TUTI

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Bachelor’'s Thesis in Informatics

Bridging the gap between millions of people
in real time: fusing data of wearables in
services

Kordian Bruck

D



DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Bachelor's Thesis in Informatics

Bridging the gap between millions of people
in real time: fusing data of wearables in
services

Zusammenfiihrung von Millionen Menschen
In Echtzeit: Verwendung von Wearables
Daten in Diensten

Author: Kordian Bruck

Supervisor. Prof. Dr. Uwe Baumgarten

Advisor: Nils Kannengieller, M.Sc. & Dr-Ben-Zoght
Submission Date:  15. February 2016 Prof. Dr. Ben Zoghi

(modified by NK, April 22nd 2016)

D


nils
Typewriter
-----------------

Prof. Dr. Ben Zoghi

(modified by NK, April 22nd 2016)

nils
Typewriter

nils
Typewriter

nils
Typewriter

nils
Typewriter


| confirm that this bachelor’s thesis is my own work and | have documented all sources
and material used.

Munich, 15. February 2016 Kordian Bruck



Acknowledgments

First of all | want to thank Prof. Dr. Ben Zoghi from Texas A&M University in College
Station, Texas - his invitation to the United States, collaboration effort and support
throughout my stay made this project a success. The teamwork between A&M students
and the TUM made this whole journey a really worthwhile and challenging experience.

| want to also thank professor Prof. Dr. Uwe Baumgarten and Nils KannengieRer for
providing me with opportunity and contacts in the first place. Their commitment to
help me and other students diversify their experience throughout their undergraduate
studies is outstanding.

| also want to thank all the amazing students at A&M University and all the friends
I made without whom this thesis would not have been possible. Transportation, ac-
commodation and all those social activities you dragged me along to would have never
happened without the continuous backing of Willam, Joseph, Ryan and many other
Aggies.

Furthermore my family and friends in Europe supported me throughout my stay
abroad. Supplying me with a steady stream of energy and good advice helped tremen-
dously in completing this project.

Finally a big thank you to many friends who spend several hours of their free time for
proofreading this thesis!



Abstract

A majority of today’s global population possesses a smartphone enabling people to
connect to billions of other users. Recently, a new trend has emerged as the next
step to smartphones: wearable devices. Wearables provide the user with many more
possibilities as they can track hand motions, vital signs and provide the user with an
added benefit of being easily accessible.

Big sporting events such as the Superbowl or FIFA World Cup pull in people from
around the world but they are not interactive in any way. The question is: can we connect
these millions of people in real time and make sports something more interactive?

This thesis will explore one possible solution of how to connect those fans who
are currently being left out using wearables. The central idea is to provide real time
feedback between multiple crowds, detect their emotions and display them via various
outlets while improving the experience of the visitors to the stadium. The challenge is
to build a bi-directional communication chain using various technologies, which can
not only transport information from wearables to the cloud, but also inform the user
about relevant updates.

The presented approach will use the most current technologies and advancements
to achieve a new user experience which hopefully can be then further developed into a
marketable product.




Abstract

Heutzutage hat ein grofteil der Bevdlkerung ein Smartphone, dass es lhnen ermdglicht
mit Milliarden anderen Benutzern (iber das Internet zu kommunizieren. In den letzten
Jahren ergibt sich ein neuer Trend: tragbare Gerate, besser bekannt als "Wearables".
Diese heranwachsende Sparte an Geraten ermdglicht neue Anwendungskonzepte, da es
mehr Sensoren gibt, welche etwa die Position der Hand und die Herzfrequenz messen
konnen, sowie Informationen leichter zuganglich machen.

Sporteigeinisse werden mittlerweile auf der ganzen Welt verfolgt. Der Superbowl
oder die FIFA Weltmeisterschaft begeistern Menschen auf allen Kontinenten. Sie sind
allerdings nicht interaktiv. Die Frage stellt sich, ob wir das Erlebnis und die Stimmung
aus dem Stadium vor Ort, auch an andere Standorte in Echtzeit libertragen kénnen.

Diese Bachelorarbeit wird eine von mehreren Moglichkeiten genauer betrachten, wie
man Zuschauer mithilfe von wearables untereinander besser vernetzen kann. Die Idee
ist es, in Echtzeit Riickmeldungen liber das Publikum weiterzugeben. Wir wollen die
Emotionen erkennen und diese anschlieBend liber verschiedene Kanale wiedergeben,
wahrend wir den Fans zusatzlichen Komfort bei deren Besuch ermdglichen. Die Her-
rausforderung ist, eine Moglichkeit zu finden, wie man einfach bi-direktional zwischen
den verschiedenen Endgeraten kommunizieren kann.

Der gezeigte Ansatz wird die aktuellsten am Markt verfiigbaren Technologien ver-
wenden, um das Nutzererlebnis wesentlich zu verbessern. Das Ziel ist es, die Grundlage
fur ein Produkt zu finden, welches marktorientiert entwickelt werden kann.




Contents

1__Introduction|

(1.1 Projectscopel. . . . ... ........

[1.1.1  Fanmode’s approach to real time interaction|. . . . . .. ... ..

[1.1.2 Better user experience| . . . . .

[1.1.3 Vibeband: cheap and easy-to-use wearable device| . . . . .. ..

2.1 Real time web applications|. . . . . ..

[2.1.1 Polling as a solution for real time communication|. . . . . . . ..

[2.2.2 Real time database interaction using Livequery| . . . . . ... ..

[2.2.3 Atmosphere: a online package repository| . . . ... ... .. ..

[2.3 Easier front-end development| . . . . .

[2.3.1 Blaze: Meteor’'s simple approach

for an Ul-frameworkl . . . . ..

[2.3.2 Using AngularJS to revolutionize

front-end development|. . . . .

13

Implementation|

OO WN -

o o

O

11
11
15
15
16
16
16

vi



Contents

[3.3.3 RoutingURLstoviews| . ... ... ... ... .........
[3.3.4 Subscriptions| . . . ... ...
3.4 Android . . ... ...
[3.4.1 DDP in mobile applications|. . . . . ... ..............
[3.4.2 Connecting AndroidWear| . . ... .................
[3.4.3 Bluetoothlowenergy| . . . ... ... ... ... ... .......

il

6.1 Realtimesportsdatal . . . ... .. ... ... ... .. .. ........
[6.2 Security considerations with Meteor| . . . . . ... ... ... ......
[6.3 Deployment|. . . . . . . ...

Acronyms
[List of Figures

34

35

36
36
36
37
37
38

39
41
43
44

45

vii



1 Introduction

At the end of 2014 a new era has emerged for the world of web development with the
publication of the official World Wide Web Consortium (W3C) recommendation of the
Hypertext Markup Language (HTML) 5 standard[12]. Suddenly, a language previously
only used for design purposes, could do a whole lot more like local storage, video &
audio tags and the <canvas> element. Many browser developers at that point already
had implemented many of the new features, as the process for finalizing the standard
had been going on for over ten years.

Alongside HTML, advances in JavaScript (JS) - standardized under the term EC-
MAScript[14] - also enabled many new possibilities like web sockets and client side
databases. With the release of NodeJ']in early 2009, JS switched from being a client-
side only programming language to one equally useful as a server-side language. The
event driven architecture of JavaScript and also the non-blocking Input Output (I/0)
were new territory in server-side programming. Over the last few years larger compa-
nies have realised that using these new technologies and SCRUM not only significantly
increase their productivity, but at the same time the job satisfaction of their developers.
This interest has led to many contributions in open source projects as well as new
developments.

Meteor, just like NodeJS, is a new approach to web development trying to revolutionize
the way we think about creating websites once more. Meteor is built up on top of
NodeJS and makes use of many capabilities that evolved in the past five years in new
standardized technologies. These standards are important as the web inherently is a
cross platform experience. One can view any website on the Internet on a variety of
devices at different resolutions.

There has been a shift in the definition of what an application is. With the initial
release of the iPhone, the abbreviation app changed to define an application designed
specifically for mobile devices|6] but not a specific platform like Android, or iOS. In the
beginning these apps often only had limited functionality, so often people thought of
them as being a light, or smaller version of the desktop application. Today, websites
provide similar capabilities as traditional desktop applications and as such web appli-
cations can be real competition. For instance the rise of Software as a Service (SaaS)
is the clearest demonstration of this development[19].

Thttps://nodejs.org/en/



https://nodejs.org/en/
https://nodejs.org/en/

1 Introduction

Meteor claims to be "the JS app platform” with which one can "build apps that are
a delight to use, faster than you ever thought possible”[17]. In this thesis we test this
premise and take a look at how the development process can be improved by using
Meteor.

1.1 Project scope

The idea is to create a better fan experience during sport games using modern technolo-
gies. Wearables, smartphones and digital signage screens are the devices we want to
ultimately reach and display our collected information on. Besides displaying ordinary
game statistics to fans, we want to give people in remote locations a better impression
of the mood in the stadium during the game. To do so, we collect motions on wearable
devices and make use of other body sensors in order to analyze these. Some wearables
already have heart beat sensors which could be used to measure excitement of a given
individual. We then transmit analytics to our server, where we can further distribute
statistics about the crowd's mood to various display outlets, as well as any user with
our app.

We achieve this interconnectedness by implementing a full stack web application
using Meteor. Every component is directly implemented using Meteor functionality. We
create a server which processes and coordinates all requests, a website enabling users
to view the data and finally an Android app that connects to the wearable device, for
example a smartwatch.

Meteor brings a new aspect to web development, as one develops server- and client-
side code at the same time. This code reuse makes rapid prototyping easier, while
greatly reducing the need of immediately having to design good application interfaces at
a early project stage. This is ideal for the development in an agile SCRUM development
process.

Unfortunately, mobile browsers are not yet fully capable of interacting with Android
Wear, the operating system that runs on wearable devices. Due to this obstacle we resort
to implementing a normal Android app that connects to the server and the smartwatch,
and forwards any data between those two endpoints.

Figure[1.7]shows the structure on how the data will flow between the different end
points. (A) represents our server running meteor in some distant data center while
transmitting data through the Internet (D) to our clients (B) and (C). (C) can be any device
that can access the corresponding website in a browser directly like a television, laptop
or computer. (B) represents an Android smartphone which then can be connected to a
smartwatch over Bluetooth. All these connections are bi-directional as any endpoint
can also send data back to the server to relay any sensor information.




1 Introduction

(A)
(©)

®-0

7

Figure 1.1: Basic structure of the product

1.1.1 Fanmode’s approach to real time interaction

The London based company Fanmode has developed a similar

system over the last couple years. Their idea is to connect sport

fans and crowds worldwide in order to improve the game day faande
experience a fan has, by giving feedback how other people feel

about current events in the game. For example, the user can applaud a referee decision
if he agrees with it or he could also show his disagreement while commenting in a
Twitter-like discussion feed.

