
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Bridging the gap between millions of people
in real time: fusing data of wearables in

services

Kordian Bruck

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics
Bridging the gap between millions of people

in real time: fusing data of wearables in
services

Zusammenführung von Millionen Menschen
in Echtzeit: Verwendung von Wearables

Daten in Diensten

Author: Kordian BruckSupervisor: Prof. Dr. Uwe BaumgartenAdvisor: Nils Kannengießer, M.Sc. & Dr. Ben ZoghiSubmission Date: 15. February 2016

nils
Typewriter

Prof. Dr. Ben Zoghi

(modified by NK, April 22nd 2016)

nils
Typewriter

nils
Typewriter

nils
Typewriter

nils
Typewriter

I confirm that this bachelor’s thesis is my own work and I have documented all sourcesand material used.

Munich, 15. February 2016 Kordian Bruck

Acknowledgments

First of all I want to thank Prof. Dr. Ben Zoghi from Texas A&M University in CollegeStation, Texas - his invitation to the United States, collaboration effort and supportthroughout my stay made this project a success. The teamwork between A&M studentsand the TUM made this whole journey a really worthwhile and challenging experience.I want to also thank professor Prof. Dr. Uwe Baumgarten and Nils Kannengießer forproviding me with opportunity and contacts in the first place. Their commitment tohelp me and other students diversify their experience throughout their undergraduatestudies is outstanding.I also want to thank all the amazing students at A&M University and all the friendsI made without whom this thesis would not have been possible. Transportation, ac-commodation and all those social activities you dragged me along to would have neverhappened without the continuous backing of Willam, Joseph, Ryan and many otherAggies.Furthermore my family and friends in Europe supported me throughout my stayabroad. Supplying me with a steady stream of energy and good advice helped tremen-dously in completing this project.Finally a big thank you to many friends who spend several hours of their free time forproofreading this thesis!

Abstract

A majority of today’s global population possesses a smartphone enabling people toconnect to billions of other users. Recently, a new trend has emerged as the nextstep to smartphones: wearable devices. Wearables provide the user with many morepossibilities as they can track hand motions, vital signs and provide the user with anadded benefit of being easily accessible.Big sporting events such as the Superbowl or FIFA World Cup pull in people fromaround the world but they are not interactive in any way. The question is: can we connectthese millions of people in real time and make sports something more interactive?This thesis will explore one possible solution of how to connect those fans whoare currently being left out using wearables. The central idea is to provide real timefeedback between multiple crowds, detect their emotions and display them via variousoutlets while improving the experience of the visitors to the stadium. The challenge isto build a bi-directional communication chain using various technologies, which cannot only transport information from wearables to the cloud, but also inform the userabout relevant updates.The presented approach will use the most current technologies and advancementsto achieve a new user experience which hopefully can be then further developed into amarketable product.

iv

Abstract

Heutzutage hat ein großteil der Bevölkerung ein Smartphone, dass es Ihnen ermöglichtmit Milliarden anderen Benutzern über das Internet zu kommunizieren. In den letztenJahren ergibt sich ein neuer Trend: tragbare Geräte, besser bekannt als "Wearables".Diese heranwachsende Sparte an Geräten ermöglicht neue Anwendungskonzepte, da esmehr Sensoren gibt, welche etwa die Position der Hand und die Herzfrequenz messenkönnen, sowie Informationen leichter zugänglich machen.Sporteigeinisse werden mittlerweile auf der ganzen Welt verfolgt. Der Superbowloder die FIFA Weltmeisterschaft begeistern Menschen auf allen Kontinenten. Sie sindallerdings nicht interaktiv. Die Frage stellt sich, ob wir das Erlebnis und die Stimmungaus dem Stadium vor Ort, auch an andere Standorte in Echtzeit übertragen können.Diese Bachelorarbeit wird eine von mehreren Möglichkeiten genauer betrachten, wieman Zuschauer mithilfe von wearables untereinander besser vernetzen kann. Die Ideeist es, in Echtzeit Rückmeldungen über das Publikum weiterzugeben. Wir wollen dieEmotionen erkennen und diese anschließend über verschiedene Kanäle wiedergeben,während wir den Fans zusätzlichen Komfort bei deren Besuch ermöglichen. Die Her-rausforderung ist, eine Möglichkeit zu finden, wie man einfach bi-direktional zwischenden verschiedenen Endgeräten kommunizieren kann.Der gezeigte Ansatz wird die aktuellsten am Markt verfügbaren Technologien ver-wenden, um das Nutzererlebnis wesentlich zu verbessern. Das Ziel ist es, die Grundlagefür ein Produkt zu finden, welches marktorientiert entwickelt werden kann.

v

Contents

1 Introduction 11.1 Project scope . 21.1.1 Fanmode’s approach to real time interaction 31.1.2 Better user experience . 41.1.3 Vibeband: cheap and easy-to-use wearable device 51.2 Motivation for Meteor . 6
2 Approach 82.1 Real time web applications . 82.1.1 Polling as a solution for real time communication 82.1.2 Websockets to the rescue . 92.2 Meteor: A new approach to web development 112.2.1 Unified data access with DDP . 112.2.2 Real time database interaction using Livequery 152.2.3 Atmosphere: a online package repository 152.3 Easier front-end development . 162.3.1 Blaze: Meteor’s simple approach for an UI-framework 162.3.2 Using AngularJS to revolutionize front-end development 16
3 Implementation 183.1 Test environment . 183.2 Server-side programming with Meteor 193.2.1 Introduction to websockets . 193.2.2 Project setup . 213.2.3 Collections: abstracting the database away 213.2.4 Folder structure . 233.2.5 Publications . 243.2.6 Optimistic UI with Meteor methods 243.2.7 Using cron jobs to automate recurring tasks 253.3 Building the browser client . 263.3.1 Solution structure . 273.3.2 Dependency Injection in Angular 27

vi

Contents

3.3.3 Routing URLs to views . 273.3.4 Subscriptions . 293.4 Android . 293.4.1 DDP in mobile applications . 303.4.2 Connecting Android Wear . 313.4.3 Bluetooth low energy . 32
4 Evaluation 34

5 Conclusion 35

6 Future Work 366.1 Real time sports data . 366.2 Security considerations with Meteor . 366.3 Deployment . 376.4 Scalability of the full stack . 376.5 Vision for the Vibeband . 38
Glossary 39

Acronyms 41

List of Figures 43

Listings 44

Bibliography 45

vii

1 Introduction

At the end of 2014 a new era has emerged for the world of web development with thepublication of the official World Wide Web Consortium (W3C) recommendation of theHypertext Markup Language (HTML) 5 standard[12]. Suddenly, a language previouslyonly used for design purposes, could do a whole lot more like local storage, video &audio tags and the <canvas> element. Many browser developers at that point alreadyhad implemented many of the new features, as the process for finalizing the standardhad been going on for over ten years.Alongside HTML, advances in JavaScript (JS) - standardized under the term EC-MAScript[14] - also enabled many new possibilities like web sockets and client sidedatabases. With the release of NodeJS1 in early 2009, JS switched from being a client-side only programming language to one equally useful as a server-side language. Theevent driven architecture of JavaScript and also the non-blocking Input Output (I/O)were new territory in server-side programming. Over the last few years larger compa-nies have realised that using these new technologies and SCRUM not only significantlyincrease their productivity, but at the same time the job satisfaction of their developers.This interest has led to many contributions in open source projects as well as newdevelopments.Meteor, just like NodeJS, is a new approach to web development trying to revolutionizethe way we think about creating websites once more. Meteor is built up on top ofNodeJS and makes use of many capabilities that evolved in the past five years in newstandardized technologies. These standards are important as the web inherently is across platform experience. One can view any website on the Internet on a variety ofdevices at different resolutions.There has been a shift in the definition of what an application is. With the initialrelease of the iPhone, the abbreviation app changed to define an application designedspecifically for mobile devices[6] but not a specific platform like Android, or iOS. In thebeginning these apps often only had limited functionality, so often people thought ofthem as being a light, or smaller version of the desktop application. Today, websitesprovide similar capabilities as traditional desktop applications and as such web appli-cations can be real competition. For instance the rise of Software as a Service (SaaS)is the clearest demonstration of this development[19].
1https://nodejs.org/en/

1

https://nodejs.org/en/
https://nodejs.org/en/

1 Introduction

Meteor claims to be "the JS app platform" with which one can "build apps that area delight to use, faster than you ever thought possible"[17]. In this thesis we test thispremise and take a look at how the development process can be improved by usingMeteor.
1.1 Project scope
The idea is to create a better fan experience during sport games using modern technolo-gies. Wearables, smartphones and digital signage screens are the devices we want toultimately reach and display our collected information on. Besides displaying ordinarygame statistics to fans, we want to give people in remote locations a better impressionof the mood in the stadium during the game. To do so, we collect motions on wearabledevices and make use of other body sensors in order to analyze these. Some wearablesalready have heart beat sensors which could be used to measure excitement of a givenindividual. We then transmit analytics to our server, where we can further distributestatistics about the crowd’s mood to various display outlets, as well as any user withour app.We achieve this interconnectedness by implementing a full stack web applicationusing Meteor. Every component is directly implemented using Meteor functionality. Wecreate a server which processes and coordinates all requests, a website enabling usersto view the data and finally an Android app that connects to the wearable device, forexample a smartwatch.Meteor brings a new aspect to web development, as one develops server- and client-side code at the same time. This code reuse makes rapid prototyping easier, whilegreatly reducing the need of immediately having to design good application interfaces ata early project stage. This is ideal for the development in an agile SCRUM developmentprocess.Unfortunately, mobile browsers are not yet fully capable of interacting with AndroidWear, the operating system that runs on wearable devices. Due to this obstacle we resortto implementing a normal Android app that connects to the server and the smartwatch,and forwards any data between those two endpoints.Figure 1.1 shows the structure on how the data will flow between the different endpoints. (A) represents our server running meteor in some distant data center whiletransmitting data through the Internet (D) to our clients (B) and (C). (C) can be any devicethat can access the corresponding website in a browser directly like a television, laptopor computer. (B) represents an Android smartphone which then can be connected to asmartwatch over Bluetooth. All these connections are bi-directional as any endpointcan also send data back to the server to relay any sensor information.

