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Abstract

Every person displays characteristic patterns of behavior, that can be used to verifyher or his identity. With the rise of personal smart devices, e.g. smartwatches or smart-phones, these patterns can be recorded and analyzed. The resulting characteristics canbe used as an additional factor in Multi-Factor Authentication or used as an intrusion de-tection system by reporting anomalies. In this thesis, we analyze the patterns for motion,determined by measuring acceleration. We then evaluate how to efficiently, accurately,and practically extract behavioral patterns, identifying individual users. Furthermore,we developed Android smartphone and smartwatch app prototypes demonstrating theidentification capabilities.

Menschen besitzen charakteristische Verhaltensmuster, durch die sie eindeutig identi-fiziert werden können. Mit ständig mitgeführten Mobilgeräten wie Smartphones oderSmartwatches, können diese Muster aufgezeichnet und analysiert werden. Die darausabgeleiteten Merkmale können als zusätzlicher Faktor bei Multi-Faktor-Authentifizie-rungsverfahren oder als Angriffserkennungssystem eingesetzt werden. Im Rahmendieser Arbeit werden diese Muster anhand von Beschleunigungssensoren hinsichtlicheffizienter und präziser Verhaltensmustererkennung analysiert. Diese Mustererken-nungsverfahren werden durch Prototypen einer Android Smartphone und SmartwatchApp demonstriert.
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1 Introduction

Modern computer systems are facing various threats of being attacked. Users areone of the most commonly exploited gateways to computers, especially with socialengineering and fishing. Most systems currently rely on a standard combination ofusername and password. In 2009, Aloul et al. described the most common securityconcerns with passwords: “Users tend to use easy-to-guess passwords, use the samepassword in multiple accounts, write the passwords or store them on their machines,etc. Furthermore, hackers have the option of using many techniques to steal passwordssuch as shoulder surfing, snooping, sniffing, guessing, etc.” [4] .Additionally, many users are constantly logged in to services with their mobile devices,despite not having appropriate security measures for their devices. On most Androidphones, full disk encryption is not enabled by default [33], which leads to another attackvector for identity theft.Aloul et al. introduced a system of One Time Passwords (OTPs) using mobile phones,which significantly improves security by introducing a second factor of authentication.However, for authentication situations on smartphones themselves the OTP mechanismis rendered pretty much useless, as the second factor is in fact on the same device.
1.1 Vision
The vision of this thesis is to provide a way to easily detect individual users by a shortauthentication sequence based on acceleration patterns. Even though this does notnecessarily qualify as cryptographically secure authentication, behavioural patternsand keystroke recognition can be used as biometric authentication aids. For example,Bhargav-Spantzel et al. [7] described a system to extract cryptographic biometric keysfrom biometric data and showed how this can be combined with additional other proofsof identity to provide strong authentication.With acceleration pattern recognition, we are able to create an authentication mech-anism with zero additional user interaction. This allows higher frequency user re-authentication without disturbing or annoying the user. That means, instead of prompt-ing the user with a login screen every 24 hours, we can measure his or her accelerationpatterns every single time sensitive information is accessed. Therefore we can not onlyprovide basic login authentication, but also provide a way for users to stay authenticated
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1 Introduction

for longer sessions or even detect when someone else hijacks a valid session. Sincethe time between two authentication requests can be arbitrarily small, an attacker whogets control over the current session will be deauthenticated quickly, thus minimizingthe potential damage.
1.2 Single user licenses
Another application of this technique is to identify individual users, even when usingthe same device. This might not only be useful in terms of individualizing the softwareaccording to the current user, but also for monitoring software usage.A common licensing model for software are per-user licenses, i.e. n licenses for nusers of the software. However, this license model currently can not be enforced sincesoftware is installed on a single physical device, which may be shared among users.This led to most software companies licensing their software per-installation insteadof per-user. As of 2016, many users tend to have multiple devices and also want touse their licenses on all of them. This resulted in a trend to bind software licenses touser accounts instead of devices. The trend is also prevailing in modern Software as aservice (SaaS) models, which do not require installation of the software on end-userdevices anymore. A possible circumvention of these account bound licenses is accountsharing. This imposes a real problem, not only for software licensors, but also for otheraccess providers. For example a consumer research from Parks Associates reports,that “6% [of video streaming users] are exclusively using shared accounts to accesssubscription” [29].The methods described in this thesis provide a powerful way to detect individualusers, sharing physical devices or accounts. Thus with this approach we might reducecopyright infringements that could not be detected beforehand.
1.3 Multi-factor authentication
Multi-factor authentication (MFA) is a technique to enhance security in access con-trol situations. It combines multiple forms of authentication mechanisms, based onconceptually different approaches: Knowledge, e.g. passwords or PINs; possessions,e.g. keys or bank cards; and biometric characteristics, like fingerprints or behaviouralpatterns.A typical authentication attempt with MFA is only successful, when all needed factorsare present. The most common example for MFA is banking, where one individual needsto be in possession of the banking card and also needs to know the card’s PIN. However,an attack vector targeting this system is copying the banking card while the attacked
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1 Introduction

person does not notice, that his card is being attacked. This attack vector is alsopossible with biometric characteristics and even relatively easy, as many biometrictraits are publicly visible. Fingerprints have proven to be copyable with low cost [15]and new high resolution cameras allow to photograph fingerprints and eyes in highenough quality to spoof many scanners [16]. These attacks can be adapted to otherauthentication systems based on visible biometric traits, such as iris recognition orAndroid’s Face Unlock.For biometric authentication to be sufficiently secure, the traits need to be intrinsic,i.e. not publicly visible and hard to copy. Acceleration based motion detection matchesthese requirements, as recording of these patterns is only possible with physical accessto the authentication device or extremely precise monitoring of all body movement ofthe user.
1.4 Smart mobile devices
Smart devices are electronic devices, that feature wireless communication, e.g. WiFi orBluetooth. Smart mobile devices are smart devices, that are typically worn or kept inclose proximity to the user. This usage usually results in small form factors and littleweight. These devices are most often commodity devices and used frequently. Therefore,smart mobile devices are ideal to provide authentication, since the authenticating useris accustomed using the device.Currently common examples for smart mobile devices are smartphones. With therelease of the Apple Watch last year in 2015, smartwatches became increasingly popular.With a rapid miniaturization of smart mobile devices, a consequent next step wouldbe even smaller devices, like smart-rings. In Figure 1.1 a size comparison between thethree mentioned categories is shown.One common trait of almost all smart mobile devices is the presence of acceler-ation and gyroscope sensors. These sensors are reasonable small and available asintegrated circuits to fit in even the smallest devices. For this thesis, we are focusingon acceleration sensors to detect behavioural patterns.
1.4.1 Smartphones