For this purpose Fanmode has developed an app for smartphones which enables
fans to interact during the game. They can cheer, chat with friends and look at the
activity stream which shows events of the current game.

Also feedback from the users can be implemented in many other places for exam-
ple directly in the television broadcast, or on so-called "Vibeboards". Vibeboards are
websites which update their content without reloading the page by using websockets,
displaying most of the information gathered in the app. Boards can be shown on a
variety of different displays because the only requirement is to have a somewhat current




1 Introduction

DUFC1:4 CEL 1 = DUEC] 4 CEl Live Stream Ll o

Vibe Stats

Vibe Stats Cheer Stream

warl

LIVE UPDATES STADIUM VIBE

<. substitution Off
60"

Cheer for your team!

Friends @ Goal
Come on United! 57
Chat
Highfives
< @@ @ Goal
o mm 49
Vibestats > Pkl
Cj Notifications
Checkin No! @ Booking Yellow
a7
Qhara Fanmnda

Figure 1.2: The Fanmode app

version of any web browser. So Vibeboards can be used in the stadium, billboards or
at public viewing events without much setup effort. Also any user on the Internet can
access the boards and follow the game on their tablet, computer or laptop.

1.1.2 Better user experience

Currently, the user has to open the mobile app and do all interactions explicitly in order
to trigger them. This thesis will try to improve this interaction by utilizing the abilities of
a smartwatch. Ultimately, we want to be able to use voice commands, motion detection
and the display in order to simplify the feedback users can give and receive. Ideally, all
motion gestures are automatically sent to the server as soon as they happen and in
turn enable other users to see these interactions in close to real time.

Inherently the term real time in computer sciences describes a highly specialized field
of computing where systems can calculate an operation by a specific deadline which
would usually be within milli- or even microseconds. The computation by the deadline
is guaranteed and requires a higher investment into the used hardware. In our web
application context real time refers to deadlines within seconds as it is a distributed
system. The delivery might not be guaranteed by all involved components, but we are
working within the limitation of what is being perceived by a human as instant - a couple
seconds at most.




1 Introduction

The vision for the final product would be a smartwatch which can be produced at low
costs and possibly used as a entry ticket for season ticket holders. This would simplify
the procedure who regularly go to see sport games at the stadium. Instead of having to
pick up tickets from the box office with their season pass, as it currently is at Texas
A&M football games, people could simply walk up with their smartwatch, authenticate
via the built-in NFC chip and enter without hassle.

Another possible enhancement would be to enable fans to pair their credit card with
their season ticket and pay for concessions at the game without the need to carry along
their wallet. With a simple scan of the smartwatch the expense would be billed directly
to the linked account. This might even increase sales, as using credit cards with chip
instead of a mag-stripe, can take some customers up to a minute to complete. Existing
wearable device like the Apple Watch already support payments with the built-in chipl|4].
Android Wear devices will probably follow in the years to come, but currently they don't
support this feature[23]. Offering a common solution for Apple Pay, Android Pay and
any other NFC enabled device will be in the interest of concession operators, if the
market of wearable devices expands further.

1.1.3 Vibeband: cheap and easy-to-use wearable device

The team at Texas A&M university in Col-
lege Station is designing and building
a smartwatch as part of their Capstone
project. The goal is to have a product that
can be cheaply manufactured while im-
proving the existing Fanmode experience.

This so called Vibeband will come with
motion detection and eventually can be
connected to the Fanmode app. It will
have reduced overall functionality, com-
pared to current models from large man-
ufacturers that are available with Android

Wear, but will also have a lower production - gjgyre 1.3: Similar product from Microsoft

cost. . recently featured on The Verge
Off-the-shelf smartwatches, which have

been used by Fanmode until now, come

at a much higher price and may lack the processing power required for motion detec-
tion. Vibeband's benefit is to have a tailored solution, which for example can perform
motion detection calculations on the device itself, without being susceptible to possible
erroneous Bluetooth connections.



http://www.theverge.com/2014/10/29/7118533/microsoft-health-band-hub-for-fitness-data

1 Introduction

——————————————————
_________ .
Piczocleciric p= emery | Charging Port

Tappin lect ttery Manageme:
rene || Diaphragms Power Voliage MCP73831 MicroUSB Type B
o 3.3v Regulation ﬁ u N‘
|Analog In TPS736 e 2
— Microcontroller % h)
Buttons TMA4C1204 je- Lithium Battery] 5.5V
Select TL3340 Digital In 3.7 v — 2000mAH]|
> .,
""’\ . Storage Wi-Fi
- Serial Flash ESP8266 IEEE 802.11n
IMU Sensors 12¢ “Sa

kg
: 1035 B, % =
Motion I erusaso == - I | g
a e Tattons St
TL3340
\2c | pigital Digital UART n‘"\ ]
Out Qut .

'OLED Display |[ Micro Motor || LED Indicators NEC TAG LE Eluctooth
S5D1306 310113 APT3216LVBC 13.56MHz BLE113 Bluetooth v.4.0
) . 3 Digital In -
User . —8 ! C (/
Input - Time!
al ime) Alert Gesture Data is Sent
- . erts
X -."’w Statistics Mode to FANMODE App

. $ €
5 Device-to-User 1S0 14443 )))
-] Communication NFC i['ti;iﬁgiz1ll13;ri"g
Wi

Figure 1.4: Conceptual block diagram showing all the major features of the vibeband

The Vibeband has its own processor, battery and comes with a variety of sensors while
being able to connect to smartphones with Bluetooth, as well as directly accessing the
internet via Wi-Fi hotpots. Some people may not own a smartphone and therefore would
not be able to connect to their phone via Bluetooth. Directly accessing the internet
using Wi-Fi also removes any need to set up the Vibeband, which might encourage
non-digital natives to make use of it. Near Field Communication (NFC) will be primarily
used to connect to the correct device over Bluetooth Low Energy (BLE) and prevent the
user from having to go through a tedious setup process.

The micro-motor is able to vibrate in case the score changes. A game’s current score
is shown on the Organic Light-Emitting Diode (OLED) display. The solution transmits
all scores to the device using a BLE write characteristic, but when connected to the
internet directly over Wi-Fi it resorts to polling a Representational State Transfer (REST)
Application Programming Interface (API) endpoint. As it only needs to transmit two
values between the Vibeband and the server it seems like overkill to implement a full
Distributed Data Protocol (DDP) client on the embedded micro controller.

1.2 Motivation for Meteor

As a web developer with several years of experience, the standardized approach to
developing applications on the internet became very tedious. To offer users real time
updates with Symfony, acommonly used PHP. Hypertext Preprocessor (PHP) framework,




1 Introduction

one has to manually implement every component of the system yourself. Create the
websocket server, negotiate a protocol between front and back end developers and
finally actually tie this feature into the normal application on the website and server.
This presents quite a challenge even for experienced developers.

Meteor comes as a full stack solution that manages everything, from database to
frontend development in one tool. One does not have to think about how database
schema'’s need to be build, or how synchronization with User Interface (Ul) will properly
function. We download the framework to our developer machine and can get right into
programming our application while receiving many features of a modern website from
the included package management system.

Rapid prototyping has become one of core development traits of agile development
teams. An idea is discussed in the morning at the daily scrum meeting and by the
end of the day it might even be already deployed to the customer. Meteor makes this
process of rapid development and deployment incredibly easy for developers at any
experience level. We want to take a closer look at this framework and look deeper into
any disadvantages that might come with this boost of functionality.




2 Approach

In this chapter we will go into more detail on how we want to approach the problem
statement at hand and which possibilities to solve it there are.

As we want to reach a big audience we have to make the application easily accessible.
This means either develop a solution of each of the biggest platforms like Windows and
Mac as well as mobile devices, or create a web application that can be accessed from
any of those platforms. A customized solution for each of these platforms is out of the
scope of this thesis, so to reach as many people as possible we will try to accomplish
our goal using a web application.

2.1 Real time web applications

We want to connect all the fans in real time. Feedback from one user should be trans-
mitted and distributed to others within a few seconds. Users should still have the
impression that the action is immediate and that their gesture was detected. If the
latency between the detection and display on the Vibeboard is too big then the value
of the information decreases dramatically. In ice hockey the mood of the crowd can
swing quickly with fast paced games, so we need to be able to handle a lot of clients
while not making the system too slow or unresponsive.

We have several possibilities how to get dynamic updates in a browser. Each of these
approaches has various advantages and drawbacks which we will take a close look at.
Figure[2.1]displays the various ways we can implement dynamic updates in a browser.

2.1.1 Polling as a solution for real time communication

HTTP was specified as a one way protocol where a client can easily download informa-
tion from a different machine on the network. Originally nobody thought about the fact
that it would be actually nice to let a user know if the underlying information changes
or that full duplex communication would be needed in a web application.

In order to resolve this issue with the available tools before websockets were stan-
dardized, developers would request all new information after a certain fixed time interval
passes. This technique is called polling and is not very efficient as the client sends




2 Approach

. Polling . . Long Polling . . Websocket .
1 1 1 1 1 1
1 1 1 1 1 1
Request : : Request :\j : : pent
1 1 1
1 1 1 1 1 ]
Response ! : : : Event Response ! :
1 I Event 1 1 1 1
1 1 1 T 1 1
1 — 1 1 1 1
1 1 Response 1 1 1
1 1 Request 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1
Request 1 1 1 1 1 1
i 1 1 1 1 1
1 1 1 1 1 1 Event
1 1 1 1
: : Timeout : : : :
Response ' Request ' Response '
1 1 1 1 1
1 1 1 1 1
1 1 1 1
1 1 1 1

/

Figure 2.1: Comparison of the three possibilities on how to get updates with Hypertext
Transfer Protocol Overview (HTTP)

requests to the server in any case, even if there isn't any new data to fetch. This gener-
ates a lot of useless request, traffic and does not scale with a growing user base. Aside
from the overhead the fixed fetching interval might impact the user experience. If the
time interval is set too high that might lead to big delays from when the data is updated
on the server and when the user sees the change.

Another possibility similar to polling is long polling: a client sends a request to the
server immediately after downloading the website, but instead of replying with an empty
message if there is no new data, the server waits till he needs to send an update and
only then replies back to the client. If a certain timeout is reached the server drops the
Transmission Control Protocol (TCP) connection and the client sends in a new request.

Both polling and long polling use XMLHttpRequest (XHR)/Asynchronous JavaScript
and XML (AJAX) functionality to send asynchronous HTTP requests to the webserver
in the background after the initial website download. These requests act like a normal
HTTP request but are initiated by JS code instead of the browser itself. Developers
can choose to request additional data at any given point after the JS-scripts have been
parsed and executed.