2

1 Introduction

Figure 1.1: Basic structure of the product
1.1.1 Fanmode’s approach to real time interaction

The London based company Fanmode has developed a similarsystem over the last couple years. Their idea is to connect sportfans and crowds worldwide in order to improve the game dayexperience a fan has, by giving feedback how other people feelabout current events in the game. For example, the user can applaud a referee decisionif he agrees with it or he could also show his disagreement while commenting in aTwitter-like discussion feed.For this purpose Fanmode has developed an app for smartphones which enablesfans to interact during the game. They can cheer, chat with friends and look at theactivity stream which shows events of the current game.Also feedback from the users can be implemented in many other places for exam-ple directly in the television broadcast, or on so-called "Vibeboards". Vibeboards arewebsites which update their content without reloading the page by using websockets,displaying most of the information gathered in the app. Boards can be shown on avariety of different displays because the only requirement is to have a somewhat current

3

1 Introduction

Figure 1.2: The Fanmode app
version of any web browser. So Vibeboards can be used in the stadium, billboards orat public viewing events without much setup effort. Also any user on the Internet canaccess the boards and follow the game on their tablet, computer or laptop.
1.1.2 Better user experience

Currently, the user has to open the mobile app and do all interactions explicitly in orderto trigger them. This thesis will try to improve this interaction by utilizing the abilities ofa smartwatch. Ultimately, we want to be able to use voice commands, motion detectionand the display in order to simplify the feedback users can give and receive. Ideally, allmotion gestures are automatically sent to the server as soon as they happen and inturn enable other users to see these interactions in close to real time.Inherently the term real time in computer sciences describes a highly specialized fieldof computing where systems can calculate an operation by a specific deadline whichwould usually be within milli- or even microseconds. The computation by the deadlineis guaranteed and requires a higher investment into the used hardware. In our webapplication context real time refers to deadlines within seconds as it is a distributedsystem. The delivery might not be guaranteed by all involved components, but we areworking within the limitation of what is being perceived by a human as instant - a coupleseconds at most.

4

1 Introduction

The vision for the final product would be a smartwatch which can be produced at lowcosts and possibly used as a entry ticket for season ticket holders. This would simplifythe procedure who regularly go to see sport games at the stadium. Instead of having topick up tickets from the box office with their season pass, as it currently is at TexasA&M football games, people could simply walk up with their smartwatch, authenticatevia the built-in NFC chip and enter without hassle.Another possible enhancement would be to enable fans to pair their credit card withtheir season ticket and pay for concessions at the game without the need to carry alongtheir wallet. With a simple scan of the smartwatch the expense would be billed directlyto the linked account. This might even increase sales, as using credit cards with chipinstead of a mag-stripe, can take some customers up to a minute to complete. Existingwearable device like the Apple Watch already support payments with the built-in chip[4].Android Wear devices will probably follow in the years to come, but currently they don’tsupport this feature[23]. Offering a common solution for Apple Pay, Android Pay andany other NFC enabled device will be in the interest of concession operators, if themarket of wearable devices expands further.
1.1.3 Vibeband: cheap and easy-to-use wearable device

Figure 1.3: Similar product from Microsoftrecently featured on The Verge

The team at Texas A&M university in Col-lege Station is designing and buildinga smartwatch as part of their Capstoneproject. The goal is to have a product thatcan be cheaply manufactured while im-proving the existing Fanmode experience.This so called Vibeband will come withmotion detection and eventually can beconnected to the Fanmode app. It willhave reduced overall functionality, com-pared to current models from large man-ufacturers that are available with AndroidWear, but will also have a lower productioncost.Off-the-shelf smartwatches, which havebeen used by Fanmode until now, comeat a much higher price and may lack the processing power required for motion detec-tion. Vibeband’s benefit is to have a tailored solution, which for example can performmotion detection calculations on the device itself, without being susceptible to possibleerroneous Bluetooth connections.

5

http://www.theverge.com/2014/10/29/7118533/microsoft-health-band-hub-for-fitness-data

1 Introduction

Figure 1.4: Conceptual block diagram showing all the major features of the vibeband
The Vibeband has its own processor, battery and comes with a variety of sensors whilebeing able to connect to smartphones with Bluetooth, as well as directly accessing theinternet via Wi-Fi hotpots. Some people may not own a smartphone and therefore wouldnot be able to connect to their phone via Bluetooth. Directly accessing the internetusing Wi-Fi also removes any need to set up the Vibeband, which might encouragenon-digital natives to make use of it. Near Field Communication (NFC) will be primarilyused to connect to the correct device over Bluetooth Low Energy (BLE) and prevent theuser from having to go through a tedious setup process.The micro-motor is able to vibrate in case the score changes. A game’s current scoreis shown on the Organic Light-Emitting Diode (OLED) display. The solution transmitsall scores to the device using a BLE write characteristic, but when connected to theinternet directly over Wi-Fi it resorts to polling a Representational State Transfer (REST)Application Programming Interface (API) endpoint. As it only needs to transmit twovalues between the Vibeband and the server it seems like overkill to implement a fullDistributed Data Protocol (DDP) client on the embedded micro controller.

1.2 Motivation for Meteor
As a web developer with several years of experience, the standardized approach todeveloping applications on the internet became very tedious. To offer users real timeupdates with Symfony, a commonly used PHP: Hypertext Preprocessor (PHP) framework,

6

1 Introduction

one has to manually implement every component of the system yourself. Create thewebsocket server, negotiate a protocol between front and back end developers andfinally actually tie this feature into the normal application on the website and server.This presents quite a challenge even for experienced developers.Meteor comes as a full stack solution that manages everything, from database tofrontend development in one tool. One does not have to think about how databaseschema’s need to be build, or how synchronization with User Interface (UI) will properlyfunction. We download the framework to our developer machine and can get right intoprogramming our application while receiving many features of a modern website fromthe included package management system.Rapid prototyping has become one of core development traits of agile developmentteams. An idea is discussed in the morning at the daily scrum meeting and by theend of the day it might even be already deployed to the customer. Meteor makes thisprocess of rapid development and deployment incredibly easy for developers at anyexperience level. We want to take a closer look at this framework and look deeper intoany disadvantages that might come with this boost of functionality.

7

2 Approach

In this chapter we will go into more detail on how we want to approach the problemstatement at hand and which possibilities to solve it there are.As we want to reach a big audience we have to make the application easily accessible.This means either develop a solution of each of the biggest platforms like Windows andMac as well as mobile devices, or create a web application that can be accessed fromany of those platforms. A customized solution for each of these platforms is out of thescope of this thesis, so to reach as many people as possible we will try to accomplishour goal using a web application.
2.1 Real time web applications
We want to connect all the fans in real time. Feedback from one user should be trans-mitted and distributed to others within a few seconds. Users should still have theimpression that the action is immediate and that their gesture was detected. If thelatency between the detection and display on the Vibeboard is too big then the valueof the information decreases dramatically. In ice hockey the mood of the crowd canswing quickly with fast paced games, so we need to be able to handle a lot of clientswhile not making the system too slow or unresponsive.We have several possibilities how to get dynamic updates in a browser. Each of theseapproaches has various advantages and drawbacks which we will take a close look at.Figure 2.1 displays the various ways we can implement dynamic updates in a browser.
2.1.1 Polling as a solution for real time communication

HTTP was specified as a one way protocol where a client can easily download informa-tion from a different machine on the network. Originally nobody thought about the factthat it would be actually nice to let a user know if the underlying information changesor that full duplex communication would be needed in a web application.In order to resolve this issue with the available tools before websockets were stan-dardized, developers would request all new information after a certain fixed time intervalpasses. This technique is called polling and is not very efficient as the client sends

8

2 Approach

Request

Response

Event

Request

Response

Polling

Request

Response

Event

Request

Long Polling

Response

Event

Response

Websocket

Request
Timeout

Event

Figure 2.1: Comparison of the three possibilities on how to get updates with HypertextTransfer Protocol Overview (HTTP)
requests to the server in any case, even if there isn’t any new data to fetch. This gener-ates a lot of useless request, traffic and does not scale with a growing user base. Asidefrom the overhead the fixed fetching interval might impact the user experience. If thetime interval is set too high that might lead to big delays from when the data is updatedon the server and when the user sees the change.Another possibility similar to polling is long polling: a client sends a request to theserver immediately after downloading the website, but instead of replying with an emptymessage if there is no new data, the server waits till he needs to send an update andonly then replies back to the client. If a certain timeout is reached the server drops theTransmission Control Protocol (TCP) connection and the client sends in a new request.Both polling and long polling use XMLHttpRequest (XHR)/Asynchronous JavaScriptand XML (AJAX) functionality to send asynchronous HTTP requests to the webserverin the background after the initial website download. These requests act like a normalHTTP request but are initiated by JS code instead of the browser itself. Developerscan choose to request additional data at any given point after the JS-scripts have beenparsed and executed.
2.1.2 Websockets to the rescue

Websockets are a new approach in not only allowing clients to dynamically refreshcontent but also to allow for a full duplex communication between clients and servers.That means that the server as well as the client can send data at any given time,after the connection has been established and don’t have to send out a new HTTP

9

2 Approach

request. Websockets are build on top of the HTTP protocol and use the same portsfor communication. This enables a faster adoption of the protocol as no firewalls orproxies need to be reconfigured. There has been indications though, that some proxyservers might not forward websockets correctly, as they block some of the requiredHTTP headers for the connection to be upgraded[1].Originally for every HTTP/1.0 connection a new TCP socket would be created andclosed after the website was downloaded. With increased complexity of websitesthis approach was not practical anymore, as for every extra resource a complete newconnection would be established. HTTP/1.1 enabled browsers to reuse a connectionto download several resources from the same server, but still this connection wouldbe closed after a couple of seconds making any subsequent AJAX calls create a newsocket.Websockets use the same TCP connection throughout their lifetime and the dataframes send after the initial handshake have minimal overhead compared to HTTPheaders that are send with every AJAX request. Websockets are a completely indepen-dent protocol but use HTTP headers to establish the initial connection. Listings 2.1 and2.2 show this upgrade from HTTP to the Websocket protocol.
Listing 2.1: Upgrade request to establish a websocket