Smartphones are the most capable of the smart mobile devices discussed herein.Smartphones usually have numerous wireless communication possibilities and thusfunction are a personal data-hub, to which other personal devices connect and com-municate over. Typical connections for Smartphones are: Cellular network (e.g. GSM,UMTS), WiFi, Bluetooth and Near Field Communication. Smartphones are also packed
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1 Introduction

Figure 1.1: Examples for smart mobile devices that are worn in close proximity of theuser (from left to right): A OnePlus One smartphone, a Sony SmartWatch 3,Smarty Ring concept design [1, 2, 3]
with sensors, which can be utilized in apps and typically include acceleration as well asgyroscopic sensors for movement detection.The three major operating systems of smartphones are Android, iOS and Windows.As shown in Figure 1.2, Android has the biggest market share of over 80% and an apptargeting both Android as well as iOS can reach about 98% of the smartphone market.
1.4.2 Smartwatches

Smartwatches, as displayed in the middle of Figure 1.1, are a newer iteration of wearablesmart mobile devices. Early designs of smartwatches (essentially calculators) cameup in the 1980’s and first prototypes were released in the 1990’s. However, modernsmartwatches feature network connectivity and are usually paired with smartphonesvia Bluetooth.Currently, the biggest market share, as shown in Figure 1.3, with over 50% in smart-watches has Apple with the Apple Watch, running watchOS. Android Wear, an adaptedversion of the Android operating system for smartwatches, has the second highestmarket share. All in all, the smartwatch market is more diverse than the smartphonemarket, with several independently developed operating systems like Pebble OS or
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Figure 1.2: Market share of smartphone operating systems in Q3’15 [18]
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Figure 1.3: Market share of wristware operating systems in 2015 [19]
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Samsung’s Tizen. Nonetheless, Android Wear has the advantage of having consistentApplication Programming Interfaces (APIs) with Android.With developing apps for Android in combination with small adaptions to AndroidWear, developers can target a huge percentage of smartphones and also develop smart-watch apps with virtually no overhead.
1.4.3 Smart-rings

Smart-rings are the next step towards even smaller wearables. The concept of theserings is to provide the same basic “smart” functionality comparable to a smartwatch,without the need to actually wear a watch. For example displaying notifications orproviding authentication for payment processes can also be done solely on a smartring.However, there are no commercially available smart-rings yet, but only design con-cepts and prototypes. Specially developed smart-rings with acceleration sensors shouldbe able to identify users based on their motion patterns. Future work might providebasic functionality on smart-rings, but definitely will need adaption to special purposeoperating systems.
1.5 Pattern recognition
Pattern recognition is a branch of machine learning, that is focused on determining thesimilarity of data sets. This is usually used to detect predefined patterns, e.g. readingnumbers or detecting gestures. However, this approach can also be used to generallygroup similar data sets and classify these without predefined categories. Groupingacceleration patterns is the main goal of this thesis, so pattern recognition algorithmsare a main focus.The pattern recognition concepts and techniques are largely based on Bishop’s book“Pattern Recognition and Machine Learning” [8]. We are especially using the conceptof a three staged data processing, as shown in Figure 1.4. In this concept, we are firstrecord the raw data, then preprocess it and extract a set of predefined features beforeusing a standard classification algorithm.
1.5.1 Preprocessing

In theory, pattern recognition algorithms can work on raw data. However, preprocessingsteps can significantly improve the results of these algorithms. In practical applications,preprocessing is used to transform the data, so that the complexity of the problem isreduced.
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Figure 1.4: The three staged pattern recognition approach, implemented in this thesis
A common example using this technique is recognising digits in images. The digitrecognition get significantly easier, when the image is cropped to a square around thedigit and reduced to a black and white image. Generally speaking, preprocessing stepsusually scale the problem to a fixed size and eliminate random noise. As a result, alldata is transformed to have similar shape and in general gains predictability.The preprocessing steps usually operate on the raw input data and do not result in aloss of information.

1.5.2 Feature extraction

The next step, feature extraction, uses more aggressive means to extract the relevantdata for our specific use-case. The feature extraction step usually reduces the data setby several orders of magnitude, which makes subsequent categorization much fasterand increases reliability. As a note, we are making a distinction between preprocessingand feature extraction, whereas Bishop [8] treats them as the same.Feature extraction is a core component of this thesis, since the performance of thepattern recognition algorithms scales with the amount of data needed to process. Themain idea of this step is, that we do not need to compare the whole data from theacceleration sensors, but only “features” we identify in the feature extraction step.However, this feature extraction can also result in information loss. This means, thata precise and accurate feature extraction algorithm is essential. A too broad featureextraction algorithm can result in not recognizing legitimate authentication attempts,while a too narrow algorithm allows attackers to easily bypass this system. Also, forthe data to be comparable, all data must undergo the same preprocessing and featureextracting steps. Even slight changes in the algorithms can spoil previous trainingsteps.
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1.5.3 Classification

In the end, a pattern recognition algorithm is used to classify the data into variouscategories. This is usually done by training the algorithm with known categories first.Then, based on this training, the algorithm can decide to which category new data, witha previously unknown category, belongs to. This form of training is called “supervised”training.In general, the training can also be done unsupervised, i.e. the initial categories areunknown and the algorithm finds best-fit categories itself. However for this thesis, weimplemented a supervised algorithm, which only identifies previously learned users.Automatically recognising new users might be possible as a future enhancement.
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2 Approaches

2.1 Key stroke pattern recognition
Timings and patterns in key strokes are individual characteristics, that can serve asbiometric user identification. Individual typing patterns can be extracted from typingsamples and later be used to verify a users identity. The patterns, so called keystrokedynamics, are usually extracted via the key down / up events. Dholi and Chaudhari[12] classified several features from those events, as shown in Figure 2.1: The intervalbetween two key presses, the dwell time of a single key press, the latency betweenconsecutive keystrokes, the flight time and the time from one up event to another.
2.1.1 Related work