2.1.2 Websockets to the rescue

Websockets are a new approach in not only allowing clients to dynamically refresh
content but also to allow for a full duplex communication between clients and servers.
That means that the server as well as the client can send data at any given time,
after the connection has been established and don’t have to send out a new HTTP




2 Approach

request. Websockets are build on top of the HTTP protocol and use the same ports
for communication. This enables a faster adoption of the protocol as no firewalls or
proxies need to be reconfigured. There has been indications though, that some proxy
servers might not forward websockets correctly, as they block some of the required
HTTP headers for the connection to be upgraded|1].

Originally for every HTTP/1.0 connection a new TCP socket would be created and
closed after the website was downloaded. With increased complexity of websites
this approach was not practical anymore, as for every extra resource a complete new
connection would be established. HTTP/1.1 enabled browsers to reuse a connection
to download several resources from the same server, but still this connection would
be closed after a couple of seconds making any subsequent AJAX calls create a new
socket.

Websockets use the same TCP connection throughout their lifetime and the data
frames send after the initial handshake have minimal overhead compared to HTTP
headers that are send with every AJAX request. Websockets are a completely indepen-
dent protocol but use HTTP headers to establish the initial connection. Listings[2.T]and
[2.2] show this upgrade from HTTP to the Websocket protocol.

Listing 2.1: Upgrade request to establish a websocket

GET ws://localhost:3000/sockjs/872/0asvwl_m/websocket

Accept-Encoding:gzip, deflate, sdch

Accept-Language:de,en-US;q=0.8,en;q=0.6

Cache-Control:no-cache

Connection:Upgrade

Host:localhost:3000

Origin:http://localhost:3000

Pragma:no-cache

Sec-WebSocket-Extensions:permessage-deflate; client_max_window_bits

Sec-WebSocket-Key:914G8rbnwfOMmNZQpC7Bwl==

Sec-WebSocket-Version:13

Upgrade:websocket

User-Agent:Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/48.0.2564.82 Safari/537.36

Listing 2.2: Upgrade response

HTTP/1.1 101 Switching Protocols
connection:Upgrade

sec-websocket-accept :DwPAFku+1BfAbYVrDMZwEDEGK2U=
sec-websocket-extensions:permessage-deflate
upgrade:websocket

10




2 Approach

After the initial handshake over HTTP the websocket communicates over a totally
separate TCP connection enabling both parties to send frames at any given point in
time. The performance of websockets compared to polling is significantly better|1][22]
and can be used for our requirements of real time communication.

2.2 Meteor. A new approach to web development

There are several key Meteor technologies that help us reach our goal easier. In this
chapter we will take a closer look at how the real time communication chain from the
server to the client works.

2.2.1 Unified data access with DDP

DDP is a standard introduced by the Meteor developers to resolve on of the biggest
problems encountered in web development: querying the server for data from a JS
context and also enable the user to make changes to that dataset. Synchronisation
between the permanent storage like a SQL server and the data the user sees in the
browser has always been a big problem to tackle without any standardized solution.

With the emerge of jQuery, AJAX became a more accepted technology. AJAX enabled
developers to design websites that dynamically fetch new data once the initial content
has been downloaded using a XHR. The very first websites just downloaded one HTML
file and maybe some additional resources. With AJAX we can trigger additional XHR
requests fetching only the data that changed and eliminating the need for a full page
download which can be multiple mega bytes on more complex websites. On a mobile
connection we want to preserve as much bandwidth as possible to reduce costs and
speed up the responsiveness of the website.

Although not an completely new idea, the first time the term AJAX was used in the
context of web development was in 2005[15]. Back then Internet Explorer (IE) was
dominating the browser market and was one of the first browser to implement this
new technology. Initially the JS API for XHR that came with |E was complicated be-
cause there was no official standard released yet, but jQuery enabled developers to
use a consistent, easy to understand and cross browser compatible API. This made
the possibilities of AJAX available to a broader range of developers as the entry bar to
use this functionality got lowered significantly. Listings[2.3|and show the different
implementations with and without jQuery. Although there might not be too big of a
difference with this simple example, but there are more problems to watch out for with
the normal XHR api.

11



2 Approach

Listing 2.3: AJAX request with jQuery

$.ajax(’service/username’, {data: {id: ’1234°}});

Listing 2.4: AJAX request with the native browser API

var xhr = new XMLHttpRequest();
xhr.open(’GET’, encodeURI(’service/username?id=1234));
xhr.send();

Going back to the DDP protocol, the major difference is that AJAX relies on the HTTP
protocol for transportation, while DDP is build upon websockets. The key distinction is
that HTTP is considered to have a big overhead and also is not bi-directional. HTTP
sends out specific headers with each request to the server which in some cases might
be larger than the actual data transferred (Listing[2.5).

Listing 2.5: HTTP headers send along with a request to Wikipedia

:host:en.wikipedia.org

:method:GET

:path:/wiki/Duplex_(telecommunications)

:scheme:https

:version:HTTP/1.1

accept:text/html,application/xhtml+xml,application/xml;q=0.9,image/webp;q=0.8

accept-encoding:gzip, deflate, sdch

accept-language:de,en-US;q=0.8,en;q=0.6

cache-control:max-age=0

cookie:GeoIP=US:TX:College_Station:30.57:-96.28:v4; WMF-Last-Access=20-Jan-2016

dnt:1

if-modified-since:Tue, 29 Dec 2015 17:27:49 GMT

upgrade-insecure-requests:1

user-agent:Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/47.0.2526.111 Safari/537.36

Also with HTTP the server cannot send updates to the client on their own account, but
rather have to wait till the client comes around with the next request. Meaning if a client
shows data at the time stamp t and the data gets updated on a second client at t+1
the first client will not automatically get the update until he refreshes the locally stored
data sets. With websockets the users browser as well as the server can communicate
at any given time with each other.

DDP basically is a standardization of the publish-subscribe pattern[9]. It defines
specific messages|24] that can be send via the protocol and how to keep two distributed
data sets in sync. The most important messages are:

« Connect: establish a connection to the server

12



https://en.wikipedia.org/wiki/Duplex_(telecommunications)

2 Approach

* Publish: offer a specific data set to be subscribed

+ Subscribe: consume a publication, receive the data and listen for changes

* Ping/Pong: heartbeat message to check if the client is still available

+ Added: called when an item has been added to any subscribed collection

« Changed: an item in a subscribed publication has changed one of its values
+ Removed: an item got removed

DDP is currently implemented by Meteor only, but could also be directly supported by
MongoDB or any other storage system. MySQL could for example allow connections
via DDP, by subscribing to the data directly from the client without having to go through
a server application, that basically just interfaces database access with a REST API.
This would allow for even better performance as the current database connectors only
imitate some of the real time functionality.

DDP uses a specific subset of the JavaScript Object Notation (JSON) which is called
Extended JSON (EJSON). EJSOI\ﬂ adds data types which JSON lacks, for example
dates, binary data or even custom user defined ones. We want to really replicate the
server side MongoDB to the client side minimongo database. Once a subscription to
a specific set of data is made, all the data in that collection will be pushed to clients
minimongo database over the websocket in the EJSON format. From there this data
can be queried locally without the latency of a round trip to the server, making for a even
more responsive Ul. Once the collections underlying data changes these changes are
automatically pushed to the client as soon as they happen. From there the Ul can be
updated and the user can immediately see the changes that were made from a different
machine.

With the emerge of AngularJS and other front-end frameworks that enable developers
to create single page apps, the term two way data binding was born. Single page apps
are web applications that do not reload the page after it was initially downloaded, but
solely rely on XHR for data acquisition and manipulation of the Document Object Model
(DOM) tree. Two way data binding allows the MVC framework to bind data from the
underlying model to the Ul. Meaning that if the data changes in the DOM tree it would
also change the bounded variable in the model. Lets take a form input on a sign up
page for example: the user enters a password and while he types we can check the
bound variable for minimum password requirements. Now this was already possible
previously with jQuery and plain JS by listing to certain events that would be fired in
case of a changing value but it was a pain to maintain this connection between multiple

Thttps://github.com/primus/ejson

13


https://github.com/primus/ejson
https://github.com/primus/ejson

2 Approach

fields and its models. In this scenario the data in the model would be lost as soon as
the page would refresh and also could not be seen on by anyone other than the open
browser on that computer.

Web ‘ Mobile

App Components & Logic

Blaze ‘ Angular ‘ React

Client Data Cache ‘

CLIENT
———————————————————————————— DDP — —
SERVER
Livequery ‘
App Microservices
SOURCES Database REST Services

Figure 2.2: The Meteor stack|16]

The data chain from the server to what the user sees in his browser is called three
way data binding and was a big challenge to accomplish previously. Meteor offers all
the tools in one package out of the box making it easier then ever for novice developers
to implement real time web applications. Now not only is the model bound between
the Ul and the client side model but the model will be also replicated to the permanent
storage on the server. Figure[2.2 gives us a good overview on how all the different
technologies are connected.

This also introduces many more challenges as now timing and latency comes into
effect. We need to make sure that we do not encounter problems like the lost update
dilemma. The problem arises when a client tries to update outdated data. Lets say we
have two clients incrementing a simple integer value at the same time. If they both send
out the request at the same time we might lose one of the increments as the update
has not yet reached the other client and in turn it increments the old value. Currently
Meteor and MongoDB do not try to resolve this problem, but rather MongoDB follows a

14



2 Approach

last write wins approach. This means that an update might be lost and integrity of the
data is not guaranteed throughout the whole client network.

2.2.2 Real time database interaction using Livequery

Database connectors that support livequery return a normal cursor to iterate over the
results of a query. In addition they return a stream of changes made to the objects in
the result set, so one can track the modification or removal of items. This enables us
to propagate the changes back through DDP to the client, where we can then update
the Ul. Meteor provides us with a proof of concept livequery database connector for
MongoDB, but in the future this might be a feature directly implemented into database
systems.

To accomplish this task the current implementation for MongoDB acts like a replica-
tion server, in order to receive notification about the changes made to collections. For
Structured Query Language (SQL) based systems, triggers could be used or if that is
not a possibility one would have to resort to polling for changes, which would be really
inefficient.

Livequery is to be considered the main bottleneck when considering scalability with
Meteor. Currently it does not support MongoDB sharding automatically, so one might
have to think about implementing a message bus in the future, but to get started with a
proof of concept for our product the current functionality will do.