GET ws://localhost:3000/sockjs/872/0asvwl_m/websocket
Accept-Encoding:gzip, deflate, sdch
Accept-Language:de,en-US;q=0.8,en;q=0.6
Cache-Control:no-cache
Connection:Upgrade
Host:localhost:3000
Origin:http://localhost:3000
Pragma:no-cache
Sec-WebSocket-Extensions:permessage-deflate; client_max_window_bits
Sec-WebSocket-Key:914G8rbnwf0MmNZQpC7BwQ==
Sec-WebSocket-Version:13
Upgrade:websocket
User-Agent:Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/48.0.2564.82 Safari/537.36

Listing 2.2: Upgrade response
HTTP/1.1 101 Switching Protocols
connection:Upgrade
sec-websocket-accept:DwPAFku+1BfAbYVrDMZwEDEGK2U=
sec-websocket-extensions:permessage-deflate
upgrade:websocket

10

2 Approach

After the initial handshake over HTTP the websocket communicates over a totallyseparate TCP connection enabling both parties to send frames at any given point intime. The performance of websockets compared to polling is significantly better[1][22]and can be used for our requirements of real time communication.
2.2 Meteor: A new approach to web development
There are several key Meteor technologies that help us reach our goal easier. In thischapter we will take a closer look at how the real time communication chain from theserver to the client works.
2.2.1 Unified data access with DDP

DDP is a standard introduced by the Meteor developers to resolve on of the biggestproblems encountered in web development: querying the server for data from a JScontext and also enable the user to make changes to that dataset. Synchronisationbetween the permanent storage like a SQL server and the data the user sees in thebrowser has always been a big problem to tackle without any standardized solution.With the emerge of jQuery, AJAX became a more accepted technology. AJAX enableddevelopers to design websites that dynamically fetch new data once the initial contenthas been downloaded using a XHR. The very first websites just downloaded one HTMLfile and maybe some additional resources. With AJAX we can trigger additional XHRrequests fetching only the data that changed and eliminating the need for a full pagedownload which can be multiple mega bytes on more complex websites. On a mobileconnection we want to preserve as much bandwidth as possible to reduce costs andspeed up the responsiveness of the website.Although not an completely new idea, the first time the term AJAX was used in thecontext of web development was in 2005[15]. Back then Internet Explorer (IE) wasdominating the browser market and was one of the first browser to implement thisnew technology. Initially the JS API for XHR that came with IE was complicated be-cause there was no official standard released yet, but jQuery enabled developers touse a consistent, easy to understand and cross browser compatible API. This madethe possibilities of AJAX available to a broader range of developers as the entry bar touse this functionality got lowered significantly. Listings 2.3 and 2.4 show the differentimplementations with and without jQuery. Although there might not be too big of adifference with this simple example, but there are more problems to watch out for withthe normal XHR api.

11

2 Approach

Listing 2.3: AJAX request with jQuery
$.ajax(’service/username’, {data: {id: ’1234’}});

Listing 2.4: AJAX request with the native browser API
var xhr = new XMLHttpRequest();
xhr.open(’GET’, encodeURI(’service/username?id=1234’));
xhr.send();

Going back to the DDP protocol, the major difference is that AJAX relies on the HTTPprotocol for transportation, while DDP is build upon websockets. The key distinction isthat HTTP is considered to have a big overhead and also is not bi-directional. HTTPsends out specific headers with each request to the server which in some cases mightbe larger than the actual data transferred (Listing 2.5).
Listing 2.5: HTTP headers send along with a request to Wikipedia

:host:en.wikipedia.org
:method:GET
:path:/wiki/Duplex_(telecommunications)
:scheme:https
:version:HTTP/1.1
accept:text/html,application/xhtml+xml,application/xml;q=0.9,image/webp;q=0.8
accept-encoding:gzip, deflate, sdch
accept-language:de,en-US;q=0.8,en;q=0.6
cache-control:max-age=0
cookie:GeoIP=US:TX:College_Station:30.57:-96.28:v4; WMF-Last-Access=20-Jan-2016
dnt:1
if-modified-since:Tue, 29 Dec 2015 17:27:49 GMT
upgrade-insecure-requests:1
user-agent:Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/47.0.2526.111 Safari/537.36

Also with HTTP the server cannot send updates to the client on their own account, butrather have to wait till the client comes around with the next request. Meaning if a clientshows data at the time stamp t and the data gets updated on a second client at t+1the first client will not automatically get the update until he refreshes the locally storeddata sets. With websockets the users browser as well as the server can communicateat any given time with each other.DDP basically is a standardization of the publish-subscribe pattern[9]. It definesspecific messages[24] that can be send via the protocol and how to keep two distributeddata sets in sync. The most important messages are:
• Connect: establish a connection to the server

12

https://en.wikipedia.org/wiki/Duplex_(telecommunications)

2 Approach

• Publish: offer a specific data set to be subscribed
• Subscribe: consume a publication, receive the data and listen for changes
• Ping/Pong: heartbeat message to check if the client is still available
• Added: called when an item has been added to any subscribed collection
• Changed: an item in a subscribed publication has changed one of its values
• Removed: an item got removed

DDP is currently implemented by Meteor only, but could also be directly supported byMongoDB or any other storage system. MySQL could for example allow connectionsvia DDP, by subscribing to the data directly from the client without having to go througha server application, that basically just interfaces database access with a REST API.This would allow for even better performance as the current database connectors onlyimitate some of the real time functionality.DDP uses a specific subset of the JavaScript Object Notation (JSON) which is calledExtended JSON (EJSON). EJSON1 adds data types which JSON lacks, for exampledates, binary data or even custom user defined ones. We want to really replicate theserver side MongoDB to the client side minimongo database. Once a subscription toa specific set of data is made, all the data in that collection will be pushed to clientsminimongo database over the websocket in the EJSON format. From there this datacan be queried locally without the latency of a round trip to the server, making for a evenmore responsive UI. Once the collections underlying data changes these changes areautomatically pushed to the client as soon as they happen. From there the UI can beupdated and the user can immediately see the changes that were made from a differentmachine.With the emerge of AngularJS and other front-end frameworks that enable developersto create single page apps, the term two way data binding was born. Single page appsare web applications that do not reload the page after it was initially downloaded, butsolely rely on XHR for data acquisition and manipulation of the Document Object Model(DOM) tree. Two way data binding allows the MVC framework to bind data from theunderlying model to the UI. Meaning that if the data changes in the DOM tree it wouldalso change the bounded variable in the model. Lets take a form input on a sign uppage for example: the user enters a password and while he types we can check thebound variable for minimum password requirements. Now this was already possiblepreviously with jQuery and plain JS by listing to certain events that would be fired incase of a changing value but it was a pain to maintain this connection between multiple
1https://github.com/primus/ejson

13

https://github.com/primus/ejson
https://github.com/primus/ejson

2 Approach

fields and its models. In this scenario the data in the model would be lost as soon asthe page would refresh and also could not be seen on by anyone other than the openbrowser on that computer.

Figure 2.2: The Meteor stack[16]
The data chain from the server to what the user sees in his browser is called threeway data binding and was a big challenge to accomplish previously. Meteor offers allthe tools in one package out of the box making it easier then ever for novice developersto implement real time web applications. Now not only is the model bound betweenthe UI and the client side model but the model will be also replicated to the permanentstorage on the server. Figure 2.2 gives us a good overview on how all the differenttechnologies are connected.This also introduces many more challenges as now timing and latency comes intoeffect. We need to make sure that we do not encounter problems like the lost updatedilemma. The problem arises when a client tries to update outdated data. Lets say wehave two clients incrementing a simple integer value at the same time. If they both sendout the request at the same time we might lose one of the increments as the updatehas not yet reached the other client and in turn it increments the old value. CurrentlyMeteor and MongoDB do not try to resolve this problem, but rather MongoDB follows a

14

2 Approach

last write wins approach. This means that an update might be lost and integrity of thedata is not guaranteed throughout the whole client network.
2.2.2 Real time database interaction using Livequery

Database connectors that support livequery return a normal cursor to iterate over theresults of a query. In addition they return a stream of changes made to the objects inthe result set, so one can track the modification or removal of items. This enables usto propagate the changes back through DDP to the client, where we can then updatethe UI. Meteor provides us with a proof of concept livequery database connector forMongoDB, but in the future this might be a feature directly implemented into databasesystems.To accomplish this task the current implementation for MongoDB acts like a replica-tion server, in order to receive notification about the changes made to collections. ForStructured Query Language (SQL) based systems, triggers could be used or if that isnot a possibility one would have to resort to polling for changes, which would be reallyinefficient.Livequery is to be considered the main bottleneck when considering scalability withMeteor. Currently it does not support MongoDB sharding automatically, so one mighthave to think about implementing a message bus in the future, but to get started with aproof of concept for our product the current functionality will do.
2.2.3 Atmosphere: a online package repository

Atmosphere2 is the official package repository for all Meteor packages. Almost all ofthe functionality of Meteor is distributed via packages from Atomosphere. The majorbenefit of using Atmosphere and Meteors packaging system is that it is build into theMeteor build chain. Once one starts a meteor server it automatically checks for anynew versions and as the server runs, it also monitors changes to packages and restarts/ reloads all connected clients & servers accordingly.One can not only find packages for Meteors own components but also for manyother front-end related frameworks as well as a few NodeJS packages commonlyused. Without having to worry about dependencies one can simply install a package byrunning the meteor install <packagename> command in the project folder. To updatepackages one can simply run the server by typing meteor or to force an update run
meteor update in the command line. This simplifies development even further for novicedevelopers as one does not have to deal with NodeJS or its package manger NPM atany given moment.

