
FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelorarbeit in Informatik

Implementation of a games development
tool for mobile devices

Julian Sievers

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelorarbeit in Informatik

Implementation of a games development tool for mobile
devices

Implementierung einer Spiele-
Entwicklungsumgebung für mobile Geräte

Author: Julian Sievers

Supervisor: Prof. Dr. Uwe Baumgarten

Advisor: Nils T. Kannengießer, M.Sc.

Date: October 15, 2012

I assure the single handed composition of this bachelor thesis only supported by declared
resources.

Munich, 12th of October, 2012 Julian Sievers

Abstract

This thesis describes the development of an editor which is capable of creating games
for the mobile operating system Android. Due to the massive possibilities this topic offers,
only the basic functionalities are implemented in the “Android Game Studio” application
created in the course of this thesis. Nevertheless, the application can be easily improved
in the future because of the MVC approach, depending on certain restrictions which are
addressed in a separate chapter. The thesis is split into four parts:

The introductory part at the beginning of the thesis gives background information and
describes fundamentals of the Android operating system and the OpenGL ES framework,
which are used to develop the game studio application.

The main part then builds upon this knowledge and presents the design intentions and
requirements , both, the game studio application and its created games have to meet.
Additionally, an overview about the structure of editor and game is given and the the
organisation of the underlying database is illuminated. After the design part, the actual
implementation is considered and details of the game editor components are explained,
based on several code parts.

Part three outlines the results of a user test and a code analysis tool to verify the cor-
rectness of the game studio application and its created games.

Finally, the thesis is concluded by presenting results about the implementation and future
improvements to the editor are considered.

vii

viii

Contents

Abstract vii

Outline of the Thesis xi

I. Introduction and Theory 1

1. Introduction 3

2. Background Information 5
2.1. Android Framework . 5

2.1.1. System Architecture . 5
2.1.2. Application Fundamentals . 7
2.1.3. Application Components . 8

2.2. OpenGL ES . 9
2.2.1. The OpenGL ES Graphics System 10
2.2.2. OpenGL ES Basics . 11

II. Editor and Game Implementation 17

3. System Design 19
3.1. System Requirements . 19

3.1.1. Editor Requirements . 19
3.1.2. Game Requirements . 22
3.1.3. Editor & Game Requirements . 23

3.2. Data Model . 24
3.2.1. Entities in the data model . 25
3.2.2. Relationships in the data model . 26

3.3. System Architecture . 26
3.3.1. Model-View-Controller Pattern . 26
3.3.2. Editor Design . 27
3.3.3. Game Design . 28

4. Implementation 31
4.1. Graphics engine . 31

ix

Contents

4.1.1. Complex versus lightweight implementation 31
4.1.2. Render settings . 32
4.1.3. Camera . 35

4.2. Physics engine . 37
4.3. SuperController . 39

4.3.1. LevelInstance . 39
4.3.2. UpdateThread . 40

4.4. GameLogic . 41
4.5. EditorGestureListener . 43
4.6. Game editor components . 44

4.6.1. Start screen . 44
4.6.2. Game setup . 45
4.6.3. Level editor . 47
4.6.4. Level settings . 50
4.6.5. Scene editor . 51
4.6.6. Object editor . 55
4.6.7. Event editor . 56

4.7. DatabaseController . 58
4.8. ExportManager . 59

4.8.1. Exporting a game . 59
4.8.2. Compiling a game . 60
4.8.3. Memory limitation on Android devices 63

III. Quality Management 65

5. Software Testing 67
5.1. Types of Software Testing . 67
5.2. Test Results . 68

5.2.1. Code Analysis Tool . 68
5.2.2. User Test . 69

IV. Conclusion and Outlook 73

6. Conclusion 75

7. Outlook 77

Appendix 81

A. Storage Medium 81

Bibliography 83

x

Contents

Outline of the Thesis

Part I: Introduction and Theory

Chapter 1: Introduction

The first chapter presents an overview of the thesis and its purpose.

Chapter 2: Background Information

This chapter outlines the basics of Android and OpenGL ES.

Part II: Editor and Game Implementation

Chapter 3: System Design

In chapter three, the system design and requirements are described.

Chapter 4: Implementation

The implementation process and details of the application components are explained in
chapter four.

Part III: Quality Management

Chapter 5: Software Testing

This chapter presents basics of software testing and the performed tests for the game studio
application.

Part IV: Conclusion and Outlook

Chapter 6: Conclusion

Chapter six summarises the intention of the thesis and reviews the achieved goals.

Chapter 7: Outlook

The last chapter considers possible future improvements and assesses the prospects of the
application.

xi

Part I.