2.2.3 Atmosphere: a online package repository

AtmosphereE| is the official package repository for all Meteor packages. Almost all of
the functionality of Meteor is distributed via packages from Atomosphere. The major
benefit of using Atmosphere and Meteors packaging system is that it is build into the
Meteor build chain. Once one starts a meteor server it automatically checks for any
new versions and as the server runs, it also monitors changes to packages and restarts
/ reloads all connected clients & servers accordingly.

One can not only find packages for Meteors own components but also for many
other front-end related frameworks as well as a few NodeJS packages commonly
used. Without having to worry about dependencies one can simply install a package by
running the meteor install <packagename> command in the project folder. To update
packages one can simply run the server by typing meteor or to force an update run
meteor update in the command line. This simplifies development even further for novice
developers as one does not have to deal with NodeJS or its package manger NPM at
any given moment.

2https ://atmospherejs.com/

15


https://atmospherejs.com/
https://atmospherejs.com/

2 Approach

At the end of 2015 Atmosphere contained over 9000 packages|5] making it a good
resource for any requirements one might have in a modern web application.

2.3 Easier front-end development

Up to now we have only talked about the server implementation and transmission of
data changes to the client but have not taken a closer look at how to deal with the
incoming DDP messages on the client and how to propagate changes from the model
to the actual UL.

2.3.1 Blaze: Meteor’s simple approach for an Ul-framework

Blaze comes prepackaged with Meteor and is the recommended Ul-framework. It
renders templates with placeholders for data into HTML code but also takes into
account any changes that are made to the underlying data and refreshes the template
if needed.

Blaze claims to be simpler than other frameworks, but lacks significant functionality
to really enable developers to create complex applications. It does not come with a
router which would enable websites to have multiple sub pages or any possibility to
create services to interact with systems other than the meteor server. Often you need
to work with several different APIs and pull in data from other places than your own
server.

For a basic project Blaze will work just fine, as it comes with the most basic of
functionality. To build a real web application though, we will require more functionality.
Plug-ins for Blaze are available but it cannot yet compete with other frameworks out
there.

2.3.2 Using AngularJs to revolutionize front-end development

Angular was first released back in 2009 as a new approach to create single page
applications. It is maintained by Google and the open source community and was
quickly adapted by developers after the initial release, because Angular had a big
company overseeing the development of the front-end framework.

Angular's main goal was to detach the manipulation of HTML code from the appli-
cation logic. Classically with most other JS frameworks like jQuery one would get a
reference to the element in the DOM tree with a selector and then alter its attributes
from the application logic directly. Separating those two aspects from each other was
not an easy task and often lead to novice developers not following best practices. An-
gular successfully achieves this separation by automatically binding the model to the

16



2 Approach

displayed template and refreshes the value automatically if the value in the underlying
client side model changes.

Angular analyzes the HTML code when the page is first loaded and looks for spe-
cial attributes in the HTML tags like ng-app and ng-controller. It then tries to load
the matching controller module. That controller comes with its own template that it
populates with data from an API or Angular service. The controller has its local $scope
variable, which is actually an Angular service, that holds all values assigned from the
controller to the template. In the template one can then access the variables with
double curly brackets like so {{user.name}}.

Here is where the magic happens: as the scope object changes, Angular updates
the value in the template accordingly. Likewise if the user changes the value in the
DOM tree the value in the model will also be changed. Two-way data binding describes
exactly this behaviour of bound variables between the model and the Ul and it makes
a separation of application logic from Ul code much simpler, compared to the usual
approach with jQuery.

For Meteor there is a specially adapted version of Angular that supports collections
with Angular’s two-way data binding out of the box. This enables us in the next step to
actually use normal Meteor collections in any Angular controller and bind data from
there directly to the object on the server. Any time the object on the server changes it is
propagated to the clients minimongo via DDP, from where it then gets shown on the Ul

In Atmosphere we can find many more packages for Angular, which enables us to
use Meteors package management system to keep these up to date. Sometimes those
packages make small adaptions, but mostly they come directly from the representative
open source repository.

17



3 Implementation

To show that the approach we chose actually holds up to the promise, we will implement
a proof of concept application showing the full chain from the wearable device to the
server. To demonstrate the capability of the full chain at A&M and at the TUM in Germany
we will have similar setups at both locations.

3.1 Test environment

In order to be able to test our application at both locations we will use specific hardware
and software.

As a server we will use a Debian based Linux system that comes with all the necessary
requirements to run NodeJS and MongoDB. Debian is also supported by Meteor out
of the box making it headache free to setup on. For development Jet Brains offers a
specialized web development Integrated Development Environment (IDE) that supports
Meteor.

For mobile development we will use Android as its development tools are free, docu-
mentation is easily accessible and its currently the most used operating system|13].
Android comes with a mature IDE of its own called Android Studio which enables us
to easily debug any applications. As for the smartphone we are using an inexpensive
device called the LG Power. It comes with a fairly recent version of Android called
Lollipop, that brought many improvements especially in the area of BLE APIs|3].

In terms of the wearable device we have to support two options. First we will be
using a LG G watch for testing with Android Wear. Wear comes with an build in APIs
for communicating back to the Android app on the smartphone which makes it a lot
easier to develop for it. Second we also want to support the Vibeband developed by
the team at A&M university, that uses BLE to communicate efficiently and conserve
energy. We will want to implement similar functionality with both devices but the Wear
device has more possibilities, as it supports almost everything an Android smartphone
could do, while the Vibeband will probably only have a embedded processor and a two
color display. If we also support Android Wear customers will be able to bring their own
devices and use that to make use of any functionality that our app provides.

18



3 Implementation

Worldwide Smartphone OS Market Share
(Share in Unit Shipments)

90%

80%
70%
60%
50%
40%
30%
20%
10%
—_—
0% T T T T T f T T T —
S8 9 T T T 9 ¢ T
Source: IDC, Aug 2015 Android —i0Ss Windows Phone ——BlackBerry OS Others

Figure 3.1: Current market shares for smartphone operating systems

3.2 Server-side programming with Meteor

In this chapter we will take a closer look at the technologies on the server side and how
to setup our project.

3.2.1 Introduction to websockets

To see sockets in action and get familiar
of the concept of websockets we want  x hezders Frames Timing
to setup a simple application using PHP  D2t= - _ L e
. {"user":"Client 1","text™;"Client 1 entered the room”,"t... = 72 21:59:02.390
and a I|brary named RatCheﬂthat enab|eS {"user":"Client 2" "text™:"Client 2 entered the roem”"t... | 72 | 21:59:11.447
H H H {"user":"Client 2" "text":"Ping to Client 17,"time";"09:5... | 63 | 21:55:18.899
us to Implement a baSIC Chat server Wlth {Tuser":"Client 1","text":"Pong to Client 2”,"time":"09:... | 63 21:59:25.850
websockets.
With Ratchet we can setup a simple

webserver within PHP that will handle any Figure 3.2: Frames send and received via

incoming requests and relay them to any the websocket in our sample
connected client. Listing[3.1] shows how chat client

simple it is to create a websocket server

Thttp://socketo.me/

19


http://socketo.me/
http://socketo.me/

3 Implementation

with Ratchet. There is a lot going on in listings 3.7} [3.2]and [3.3] so let us take a closer
look at the code.

In order to use websockets we also need to handle any incoming HTTP requests to
upgrade the connection to a websocket. That is why we first use a basic IoServer to
open the socket, second pass it a HttpServer to allow websocket upgrade connections
and finally we create our wsServer that will handle all websocket requests. The WsServer
uses the callbacks within the chat class to handle any incoming connection requests
and also it remembers any incoming clients in order to send out any messages that
come in.

Listing 3.1: Simple websocket server with Ratchet

<7php
$server = IoServer::factory(new HttpServer(new WsServer(new Chat())),8080);
$server->run() ;

Listing 3.2: Connect to the server and send a message in JS

var con = new WebSocket(’ws://localhost:8080/7);
con.onmessage = function(e) {

var msg = JSON.parse(e.data);

alert(msg.user + "_" + msg.text);

3

con.send (JSON.stringify ({
user’: ’Client 17,
’text’: ’Ping/Pong’

19D

Listing 3.3: Ratchet server callbacks

class Chat implements MessageComponentInterface {
protected $clients;

public function onOpen(ConnectionInterface $conn) { ... }

public function onMessage(ConnectionInterface $from, $msg) { ... }

public function onClose(ConnectionInterface $conn) { ... }

public function onError(ConnectionInterface $conn, \Exception $e) { ... }

To connect to our sample server we use a simple HTML file that contains some JS
code. In listing[3.2 we can see how to connect to the websocket. The API for this is
help simple thanks to the standardization effort of the W3C.

In figure [3.2] we can see the individual frames exchanged between two clients. Web-
sockets provide no additional structure to data send over them but can transfer data

20




3 Implementation

in binary or text form. The simplest way to structure data is to use JSON to serial-
ize objects then send them and deserialize them after they arrive. One can inspect
any websocket connection in Google Chrome inside the developer console and see
all the individual frames. Meteor also utilizes JSON in their DDP protocol to transmit
messages.

This short example showed us that websockets are a brilliant and simple way to bring
real time updates to any web application. Without much work we were able to connect
to our server and build a lightweight application.

3.2.2 Project setup

Our server will be based upon Meteor which uses NodeJS and MongoDB. To get started
with our application we first need to install and configure Meteor on our local machine.
We do that by running the command curl https://install.meteor.com/ | sh in the
shell of our choosing which will download and install any dependencies as well as the
Meteor command line tool. This works only on Unix based systems but there is an
installer for windows as well.

Afterwards we can simple initialize a new Meteor project using the meteor command
line tool that we just installed. Everything related to the Meteor project is managed using
that command line tool. To create a new project in the current folder execute meteor
create <project-name>. That will create a new sub folder with the project structure and
some files to get started. Inside that folder you can just run meteor without any options
to start the server and access the website at http://localhost:3000. As we can see
using the meteor tool is really simple and easy to learn for beginners.

There is no need to restart the server each time one edits the file. Meteor takes
care of automatically refreshing the client and server when files change. This makes
development easier as one does not have to think about restarting. Meteor sets up
watchers for all the files in the current project and also installs new packages as they
are added to the list on the fly. Alongside with the fluent structure of MongoDBs
object oriented database this improves the initial speed of development significantly.
Meteors philosophy of pushing less important tasks into the future and simplifying
rapid development of new applications allows us to rapidly prototype ideas.

3.2.3 Collections: abstracting the database away

To store any data permanently in a structured matter we will utilize MongoDB, Meteors
connector and the API that Meteor supplies. One of Meteors core concepts are full
stack database drivers that let you use the same APl anywhere in the whole system.
This mean that we can use the same code on the server as well as on the client side in

21


http://localhost:3000

3 Implementation

the browser. Meteor automatically bundles the correct library in the background and
decides if we are working on the full MongoDB or minimongo database. This cuts down
on the amount of code we have to write which in turn reduces the amount of bugs and
debugging we have to do. Once the query runs on the server we can copy and paste it
to the client side or event better use a common JS file that holds any queries we run.