2https://atmospherejs.com/

15

https://atmospherejs.com/
https://atmospherejs.com/

2 Approach

At the end of 2015 Atmosphere contained over 9000 packages[5] making it a goodresource for any requirements one might have in a modern web application.
2.3 Easier front-end development
Up to now we have only talked about the server implementation and transmission ofdata changes to the client but have not taken a closer look at how to deal with theincoming DDP messages on the client and how to propagate changes from the modelto the actual UI.
2.3.1 Blaze: Meteor’s simple approach for an UI-framework

Blaze comes prepackaged with Meteor and is the recommended UI-framework. Itrenders templates with placeholders for data into HTML code but also takes intoaccount any changes that are made to the underlying data and refreshes the templateif needed.Blaze claims to be simpler than other frameworks, but lacks significant functionalityto really enable developers to create complex applications. It does not come with arouter which would enable websites to have multiple sub pages or any possibility tocreate services to interact with systems other than the meteor server. Often you needto work with several different APIs and pull in data from other places than your ownserver.For a basic project Blaze will work just fine, as it comes with the most basic offunctionality. To build a real web application though, we will require more functionality.Plug-ins for Blaze are available but it cannot yet compete with other frameworks outthere.
2.3.2 Using AngularJS to revolutionize front-end development

Angular was first released back in 2009 as a new approach to create single pageapplications. It is maintained by Google and the open source community and wasquickly adapted by developers after the initial release, because Angular had a bigcompany overseeing the development of the front-end framework.Angular’s main goal was to detach the manipulation of HTML code from the appli-cation logic. Classically with most other JS frameworks like jQuery one would get areference to the element in the DOM tree with a selector and then alter its attributesfrom the application logic directly. Separating those two aspects from each other wasnot an easy task and often lead to novice developers not following best practices. An-gular successfully achieves this separation by automatically binding the model to the

16

2 Approach

displayed template and refreshes the value automatically if the value in the underlyingclient side model changes.Angular analyzes the HTML code when the page is first loaded and looks for spe-cial attributes in the HTML tags like ng-app and ng-controller. It then tries to loadthe matching controller module. That controller comes with its own template that itpopulates with data from an API or Angular service. The controller has its local $scopevariable, which is actually an Angular service, that holds all values assigned from thecontroller to the template. In the template one can then access the variables withdouble curly brackets like so {{user.name}}.Here is where the magic happens: as the scope object changes, Angular updatesthe value in the template accordingly. Likewise if the user changes the value in theDOM tree the value in the model will also be changed. Two-way data binding describesexactly this behaviour of bound variables between the model and the UI and it makesa separation of application logic from UI code much simpler, compared to the usualapproach with jQuery.For Meteor there is a specially adapted version of Angular that supports collectionswith Angular’s two-way data binding out of the box. This enables us in the next step toactually use normal Meteor collections in any Angular controller and bind data fromthere directly to the object on the server. Any time the object on the server changes it ispropagated to the clients minimongo via DDP, from where it then gets shown on the UI.In Atmosphere we can find many more packages for Angular, which enables us touse Meteors package management system to keep these up to date. Sometimes thosepackages make small adaptions, but mostly they come directly from the representativeopen source repository.

17

3 Implementation

To show that the approach we chose actually holds up to the promise, we will implementa proof of concept application showing the full chain from the wearable device to theserver. To demonstrate the capability of the full chain at A&M and at the TUM in Germanywe will have similar setups at both locations.
3.1 Test environment
In order to be able to test our application at both locations we will use specific hardwareand software.As a server we will use a Debian based Linux system that comes with all the necessaryrequirements to run NodeJS and MongoDB. Debian is also supported by Meteor outof the box making it headache free to setup on. For development Jet Brains offers aspecialized web development Integrated Development Environment (IDE) that supportsMeteor.For mobile development we will use Android as its development tools are free, docu-mentation is easily accessible and its currently the most used operating system[13].Android comes with a mature IDE of its own called Android Studio which enables usto easily debug any applications. As for the smartphone we are using an inexpensivedevice called the LG Power. It comes with a fairly recent version of Android calledLollipop, that brought many improvements especially in the area of BLE APIs[3].In terms of the wearable device we have to support two options. First we will beusing a LG G watch for testing with Android Wear. Wear comes with an build in APIsfor communicating back to the Android app on the smartphone which makes it a loteasier to develop for it. Second we also want to support the Vibeband developed bythe team at A&M university, that uses BLE to communicate efficiently and conserveenergy. We will want to implement similar functionality with both devices but the Weardevice has more possibilities, as it supports almost everything an Android smartphonecould do, while the Vibeband will probably only have a embedded processor and a twocolor display. If we also support Android Wear customers will be able to bring their owndevices and use that to make use of any functionality that our app provides.

18

3 Implementation

Figure 3.1: Current market shares for smartphone operating systems[13]
3.2 Server-side programming with Meteor
In this chapter we will take a closer look at the technologies on the server side and howto setup our project.
3.2.1 Introduction to websockets

Figure 3.2: Frames send and received viathe websocket in our samplechat client

To see sockets in action and get familiarof the concept of websockets we wantto setup a simple application using PHPand a library named Ratchet1 that enablesus to implement a basic chat server withwebsockets.With Ratchet we can setup a simplewebserver within PHP that will handle anyincoming requests and relay them to anyconnected client. Listing 3.1 shows howsimple it is to create a websocket server
1http://socketo.me/

19

http://socketo.me/
http://socketo.me/

3 Implementation

with Ratchet. There is a lot going on in listings 3.1, 3.2 and 3.3 so let us take a closerlook at the code.In order to use websockets we also need to handle any incoming HTTP requests toupgrade the connection to a websocket. That is why we first use a basic IoServer toopen the socket, second pass it a HttpServer to allow websocket upgrade connectionsand finally we create our WsServer that will handle all websocket requests. The WsServeruses the callbacks within the Chat class to handle any incoming connection requestsand also it remembers any incoming clients in order to send out any messages thatcome in.
Listing 3.1: Simple websocket server with Ratchet

<?php
$server = IoServer::factory(new HttpServer(new WsServer(new Chat())),8080);
$server->run();

Listing 3.2: Connect to the server and send a message in JS
var con = new WebSocket(’ws://localhost:8080/’);
con.onmessage = function(e) {

var msg = JSON.parse(e.data);
alert(msg.user + "␣" + msg.text);

};
con.send(JSON.stringify({

’user’: ’Client␣1’,
’text’: ’Ping/Pong’

}));

Listing 3.3: Ratchet server callbacks
class Chat implements MessageComponentInterface {

protected $clients;

public function onOpen(ConnectionInterface $conn) { ... }
public function onMessage(ConnectionInterface $from, $msg) { ... }
public function onClose(ConnectionInterface $conn) { ... }
public function onError(ConnectionInterface $conn, \Exception $e) { ... }

}

To connect to our sample server we use a simple HTML file that contains some JScode. In listing 3.2 we can see how to connect to the websocket. The API for this ishelp simple thanks to the standardization effort of the W3C.In figure 3.2 we can see the individual frames exchanged between two clients. Web-sockets provide no additional structure to data send over them but can transfer data

20

3 Implementation

in binary or text form. The simplest way to structure data is to use JSON to serial-ize objects then send them and deserialize them after they arrive. One can inspectany websocket connection in Google Chrome inside the developer console and seeall the individual frames. Meteor also utilizes JSON in their DDP protocol to transmitmessages.This short example showed us that websockets are a brilliant and simple way to bringreal time updates to any web application. Without much work we were able to connectto our server and build a lightweight application.
3.2.2 Project setup

Our server will be based upon Meteor which uses NodeJS and MongoDB. To get startedwith our application we first need to install and configure Meteor on our local machine.We do that by running the command curl https://install.meteor.com/ | sh in theshell of our choosing which will download and install any dependencies as well as theMeteor command line tool. This works only on Unix based systems but there is aninstaller for windows as well.Afterwards we can simple initialize a new Meteor project using the meteor commandline tool that we just installed. Everything related to the Meteor project is managed usingthat command line tool. To create a new project in the current folder execute meteor
create <project-name>. That will create a new sub folder with the project structure andsome files to get started. Inside that folder you can just run meteor without any optionsto start the server and access the website at http://localhost:3000. As we can seeusing the meteor tool is really simple and easy to learn for beginners.There is no need to restart the server each time one edits the file. Meteor takescare of automatically refreshing the client and server when files change. This makesdevelopment easier as one does not have to think about restarting. Meteor sets upwatchers for all the files in the current project and also installs new packages as theyare added to the list on the fly. Alongside with the fluent structure of MongoDBsobject oriented database this improves the initial speed of development significantly.Meteors philosophy of pushing less important tasks into the future and simplifyingrapid development of new applications allows us to rapidly prototype ideas.
3.2.3 Collections: abstracting the database away

To store any data permanently in a structured matter we will utilize MongoDB, Meteorsconnector and the API that Meteor supplies. One of Meteors core concepts are fullstack database drivers that let you use the same API anywhere in the whole system.This mean that we can use the same code on the server as well as on the client side in

21

http://localhost:3000

3 Implementation

the browser. Meteor automatically bundles the correct library in the background anddecides if we are working on the full MongoDB or minimongo database. This cuts downon the amount of code we have to write which in turn reduces the amount of bugs anddebugging we have to do. Once the query runs on the server we can copy and paste itto the client side or event better use a common JS file that holds any queries we run.
Listing 3.4: Define a new collection

Soccerseason = new Mongo.Collection("soccerseason");

As we can see in listing 3.4 it only takes a single line to create a new collection onthe server in our MongoDB. The exact same line can be used in on our client to createa collection in its minimongo. The current problem is though that now everyone canperform Create, Read, Update and Delete (CRUD) operations on the client and the server.To limit the operations the client can commit to the servers MongoDB we can specifypolicies.
Listing 3.5: Allow insertions to be made to the collection

Soccerseason.allow({
insert: function (userId, post) {

if(userId == post.userId){
return true;

}
return false;

},
});

Listing 3.5 shows us how to allow insertions on that specific collections based if thecondition is true or not. The function can check against a variety of conditions so thatcomplex right management should not be an issue.To actually get any data from the collection we need to run a query against it. Incontrast to relational database systems one does not use SQL to access any data butrather the api of the Meteor collection. These collections come with a set of functions toperform CRUD operations on the collection. Listing 3.6 shows how to find one specificrecord with its unique identification.
Listing 3.6: Find one record in the collection

Soccerseason.find({_id: season}, {
limit: 1

});

Find runs the livequery against the database and returns a cursor with the currentdataset but it also streams any further changes to the data set from any CRUD operation.