The idea of authentication by keystroke timings started as early as 1980 with Gaines etal. [17] to evaluate the effectiveness experimentally. In their experiment, the scientistsgave seven professional typists, i.e. secretaries, a text to type and examined theirpatterns in typing. Gaines et al. looked at the time to type pairs of successively typedletters, so called “digraphs”. From five of these digraph timings, all of the seven typistsin this study could be identified.In 1997, Dieter Bartmann presented PSYLOCK [6], a system that analyzed the key-stroke rhythm of text input and identified users according to these rhythms. The systemclaimed to work with an arbitrary text of aprox. 100 characters. PSYLOCK used anapproach based on statistical models in combination with support vector machines.In 1999, Monrose and Rubin [27] proposed a new approach at keystroke identification:Continuous keystroke verification. Previous attempts to keystroke verification onlyused static verification, i.e. they verified the characteristics only at specific times, forexample during login. Monrose’s and Rubin’s system monitored the user’s typing be-haviour continuously and thus could provide a significant improvement of security. Thebasic approach in their classification algorithm was clustering feature sets, determinedthrough factor analysis, with a k-Nearest Neighbors (k-NN) approach.Clarke and Furnell [10] published a paper on identifying mobile phone users usingkeystroke analysis in 2006. In this paper, users were identified by typical handset inter-actions: entering telephone numbers and writing text messages. Clarke and Furnell also
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2 Approaches

Figure 2.1: The five temporal features of keystroke dynamics [12]
compared several multi-layered neuronal networks of different flavour, all of which per-formed approximately the same. Since the form factor of mobile phones has drasticallyevolved in the last 10 years, their approach is largely obsolete for modern smartphoneslacking physical buttons.
2.1.2 Identification of keystrokes based on acceleration data

Since smartphones lack physical buttons, but contain several high accuracy motionsensors, correlating taps on the screen with keystrokes seems not far fetched. Typicalcharacter input on phones is done via on-screen keyboards controlled via taps on thescreen.In the approach of this thesis, identifying keystroke patterns with acceleration sensordata, we are not limited to simple character and text input, but can also identify arbitrarytap sequences, that might occur in authentication scenarios. For example readingemails or messages is equally or even more secure-worthy than writing messages.Our approach can also extract and match patterns to authenticate users in simplenavigation flow.As a side note, typically the access to the on-screen keyboard is significantly restrictedfor apps to hinder keyloggers from sniffing passwords. However, access to accelerationsensors is pretty much unrestricted and can also be done in web-browsers such asGoogle Chrome via an Javascript API [9].
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2 Approaches

Figure 2.2: Detected peaks in sensor measurements (marked in red), as described inSection 3.2.4
In 2012, Miluzzo et al. [26] introduced TapPrints, a mechanism to extract the locationof screen taps solely from accelerometer and gyroscope data. With a machine learningapproach, the system is able to detect taps with a bagged decision tree classifier toalmost 100%. Furthermore they were even able to guess individual letters in about 50%of the cases.In this thesis, we are following the same basic idea, but for the scope of this bachelor’sthesis, a training with machine learning algorithms to detect taps is unnecessarlycomplex. We can detect individual taps via a simple peak detection algorithm, asdescribed by Palishkar et al. [28]. An example for peak recognition on the time series ofsensor measurements is shown in Figure 2.2. In this Figure, ten peaks correspondingto a ten tap sequence are detected using Palischkar’s algorithm. Eventual inaccuraciesin identification of individual taps are not necessarily considered negative to the overallpattern recognition scheme, because those peaks are also part of the user’s individualbehaviour.Palishkar’s peak detection algorithm identifies peaks (also called spikes) in a giventime-series of values. These peaks represent keystrokes or simply “values of interest”in our acceleration data. Between the detected peaks, no disturbance in the phonesacceleration is found, i.e. the user did not touch or move the phone. A point in our datais a local peak, if it is a maximum value within a defined window and not too many other
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2 Approaches

points in the window have similar values.Palishkar’s algorithm is a parametric algorithm, that can be adapted to the individualstructure of the time series data. The algorithm takes two additional parameters to thetime series: the window size k around the peak to detect and a stringency h that rejects“low” peaks based on Chebyshev’s inequality. Chebyshev’s inequality states that for arandom variable X with mean µ and standard deviation σ: P[|X− µ| ≥ hσ] < 1
h2 . Basedon this inequality, we can make a sophisticated guess, that a peak x with |x−µ| < (h ∗ σ)is “small” in a global context and thus not a significant enough peak.The window size k restricts the amount of peaks detected within k data points. Tooptimize the peak detection, we need to adapt k to the typical time of a key press. Is ktoo small, we might face the problem of detecting back-swings in the sensor data asadditional peaks; is k too big, subsequent keystrokes might not be recognized. Thereforewe analyzed typical usages to find a good k for our implementation in Section 3.2.4.

2.1.3 Features of keystrokes

Historically, the features of key strokes were only extracted from the events keyboardsreported to the operating system. In example the X.Org Server, the de-facto standardinput handling system in UNIX-like operating systems, handles a single key press via twoseparate events: A KeyPress event, whenever a key is pressed down and a KeyReleaseevent, when the key is lifted up again.These two events can be measured according to several metrics, as defined by Dholiand Chaudhari [12] (cf. Figure 2.1). Furthermore, when considering more than twokeystrokes, we can gather additional possible measurements:
• Overall typing speed, usually measured in Characters per minute (CPM)
• Overall typing rhythm and flow, measured in base frequencies
• Intensity of taps, measured by the amplitude of acceleration

To recognize typing patterns in arbitrary text, the typing patterns are usually brokendown to di-graph, tri-graph or generally n-graph segments. This means, that the overalltyping pattern is reduced to sequences of 2, 3, ..., n key presses and only the features ofthese n-graphs are analyzed.In our approach, we are monitoring the user’s input in a controlled environment, i.e.we only monitor input of the same sequence of characters, for example a password or adefined navigation sequence. This allows our approach to compare the whole sequenceand we don’t need to identify n–graphs in user input. Extending our implementationto also extract these graphs might be a next step to improve the generality of theimplementation in subsequent work.
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2 Approaches

Figure 2.3: Inertial coordinate system of Android devices [5]
2.1.4 Adaption to phones

For the implementation of keystroke recognition on smartphones, we first need to iden-tify how to efficiently identify individual keystrokes. In this approach, we are consideringtext input directly on a smartphone with no additional devices, i.e. the on-screen key-board. In Android, the inertial coordinate system for the acceleration sensors is orientedas displayed in Figure 2.3. The coordinate system, according to which the accelerationsensors report their measurements is defined relative to the default orientation of thedevice and static, despite orientation changes of the devices display. The X-axis pointshorizontally to the right, the Y-axis vertically up and the Z-axis points towards the outsideof the front face of the screen [5].The main force of taps on a touchscreen is opposite to the direction of the Z-Axis asdisplayed in Figure 2.4. Thus, we can safely neglect the X- and Y-axis for our use-caseof identifying individual taps on the screen.Our basic approach in keystroke classification on smartphones is to use Palishkar’speak detection algorithm, as described in Section 2.1.2. We can apply this algorithm tothe Z-axis acceleration sensor records of the phone, which promises sufficiently gooddata for individual taps.

