time or speed.

euclidean distance A metric measuring the distance between data points, based on
the square root of the sum of the squared absolute differences.

Fragment A Fragment in an Android context is a dynamic component of an Android
Activity. Fragments are usually used to build virtual layouts that are larger than the
physically displayed layouts and provide standardized interfaces to dynamically
load content that probably is being showed next..

Keystroke dynamics Individual characteristics in typing, e.g. key strokes, that can be
used to identify users.

Manhattan-Distance A metric measuring the distance between data points, according
to the sum of the absolute differences between coordinates.

package A Java package is a structure to organizing Java code into name-spaces.
Classes in a package are usually dependent on each other, but preferably not on
other classes..

Pattern recognition Pattern recognition is a machine learning technique that can clas-
sify patterns based on previously learned patterns.
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Pattern recognition Pattern recognition is a machine learning technique that can clas-
sify patterns based on previously learned patterns.
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Acronyms

API Application Programming Interface.

APK Android app package file.

CPM Characters per minute.

DTW Dynamic time warping.

GSM Global System for Mobile Communications, originally Groupe Spécial Mobile.
IDE Integrated Development Environment.

k-NN k-Nearest Neighbors.

MFA Multi-factor authentication.

OTP One Time Password.

SaaS Software as a service.

SQL Structured Query Language.
TUM Technische Universitat Miinchen.

UMTS Universal Mobile Telecommunications System.

USB Universal Serial Bus.

WiFi A local area wireless networking technology.
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