22

3 Implementation

With the special Angular packages that comes with Meteor we don’t have to worryabout manually updating any changes in the UI but that is all done for use. We canessentially create a three-way bound interface with just a few lines of code. No need tothink about synchronisation issues, transport or storage on the website.Again this code can be used on the server as well as the client - Meteor automaticallyknows from the the environment what back-end we are working on. If we insert anobject into the client’s minimongo it propagates the change to the servers MongoDBvia the DDP protocol.The major benefit is, that the client’s browser does not have to wait for the round trip tothe server to be completed but rather the UI updates immediately as we basically workon the local browser based database. This makes the interface seem more responsiveinstead of having to wait till the server responds with a confirmation message. DDPallows for synchronization of every single operation that has been executed on thedatabase instead of comparing every object with the server side.
3.2.4 Folder structure

Figure 3.3: Meteor project structure

When building the application Meteorpays close attention to what the folderstructure is. As we are developing clientand server at the same time we have somecommon code but also static files that wewant to deliver to the client. Structuringthe project correctly is essential so thatwe reduce the total size that is sent tothe browser as well not leak any securitysensitive code that might access internalAPIs.We have two possibilities to tell Me-teor that code should either be run on theclient or server. Listing 3.7 shows how tocheck in what context the current code isrunning in. We can use that to separateour Angular code from code that executes on the server.
Listing 3.7: Execute code on the server or client only

if (Meteor.isClient) { ... }
if (Meteor.isServer) { ... }

23

3 Implementation

Working with conditionals might seem simpler at first but quickly will turn intospaghetti code as the application get more complex. Any javascript files that arein the root of the project will be executed on both sides. In contrast we have the clientfolder that will only be included in the browser and the server folder that will only runon the server side and never be deployed to the browser.For any assets like pictures and other static content there are public and privatefolders. All files inside the public can be access directly via HTTP as for the privatefolder these files can only be read using Meteors Assets API. Files inside client getaggregated and optimized and also cannot be directly access from the web, so usingthe correct directory for the right purpose is crucial.
3.2.5 Publications

One of Meteors core concepts is the publish/subscribe paradigm that allows us toonly request a specific subset of data be synchronized to our clients minimongodatabase. This is crucial for performance and security aspects as we cannot sendseveral megabytes worth of data over the internet nor do we want to disclose all savedthat. Currently with the autopublish package enabled all data that is stored inside ourMongoDB is send to the client but we rather just want to get the information that isrelevant for the current page the user is on.
Listing 3.8: Create a publication

Meteor.publish(’soccerseason’, function () {
return Soccerseason.find({}, {

fields: {’_id’:1,’caption’:1,’lastUpdated’:1}
});

});

Creating a publication is pretty easy: we just call the publish function of the globalMeteor object, pass it a name for that publication and a function that will supply uswith a livequery result cursor. To get that cursor we simply use the Meteors MongoDBapi and pass any options to the find function. In listing 3.8 we return all leagues thatwe have stored but only a limited set of values from each object.Once a client subscribes to this publication he will receive the full result set from our
find operation and also any updates that happen to occur as long as he is subscribed.We can also filter out results based upon if the user is logged in or not.
3.2.6 Optimistic UI with Meteor methods

Publications do not offer to update any data but rather one has to either use a collectionsCRUD operations. This might not be ideal as we want specify which records a user

24

3 Implementation

can alter. In Listing 3.5 we could see how to configure collections to allow/disallowupdating of collections and how to check if a user has the right to alter specific records.Although this might work for simple collections it might not work for more complexoperations where we have to check multiple collections for the right to execute a givenCRUD operation. This is where methods come in. Methods are run on server and clientside simultaneously enabling us to add a layer of security before executing an updateor insert statement on our collection.

Figure 3.4: Optemistic UI latency compen-sation[25]

A nice side benefit of using methodsto perform any operation is that we canmake use of a feature called optimistic UIthat runs a simulation of that operation onour local minimongo while also sendingout a AJAX request to the server at thesame time, to execute the method on thereal MongoDB. This allows the UI to showthe performed action, before the resultfrom the server is returned, saving us therequirement to wait for a full round trip.[25]In listing 3.9 we can see how to definea method and then call it passing a pa-rameter. In the method we then check ifthe user is logged in and add the detectedgesture to an fixture’s array of claps.
Listing 3.9: Define a meteor method and call it

Meteor.methods({
addClap: function (fixture) {
if (!Meteor.userId()) {
throw new Meteor.Error("not-authorized");

}
Fixtures.update(fixture, { $push: { claps: Meteor.userId()} });

}
});
Meteor.call("addClap", fixture);

3.2.7 Using cron jobs to automate recurring tasks

To synchronize our game data we currently use a cron manager from within Meteor.These is a package available on Atmosphere named percolate:synced-cron that sup-

25

3 Implementation

plies an javascript API to set up recurring jobs.
Listing 3.10: Create a cron job that runs every 5 minutes

SyncedCron.add({
name: ’Update␣Soccerseasons’,
schedule: function (parser) {

return parser.text(’every␣5␣minutes’);
},
job: updateSoccerseaosons

});

We want to fetch the game data from an external REST API that supplies us withclose to real time data for several leagues free of charge. As we want this to happen allthe time and not when the user connects we need to use a cron job. Fetching the dataon an request from the user would add unnecessary latency to the transaction.Listing 3.10 shows how to set a cron job to run every five minutes. We pass it thefunction reference updateSoccerseaosons that will be called once the cron job shouldexecute. Inside this function we can run any code that we need to fetch data and saveit to our MongoDB.
3.3 Building the browser client
To achieve the best performance with a websocket on the website we want it to be asingle page app so that we don’t have to reconnect to the socket each time we want todisplay a different page. That means that we only download the page once and theneach subsequent page will be handled by our JS UI frontend framework.Angular solves challenges that come with building a single page app very elegantlyand has matured to a product that is used by big companies today. Angular clearlyseparates application logic from code that is UI related following the well known MVCpattern. In MVC we distinguish between three parts: Model, View and controller. Theview in Angular is represented in part by the template with the HTML code, the model isusually a service or in our case a Meteor collection and the controller is the intermediatethat contains any logic to connect those two.The big benefit of using a full on framework like Angular over jQuery is that we don’thave to worry about anything in the DOM tree at all or when to update our view. That isall taken care of by Angular itself, giving us the time to focus on the actual applicationinstead of worrying on when we need to refresh the view.

26

3 Implementation

3.3.1 Solution structure

The structure of the initial HTML document that is delivered to the client is very impor-tant. The most important attribute to set in our HTML document is ng-app="vibeboard".Usually this attribute is set on the <body> tag and declares what our application moduleis named.
Listing 3.11: Creating a new module with dependancies

var app = angular.module(’vibeboard’, [
’angular-meteor’, ’accounts.ui’, ’ui.router’, ’ngMaterial’

]);

We define a new Angular module in listing 3.11 with any dependencies on othermodules passed as an array. The app variable then contains a reference to our newlycreated module which we can use to configure the router and define controllers.In order to allow Angular to place another template inside our main HTML DOM treewe need to place the ng-view at a location that we want our content to appear. Therouter will according to the controller we are currently in load the linked template fileinto that tag.
3.3.2 Dependency Injection in Angular

Dependency Injection (DI) is one of Angular’s core concepts on how to allow modulesto interact easily with services. It basically is a plug-in system that allows modulesto use other services. The injector itself does not know anything specific about theservice or if any of them even exists.After loading up the current module it checks the definition of the module for anydependencies. It then tries to supply the needed service once the module tries to accessit. This means that any dependencies and sub dependencies are only lazily instantiatedonce needed.
3.3.3 Routing URLs to views

One of the big advantages that Angular has over Blaze is the router that comes withit. When working with single page apps that essentially means that we do not changethe Uniform Resource Locator (URL) of the page we are currently on but rather justmanipulate the HTML. If we go deeper into a pages structure we can’t get back to thissub page directly without taking special precautions as the URL still links to the landingpage. This method of providing the user with the ability to directly access sub pages iscalled deep linking. This is also important for bookmarks as well as back and forwardnavigation.