13



2 Approaches

Figure 2.4: Model of touches on Android devices
2.1.5 Adaption to watches and keyboards

For recognition of key presses with smartwatches, we examined a scenario of a userwearing a smartwatch while typing on a physical keyboard. In this scenario, the X,Y-plane of the watch’s inertial coordinate system is almost parallel to the keyboard (cf.Figure 2.5).Wang et al. [36] discussed in their paper on MotionLeaks for MobiCom’15, that thekey press timings on keyboards can be extracted by the Z-axis movement of the watch.When the user presses a key on the keyboard, the user’s finger dips and the wristalso undergoes a partial dipping motion. This motion can be detected by the Z-axisacceleration, in combination with a peak detection algorithm, similar to the one used inSection 2.1.4.Wang et al. also improved their peak detection algorithm by chaining a peak detectiontool with a bagged decision classifier. Since their goal was to guess individual typedkeys instead of analysing the pattern as whole, the additional computational overheadmight be worthwhile. However, this does not hold true for our approach of matchingthe whole input pattern, thus we use a simple peak detection algorithm.Additionally to keystroke pattern recognition the overall movement of the watch whiletyping can be used as an authentication vector (i.e. feature). Different users might movetheir hands differently for text input. However we are not aware of scientific studies
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Figure 2.5: The coordinate system of a smartwatch while typing on a keyboard
measuring the effectiveness of this approach as of early 2016.
2.2 Gait recognition
Gait is defined as “the way in which a person (. . . ) walks” in the Cambridge Dictionary.Various scientific papers analyzed the specifics of human gait [20, 23, 21] and concluded,that individual gait can be used as a biometrical recognition mechanism. The steps auser walks throughout the day can for example be used to generate user profiles andextract an identifying pattern.As early as 1975, Johansson [20] has shown, that observers could identify individualsjust by watching videos of lights mounted to joints of otherwise invisible walking people.Additionally, the observers were able to not only identify previously known people, butalso identify the gender of unknown persons. However human gait is influenced bymany more personal aspects, as the individual weight, leg length, posture and speed ofwalking. Thus gait patterns are highly individual and are usually unique.
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2 Approaches

Figure 2.6: Motion circle and corresponding measured acceleration data [32]
2.2.1 Related work

Early attempts to gait recognition used video footage and moving light displays toextract the gait information. This approach worked quite well, but is largely unpracticalnowadays, since face and shape recognition algorithms work even more precise onvideos. Starting in 2005 with Mäntyjärvi et al. [25], researchers used accelerometersto extract gait information of users. These sensors were attached to different bodyparts, such as hip, arms and feet to evaluate the recordable data. Optimal positioning ofthese accelerometers is still disputed, but recent studies showed, that portable devicessuch as commercial phones [11] or smartwatches [21] are sufficiently good sensors forgait recognition. For gait recognition with mobile phones, Schmidtbartel [32] alreadyimplemented a framework to recognise specific user-device combinations. His modelaccumulated sensor data of the user’s gait and aggregates a median step pattern,as shown in Figure 2.6. Each individual recorded step circle may vary due to signalnoise or different user behaviour. Shown in the bottom half of the figure as individuallines, individual step circles are recorded in light grey. In black, the calculated median isshown. To calculate this value, multiple steps are clustered, according to the similarityof those steps. As a result, there might be multiple clusters of gait signals, i.e. forwalking, jogging or running.Schmidtbartel is using an Manhattan-Distance metric in his implementation, howeverother researchers [11] suggest, that Dynamic time warping (DTW) and an extension ofDTW, called Cross DTW Metric result in even better gait recognition performance.
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2.2.2 General limitations

To monitor the gait patterns of users, constant monitoring of the devices sensors isnecessary, even though the user is not actively using the device. This prevents thedevice to go in so called “deep sleep” state where less energy is consumed. Sincebattery is a big concern on mobile devices, this is a major deal-breaker.For authentication purposes, a timely responses to whether or not an authenticationattempt was successful is required. However, gait is not available all the time andcertainly not on demand. Prompting the user to take a walk to get access to his data isnot a viable option.
2.2.3 Conclusion

As consequence of these limitations, we decided against using an gait recognitionapproach as personal authentication factor. Nonetheless, gait recognition might be anadditional approach for intrusion detection, e.g. the device itself can recognise it beingstolen by detecting other gait patterns. This allows the device to take counter-measures,e.g. lock itself, alert the user and activate “Find My Device” functionality. In contrast,gait recognition is not suitable for concrete, immediate authentication needs, as it isthe vision of this thesis and Schmidtbartel already analyzed other usages in his thesis.
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For this thesis, we implemented app prototypes to demonstrate the capability of pat-tern recognition as a personal authentication factor. We chose Android as the mainsmart device platform, since access to development tools and documentation is freelyavailable. Android applications are developed using Java, which allows to use manyexisting libraries. Android code also is portable across different form factors of devices,such as phones, tablets and smartwatches running Android-Wear.The development and testing of the Android application was conducted on the au-thor’s personal devices, a OnePlus One and a Nexus 10. To be able to develop an AndroidWear app, the Chair of Operating Systems kindly provided a Sony Smartwatch 3.For the implementation we also used SQL as a platform-independent data storage.To visualize and plot the sensor measurements and their correlation to keystrokes, weused Python with the excellent matplotlib (cf. Figure 1.4).
3.1 Platform identification: Device vs. Server
As one of the first steps, we analyzed the target platform the application should runon. For an authentication scenario, we can identify two distinct platforms: A client, inour case an Android device, and a server, which wants to authenticate a user. For ourapproach, we can use both platforms, to implement pattern recognition of accelerationdata. Thus we can gather arguments pro and contra each platform.We could process all the data locally on the device, since we already need an AndroidApp to record the accelerometer data. When we do the data processing client-side, wecan keep the server application as small as possible. Since typical Android devices havemulti-core processors, they also should be computationally powerful enough to processthe data. In our test scope, all sensor processing work was handled fast enough to notcreate any user noticeable wait times (cf. Section 4.2). Moreover, decentralized dataprocessing on the individual devices also has significant advantages of reducing serverload. This allows the authentication approach to easily scale to a big number of users.Local processing of the acceleration data also reduces the size of the data that needsto be transmitted to the server. The raw data can easily reach several megabytes, whichis especially troublesome for mobile devices. When the networking connectivity of
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mobile devices is slow, e.g. in cellular networks, raw data transmission can take severalseconds.There are also approaches to privacy protecting biometric authentication by locallygenerating cryptographic bio-keys [7, 35, 31]. Since handling personal identificationinformation requires special precautions to not loose the data, these bio-keys can beused to implement so called “zero-knowledge proof of knowledge” protocols. This isespecially useful, since only the information needed to verify the proof of knowledgeneeds to be stored on the server. If an attacker acquires this information, he can onlyverify the identity of the user but is not able to extract personal data about the user,thus preserving the users privacy.A client-side data processing can also be used to authenticate the user locally, e.g.when entering the phones unlock code. This can be used for intrusion detection orfor locking stolen devices. However, server side authentication is easier to deploy,since changes in the authentication algorithms only need to be made in a single place.Especially changes in the feature extraction seps are hard to deploy. Authenticationspoofing is also harder, since an attacker can analyze locally installed apps, but doesnot have access to the server application.For this thesis, we implemented a client-side authentication mechanism. In our opin-ion, the privacy of a user is very important and personal data should not be transmittedover a network, when better alternatives exist.
3.2 General purpose Android acceleration pattern detection