Listing 3.4: Define a new collection

Soccerseason = new Mongo.Collection("soccerseason");

As we can see in listing[3.4]it only takes a single line to create a new collection on
the server in our MongoDB. The exact same line can be used in on our client to create
a collection in its minimongo. The current problem is though that now everyone can
perform Create, Read, Update and Delete (CRUD) operations on the client and the server.
To limit the operations the client can commit to the servers MongoDB we can specify
policies.

Listing 3.5: Allow insertions to be made to the collection

Soccerseason.allow({
insert: function (userId, post) {
if (userId == post.userId){
return true;
}
return false;
},
B

Listing[3.5/shows us how to allow insertions on that specific collections based if the
condition is true or not. The function can check against a variety of conditions so that
complex right management should not be an issue.

To actually get any data from the collection we need to run a query against it. In
contrast to relational database systems one does not use SQL to access any data but
rather the api of the Meteor collection. These collections come with a set of functions to
perform CRUD operations on the collection. Listing[3.6) shows how to find one specific
record with its unique identification.

Listing 3.6: Find one record in the collection

Soccerseason.find({_id: season}, {
limit: 1
B;

Find runs the livequery against the database and returns a cursor with the current
dataset but it also streams any further changes to the data set from any CRUD operation.

22




3 Implementation

With the special Angular packages that comes with Meteor we don't have to worry
about manually updating any changes in the Ul but that is all done for use. We can
essentially create a three-way bound interface with just a few lines of code. No need to
think about synchronisation issues, transport or storage on the website.

Again this code can be used on the server as well as the client - Meteor automatically
knows from the the environment what back-end we are working on. If we insert an
object into the client’s minimongo it propagates the change to the servers MongoDB
via the DDP protocol.

The major benefit is, that the client’s browser does not have to wait for the round trip to
the server to be completed but rather the Ul updates immediately as we basically work
on the local browser based database. This makes the interface seem more responsive
instead of having to wait till the server responds with a confirmation message. DDP
allows for synchronization of every single operation that has been executed on the
database instead of comparing every object with the server side.

3.2.4 Folder structure
When building the application Meteor

pays close attention to what the folder meteor—server
structure is. As we are developing client meteor

and server at the same time we have some c“e:c:ntrouers
common code but also static files that we lib

want to deliver to the client. Structuring styles

Views
* index html

the project correctly is essential so that

we reduce the total size that is sent to
the browser as well not leak any security
sensitive code that might access internal
APls.

We have two possibilities to tell Me-
teor that code should either be run on the
client or server. Listing[3.7]shows how to
check in what context the current code is
running in. We can use that to separate

= routes |s
public
images
Server
=| gitignore
%= collections |s
= README.md

Figure 3.3: Meteor project structure

our Angular code from code that executes on the server.

Listing 3.7: Execute code on the server or client only

if (Meteor.isClient) { ... }
if (Meteor.isServer) { ... }

23




3 Implementation

Working with conditionals might seem simpler at first but quickly will turn into
spaghetti code as the application get more complex. Any javascript files that are
in the root of the project will be executed on both sides. In contrast we have the client
folder that will only be included in the browser and the server folder that will only run
on the server side and never be deployed to the browser.

For any assets like pictures and other static content there are public and private
folders. All files inside the public can be access directly via HTTP as for the private
folder these files can only be read using Meteors Assets API. Files inside client get
aggregated and optimized and also cannot be directly access from the web, so using
the correct directory for the right purpose is crucial.

3.2.5 Publications

One of Meteors core concepts is the publish/subscribe paradigm that allows us to
only request a specific subset of data be synchronized to our clients minimongo
database. This is crucial for performance and security aspects as we cannot send
several megabytes worth of data over the internet nor do we want to disclose all saved
that. Currently with the autopublish package enabled all data that is stored inside our
MongoDB is send to the client but we rather just want to get the information that is
relevant for the current page the user is on.

Listing 3.8: Create a publication

Meteor.publish(’soccerseason’, function () {
return Soccerseason.find({}, {
fields: {’_id’:1,’caption’:1,’lastUpdated’:1}
I
H;

Creating a publication is pretty easy. we just call the pub1ish function of the global
Meteor object, pass it a name for that publication and a function that will supply us
with a livequery result cursor. To get that cursor we simply use the Meteors MongoDB
api and pass any options to the £ind function. In listing[3.8|we return all leagues that
we have stored but only a limited set of values from each object.

Once a client subscribes to this publication he will receive the full result set from our
find operation and also any updates that happen to occur as long as he is subscribed.
We can also filter out results based upon if the user is logged in or not.

3.2.6 Optimistic Ul with Meteor methods

Publications do not offer to update any data but rather one has to either use a collections
CRUD operations. This might not be ideal as we want specify which records a user

24




3 Implementation

can alter. In Listing[3.5|we could see how to configure collections to allow/disallow
updating of collections and how to check if a user has the right to alter specific records.

Although this might work for simple collections it might not work for more complex
operations where we have to check multiple collections for the right to execute a given
CRUD operation. This is where methods come in. Methods are run on server and client
side simultaneously enabling us to add a layer of security before executing an update
or insert statement on our collection.

A nice side benefit of using methods
to perform any operation is that we can
make use of a feature called optimistic Ul
that runs a simulation of that operation on
our local minimongo while also sending
out a AJAX request to the server at the
same time, to execute the method on the
real MongoDB. This allows the Ul to show
the performed action, before the result
from the server is returned, saving us the
requirement to wait for a full round trip.
[25]

In listing[3.9|we can see how to define
a method and then call it passing a pa- Figure 3.4: Optemistic Ul latency compen-
rameter. In the method we then check if sation
the user is logged in and add the detected
gesture to an fixture’s array of claps.

View
(e.0. Blaze, Angular, React)

User input
event

Data for

view

Client Cache
(Minimongo)

Client-side temporary
oplimistic update

Data for
client-side
cache

&

<
Server-side persistent database operation

Listing 3.9: Define a meteor method and call it

Meteor.methods ({
addClap: function (fixture) {
if (!Meteor.userId()) {
throw new Meteor.Error("not-authorized");
}
Fixtures.update(fixture, { $push: { claps: Meteor.userId()} });
}
B
Meteor.call("addClap", fixture);

3.2.7 Using cron jobs to automate recurring tasks

To synchronize our game data we currently use a cron manager from within Meteor.
These is a package available on Atmosphere named percolate:synced-cron that sup-

25




3 Implementation

plies an javascript API to set up recurring jobs.

Listing 3.10: Create a cron job that runs every 5 minutes

SyncedCron.add ({
name: ’Update Soccerseasons’,
schedule: function (parser) {
return parser.text(’every 5 minutes’);
3,
job: updateSoccerseaosons

19N

We want to fetch the game data from an external REST API that supplies us with
close to real time data for several leagues free of charge. As we want this to happen all
the time and not when the user connects we need to use a cron job. Fetching the data
on an request from the user would add unnecessary latency to the transaction.

Listing[3.10/shows how to set a cron job to run every five minutes. We pass it the
function reference updateSoccerseaosons that will be called once the cron job should
execute. Inside this function we can run any code that we need to fetch data and save
it to our MongoDB.

3.3 Building the browser client

To achieve the best performance with a websocket on the website we want it to be a
single page app so that we don't have to reconnect to the socket each time we want to
display a different page. That means that we only download the page once and then
each subsequent page will be handled by our JS Ul frontend framework.

Angular solves challenges that come with building a single page app very elegantly
and has matured to a product that is used by big companies today. Angular clearly
separates application logic from code that is Ul related following the well known MVC
pattern. In MVC we distinguish between three parts: Model, View and controller. The
view in Angular is represented in part by the template with the HTML code, the model is
usually a service or in our case a Meteor collection and the controller is the intermediate
that contains any logic to connect those two.

The big benefit of using a full on framework like Angular over jQuery is that we don’t
have to worry about anything in the DOM tree at all or when to update our view. That is
all taken care of by Angular itself, giving us the time to focus on the actual application
instead of worrying on when we need to refresh the view.

26




3 Implementation

3.3.1 Solution structure

The structure of the initial HTML document that is delivered to the client is very impor-
tant. The most important attribute to set in our HTML document is ng-app="vibeboard".
Usually this attribute is set on the <vody> tag and declares what our application module
is named.

Listing 3.11: Creating a new module with dependancies

var app = angular.module(’vibeboard’, [
’angular-meteor’, ’accounts.ui’, ’ui.router’, ’ngMaterial’

1

We define a new Angular module in listing with any dependencies on other
modules passed as an array. The app variable then contains a reference to our newly
created module which we can use to configure the router and define controllers.

In order to allow Angular to place another template inside our main HTML DOM tree
we need to place the ng-view at a location that we want our content to appear. The
router will according to the controller we are currently in load the linked template file
into that tag.

3.3.2 Dependency Injection in Angular

Dependency Injection (DI) is one of Angular’s core concepts on how to allow modules
to interact easily with services. It basically is a plug-in system that allows modules
to use other services. The injector itself does not know anything specific about the
service or if any of them even exists.

After loading up the current module it checks the definition of the module for any
dependencies. It then tries to supply the needed service once the module tries to access
it. This means that any dependencies and sub dependencies are only lazily instantiated
once needed.

3.3.3 Routing URLSs to views

One of the big advantages that Angular has over Blaze is the router that comes with
it. When working with single page apps that essentially means that we do not change
the Uniform Resource Locator (URL) of the page we are currently on but rather just
manipulate the HTML. If we go deeper into a pages structure we can't get back to this
sub page directly without taking special precautions as the URL still links to the landing
page. This method of providing the user with the ability to directly access sub pages is
called deep linking. This is also important for bookmarks as well as back and forward
navigation.

27




3 Implementation

Originally the hash was used to link to a part of the website but with JS we can use
that to our advantage and read anything that comes behind the hash. Anything after
the hash, called the fragment, is not transmitted as a part of the HTTP request but only
is accessible locally through JS. The Angular router puts the path to the current view
as a part of the fragment in the URL and matches routes to that path.

Listing 3.12: Anatomy of an URL

scheme: [//[user:password@lhost [:port]] [/Ipath[?query] [#fragment]

The standard router that comes with Angular is called ngRoute. It supports basic
mapping between the path and a string but is limited in certain ways. Listing
shows how to define a controller and template for the path /soccerseason. Angular will
automatically load the template and controller when that path is called up. One can eas-
ily chain multiple statements as any function returns an instance to the $routeProvider.
At the end we use the otherwise function to redirect any requests that do not match
any route to a default route.