27

3 Implementation

Originally the hash was used to link to a part of the website but with JS we can usethat to our advantage and read anything that comes behind the hash. Anything afterthe hash, called the fragment, is not transmitted as a part of the HTTP request but onlyis accessible locally through JS. The Angular router puts the path to the current viewas a part of the fragment in the URL and matches routes to that path.
Listing 3.12: Anatomy of an URL

scheme:[//[user:password@]host[:port]][/]path[?query][#fragment]

The standard router that comes with Angular is called ngRoute. It supports basicmapping between the path and a string but is limited in certain ways. Listing 3.13shows how to define a controller and template for the path /soccerseason. Angular willautomatically load the template and controller when that path is called up. One can eas-ily chain multiple statements as any function returns an instance to the $routeProvider.At the end we use the otherwise function to redirect any requests that do not matchany route to a default route.
Listing 3.13: Create a route with the ngRoute service

$routeProvider.when(’/soccerseason’, {
templateUrl: ’client/views/soccerseason.html’,
controller: ’SoccerSeasonCtrl’

}).otherwise({redirectTo: ’/soccerseason’})

ngRoute is limited in that way that we cannot define multiple views side by side onone page. We can always only load one template and controller but run into problemswhen we want to show two views side by side. We would need to run another controllerfrom within one controller and that turns really complex quickly as there is not a simpleway to tell the router that we are displaying a sub page in our current view.As ngRoute is basically only a service within the Angular framework we can switch itout for a third party plug-in called ui-router that enables us to create more complexview constellations. Instead of using the ng-view attribute, ui-router uses a customHTML tag called <ui-view></ui-view>. Also we work with so called states instead ofroutes that manifest the ability to load multiple controllers at once.
Listing 3.14: Define our application states

$stateProvider.state(’soccerseason’, {
url: ’/soccerseason’,
templateUrl: ’client/views/soccerseason.html’,
controller: ’SoccerSeasonCtrl’,

}).state(’soccerseason.league’, {
url: "/league/:leagueId",

28

3 Implementation

templateUrl: "client/views/league.html",
controller: "LeagueCtrl"

});
$urlRouterProvider.otherwise(’soccerseason’);

As we can see in listing 3.14 we use a different service called \$stateProvider and
\$urlRouterProvider. The first state is our landing page that will simply show a list ofall leagues that we currently follow. The second state is a nested state that is basedupon the first soccerseason state. We define this sub state by appending a dot andthe sub states name. The sub state will be loaded into the ui-view which is locatedinside the first states template which in turn is loaded into the main ui-view tag in ourstarting HTML document. The URL is also appended to the path of the first state andthe controllers are called in sequence.This provides us a very simple approach to load multiple controllers in sequencewithout adding too much complexity inside the controllers themselves as well as beingable to access any state directly using a URL which would not be possible using the
ngRoute service.
3.3.4 Subscriptions

We need to subscribe to publications on the client side in order to make use of them.Luckily the angular-meteor package makes this very easy for use by providing a dedi-cated service that takes care of most of the heavy lifting. Listing 3.15 shows how toenable the reactive context, that is that we refresh any parametrized subscription oncethat parameter changes, and subscribe to a publication.
Listing 3.15: Attach the reactive service to the current scope

$reactive(this).attach($scope);
this.subscribe(’soccerseason’);

The really important part is that we only subscribe to the published data but we do notpass any data to the \$scope/template. Its crucial to remember that the subscriptionand the time the data actually arrives at the clients minimongo database do not execute.Once we ran the subscribe command we would need to wait a couple seconds till thedata becomes available. Luckily the subscribe method offers to pass a callback oncethe actual data is present.
3.4 Android
In order to access the low level APIs for BLE and Android Wear we need to createan Android application. Although we can open the client website in the browser on

29

3 Implementation

the phone, we cannot access any of the sensor data of the phone or the smartwatch.We want to be able to run motion gesture detection algorithms on the sensor dataeventually, plus for accessing the Vibeband we would need access to BLE in any case.
3.4.1 DDP in mobile applications

First step to get an Android application working is to check if we can access thedata from the Meteor server from the application context without having to changeany of the server code. Luckily Meteor does not restrict access to its websocket inany way. It will happily connect to any client that speak DDP correctly and manageany incoming requests as it would handle requests from the browser. The server iscompletely platform-agnostic of the client and really does not care who connects to itswebsocket.As we are accessing the websocket directly we need to implement our own UI in theAndroid application. For this purpose we will follow Android material design2 guidelines to make the app look good. This comes with the downside that any changes in UIhave to build separate from the website but gives user a better overall experience as hecan quickly navigate the common elements used by material design while making useof significant better performance compared to a packaged web application.Another downside is that we cannot make use of Meteors implementation of DDPbut have to rely on a third party or write our own implementation. This means that weneed to connect to the websocket and then handle any DDP messages according tothe specification.Luckily there are libraries for several languages out there that already implementboth technologies on Android. Android-DDP3 implements the full DDP protocol anduses TubeSock4 for websocket handling. Unfortunately Android-DDP does not comewith an equivalent of minimongo so we have to handle caching data locally ourselves.But the library gives a good point to start developing without having to deal with toobasic protocols.To cache subscriptions and any data locally we will use HashMaps that store theString identification of the object and the object itself. The JSON string is parsed intonormal Java objects as they come in, giving us type safety when we access any values.Each collection will have its own HashMap representing the collection locally. This ofcourse also means that we cannot use any of minimongos API but rather have to resortto Java functions for searching and sorting result sets.Unfortunately Androids virtual machine does not fully support features that were
2http://developer.android.com/design/material/index.html3https://github.com/delight-im/Android-DDP4https://github.com/firebase/TubeSock

30

http://developer.android.com/design/material/index.html
https://github.com/delight-im/Android-DDP
https://github.com/firebase/TubeSock
http://developer.android.com/design/material/index.html
https://github.com/delight-im/Android-DDP
https://github.com/firebase/TubeSock

3 Implementation

added in Java 8 like lambdas and streams which would make our life easier whenhaving to deal with searching through an HashMap. There are ways to retrofit suchfunctionality to be supported with the Android build tools but ultimately its up to Googleto add support for that functionality.To actually do anything with the DDP library all we have to do is create a classthat implements the MeteorCallback interface. That interface supplies us with severalcallbacks that are executed as DDP messages come in. For example onDataAdded iscalled when any new data is added to any subscribed collection or onDataChanged whenany of the subscribed data changes.From there we need to remember all the values in local memory using HashMaps.In the Android adapters which are responsible to fill the UI with data we then accessthe data from the HashMaps. In order to receive a notification when the data in theHashMaps changes we need to register the adapter with the local DDP-callback class.The callback class will then notify the adapter in chase any of the requested datachanges so that the adapter can update the UI/view.
3.4.2 Connecting Android Wear

Figure 3.5: How data travels be-tween the smartphoneand smartwatch[10]

We want to be able to transmit data between theapp running on the phone and the smartwatchrunning its own app. Android Wear does not sup-ply the ability to directly access the internet fromthe smartwatch. Rather one needs a dedicatedcompanion app that then access any API over theinternet. This makes sense as a user could havemultiple wearable apps which access the samedata that should be cached on the phone. Listing3.5 shows how the data layer api is not limited toBluetooth but can also work on wearables that di-rectly connect to the internet over Wireless LocalArea Network (WLAN).When transmitting data over the Data Layer API,one actually does not have to worry about any syn-chronisation issues, but unfortunately Google PlayServices are required to be able to communicatewith the watch. Similar to the DDP client one onlyhas to implement some connection callbacks thatget called once data arrives.When you setup your project correctly you will use a library project that contains

31

3 Implementation

common classes. Essentially we have to develop two separate applications as AndroidWear does not have all of the same APIs of Android. In Android Studio we solve thisby using two modules: one for the android smartphone application and one for thesmartwatch application. Both modules include a common library module that containsall functionality that is shared between the two. The build tools then take care ofmerging resources, manifests and any classes.
3.4.3 Bluetooth low energy

In order to be able to communicate with the Vibeband we need to able to connect to aBLE Generic Attribute Profile (GATT) server. The GATT server defines in its configurationfile what values can be read and written. These values are called characteristics andare bundled inside services. Listing 3.16 shows a portion of the current configurationfile for the Vibeband BLE chip.
Listing 3.16: GATT configuration file

<service uuid="1ef88e1f-6745-4007-8742-77943cab8096" advertise="true">
<description>Vibeband Communication</description>
<characteristic uuid="dd6d5c32-d900-447d-ac56-5103d0523da6" id="gesture">

<description>Gesture Data</description>
<properties read="true" notify="true" />
<value variable_length="true" length="1" type="user" />

</characteristic>
<characteristic uuid="502c1f71-c86e-4738-9882-972aa643e3f1" id="score">

<description>Scores</description>
<properties write="true" notify="true" />
<value variable_length="true" length="11" type="user" />

</characteristic>
</service>

We can see that we have two characteristics:
• Gesture Data: triggers if a new gesture was detected on the Vibeband
• Scores: allows us to send the current score to be displayed

This GATT file is consumed by the connecting client which in our case is the appon the Android smartphone. In contrast to normal Bluetooth connections there is nopairing process between the server and client. As soon as the chip on the Vibebandpowers up it starts advertising its services and allows one client to connect withoutrequiring any kind of authentication. In our application we first scan for any advertisingBLE devices and let the user select the correct device.

32

3 Implementation

In the next step we connect to the GATT server with the saved address in an Androidservice, so that the connection is persistent between Activities. Our service automat-ically subscribes to any characteristic that offer notifications. Notifications in BLEtrigger a callback in our app once the value changes which is perfect for our use caseof transmitting the detected gesture.Anytime the game score changes we transmit that score to the Vibeband immediately.The Vibeband then displays that information and provides the user with a vibratingfeedback.The BLE APIs in Android are a very low level approach to transmit data. The APIdoes not serialize requests on its own but it is the developers responsibility to makesure only one request is executed at any time. During development we encounteredmany instabilities as well as random disconnects if executing requests too quickly. Thereliability of BLE will have to be improved before the Vibeband can be commerciallysold on the market.

33

4 Evaluation

In retrospective we were able to implement a full size application within just a fewmonths that is comparable to Fanmode’s product. Using state of the art technology wecould not only reduce the overall complexity of the full stack, but were able to maintainthe real time aspect.From the start it was clear that collaboration with the team in College Station andFanmode would be decisive for the project to be a success. When I first met with theteam, I got introduced to the scope of the project and how they are organized. Weeklymeetings were planed in the beginning but as all of the team members saw each otherin classes daily, there was no real need for meetings. We managed to order developmenthardware pretty quickly, which would match the chips used on the final board.We assigned specific roles to each of the team members according to their area ofexpertise. Kyle has planned out complex schematics before, so it was only logical tomake him the hardware engineer. Chelby gathered management experience in a previousprofessional job and volunteered to be the team leader. Embedded software was oneof Joanas strong suits, while Michael was assigned the systems integration engineer,that works to merge software and hardware together and also being responsible for thefinal functional testing.Communication inside the team was rough at times, as we had many cultures andcharacters clash with each other. We could overcome these differences though, inorder to focus on what was important to finish the project. We used a group chat forcommunication, as well as a email distribution list to keep everybody in the loop aboutwhat is going on. Also we made use of Git and Google Drive in order to synchronizecode and documents that we all worked on. We also made use of a shared calender tomake sure everyone knows when and where we have meetings.Support from the department of Electronic Systems Engineering Technology (ESET)and Prof. Dr. Ben Zoghi specifically was continuous and amazing. He helped the teamto make the right decisions for the project while providing me with a great environmentto work in.