Introduction and Theory

1

Introduction

Android devices have become more and more popular in these days. Quite recently, Google
developer Hugo Barra announced the 500th million activated Android device and stated
that 1.3 million devices are added each day [4]. Driven by this development the mobile
gaming market will also vastly expand over the next years in Germany: From ¿ 29 million
in 2011 to a predicted volume of ¿ 60 million in 2016, which makes an average growth of
18.6 % a year. [28]

Mobile games are different from games for video game consoles and PCs. The device
hardware offers many more user interaction methods by utilising touch input and different
sensors such as motion, environmental and position sensors. However, they suffer from the
small screen which limits the displayed graphics. The possible game mechanics and genres
are nearly the same as on dedicated gaming platforms, as proven by the latest single- and
multiplayer, as well as high-definition 3D games. Currently, most games designed for mobile
devices are “casual games” which do not require the player to spend hours and hours on
the game, but rather invite him to play just a few minutes now and then.

Creating applications on an Android device has been possible for quite a while now, but
there are no tools for laymen who want to create their own app. All available tools such as
AIDE, C# To Go or IDEdroid Free require programming knowledge and are therefore no
option to make application programming more accessible to a wider public.

The goal of this thesis was to implement a game editor which is capable of creating two-
dimensional singleplayer games for Android devices. Constructing and compiling should be
entirely possible on the device and not require any background knowledge of the subject
matter. However, using other applications to handle the compiling part was not explicitly
excluded and is therefore part of the implementation. All main components which make a
game interesting should be included in the game editor, including components to create a
scene, add events to provide the logic of the game and select overall game settings such as
control methods and gravity. Moreover, basic game design principles are explained and the
thesis also takes a closer look at the fundamental game components, for example graphics
and physics engine.

3

1. Introduction

4

Background Information

2.1 Android Framework

Android is a Linux based open-source software stack that runs on different types of devices,
especially mobile phones, portable devices and embedded systems. Andy Rubin, Google’s
director of mobile platforms describes Android as follows:

“The first truly open and comprehensive platform for mobile devices. It includes
an operating system, user-interface and applications - all of the software to run
a mobile phone but without the proprietary obstacles that have hindered mobile
innovation.” [21]

Maintenance and development is performed by the Android Open Source Project which is
led by Google.

2.1.1 System Architecture

The Android software stack consists of four layers with five major components which in-
clude the operating system, middleware and key applications. With the Android Software
Development Kit, developers are able to access all parts of the software stack via special
APIs. Therefore, every developer, including Google employees, theoretically has the same
possibilities for application development. [12][26]

Figure 2.1 gives an overview on the software stack and its components which are then
described bottom-up:

Linux Kernel Android is based on a Linux Kernel, version 2.6. It acts as hardware abstrac-
tion layer and provides basic system services, such as memory management, security,
process management and a network interface. Another advantage of the Linux Kernel
is its high portability. Since most of the Linux code is written in C, it is easy to make
Android available for a large variety of devices. [10][12]

Android Runtime The Android Runtime consists of two parts: All of Java’s core libraries
and a virtual machine, the Dalvik Virtual Machine, executing application code.
The integrated Java libraries like java.math, java.util and java.io provide basic func-
tionality for every application. But not all Java libraries are available in Android,
some of them were removed due to unnecessary functionality, for example printing

5

2. Background Information

Figure 2.1.: Android System Architecture

(javax.print) and painting graphics (java.awt).

The Dalvik Virtual Machine has its origins in the Java Virtual Machine, but is a
complete remake due to license issues. Although using the Java programming lan-
guage with free tools and libraries, Oracle charges a fee for using the Java Virtual
Machine. But Google’s own implementation also has other advantages. The DVM
is especially designed to run on mobile devices and therefore optimised for battery
life, computing power and minimal memory usage. Contrary to the JVM, which has
a stack-based architecture, the DVM is register-based. For every single Android ap-
plication an instance of Dalvik VM is created which runs the application in its own
process. Since the Dalvik VM is not compatible with standard Java bytecode, all
Java files have to be translated to a special Dalvik bytecode, indicated by the .dex
file extension. [10][26]

Libraries Android’s core libraries are all implemented in C/C++ and accessible through
the Android application framework. Some of the libraries are also used in this project,
for example the 3D libraries, an implementation of the OpenGL ES APIs for 3D hard-
ware acceleration, or the SQLite library, a lightweight relational database management
system. Other available libraries are: [12]

� LibWebCore

� Media Libraries

� Surface Manager

� System C library

6

2.1. Android Framework

Application Framework Android provides a large variety of high-level system services
which are wrapped up in the Application Framework.The framework offers a stan-
dardised structure for all applications. All developers are able to access the same
API functions as Android’s core applications. The design of the framework allows
applications to interact with each other and therefore increases re-usability of already
existing components.