module
Since we are creating two different apps, a normal Android and an Android Wear variant,sharing code among those apps is a necessity. To do this, we created a general purposeacceleration pattern detection module for Android. This also allows rapid prototypingand testing of the different approaches outlined in Chapter 2.The main goal of this module is to allow easy integration into existing apps to enhancethe authentication security without the need for specially crafted implementations.With our module, apps can compose their own pattern recognition implementations ina modular way, based on well known algorithms, as discussed in Section 2.
3.2.1 Sensor recording in Android

In Android, accessing the device’s sensors is managed by the SensorManager class. Theprocess of obtaining the SensorManager, acquiring the default acceleration sensor andregistering a custom SensorEventListener is shown in Listing 3.1. The mechanic of
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Listing 3.1: Obtaining the default acceleration sensor data in Android
SensorManager mgr = (SensorManager) context

.getSystemService(Context.SENSOR_SERVICE);
Sensor s = (manager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER));
mgr.registerListener(myListener, s, SensorManager.SENSOR_DELAY_FASTEST);

receiving data is then defined in this SensorEventListener, which is periodically calledby the Android system with new data.The rate at which the SensorEventListener gets callbacks is defined via the thirdparameter of the SensorManager.registerListener() function. In our case, we areusing the fastest rate possible, since we don’t want to miss even the slightest featuresof the movement pattern. Miluzzo et al. [26] have shown in their paper about guessingletters from device movement, that their results drastically improve with higher sensorsampling rate. Hence, we chose to poll the sensor at the fastest rate possible namely
SensorManager.SENSOR_DELAY_FASTEST. In our tests, this corresponded to a samplingrate of about 200Hz on a OnePlus One.
3.2.2 Sensor measurement framework

Within the module, we provide a simple way to record sensor values into a predefineddata structure, called SensorData. This class, as well as all other classes defined tomeasure and record the sensors are organized in the measurement package.The SensorData, as shown in Listing 3.2, consists of a two-dimensional array of floats,called data. The first dimension of this defines the direction of the sensor measurement,i.e. X- Y- and Z-acceleration, while the second dimension defines the series of individualmeasurements. We also record a timestamp of the individual measurements in the
timestamps array. This is necessary, since the time between measurements can vary,depending on the current load of the processor. For example, if we access data[0][41],we get the 42nd measurement of the X-acceleration in the series. The correspondingtimestamp can be accessed via timestamps[41].Since arrays with static size are not suitable for dynamically building up data, wealso defined a corresponding SensorDataBuilder, that uses lists of dynamic size toappend new measurements. We can do this by calling the SensorDataBuilder.append()instance method, that dynamically grows the list as needed. When we completedrecording of measurements, we can create a SensorData object of these measurementswith the SensorDataBuilder.toSensorData() method.The reasoning behind converting the data from lists to arrays is, that arrays have
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Listing 3.2: Class SensorData containing the raw sensor readings
public class SensorData {

public final float[][] data;
public final long [] timestamps;

public SensorData(float[][] data, long[] timestamps) {
this.data = data;
this.timestamps = timestamps;

}

public int getDimension() {
return data.length;

}
}

significantly less overhead in accessing random data as well as memory consumption.Also the preprocessing and feature extraction algorithms usually operate on simplearrays. So instead of converting the data for each step, we only use dynamic lists forbuildup and use simple arrays afterwards.
3.2.3 Preprocessing of SensorData

To create meaningful and comparable sensor measurements, we needed to implementa preprocessing step after recording the sensor data. Since the measured accelerationincludes gravity, we need to factor it out, depending on how the user holds the device.To negate the effect gravity has on the measured data, we assume, that the device isrelatively static in overall acceleration. This holds true for most applications, such asthe device is lying on a desk or a user is carrying it around. We neglect the fact, that wecannot simply factor out gravity when we are measuring in a changing accelerationenvironment, which should happen infrequenty.To factor out gravity, we normalize the measured data to get a mean value of 0.We can do this by simply calculating the mean value and shift all sensor values bythe negative mean, which results in a mean of 0. This results in an overall formula of:
xnew = x− µ with µ as the mean.To enhance the sensor recordings, we also implemented smoothing functions, thatare able to dampen sensor noise. As for this thesis, we implemented a simple moving
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average and exponential smoothing filters. The simple moving average algorithm worksby averaging a certain number of measurements in a so called “window size”. Forcomparison, we also implemented a simple moving average filter, which factors in thelast smoothed value with a factor α with 0 < α < 1.Since the rate of sensor measurements can vary with the processor load, we alsocould interpolate the measurements to a continuous function or simply a fixed rate. Atechnique to implement this would for example be cubic spline interpolation. Howeverour sensor measurements were fairly regular in all conducted tests and sufficient for aproof-of-concept, with a standard variance in measurements < 0.01ms. In real worldapplications with varying loads and background activity during sensor measurements,a more sophisticated approach might be needed.Since there might be multiple preprocessing steps needed, we also implemented asimple ComposingPreprocessor, which can combine multiple preprocessing steps to asingle one. We apply the given preprocessing steps sequentially as specified. Thus wecan for example first normalize the data to a mean of 0 and then smooth it with one ofthe implemented smoothing functions.
3.2.4 Feature extraction from SensorData