34

5 Conclusion

In summary, we achieved our goal of connecting a wearable device to a real time networkusing the Meteor ecosystem. We reached comparable results to Fanmode’s currentimplementation and in the future could develop the application further into a productfor the US sports market.We have proven that Meteor in conjunction with AngularJS is a mature enough solu-tion for a modern and complex web application. We were able to show that websocketsare able to provide real time functionality to any website that wants to improve theiruser experience significantly. For the application to be used on a large scale we needto refactor our code further, but are also dependent on Meteor to continue improvinglivequery and other components of their stack.Other studies of Meteor have found similar results[2], that Meteor can be used as afull stack framework already and is fit for use in production. Formerly complex systemswith many different components can now be replaced by a solution, that provides uswith the essentials out of the box, reducing the development effort needed to achievesimilar results. Problems encountered with performance can be put off and handledonce encountered at a later development stage.In implementing BLE, Android Wear and DDP communication in our Android applica-tion we have proven that Meteor is not only an closed off product, but can be interactedwith from other platforms and programming languages. In collaboration with the stu-dents from A&M we have successfully established a method to integrate an embeddeddevice into our full stack solution.

35

6 Future Work

In order to develop the proof of concept into a fully fledged product there are severalthings that need to be considered before this application can be use in production.
6.1 Real time sports data
For one, the information about the games statistics currently is not received in realtime yet. For this we would need to hook into a commercial providers stream of data.Fanmode relies on Opta1 and Sportradar2 for this kind of data. The vendors push anyupdates to Fanmode’s application server, which then takes care that all clients updateaccordingly. For better feedback to the user this data should be be synced more oftenthan every couple hours.
6.2 Security considerations with Meteor
Currently the autopublish package is still used, in order to enable rapid development ofthe application. To make this application useful outside a lab environment we have touse the publish/subscribe pattern that Meteor ships with.Initially to help newer developers understand the basic concepts in Meteor the serversimply pushes all data from the server’s MongoDB to the client’s minimongo database.This works on local setups on a developers machine, but is not practical on a produc-tion server. Not only would we leak information about everything we save, but alsothis approach does not scale with a growing user base. The amount of informationtransferred via DDP to the clients would be several mega bytes each with the data wehave stored in the current development environment.In order to make the system secure and have good performance across the Internetwe will need to setup publications for any data that we want to use on the client. Wehave explained in chapter 3.2.5 how these work, but as we are still in development wehave not yet made use of them everywhere.

1http://www.optasports.com/en.aspx2https://www.sportradar.com/

36

http://www.optasports.com/en.aspx
https://www.sportradar.com/
http://www.optasports.com/en.aspx
https://www.sportradar.com/

6 Future Work

6.3 Deployment
Up to this point we have run the Meteor application only locally on the command line. Ifwe want to use the application over the internet we need to deploy it to an applicationserver. Meteor offers a simple command meteor deploy <appname>.meteor.com to deploythe current application to what they call Galaxy, which is basically a hosting servicefor Meteor application. This however might not be optimal, as we only have very littlecontrol on who has access to the data and it only supplies limited resources to thesystem. This service is free of charge, but also hibernates applications that are notbeing used, leading to a significant timeout to restart once accessed. There are paidplans3 that enable more resources and bigger applications but we can also deploy theapplication to our own server.There are several ways to deploy a Meteor application to your own server and severaltools like Meteor Up4 that make it a lot easier to go through this process. Basically oneneeds to first install all necessary software like NodeJS, MongoDB and any webserver.The webserver for example nginx acts as a local proxy that accepts all connectionsand passes them on to the NodeJS server. Although this not required, one might wantto consider having a Secure Sockets Layer (SSL) connection instead of plain HTTP, inorder to prevent eavesdropping on the delivered content.After having setup all the necessary tools on the server one can build the applica-tion using the meteor build . command which will generate an archive, that can beunpacked on the server. Afterwards one should be able to normally start the application,how one would traditionally start any NodeJS application. Meteor Up simplifies thisprocess and reduces it to a single command for deployment.
6.4 Scalability of the full stack
There are still several areas that might be a bottleneck when we talk about a millionconcurrent users. The way livequery currently is implemented will certainly impactthe responsiveness of the overall application on a larger scale. Neither MongoDB norNodeJS are known to have scalability issues, but with all the added functionality furtherresearch will be required to determine on just how scalable the overall Meteor platformreally is.

3https://www.meteor.com/why-meteor/pricing4https://github.com/arunoda/meteor-up

37

https://www.meteor.com/why-meteor/pricing
https://www.meteor.com/why-meteor/pricing
https://github.com/arunoda/meteor-up
https://www.meteor.com/why-meteor/pricing
https://github.com/arunoda/meteor-up

6 Future Work

6.5 Vision for the Vibeband
To reach a truly large audience one would have to first reach out to season ticketholders. Incentivising customers to purchase a Vibeband and then use the system forone season to test-drive it would be straightforward. For instance, we could use theVibeband with its NFC functionality as a ticket to access the stadium on game day,reducing queues in front of ticket offices. With on-board Wi-Fi Vibeband would connectto the stadium’s Wi-Fi network as soon as fans enter the premises, so fans without asmartphone would be included in the enhanced viewing experience. One could evengo as far as allowing customers to pay for snacks and drinks with the Vibeband andprocess the payment with a linked credit card.If the Vibeband can be produced at low cost, we could even consider including itin the season ticket altogether. It is questionable whether customer paying severalhundred dollars for a season ticket would pay extra for the Vibeband. They would bemore inclined to use it if it comes as part of the ticket package. Rental would alsobe a possibility where the customer deposits a security which is credited back uponreturning the device.As this would be an all around solution providing fans with more comfort whilecollecting their feedback from gestures this would benefit both sides. A collaborationbetween A&M’s Kyle field and Fanmode could be a first step to get this product startedwithin the American Football league. A thorough market analysis would be neededthough to estimate true market viability and whether customers are open to use thistechnology for the added convenience.

38

Glossary

app App is short for application, which is a synonym for a software program. While anapp may refer to a program for any hardware platform, it is most often used todescribe programs for mobile devices, such as smartphones and tablets[6] .
application An application, or application program, is a software program that runs ona computer[7].
Java A programming language that is strongly object-oriented and can be executed onmany different platforms. .
jQuery jQuery is a comprehensive JS library helping developers with cross browsercompatibility and manipulating the HTML DOM tree. It can take care of animatingcertain website elements and provides a excellent plug-in system to extend itsfunctionality..
Meteor Meteor is a software stack implemented on top of NodeJS to simplify thedevelopment of modern web applications.
minimongo Minimongo is a reimplementation of (almost) the entire MongoDB API,against an in-memory JavaScript database. It is like a MongoDB emulator thatruns inside your web browser. You can insert data into it and search, sort, andupdate that data[18] .
MongoDB MongoDB is an document oriented database that is designed for ease ofdevelopment and scaling .
MVC MVC is an abbreviation for Model View Controller and is a concept often foundin applications to divide classes into clear responsibilities. It helps separateapplication logic from code that displays the user interface. .
nginx Nginx is a web- as well as a proxy server that is focused on concurrency andperformance .

39

http://jquery.com/
https://www.meteor.com/

Glossary

NodeJS Node.js is a JavaScript runtime built on Chrome’s V8 JavaScript engine. Node.jsuses an event-driven, non-blocking I/O model that makes it lightweight and effi-cient[20] .
NPM Node Package Manager (NPM) is a command line tool to manage packages forNodeJS but also in any other project that uses JS packages .
SCRUM A new approach to rapidly develop software in an iterative work flow. Is con-sidered to be a agile development method where the requirements change duringthe course of development.
spaghetti code Code that is highly complex because of a tangled control structure .
Unix Unix is a family of operating systems that are modular and share basic programs.
web application A web application or "web app" is a software program that runs on aweb server. Unlike traditional desktop applications, which are launched by youroperating system, web apps must be accessed through a web browser[8] .
Wi-Fi A technology that enables users to access a network over a wireless connection.

40

Acronyms

AJAX Asynchronous JavaScript and XML.
API Application Programming Interface.
BLE Bluetooth Low Energy.
CRUD Create, Read, Update and Delete.
DDP Distributed Data Protocol.
DI Dependency Injection.
DOM Document Object Model.
EJSON Extended JSON.
GATT Generic Attribute Profile.
HTML Hypertext Markup Language.
HTTP Hypertext Transfer Protocol Overview.
I/O Input Output.
IDE Integrated Development Environment.
IE Internet Explorer.
JS JavaScript.
JSON JavaScript Object Notation.
NFC Near Field Communication.
OLED Organic Light-Emitting Diode.
PHP PHP: Hypertext Preprocessor.

41

Acronyms

REST Representational State Transfer.
SaaS Software as a Service.
SQL Structured Query Language.
SSL Secure Sockets Layer.
TCP Transmission Control Protocol.
TUM Technische Universität München.
UI User Interface.
URL Uniform Resource Locator.
W3C World Wide Web Consortium.
WLAN Wireless Local Area Network.
XHR XMLHttpRequest.