Some of the framework components are an essential part of every application, such
as the View System or the Activity Manager, others are only optional and maybe
not used at all. The mentioned View System, for example, is responsible for the ap-
plication’s GUI. With Buttons, TextViews, Layouts and much more, the developer
has great possibilities of shaping the applications user interface. Another crucial part
of an Android application is the Activity Manager. It manages the application’s life
cycle and provides an Activity stack to navigate through the different active Activ-
ities. The last example is the Resource Manager, which is also extensively used in
this project. It gives access to non-code resources which are, for better organisation,
defined in special files. Colors, localized strings and GUI layouts are just a small
excerpt from all the available resources of the Resource Manager. [12]

Applications In delivery state, some applications are already installed. Browser, calendar,
contacts and email client are just some examples of the preinstalled apps. But not
only these rather basic apps can be installed. Since Android is open source, every
manufacturer and even every cell phone provider can include their own applications
and ship the phone with more than just the basics.

Additionally, developers can create applications on their own and contribute to the
variety of the Android platform. Most applications are written in Java but it is also
possible to use the Native Development Kit and implement apps in native-languages
such as C and C++. Distributing is done via the build-in Plays Store or other alter-
native app markets like GetJar. [11] [12]

2.1.2 Application Fundamentals

An Android application consists of loosely tied components (activities, services, broadcast
receivers, ...) which are responsible for the behaviour and program flow of an app. Every
component used has to be declared in the manifest file which is responsible for their connec-
tion. All components are then packed into one single archive file, together with all resources
and data of an Android project. This package can then be used to install an application on
any Android device.

As described in section 2.1.1, each installed application runs in its own Linux process with
a unique ID. This ID is part of Android’s security system, as it guarantees that application
data can only be read and manipulated by the application with the same ID assigned to a file
when it is created. Third-Party programs are therefore not able to read other program data.

However, there are possibilities to enable data exchange between two applications. First of

7

2. Background Information

all, developers can assign the same ID to more than one of their applications. Thus, the OS
does not prevent access to their files from each other. Secondly, an application can request
different types of permissions on installation. If the permissions are granted by the user,
the application can get access to the device data, for instance the users phone contacts, his
messages, the SD-Card or the camera. The last possibility is to create a Content Provider
and make the data available to third parties with the built in data management system. [13]

2.1.3 Application Components

Some of the application components were already described, but will now be explained in
more detail:

Activities Activities represent the applications graphical user interface graphical user in-
terface (GUI). The GUI consists of a set of Views that can be buttons, text fields and
other objects and is either defined in an XML layout file, or code based. Usually an
activity is a single screen, but in some cases, a screen can show more than one activity
at the same time. This is especially true for a TabActivity holding other activities in
its tabs. Additionally, to the graphical representation, the activity is also responsible
for user input and interaction.

This project is a good example for using multiple activities, each with a different
specific purpose. For instance, scene and event editor activities are connected - the
event editor in this particular case is started by the scene editor - although completely
separated from each other. The scene editor is used to place objects and create the
level, the event editor prepares a list of functionality the game should have by pro-
viding event and trigger templates. Because of that design, it is also possible to start
an activity from everywhere in the program flow, even from other applications if this
feature is enabled by the developer. [13]

Services The service component is specifically designed to run in background for an un-
specified amount of time and does not have a user interface. A typical example for a
service is constantly checking mails or requesting data in a given time interval, even if
the activity is inactive or the user interacts with other applications in the meantime.
A service can be started and bound by another component in this list. [13]

Content providers Content providers are used to exchange data between applications.
The address book is a practical example, as it implements a content provider to
add, modify, delete and query contacts. To communicate with a content provider, the
application has to create an instance of the ContentResolver class. The functionalities
mentioned are the basis of every content provider and applicable to store any data
on a persistent storage media including local SQLite databases, the file system or
even on the web. The administrative work behind a content provider is handled by
Android itself. The OS makes sure a content provider is up and running on demand
and handles multiple communication requests from different content resolver objects.
A prerequisite for an application to use a content provider is, however, to request the
proper permissions. [13]

8

2.2. OpenGL ES

Broadcast receivers To receive and react to system events a broadcast receiver is the
appropriate solution. There are many different events a broadcast receiver can react
to, for example if the phone completed booting or the power cable was plugged in.
Additionally, developers can create more events on their own and react to these in
their applications. Two types of receivers are available: static and dynamic ones. A
static receiver has to be declared in the Android manifest file which allows it to get
triggered, even if the application is not started (especially applications responding
to the BOOT COMPLETED event make use of this feature). On the other hand,
a dynamic receiver is created during application runtime and only active when the
application runs in the foreground (it has to be registered and unregistered properly).
Similar to a service and a content provider, this component does not have a user
interface. However, it is possible to start an activity or display simple messages in a
Toast or use the notification system of Android. [13]

Intents Activities, services and broadcast receivers are activated by an asynchronous mes-
sage called intent. An intent is an abstract description of the action to perform. There
are two different types of intents:

� Explicit intents are more likely to be used in development because these are
responsible for inner app messages, e.g. starting another activity. To start an
activity with an intent, the exact class name is required.