Listing 3.13: Create a route with the ngRoute service

$routeProvider.when(’/soccerseason’, {
templateUrl: ’client/views/soccerseason.html’,
controller: ’SoccerSeasonCtrl’

}) .otherwise({redirectTo: ’/soccerseason’})

ngRoute is limited in that way that we cannot define multiple views side by side on
one page. We can always only load one template and controller but run into problems
when we want to show two views side by side. We would need to run another controller
from within one controller and that turns really complex quickly as there is not a simple
way to tell the router that we are displaying a sub page in our current view.

As ngRoute is basically only a service within the Angular framework we can switch it
out for a third party plug-in called ui-router that enables us to create more complex
view constellations. Instead of using the ng-view attribute, ui-router uses a custom
HTML tag called <ui-view></ui-view>. Also we work with so called states instead of
routes that manifest the ability to load multiple controllers at once.

Listing 3.14: Define our application states

$stateProvider.state(’soccerseason’, {
url: ’/soccerseason’,
templateUrl: ’client/views/soccerseason.html’,
controller: ’SoccerSeasonCtrl’,
}) .state(’soccerseason.league’, {
url: "/league/:leagueld",

28




3 Implementation

templateUrl: "client/views/league.html",
controller: "LeagueCtrl"
b

$urlRouterProvider.otherwise(’soccerseason’);

As we can see in listing[3.14 we use a different service called \$stateProvider and
\$urlRouterProvider. The first state is our landing page that will simply show a list of
all leagues that we currently follow. The second state is a nested state that is based
upon the first soccerseason state. We define this sub state by appending a dot and
the sub states name. The sub state will be loaded into the ui-view which is located
inside the first states template which in turn is loaded into the main ui-view tag in our
starting HTML document. The URL is also appended to the path of the first state and
the controllers are called in sequence.

This provides us a very simple approach to load multiple controllers in sequence
without adding too much complexity inside the controllers themselves as well as being
able to access any state directly using a URL which would not be possible using the
ngRoute Service.

3.3.4 Subscriptions

We need to subscribe to publications on the client side in order to make use of them.
Luckily the angular-meteor package makes this very easy for use by providing a dedi-
cated service that takes care of most of the heavy lifting. Listing[3.15shows how to
enable the reactive context, that is that we refresh any parametrized subscription once
that parameter changes, and subscribe to a publication.

Listing 3.15: Attach the reactive service to the current scope

$reactive(this) .attach($scope);
this.subscribe(’soccerseason’);

The really important part is that we only subscribe to the published data but we do not
pass any data to the \$scope/template. Its crucial to remember that the subscription
and the time the data actually arrives at the clients minimongo database do not execute.
Once we ran the subscribe command we would need to wait a couple seconds till the
data becomes available. Luckily the subscribe method offers to pass a callback once
the actual data is present.

3.4 Android

In order to access the low level APIs for BLE and Android Wear we need to create
an Android application. Although we can open the client website in the browser on

29




3 Implementation

the phone, we cannot access any of the sensor data of the phone or the smartwatch.
We want to be able to run motion gesture detection algorithms on the sensor data
eventually, plus for accessing the Vibeband we would need access to BLE in any case.

3.4.1 DDP in mobile applications

First step to get an Android application working is to check if we can access the
data from the Meteor server from the application context without having to change
any of the server code. Luckily Meteor does not restrict access to its websocket in
any way. It will happily connect to any client that speak DDP correctly and manage
any incoming requests as it would handle requests from the browser. The server is
completely platform-agnostic of the client and really does not care who connects to its
websocket.

As we are accessing the websocket directly we need to implement our own Ul in the
Android application. For this purpose we will follow Android material desigrﬂ guide
lines to make the app look good. This comes with the downside that any changes in Ul
have to build separate from the website but gives user a better overall experience as he
can quickly navigate the common elements used by material design while making use
of significant better performance compared to a packaged web application.

Another downside is that we cannot make use of Meteors implementation of DDP
but have to rely on a third party or write our own implementation. This means that we
need to connect to the websocket and then handle any DDP messages according to
the specification.

Luckily there are libraries for several languages out there that already implement
both technologies on Android. Android-DDPE| implements the full DDP protocol and
uses TubeSoclﬂfor websocket handling. Unfortunately Android-DDP does not come
with an equivalent of minimongo so we have to handle caching data locally ourselves.
But the library gives a good point to start developing without having to deal with too
basic protocols.

To cache subscriptions and any data locally we will use HashMaps that store the
String identification of the object and the object itself. The JSON string is parsed into
normal Java objects as they come in, giving us type safety when we access any values.
Each collection will have its own HashMap representing the collection locally. This of
course also means that we cannot use any of minimongos API but rather have to resort
to Java functions for searching and sorting result sets.

Unfortunately Androids virtual machine does not fully support features that were

2http://developer.android.com/design/material/index.html
Shttps://github.com/delight-im/Android-DDP
4https://github.com/firebase/TubeSock

30


http://developer.android.com/design/material/index.html
https://github.com/delight-im/Android-DDP
https://github.com/firebase/TubeSock
http://developer.android.com/design/material/index.html
https://github.com/delight-im/Android-DDP
https://github.com/firebase/TubeSock

3 Implementation

added in Java 8 like lambdas and streams which would make our life easier when
having to deal with searching through an HashMap. There are ways to retrofit such
functionality to be supported with the Android build tools but ultimately its up to Google
to add support for that functionality.

To actually do anything with the DDP library all we have to do is create a class
that implements the MeteorCallback interface. That interface supplies us with several
callbacks that are executed as DDP messages come in. For example onDataAdded is
called when any new data is added to any subscribed collection or onDataChanged when
any of the subscribed data changes.

From there we need to remember all the values in local memory using HashMaps.
In the Android adapters which are responsible to fill the Ul with data we then access
the data from the HashMaps. In order to receive a notification when the data in the
HashMaps changes we need to register the adapter with the local DDP-callback class.
The callback class will then notify the adapter in chase any of the requested data
changes so that the adapter can update the Ul/view.

3.4.2 Connecting Android Wear

We want to be able to transmit data between the
app running on the phone and the smartwatch
running its own app. Android Wear does not sup-

Google Servers

ply the ability to directly access the internet from ST R
the smartwatch. Rather one needs a dedicated Wi
companion app that then access any API over the T

internet. This makes sense as a user could have Mobile data/Wi-Fi

multiple wearable apps which access the same ¢

data that should be cached on the phone. Listing Phone Wtch 2
[3.5/shows how the data layer api is not limited to 4

Bluetooth but can also work on wearables that di- Bluetooth

rectly connect to the internet over Wireless Local v

Area Network (WLAN). T

When transmitting data over the Data Layer AP,
one actually does not have to worry about any syn-
chronisation issues, but unfortunately Google Play Figure 3.5: How data travels be-
Services are required to be able to communicate tween the smartphone
with the watch. Similar to the DDP client one only and smartwatch[10]
has to implement some connection callbacks that
get called once data arrives.

When you setup your project correctly you will use a library project that contains

31



3 Implementation

common classes. Essentially we have to develop two separate applications as Android
Wear does not have all of the same APIs of Android. In Android Studio we solve this
by using two modules: one for the android smartphone application and one for the
smartwatch application. Both modules include a common library module that contains
all functionality that is shared between the two. The build tools then take care of
merging resources, manifests and any classes.

3.4.3 Bluetooth low energy

In order to be able to communicate with the Vibeband we need to able to connect to a
BLE Generic Attribute Profile (GATT) server. The GATT server defines in its configuration
file what values can be read and written. These values are called characteristics and
are bundled inside services. Listing shows a portion of the current configuration
file for the Vibeband BLE chip.

Listing 3.16: GATT configuration file

<service uuid="1ef88el1f-6745-4007-8742-77943cab8096" advertise="true">
<description>Vibeband Communication</description>
<characteristic uuid="dd6d5c32-d900-447d-ac56-5103d0523da6" id="gesture">
<description>Gesture Data</description>
<properties read="true" notify="true" />
<value variable_length="true" length="1" type="user" />
</characteristic>
<characteristic uuid="502c1£71-c86e-4738-9882-972aa643e3f1" id="score">
<description>Scores</description>
<properties write="true" notify="true" />
<value variable_length="true" length="11" type="user" />
</characteristic>
</service>

We can see that we have two characteristics:
+ Gesture Data: triggers if a new gesture was detected on the Vibeband
* Scores: allows us to send the current score to be displayed

This GATT file is consumed by the connecting client which in our case is the app
on the Android smartphone. In contrast to normal Bluetooth connections there is no
pairing process between the server and client. As soon as the chip on the Vibeband
powers up it starts advertising its services and allows one client to connect without
requiring any kind of authentication. In our application we first scan for any advertising
BLE devices and let the user select the correct device.

32




3 Implementation

In the next step we connect to the GATT server with the saved address in an Android
service, so that the connection is persistent between Activities. Our service automat-
ically subscribes to any characteristic that offer notifications. Notifications in BLE
trigger a callback in our app once the value changes which is perfect for our use case
of transmitting the detected gesture.

Anytime the game score changes we transmit that score to the Vibeband immediately.
The Vibeband then displays that information and provides the user with a vibrating
feedback.

The BLE APIs in Android are a very low level approach to transmit data. The API
does not serialize requests on its own but it is the developers responsibility to make
sure only one request is executed at any time. During development we encountered
many instabilities as well as random disconnects if executing requests too quickly. The
reliability of BLE will have to be improved before the Vibeband can be commercially
sold on the market.

33



4 Evaluation

In retrospective we were able to implement a full size application within just a few
months that is comparable to Fanmode’s product. Using state of the art technology we
could not only reduce the overall complexity of the full stack, but were able to maintain
the real time aspect.

From the start it was clear that collaboration with the team in College Station and
Fanmode would be decisive for the project to be a success. When | first met with the
team, | got introduced to the scope of the project and how they are organized. Weekly
meetings were planed in the beginning but as all of the team members saw each other
in classes daily, there was no real need for meetings. We managed to order development
hardware pretty quickly, which would match the chips used on the final board.

We assigned specific roles to each of the team members according to their area of
expertise. Kyle has planned out complex schematics before, so it was only logical to
make him the hardware engineer. Chelby gathered management experience in a previous
professional job and volunteered to be the team leader. Embedded software was one
of Joanas strong suits, while Michael was assigned the systems integration engineer,
that works to merge software and hardware together and also being responsible for the
final functional testing.