After the data is in a comparable shape, we can proceed to extract certain features.This is done by measuring the features of the data and storing those features in
FeatureVectors. Those FeatureVectors have the advantage of being more condensedand smaller in file size than the raw data.In our approach of detecting keystrokes, we first utilize a peak detection algorithmto locate the individual keystrokes as outlined in Section 2.1.2. For this, we are usingPalshikar’s peak detection algorithm, which was implemented in the Fiji image process-ing library [28, 34]. Since this library is open-source, we adapted it to our needs. Forbest results, we used a window size of 67 measurements to detect keystrokes. Thewindow size is based on the average keystroke frequency, which we measured to about
3Hz. We then can calculate an appropriate size of the window to detect, as shown inEquation 3.1.

windowsize ∗ sampling frequency = keystroke frequency

x ∗ 200Hz = 3Hz

x =
200Hz

3Hz

x = 66
2
3
= 66, 6 ≈ 67

(3.1)
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Figure 3.1: Comparison between a euclidean distance and a DTW distance [22]
Based on this algorithm, we implemented a PhoneKeystrokeFeatureExtractor, whichclassifies the features of detected keystrokes on conventional Android devices, suchas phones or tablets. As a proof of concept, we are extracting the tap intensity and theindividual interval of the keystrokes.We did not implement a separate feature extraction mechanism for watches due totime limitations. Future approaches could be to record the lateral movement additionallyto the tap intensity and the interval. This should result in better and more distinctivewear features.

3.2.5 Classification and machine learning

To allow an identification of users according to the entered data, we need a way tocompare and classify the features mentioned above. As comparison algorithms, we canuse an euclidean distance in n dimensions. In this distance, we compare two equal sized
FeatureVectors by taking the square root of the distance of the individual features,squared. This formula is shown in Equation 3.2.

d(a, b) =
√
(a1 − b1)2 + . . . + (an − bn)2 (3.2)

Since our feature vectors are not necessarily equal in size, we decided to use aDTW distance measurement, as several other papers conclude, that DTW distancesgive significantly better results in comparing time series data [13]. This allows ourimplementation to be resilient to erroneously detected keystrokes. To visualize the idea,the difference in the two comparisons is displayed in Figure 3.1. In this Figure, twovery similar time series are compared, but the euclidean distance is rather large, sincethe lower signal is shifted to the left and slightly stretched, where the DTW algorithmcompensates the fluctuations.The standard DTW algorithm uses dynamic programming, which fills a matrix ofdistance measurements and optimizes the path through it. There are also other imple-mentations like SparseDTW or FastDTW available that require less computation time forbig inputs. We decided to stay with a simple approach, since we already condensed thefeature vectors to relatively small size and the dynamic programming implementationis fast enough for these small inputs.
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Figure 3.2: 2D visualization of the k-NN algorithm. On the left: Distances between points,defining nearness to neighbors; On the right: Nearest neighbors of handdrawn digits [24]
To classify the feature vectors, we implemented a k-NN algorithm according to Du-dani’s paper on this behalf [14]. With this algorithm, we can compare a new, uncatego-rized feature vector to all other vectors and record the distance to those vectors. Wecan then decide depending on the nearest neighbors (i.e. smallest distance) to whichcategory (i.e. user) the new feature vector belongs. To do this, we look at the k vectorswith the smallest distance to the new vector and count, which category is present mostoften.To illustrate the k-NN algorithm, a two dimensional example, as shown in Figure 3.2,is better suited. On the left, we can see a plot of the already present data, represented ascircles. These data-points are already categorized in three classes, shown as differentcolored points. To categorize a new data-point x, we can now calculate the distanceof x to all other points via a distance measurement. The simple euclidean distance fortwo points is plotted as arrows in this example.With the distances between the data, we can now determine the nearest neighbors, i.e.the data-points with the smallest distance. We can then decide, based on the majorityof points in the k-nearest neighbors, to which class the new data-point belongs. Theeffect of this parameter k is visualized on the right side of Figure 3.2. In most examples,the nearest neighbors have a strong tendency towards a class, however, in edge cases k
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can influence the final decision towards a certain class. Tests determining the optimalsize of k can be found in Section 4.3.Another approach would be to define and train neuronal networks to classify theavailable data. One open source framework for neuronal networks is Encog [30]. Due tothe complexity and time requirement, this approach exceeds the scope of this Bachelor’sthesis, but presumably is a promising future approach, which needs to be evaluated.
3.3 Data storage and processing
Since we are generating many individual data sets with recording acceleration data, weneed a way to store the persistently. This storage is needed for later analysis, as thelifetime of Android apps is mostly controlled by the user. Therefore, we need a way tosafely and persistently store the recorded data. With this data, we also can comparedifferent preprocessing and classification approaches on the same test data.
3.3.1 SQLite Database

To store the data on the device, we use a SQLite database. SQLite is the standardAndroid SQL database for persistent storage on the device. SQLite also is an extremelylightweight database with little to no unnecessary features. Since we do not need extradatabase features except inserting and querying the data, SQLite is a good fit for ouruse case.SQLite also stores the database in a single standardized file with a user-definedname, in our case SensorMeasurements.db. This allows to share the data betweendevices for debugging and data visualization. In our example prototype, the database isregularly copied to a folder accessible via USB, since the usual storage of the databaseis inaccessible for other processes running on the device. We then can access thedatabase copy from a connected PC, where we can visualize the algorithms with aPython script.The schema of the database is displayed in Figure 3.3. With this schema, we arestoring the raw recorded data in so called “data sets”. N of the data points in a data setform a measurement, which is linked to a single user. We also record the keystrokes ineach of the measurements, when the user is using the on-screen keyboard. We thencan correlate the “sensortime” we measured the individual acceleration in the dataset with the “keystroketime” to examine, if we correctly detected a keystroke. We alsodeduced the average keystroke and sensor-measurement frequency used in calculationthe parameters for the algorithms mentioned in the last sections from these recordings.
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Figure 3.3: Schema of the SQLite database used by the prototypes
3.3.2 Background verification of patterns