42

List of Figures

1.1 Basic structure of the product . 31.2 The Fanmode app . 41.3 Similar product from Microsoft recently featured on The Verge 51.4 Conceptual block diagram showing all the major features of the vibeband 6
2.1 Comparison of the three possibilities on how to get updates with HTTP 92.2 The Meteor stack[16] . 14
3.1 Current market shares for smartphone operating systems[13] 193.2 Frames send and received via the websocket in our sample chat client . 193.3 Meteor project structure . 233.4 Optemistic UI latency compensation[25] 253.5 How data travels between the smartphone and smartwatch[10] 31

43

http://www.theverge.com/2014/10/29/7118533/microsoft-health-band-hub-for-fitness-data

Listings

2.1 Upgrade request to establish a websocket 102.2 Upgrade response . 102.3 AJAX request with jQuery . 112.4 AJAX request with the native browser API 122.5 HTTP headers send along with a request to Wikipedia 12
3.1 Simple websocket server with Ratchet 203.2 Connect to the server and send a message in JS 203.3 Ratchet server callbacks . 203.4 Define a new collection . 223.5 Allow insertions to be made to the collection 223.6 Find one record in the collection . 223.7 Execute code on the server or client only 233.8 Create a publication . 243.9 Define a meteor method and call it . 253.10 Create a cron job that runs every 5 minutes 263.11 Creating a new module with dependancies 273.12 Anatomy of an URL . 283.13 Create a route with the ngRoute service 283.14 Define our application states . 283.15 Attach the reactive service to the current scope 293.16 GATT configuration file . 32

44

https://en.wikipedia.org/wiki/Duplex_(telecommunications)

Bibliography

[1] S. Agarwal. “Real-time web application roadblock: Performance penalty of HTMLsockets.” In: IEEE International Conference on Communications (2012), pp. 1225–1229. ISSN: 15503607. DOI: 10.1109/ICC.2012.6364271.
[2] Y. Akkijyrkka. “Dynamic Web Applications with Meteor.js.” PhD thesis. 2015.URL: https://publications.theseus.fi/bitstream/handle/10024/102032/

Dynamic%20web%20applications%20with%20meteor%20Yrkko%20Akkijyrkka.
pdf.

[3] Android 5.0 Lollipop brings BLE Improvements. 2015. URL: http://www.argenox.
com/blog/android- 5- 0- lollipop- brings- ble- improvements/ (visited on02/05/2016).

[4] Apple. Set up and use Apple Pay with your Apple Watch. 2015. URL: https://
support.apple.com/en-us/HT204506 (visited on 01/20/2016).

[5] Atomosphere 9000 packages. 2015. URL: https://twitter.com/atmospherejs/
status/676881716565250048 (visited on 02/01/2016).

[6] P. Christensson. Definition App. 2012. URL: http://techterms.com/definition/
app (visited on 01/14/2016).

[7] P. Christensson. Definition Application. 2008. URL: http : / / techterms . com /
definition/application (visited on 01/14/2016).

[8] P. Christensson. Definition Web application. 2014. URL: http://techterms.com/
definition/web%7B%5C_%7Dapplication (visited on 01/15/2016).

[9] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. “The many faces ofpublish/subscribe.” In: ACM Computing Surveys 35.2 (2003), pp. 114–131. ISSN:03600300. DOI: 10 . 1145 / 857076 . 857078. URL: http : / / portal . acm . org /
citation.cfm?doid=857076.857078.

[10] Google. Android Data Layer. URL: http://developer.android.com/training/
wearables/data-layer/index.html (visited on 02/06/2016).

[11] H. Hämäläinen. “HTML5 : WebSockets.” In: Communication (2011), pp. 1–9.

45

http://dx.doi.org/10.1109/ICC.2012.6364271
https://publications.theseus.fi/bitstream/handle/10024/102032/Dynamic%20web%20applications%20with%20meteor%20Yrkko%20Akkijyrkka.pdf
https://publications.theseus.fi/bitstream/handle/10024/102032/Dynamic%20web%20applications%20with%20meteor%20Yrkko%20Akkijyrkka.pdf
https://publications.theseus.fi/bitstream/handle/10024/102032/Dynamic%20web%20applications%20with%20meteor%20Yrkko%20Akkijyrkka.pdf
http://www.argenox.com/blog/android-5-0-lollipop-brings-ble-improvements/
http://www.argenox.com/blog/android-5-0-lollipop-brings-ble-improvements/
https://support.apple.com/en-us/HT204506
https://support.apple.com/en-us/HT204506
https://twitter.com/atmospherejs/status/676881716565250048
https://twitter.com/atmospherejs/status/676881716565250048
http://techterms.com/definition/app
http://techterms.com/definition/app
http://techterms.com/definition/application
http://techterms.com/definition/application
http://techterms.com/definition/web%7B%5C_%7Dapplication
http://techterms.com/definition/web%7B%5C_%7Dapplication
http://dx.doi.org/10.1145/857076.857078
http://portal.acm.org/citation.cfm?doid=857076.857078
http://portal.acm.org/citation.cfm?doid=857076.857078
http://developer.android.com/training/wearables/data-layer/index.html
http://developer.android.com/training/wearables/data-layer/index.html

Bibliography

[12] I. Hickson, Ian (Google. “HTML5: A vocabulary and associated APIs for HTMLand XHTML.” In: W3C Working Draft 2010 (2011), pp. 1–599. URL: http://www.w3.
org/TR/html5/$%5Cbackslash$nhttps://github.com/w3c/html.

[13] IDC. Smartphone OS Market Share, 2015 Q2. 2015. URL: http://www.idc.com/
prodserv/smartphone-os-market-share.jsp (visited on 02/05/2016).

[14] E. International. “ECMA-262 ECMAScript Language Specification.” In: JavaScript
Specification 16.June (2009), pp. 1–252. ISSN: 09544879. URL: http://www.ecma-
international.org/publications/standards/Ecma-262.htm.

[15] Jesse James Garrett. Ajax: A New Approach to Web Applications. 2005. URL: https:
//web.archive.org/web/20080702075113/http://www.adaptivepath.com/
ideas/essays/archives/000385.php (visited on 01/20/2016).

[16] Meteor platform technology. 2016. URL: https://www.meteor.com/why-meteor/
technology (visited on 02/07/2016).

[17] Meteor Slogan. 2015. URL: https://www.meteor.com/ (visited on 01/15/2016).
[18] Mini Databases. URL: https://www.meteor.com/mini-databases (visited on01/28/2016).
[19] G. (n.d.) Umsatz mit Software-as-a-Service (SaaS) weltweit von 2010 bis 2016 (in

Milliarden US-Dollar). 2016. URL: http://de.statista.com/statistik/daten/
studie/194117/umfrage/umsatz- mit- software- as- a- service- weltweit-
seit-2010/.

[20] Nodejs description. 2016. URL: https://nodejs.org/en/ (visited on 02/04/2016).
[21] G. Palshikar. “Simple algorithms for peak detection in time-series.” In: Proc. 1st

Int. Conf. Advanced Data Analysis, . . . January (2009).
[22] V. Pimentel and B. G. Nickerson. “Communicating and displaying real-time datawith WebSocket.” In: IEEE Internet Computing 16.4 (2012), pp. 45–53. ISSN: 10897801.DOI: 10.1109/MIC.2012.64.
[23] A. Russell. Android Pay On Android Wear. 2015. URL: https : / / wtvox . com /

wearables/android-wear/android-pay-on-android-wear/ (visited on 01/20/2016).
[24] S. Stubailo. DDP Specification. 2014. URL: https://github.com/meteor/meteor/

blob/master/packages/ddp/DDP.md (visited on 01/20/2016).
[25] S. Stubailo. Optimistic UI with Meteor. 2015. URL: http://info.meteor.com/blog/

optimistic-ui-with-meteor-latency-compensation (visited on 02/07/2016).
[26] M. Ubl and K. Eiji. Introducing WebSockets: Bringing Sockets to the Web - HTML5

Rocks. 2010. URL: http://www.html5rocks.com/en/tutorials/websockets/
basics/.

46

http://www.w3.org/TR/html5/$%5Cbackslash$nhttps://github.com/w3c/html
http://www.w3.org/TR/html5/$%5Cbackslash$nhttps://github.com/w3c/html
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
https://web.archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/000385.php
https://web.archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/000385.php
https://web.archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/000385.php
https://www.meteor.com/why-meteor/technology
https://www.meteor.com/why-meteor/technology
https://www.meteor.com/
https://www.meteor.com/mini-databases
http://de.statista.com/statistik/daten/studie/194117/umfrage/umsatz-mit-software-as-a-service-weltweit-seit-2010/
http://de.statista.com/statistik/daten/studie/194117/umfrage/umsatz-mit-software-as-a-service-weltweit-seit-2010/
http://de.statista.com/statistik/daten/studie/194117/umfrage/umsatz-mit-software-as-a-service-weltweit-seit-2010/
https://nodejs.org/en/
http://dx.doi.org/10.1109/MIC.2012.64
https://wtvox.com/wearables/android-wear/android-pay-on-android-wear/
https://wtvox.com/wearables/android-wear/android-pay-on-android-wear/
https://github.com/meteor/meteor/blob/master/packages/ddp/DDP.md
https://github.com/meteor/meteor/blob/master/packages/ddp/DDP.md
http://info.meteor.com/blog/optimistic-ui-with-meteor-latency-compensation
http://info.meteor.com/blog/optimistic-ui-with-meteor-latency-compensation
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.html5rocks.com/en/tutorials/websockets/basics/

	Introduction
	Project scope
	Fanmode's approach to real time interaction
	Better user experience
	Vibeband: cheap and easy-to-use wearable device

	Motivation for Meteor

	Approach
	Real time web applications
	Polling as a solution for real time communication
	Websockets to the rescue

	Meteor: A new approach to web development
	Unified data access with DDP
	Real time database interaction using Livequery
	Atmosphere: a online package repository

	Easier front-end development
	Blaze: Meteor's simple approach for an UI-framework
	Using AngularJS to revolutionize front-end development

	Implementation
	Test environment
	Server-side programming with Meteor
	Introduction to websockets
	Project setup
	Collections: abstracting the database away
	Folder structure
	Publications
	Optimistic UI with Meteor methods
	Using cron jobs to automate recurring tasks

	Building the browser client
	Solution structure
	Dependency Injection in Angular
	Routing URLs to views
	Subscriptions

	Android
	DDP in mobile applications
	Connecting Android Wear
	Bluetooth low energy

	Evaluation
	Conclusion
	Future Work
	Real time sports data
	Security considerations with Meteor
	Deployment
	Scalability of the full stack
	Vision for the Vibeband

	Glossary
	Acronyms
	List of Figures
	Listings
	Bibliography