Communication inside the team was rough at times, as we had many cultures and
characters clash with each other. We could overcome these differences though, in
order to focus on what was important to finish the project. We used a group chat for
communication, as well as a email distribution list to keep everybody in the loop about
what is going on. Also we made use of Git and Google Drive in order to synchronize
code and documents that we all worked on. We also made use of a shared calender to
make sure everyone knows when and where we have meetings.

Support from the department of Electronic Systems Engineering Technology (ESET)
and Prof. Dr. Ben Zoghi specifically was continuous and amazing. He helped the team
to make the right decisions for the project while providing me with a great environment
to work in.

34



5 Conclusion

In summary, we achieved our goal of connecting a wearable device to a real time network
using the Meteor ecosystem. We reached comparable results to Fanmode's current
implementation and in the future could develop the application further into a product
for the US sports market.

We have proven that Meteor in conjunction with AngularJS is a mature enough solu-
tion for a modern and complex web application. We were able to show that websockets
are able to provide real time functionality to any website that wants to improve their
user experience significantly. For the application to be used on a large scale we need
to refactor our code further, but are also dependent on Meteor to continue improving
livequery and other components of their stack.

Other studies of Meteor have found similar results[2], that Meteor can be used as a
full stack framework already and is fit for use in production. Formerly complex systems
with many different components can now be replaced by a solution, that provides us
with the essentials out of the box, reducing the development effort needed to achieve
similar results. Problems encountered with performance can be put off and handled
once encountered at a later development stage.

In implementing BLE, Android Wear and DDP communication in our Android applica-
tion we have proven that Meteor is not only an closed off product, but can be interacted
with from other platforms and programming languages. In collaboration with the stu-
dents from A&M we have successfully established a method to integrate an embedded
device into our full stack solution.

35



6 Future Work

In order to develop the proof of concept into a fully fledged product there are several
things that need to be considered before this application can be use in production.

6.1 Real time sports data

For one, the information about the games statistics currently is not received in real
time yet. For this we would need to hook into a commercial providers stream of data.
Fanmode relies on Optaﬂ and Sportradalﬂfor this kind of data. The vendors push any
updates to Fanmode’s application server, which then takes care that all clients update
accordingly. For better feedback to the user this data should be be synced more often
than every couple hours.

6.2 Security considerations with Meteor

Currently the autopublish package is still used, in order to enable rapid development of
the application. To make this application useful outside a lab environment we have to
use the publish/subscribe pattern that Meteor ships with.

Initially to help newer developers understand the basic concepts in Meteor the server
simply pushes all data from the server's MongoDB to the client’'s minimongo database.
This works on local setups on a developers machine, but is not practical on a produc-
tion server. Not only would we leak information about everything we save, but also
this approach does not scale with a growing user base. The amount of information
transferred via DDP to the clients would be several mega bytes each with the data we
have stored in the current development environment.

In order to make the system secure and have good performance across the Internet
we will need to setup publications for any data that we want to use on the client. We
have explained in chapter[3.2.5/ how these work, but as we are still in development we
have not yet made use of them everywhere.

Thttp://www.optasports.com/en.aspx
2https ://www.sportradar.com/

36


http://www.optasports.com/en.aspx
https://www.sportradar.com/
http://www.optasports.com/en.aspx
https://www.sportradar.com/

6 Future Work

6.3 Deployment

Up to this point we have run the Meteor application only locally on the command line. If
we want to use the application over the internet we need to deploy it to an application
server. Meteor offers a simple command meteor deploy <appname>.meteor.comto deploy
the current application to what they call Galaxy, which is basically a hosting service
for Meteor application. This however might not be optimal, as we only have very little
control on who has access to the data and it only supplies limited resources to the
system. This service is free of charge, but also hibernates applications that are not
being used, leading to a significant timeout to restart once accessed. There are paid
plansﬂthat enable more resources and bigger applications but we can also deploy the
application to our own server.

There are several ways to deploy a Meteor application to your own server and several
tools like Meteor UpE|that make it a lot easier to go through this process. Basically one
needs to first install all necessary software like NodeJS, MongoDB and any webserver.
The webserver for example nginx acts as a local proxy that accepts all connections
and passes them on to the NodeJS server. Although this not required, one might want
to consider having a Secure Sockets Layer (SSL) connection instead of plain HTTP, in
order to prevent eavesdropping on the delivered content.

After having setup all the necessary tools on the server one can build the applica-
tion using the meteor build . command which will generate an archive, that can be
unpacked on the server. Afterwards one should be able to normally start the application,
how one would traditionally start any NodeJS application. Meteor Up simplifies this
process and reduces it to a single command for deployment.

6.4 Scalability of the full stack

There are still several areas that might be a bottleneck when we talk about a million
concurrent users. The way livequery currently is implemented will certainly impact
the responsiveness of the overall application on a larger scale. Neither MongoDB nor
NodedS are known to have scalability issues, but with all the added functionality further
research will be required to determine on just how scalable the overall Meteor platform
really is.

3https; ://www.meteor.com/why-meteor/pricing
4https://github.com/arunoda/meteor-up

37


https://www.meteor.com/why-meteor/pricing
https://www.meteor.com/why-meteor/pricing
https://github.com/arunoda/meteor-up
https://www.meteor.com/why-meteor/pricing
https://github.com/arunoda/meteor-up

6 Future Work

6.5 Vision for the Vibeband

To reach a truly large audience one would have to first reach out to season ticket
holders. Incentivising customers to purchase a Vibeband and then use the system for
one season to test-drive it would be straightforward. For instance, we could use the
Vibeband with its NFC functionality as a ticket to access the stadium on game day,
reducing queues in front of ticket offices. With on-board Wi-Fi Vibeband would connect
to the stadium'’s Wi-Fi network as soon as fans enter the premises, so fans without a
smartphone would be included in the enhanced viewing experience. One could even
go as far as allowing customers to pay for snacks and drinks with the Vibeband and
process the payment with a linked credit card.

If the Vibeband can be produced at low cost, we could even consider including it
in the season ticket altogether. It is questionable whether customer paying several
hundred dollars for a season ticket would pay extra for the Vibeband. They would be
more inclined to use it if it comes as part of the ticket package. Rental would also
be a possibility where the customer deposits a security which is credited back upon
returning the device.

As this would be an all around solution providing fans with more comfort while
collecting their feedback from gestures this would benefit both sides. A collaboration
between A&M'’s Kyle field and Fanmode could be a first step to get this product started
within the American Football league. A thorough market analysis would be needed
though to estimate true market viability and whether customers are open to use this
technology for the added convenience.

38



Glossary

app App is short for application, which is a synonym for a software program. While an
app may refer to a program for any hardware platform, it is most often used to
describe programs for mobile devices, such as smartphones and tablets|6] .

application An application, or application program, is a software program that runs on
a computer|7].

Java A programming language that is strongly object-oriented and can be executed on
many different platforms. .

jQuery jQuery is a comprehensive JS library helping developers with cross browser
compatibility and manipulating the HTML DOM tree. It can take care of animating
certain website elements and provides a excellent plug-in system to extend its
functionality..

Meteor Meteor is a software stack implemented on top of NodeJS to simplify the
development of modern web applications.

minimongo Minimongo is a reimplementation of (almost) the entire MongoDB AP,
against an in-memory JavaScript database. It is like a MongoDB emulator that
runs inside your web browser. You can insert data into it and search, sort, and
update that data[18] .

MongoDB MongoDB is an document oriented database that is designed for ease of
development and scaling .

MVC MVC is an abbreviation for Model View Controller and is a concept often found
in applications to divide classes into clear responsibilities. It helps separate
application logic from code that displays the user interface. .

nginx Nginx is a web- as well as a proxy server that is focused on concurrency and
performance .

39


http://jquery.com/
https://www.meteor.com/

Glossary

NodeJS Node.jsis a JavaScript runtime built on Chrome’s V8 JavaScript engine. Node.js
uses an event-driven, non-blocking I/0 model that makes it lightweight and effi-
cient[20] .

NPM Node Package Manager (NPM) is a command line tool to manage packages for
NodedS but also in any other project that uses JS packages .

SCRUM A new approach to rapidly develop software in an iterative work flow. Is con-
sidered to be a agile development method where the requirements change during
the course of development.

spaghetti code Code that is highly complex because of a tangled control structure .

Unix Unix is a family of operating systems that are modular and share basic programs

web application A web application or "web app” is a software program that runs on a
web server. Unlike traditional desktop applications, which are launched by your
operating system, web apps must be accessed through a web browser|8| .

Wi-Fi A technology that enables users to access a network over a wireless connection

40



Acronyms

AJAX  Asynchronous JavaScript and XML.
API Application Programming Interface.

BLE Bluetooth Low Energy.

CRUD Create, Read, Update and Delete.
DDP Distributed Data Protocol.

DI Dependency Injection.

DOM Document Object Model.

EJSON Extended JSON.

GATT Generic Attribute Profile.

HTML  Hypertext Markup Language.
HTTP  Hypertext Transfer Protocol Overview.

1/0 Input Output.

IDE Integrated Development Environment.
IE Internet Explorer.

JS JavaScript.

JSON  JavaScript Object Notation.
NFC Near Field Communication.
OLED  Organic Light-Emitting Diode.

PHP PHP. Hypertext Preprocessor.

4



Acronyms

REST
SaaS
SQL
SSL

TCP
TUM

Ul
URL

W3C
WLAN

XHR

Representational State Transfer.

Software as a Service.
Structured Query Language.
Secure Sockets Layer.

Transmission Control Protocol.
Technische Universitat Miinchen.

User Interface.
Uniform Resource Locator.

World Wide Web Consortium.
Wireless Local Area Network.

XMLHttpRequest.