Since the measurement data is persistently stored, we can also implement a backgroundverification and identification of the users. These background identity checks wouldprovide the benefits of additional authentication, without bothering or interrupting theuser. Currently, this is only planned for future improvements. As of now, we directlycheck the measured data. However this can easily be implemented, depending on theindividual use-case.
3.4 App prototypes
The individual app prototypes and source code are available online via GitHub (https:
//github.com/pfent/GesturesID) or via the attached CD. The structure of the files isas follows: In the “Android” folder, there is an Android Studio project called “GesturesID”,which contains the source code of the prototypes. In the same folder, there are also two
.apk files, which can be installed on an Android, respectively an Android Wear device.This project can be built via the Android Studio Integrated Development Environment(IDE) or via executing the Gradle wrapper script gradlew.The source code itself is structured in 3 different modules: app: the Android specific
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Figure 3.4: Screenshots of the prototype Android app, in sequence of execution. Theleft three screenshots show the interface to enter training data, the righttwo screenshots, how the data is being processed
source code; wear: the Android wear specific code and sensorprocessing: the codethat can be used in both apps. Loosely speaking, all the portable classes are locatedin the sensorprocessing module. This includes the implementation for recording thesensors, preprocessing, analyzing and classification. The corresponding classes arestructured in separate packages, which are accordingly named.Additionally, the portable module also provides a MeasurementManager for persistentlystoring the data to a database. To interface with platform specific code, we also providea Listener-interface, that is used for callbacks whenever a pattern has been recorded.
3.4.1 Android application

The standard Android app provides two Activitys. Both Activitys are launchable viaAndroid’s integrated app launcher, i.e. there are two different app icons. The first Activity“GesturesID” is used to record training data. This activity can be seen in the screenshotson the left of Figure 3.4.In the current implementation, the user is first prompted to input a name, which islater used to identify the individual measurements. Afterwards, the user is prompted toenter a predefined sequence to generate acceleration data to test the pattern detectionalgorithm. The start and end of measurements is determined by a PatternFocusChange-
Listener. This listener analyzes the “focus” of the user and generates events, wheneverthe user taps into the EditText component to input text. When the user taps the enterkey or proceeds to the next input field, this “focus” is lost and the listener fires an endevent and we stop recording data.In the second Activity, the data is processed with a specific configuration of al-
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Listing 3.3: Minimum working example to extract keystroke features
SensorData data = new ComposingPreprocessor(

new Selector(2), // Select Z-Axis
new Normalizer()

).preprocess(
MeasurementManager.getInstance(context).getSensorData(measurementID)

);
FeatureVectors vectors = new

PhoneKeystrokeFeatureExtractor().extractFeatures(data);

gorithms described in the last sections. For the prototype, we are only using thenormalized z-axis data. From this normalized data we then extract the features ina PhoneKeystrokeFeatureExtractor, which first determines the peaks (i.e. keystrokes)in this data. From these peaks we then can calculate the intensity of the individual tapsand the intervals, in which the keys were stroked. A small code sample, how this couldbe implemented using our implementation can be seen in Listing 3.3.Even though we implemented and tested smoothing of the sensor data, our testsshowed, that smoothing the measurements did not provide better keystroke recognitionrates, but decrease individuality of the tap intensity. With further investigation, we foundthat smoothing the measurements is unnecessary overhead, since the peak detectionalgorithm is specially engineered to ignore measurement noise, via factoring in thestandard deviation.After this learning phase, we then can classify new measurements, which need to beprocessed exactly the same as the training data. The classification process is displayedin Listing 3.4. For this prototype, we are using a k-NN classifier with a DTW distancemeasurement. The app then displays the time used to process all of the previouslyrecorded measurements and displays the location, where it stored the intermediateresults, as shown on the right of Figure 3.4.
3.4.2 Android Wear application

The Android Wear app is roughly built in the same shape as the Android app. The app hastwo launchable Activitys, one to record patterns and one to process them. However, theimplementation is less elaborated, due to time constraints. The recording of patterns ismanually initiated by clicking a button, as displayed in the left half of Figure 3.5. Afterstarting the measurement, the button turns red and the measurement can be stoppedby clicking the button again.
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Listing 3.4: Minimum working example to classify given FeatureVectors according topreviously learened categories

int classify (FeatureVectors[][] categories, FeatureVectors
featureVectors)
Classifier classifier = new kNNClassifier(categories, new

dTWDistancer(3), 7);
int category = classifier.classify(featureVectors);
// category now contains the index of the category in categories[][],
// where featureVectors belongs to
return category

}

Figure 3.5: Screenshots of the prototype Android Wear app, in sequence of execution.The left two screenshots show the interface to record training data, the righttwo screenshots, how the data is being processed
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While the Android app can automatically associate a user with a measurement byprompting to enter a name, this is not possible on Android Wear due to the lack of textentering methods on this platform. This would be possible, e.g. with a companion appon a PC or a phone, but has not been implemented yet.The previously recorded measurements can be processed directly on the device,via the second Activity: EvaluationActivity, displayed on the right half of Figure 3.5.Currently the implementation only processes the measurement in the same way as theAndroid app. This might not result in the best user-detection results, but neverthelesscan serve as a approximate performance measurement.
3.4.3 Limitations

In the current state, both prototypes work as a proof of concept. They allow to record dataand compare different approaches and implementations of the algorithms described inChapter 2. To authenticate and validate user identities in individual use-cases, additionalwork needs to be done, but can largely be based on the results of this thesis.
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In this chapter, we evaluate the currently implemented prototypes in regards to efficiently,accurately, and practically extract behavioral patterns that identify individual users.First of all, we are measuring the runtime and performance of our implementation toverify, that the used approaches are practical. With a practical solution, we subsequentlycompare different parameters for the used algorithms to measure how accurately userscan be identified with the app prototypes.
4.1 Test setup
For testing and comparing different approaches, we implemented a test setup thateasily allows replication and validation of tests. In order to provide such a test setup,we are using test data generated by 5 students of the Android Practical course. The rawmotion data of the users has been recorded to a database, which can be found on theattached CD, called SensorMeasurements_tablet_usertest.db, respectively Sensor-
Measurements_wear_usertest.db. In this database we recorded 5 users with 10 mea-surements each.The Android measurements have been conducted on a Nexus 10 Android tablet. Inthis test, each user first entered his name, then ten times the sequence of characters:“helloworld”. The recorded data then was saved to the SensorMeasurements_tablet_-
usertest.db database. For the Android Wear app, we used a Sony Smartwatch 3 torecord the data. In our test setup, we did not individualize the measurements promtly,but simply edited the userID in the database according to the users afterwards. In theAndroid Wear test, the users each entered the character sequence: “correcthorsebat-terystaple” ten times.To replicate these tests, the databases can be copied to the apps databases folder as
SensorMeasurements.db. Executing the EvaluationActivity will process the data andwrite any intermediate results to a CacheFeatures.db database, located in the cachefolder of the app. The Android app also logs detected users to Android’s logging system,which can be viewed with adb logcat.The code test setup is to first run the preprocess and feature extraction steps on allmeasurements. With these features we can train our classification algorithm. For this
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we use all but one data set for each user. With this trained classifier, we can measureour detection rate for the remaining data set.
4.2 Runtime efficiency
Since the current setup is mainly used for debugging, we are logging the results anditermediates to an additional database. This results in a relatively poor performanceof 4.3 measurements per second on a OnePlus One smartphone. However this test isnot limited by the processor, but by the database and the storage write speeds. In anoptimized environment, where we turn of writing to the database and thus keep all datain memory only, we get much better results. Our tests showed, that with optimizations,we can reach ∼21 measurements per second.We now reached an almost 100% CPU utilization of one core. A possible additionaloptimization would be parallelization. An evaluation showed, that the preprocessingand feature extraction can completely be done independently from one another. Thiscould potentially speed up the learning phase by a factor of 4 x.On Smartwatches, significantly less processing power is available, thus processingthe measurements should take proportionally longer. Expectedly, measurements on aSony Smartwatch 3 showed a throughput of 1.8 measurements per second with loggingenabled. This is roughly proportional to the clock speed of the smartwatch’s processor.Potential optimizations are the same as on a smartphone, i.e. disable database writingand parallelization, with potential speedups of ∼5 x.As a note, transferring the data from the watch to the smartphone for processingwould not speed up the computation time, since measured Bluetooth transfer rates of
∼15MBps are slower than the processing throughput on the watch itself.
4.3 Optimal parameters for accuracy
In our test setup, there are in total four tunable parameters, that influence the clas-sification results. Starting with feature extraction, we can set the window size andthe stringency for the peak detection algorithm. The window size is essentially thetime between two detected peak and thus limits the maximum detected features. Onthe other hand the stringency defines, how “big” a peak needs to be in order to berecognized.For classification, we can influence the window size of the DTW algorithm, i.e. howmany false detections we can tolerate. We can also set the k parameter in the k-NNalgorithm, influencing cluster sizes.
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We found, that the window size of 67 we calculated in Equation 3.1, is in fact outper-forming bigger or smaller window sizes. With the stringency however, it was not exactlyclear, what the optimal value looks like. Palshikar [28] recommends, that the stringency
h should typically be 1 ≤ h ≤ 3. Comparing the overall results of the stringency, wefound that a value of 2 resulted in the best extracted features. The DTW window sizedid not affect the results positively with bigger window sizes, so we used a relativelysmall value of 3. With the nearest neighbor algorithm, we got the best results with a
k = 7.With these optimal parameters, we reached an peak detection rate of 80%, i.e. 4 outof 5 users correctly classified.
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5 Conclusion

As summarization, our implementation serves as a proof of concept. We reached thegoal of identifying users based solely on acceleration data and showed how to efficientlyextract individual features from acceleration data, that was gathered on mobile devices.
5.1 Current state
The tests we conducted had a relatively small sample size, thus the results are notuniversally applicable. Nevertheless, a 80% detection rate of our system shows, that itcan be used for safer and more convenient authentication mechanisms.The performance of processing and classification of acceleration data is in a realisticrange for practical use. Entering a password takes several seconds, i.e. the sameduration needed to process and train a classification algorithm with >100 previousmeasurements. For real usages, the processing and training phase does not need totake place every time, but can be cached and afterwards simply read from storage.Even without caching and therefore calculating everything each time, our systemperforms reasonable well on smartphones as well as on a smartwatch. Authenticationon the Sony Smartwatch 3 takes aproximately 30 seconds, which is not great, but still inan acceptable time-frame for watch apps. Our implementation is however not suitablefor smartrings, because with even lower powered processors, they are probably tooslow for data processing directly on the ring. Since smartrings are still in a conceptphase, there are good chances that future development in low power processor speedswill result in smartrings with comparable processing speed to smartwatches nowadays.
5.2 Future prospects
For future projects, our implementation can be used with small adaptions to the individ-ual use case. Nevertheless, there are still many possible extensions and improvementsleft for future work. Currently all of the parameters are statically determined and mightnot perform the same on all device configurations, especially with fluctuating sensorrecording rates. An attempt to work with different recording rates would be interpolationof measurements, e.g. cubic spline interpolation to get continuous sensor values.
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Overall the Feature extraction steps are in a good shape, but especially implementingspecific feature extractions for Android Wear should make it more practical. The biggestpotential improvement left to evaluate are neuronal networks to classify measurements.Neuronal networks resulted in immense improvements for speech and image recog-nition in the last years and many neuronal network implementations have been opensourced recently.
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Glossary

Acceleration sensor An acceleration sensor (also called accelerometer) is a devicethat is capable of measuring the forces accelerating devices. These forces areoften called “g-forces” from the gravitational force..
Activity An Android Activity is the basic user interface of an Android app. Activitiescan usually be launched from other apps or the start menu.
app An application program. A computer program designed for a specific type ofapplication.
Dynamic Time Warping An algorithm measuring the similarity between time seriesdata as a distance, compensating variations in time or speed.
euclidean distance A metric measuring the distance between data points, based onthe square root of the sum of the squared absolute differences.
Fragment A Fragment in an Android context is a dynamic component of an AndroidActivity. Fragments are usually used to build virtual layouts that are larger than thephysically displayed layouts and provide standardized interfaces to dynamicallyload content that probably is being showed next..
Keystroke dynamics Individual characteristics in typing, e.g. key strokes, that can beused to identify users.
Manhattan-Distance A metric measuring the distance between data points, accordingto the sum of the absolute differences between coordinates.
package A Java package is a structure to organizing Java code into name-spaces.Classes in a package are usually dependent on each other, but preferably not onother classes..
Pattern recognition Pattern recognition is a machine learning technique that can clas-sify patterns based on previously learned patterns.
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Pattern recognition Pattern recognition is a machine learning technique that can clas-sify patterns based on previously learned patterns.
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Acronyms

API Application Programming Interface.
APK Android app package file.
CPM Characters per minute.
DTW Dynamic time warping.
GSM Global System for Mobile Communications, originally Groupe Spécial Mobile.
IDE Integrated Development Environment.
k-NN k-Nearest Neighbors.
MFA Multi-factor authentication.
OTP One Time Password.
SaaS Software as a service.
SQL Structured Query Language.
TUM Technische Universität München.
UMTS Universal Mobile Telecommunications System.
USB Universal Serial Bus.
WiFi A local area wireless networking technology.
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