42



List of Figures

(1.1

Basic structure of theproduct, . . . . . ... ... ... ... .......

m2

M3

Similar product from Microsoft recently featured on The Verge

(1.4

3

The Fanmodeapp| . . . . . . . . . . . .. 4
5

6

Conceptual block diagram showing all the major features of the vibeband|

2.1 Comparison of the three possibilities on how to get updates with HT TP 9
2.2 TheMeteorstack[16] . .. ... ... ... ... ... ... ......... 14
[3.1 Current market shares for smartphone operating systems[13] . . . . . . 19
[3.2 Frames send and received via the websocket in our sample chat client|. 19
[3.3 Meteor project structurel . . . .. ... ... .. 23
[3.4 Optemistic Ul latency compensation[25] . . . . ... ........... 25
[3.5 How data travels between the smartphone and smartwatch[10] . . . . . 31

43


http://www.theverge.com/2014/10/29/7118533/microsoft-health-band-hub-for-fitness-data

Listings

[2.1 Upgrade request to establish a websocket| . . . . ... .. ... ..... 10
[2.2 Upgraderesponse| . . . . . . . . . . . . ... 10
2.3 AJAXrequestwithjQuery|. . . . . . . ... .. ... ... .. 11
2.4 AJAX request with the native browserAPI| . . . .. ... ... ...... 12
[2.5 HTTP headers send along with a request to Wikipedia| . . . .. ... .. 12
[3.1 Simple websocket serverwithRatchet| . . . . .. ... ... ....... 20
[3.2 Connect to the server and send amessageinJS| . ... ......... 20
[3.3 Ratchet servercallbacks| . . . ... ..................... 20
3.4 Defineanewcollectionl . . . ... ... ... ... ... .. .. .. .. .. 22
(3.5 Allow Insertions to be made to the collectionl. . . . . ... ... ..... 22
3.6 _Find one record in the collectionl . . . . .. ... ... ... ........ 22
[3.7 Execute code on the serverorclientonly| . . . ... ... .. ....... 23
[3.8 Createapublication| . . . . ... ... ... .. ... ... ... ... 24
[3.9 Define a meteor methodandcallitl . .................... 25
[3.10 Create a cron job that runs every 5minutes| . . . . ... ... ...... 26
[3.11 Creating a new module with dependancies| . . . . . ... ... ...... 27
[3.12 AnatomyofanURL . ... . ... ... ... ... ... ... ....... 28
[3.13 Create a route with the ngRoute service| . . . .. ... ... ....... 28
[3.14 Define our applicationstates| . . . . .. ... ... ... .. ........ 28
[3.15 Attach the reactive service to the currentscope| . . . . . . ... ... .. 29
[3.16 GATT configurationfile] . . . . ... ... ... ... ... .. ....... 32

44


https://en.wikipedia.org/wiki/Duplex_(telecommunications)

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

S. Agarwal. “Real-time web application roadblock: Performance penalty of HTML
sockets.” In: IEEE International Conference on Communications (2012), pp. 1225-
1229. ISSN: 15503607. DOI:[10.1109/ICC.2012.6364271.

Y. Akkijyrkka. “Dynamic Web Applications with Meteor.js.” PhD thesis. 2015.
URL: https://publications.theseus.fi/bitstream/handle/10024/102032/
Dynamic % 20web %, 20applications % 20with % 20meteor % 20Yrkko %, 20Akki jyrkka |
pdf.

Android 5.0 Lollipop brings BLE Improvements. 2015. URL: http://www.argenox .
com/blog/android-5-0-1ollipop - brings - ble - improvements/ (visited on
02/05/2016).

Apple. Set up and use Apple Pay with your Apple Watch. 2015. URL: https: //
support .apple.com/en-us/HT204506 (visited on 01/20/2016).

Atomosphere 9000 packages. 2015. URL: https://twitter.com/atmospherejs/
status/676881716565250048 (visited on 02/01/2016).

P. Christensson. Definition App. 2012. URL: http://techterms.com/definition/
app| (visited on 01/14/2016).

P. Christensson. Definition Application. 2008. URL: http : / / techterms . com /
definition/application (visited on 01/14/2016).

P. Christensson. Definition Web application. 2014. URL: http://techterms.com/
definition/weby,7B%5C_%7Dapplication (visited on 01/15/2016).

P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. “The many faces of
publish/subscribe.” In: ACM Computing Surveys 35.2 (2003), pp. 114-131. ISSN:
03600300. DOI: 10 . 1145 /857076 . 857078. URL: http : / / portal . acm . org /
citation.cfm?doid=857076.857078.

Google. Android Data Layer. URL: http://developer . android.com/training/
wearables/data-layer/index.html (visited on 02/06/2016).

H. Hamalainen. “HTML5 : WebSockets.” In: Communication (2011), pp. 1-9.

45


http://dx.doi.org/10.1109/ICC.2012.6364271
https://publications.theseus.fi/bitstream/handle/10024/102032/Dynamic%20web%20applications%20with%20meteor%20Yrkko%20Akkijyrkka.pdf
https://publications.theseus.fi/bitstream/handle/10024/102032/Dynamic%20web%20applications%20with%20meteor%20Yrkko%20Akkijyrkka.pdf
https://publications.theseus.fi/bitstream/handle/10024/102032/Dynamic%20web%20applications%20with%20meteor%20Yrkko%20Akkijyrkka.pdf
http://www.argenox.com/blog/android-5-0-lollipop-brings-ble-improvements/
http://www.argenox.com/blog/android-5-0-lollipop-brings-ble-improvements/
https://support.apple.com/en-us/HT204506
https://support.apple.com/en-us/HT204506
https://twitter.com/atmospherejs/status/676881716565250048
https://twitter.com/atmospherejs/status/676881716565250048
http://techterms.com/definition/app
http://techterms.com/definition/app
http://techterms.com/definition/application
http://techterms.com/definition/application
http://techterms.com/definition/web%7B%5C_%7Dapplication
http://techterms.com/definition/web%7B%5C_%7Dapplication
http://dx.doi.org/10.1145/857076.857078
http://portal.acm.org/citation.cfm?doid=857076.857078
http://portal.acm.org/citation.cfm?doid=857076.857078
http://developer.android.com/training/wearables/data-layer/index.html
http://developer.android.com/training/wearables/data-layer/index.html

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

I. Hickson, lan (Google. “HTMLS5: A vocabulary and associated APIs for HTML
and XHTML."” In: W3C Working Draft 2010 (2011), pp. 1-599. URL: http://www.w3.
org/TR/html5/$5Cbackslash$nhttps://github.com/w3c/html.

IDC. Smartphone OS Market Share, 2015 Q2. 2015. URL: http://www . idc.com/
prodserv/smartphone-os-market-share. jsp (visited on 02/05/2016).

E. International. “ECMA-262 ECMAScript Language Specification.” In: JavaScript
Specification 16.June (2009), pp. 1-252. ISSN: 09544879. URL: http: //www.ecma-
international.org/publications/standards/Ecma-262.htm.
Jesse James Garrett. Ajax: A New Approach to Web Applications. 2005. URL: https:
//web .archive . org/web/20080702075113 /http: //www . adaptivepath . com/
ideas/essays/archives/000385. php|(visited on 01/20/2016).

Meteor platform technology. 2016. URL: https://www.meteor.com/why-meteor/
technology (visited on 02/07/2016).

Meteor Slogan. 2015. URL: https://www.meteor.com/ (visited on 01/15/2016).
Mini Databases. URL: https : //www . meteor . com/mini - databases| (visited on
01/28/2016).

G. (n.d.) Umsatz mit Software-as-a-Service (SaaS) weltweit von 2010 bis 2016 (in
Milliarden US-Dollar). 2016. URL: http://de.statista.com/statistik/daten/
studie /194117 /umfrage /umsatz-mit - software-as-a- service-weltweit -
seit-2010/.

Nodejs description. 2016. URL: https://nodejs.org/en/ (visited on 02/04/2016).

G. Palshikar. “Simple algorithms for peak detection in time-series.” In: Proc. Ist
Int. Conf. Advanced Data Analysis, ... January (2009).

V. Pimentel and B. G. Nickerson. “Communicating and displaying real-time data
with WebSocket.” In: IEEE Internet Computing 16.4 (2012), pp. 45—53.1SSN: 10897801.
DOI:|10.1109/MIC.2012.64.

A. Russell. Android Pay On Android Wear. 2015. URL: https : / / wtvox . com /

wearables/android-wear/android-pay-on-android-wear/ (visited on 01/20/2016).

S. Stubailo. DDP Specification. 2014. URL: https://github.com/meteor/meteor/
blob/master/packages/ddp/DDP.md (visited on 01/20/2016).

S. Stubailo. Optimistic Ul with Meteor. 2015. URL: http://info.meteor.com/blog/
optimistic-ui-with-meteor-latency-compensation (visited on 02/07/2016).

M. Ubl and K. Eiji. Introducing WebSockets: Bringing Sockets to the Web - HTML5
Rocks. 2010. URL: http://www.html5rocks . com/en/tutorials/websockets/
basics/|

46


http://www.w3.org/TR/html5/$%5Cbackslash$nhttps://github.com/w3c/html
http://www.w3.org/TR/html5/$%5Cbackslash$nhttps://github.com/w3c/html
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
https://web.archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/000385.php
https://web.archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/000385.php
https://web.archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/000385.php
https://www.meteor.com/why-meteor/technology
https://www.meteor.com/why-meteor/technology
https://www.meteor.com/
https://www.meteor.com/mini-databases
http://de.statista.com/statistik/daten/studie/194117/umfrage/umsatz-mit-software-as-a-service-weltweit-seit-2010/
http://de.statista.com/statistik/daten/studie/194117/umfrage/umsatz-mit-software-as-a-service-weltweit-seit-2010/
http://de.statista.com/statistik/daten/studie/194117/umfrage/umsatz-mit-software-as-a-service-weltweit-seit-2010/
https://nodejs.org/en/
http://dx.doi.org/10.1109/MIC.2012.64
https://wtvox.com/wearables/android-wear/android-pay-on-android-wear/
https://wtvox.com/wearables/android-wear/android-pay-on-android-wear/
https://github.com/meteor/meteor/blob/master/packages/ddp/DDP.md
https://github.com/meteor/meteor/blob/master/packages/ddp/DDP.md
http://info.meteor.com/blog/optimistic-ui-with-meteor-latency-compensation
http://info.meteor.com/blog/optimistic-ui-with-meteor-latency-compensation
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/

	Introduction
	Project scope
	Fanmode's approach to real time interaction
	Better user experience
	Vibeband: cheap and easy-to-use wearable device

	Motivation for Meteor

	Approach
	Real time web applications
	Polling as a solution for real time communication
	Websockets to the rescue

	Meteor: A new approach to web development
	Unified data access with DDP
	Real time database interaction using Livequery
	Atmosphere: a online package repository

	Easier front-end development
	Blaze: Meteor's simple approach for an UI-framework
	Using AngularJS to revolutionize front-end development


	Implementation
	Test environment
	Server-side programming with Meteor
	Introduction to websockets
	Project setup
	Collections: abstracting the database away
	Folder structure
	Publications
	Optimistic UI with Meteor methods
	Using cron jobs to automate recurring tasks

	Building the browser client
	Solution structure
	Dependency Injection in Angular
	Routing URLs to views
	Subscriptions

	Android
	DDP in mobile applications
	Connecting Android Wear
	Bluetooth low energy


	Evaluation
	Conclusion
	Future Work
	Real time sports data
	Security considerations with Meteor
	Deployment
	Scalability of the full stack
	Vision for the Vibeband

	Glossary
	Acronyms
	List of Figures
	Listings
	Bibliography