� Implicit intents do not name a specific target, but rather provide information on
which the operating system tries to identify the best suitable target component.
To react to an intent, a component has to implement an intent filter. Installing
an application with an intent filter will register this filter in the Android system
and make it available to match intents against it. Examples for implicit intents
are calling a number or starting the gallery to pick an image.

The example just mentioned of picking an image in the gallery with an implicit intent
makes use of an additional feature. Intents may return data, such as the picked image,
which is then sent back as another intent. Since intents are bundles of information,
adding extra information is also possible to pass parameters or object data easily to
other components. [13]

Android manifest The Android manifest file is not a component itself, but every compo-
nent used in an application has to be declared in the manifest file in order to work
correctly. On top of this, the manifest file is also responsible for many fundamental
application settings like target and minimum Android version, intent filters, requested
permissions and used additional libraries such as maps or AWT. [13]

2.2 OpenGL ES

Complex two or three dimensional graphics is the basis for every great up to date game.
The editor and the created games in this project therefore make use of a special API called
OpenGL ES, designed to create advanced graphics applications. The following sections give
a short introduction to this API, provide background information about the development
and present basics on how to use OpenGL ES.

9

2. Background Information

2.2.1 The OpenGL ES Graphics System

There are two standard APIs for graphics programming, Direct3D and OpenGL. Both can
be used on desktop systems, but only OpenGL is an appropriate solution for mobile sys-
tems. OpenGL ES is a cross-platform, free of charge graphics API with 2D and 3D support,
specially created for embedded and mobile systems. It is derived from the desktop version of
OpenGL with a reduced range of functions (e.g. removed double values) and improved fea-
tures like increased shader performance to meet the requirements of limited hardware power.
The main developer and maintainer of OpenGL and its derivatives including OpenGL ES,
the Khronos Group, has published four different versions so far:

� OpenGL ES 1.0 First official implementation that provides a lightweight interface
and a fixed function pipeline. Ships with enabled software rendering and hardware
acceleration.

� OpenGL ES 1.1 Improves image quality, optimizes performance and reduces mem-
ory bandwidth. Extension package adds functionality, such as cube maps, frame buffer
objects and stencils.

� OpenGL ES 2.0 Replaced the fixed functionality pipeline with a programmable
pipeline and added a basic shading language. This allows developers to write own
shader programs to minimize power consumption of graphics implementations.

� OpenGL ES 3.0 Version 3.0 adds for ETC2/EAC texture compression formats,
allows non-power-of-two textures with full wrap mode and support of multiple render
targets. This is only a short extract, for the whole specification see the OpenGL ES
3.0 specification paper.

(a) OpenGL ES 1.1 graphics pipeline (b) OpenGL ES 2.0 graphics pipeline

Figure 2.2.: Fixed function pipeline compared to programmable pipeline

The fundamental idea of OpenGL ES is to provide a software interface to the device’s
graphics hardware. To draw objects and show the output to the user, a developer has to
set up a framebuffer which contains the color, depth and stencil information for every pixel
of the rendered image. Hereafter, the context of OpenGL ES is set up and now ready to

10

2.2. OpenGL ES

draw something. A set of different commands allows the programmer to specify objects and
rendering operations like lighting, coloring and transforming to create a scene and show it
to the user. [20] [27]

2.2.2 OpenGL ES Basics

Major parts of the editor and the games created in this project are based on OpenGL grah-
pics, therefore the basics of OpenGL ES shall be addressed to in this section. Both, the
connection of the Android framework with OpenGL ES API and basic OpenGL operations
to manipulate objects and create a scene are explained briefly. It is also possible to use
OpenGL combined with the Android NDK, but since this functionality is not used in the
project it will not be explained further here. Basically, only utilised functions in editor and
game are explained in this section.

The two fundamental classes of the OpenGL ES API are GLSurfaceView and GLSurface-
View.Renderer. In order to create a two or three dimensional game, a GLSurfaceView has
to be instantiated and the Renderer interface has to be implemented in a custom class with
the following functionality:

GLSurfaceView The GLSurfaceView displays the rendering output of OpenGL to the user,
by attaching an instance of a class implementing the Renderer interface. Originally,
the view is not able to react to touch input, which is required in most use-case scenar-
ios. There are two possibilities to interact with View: The most common way - this is
also proposed by Google [15] - is subclassing the GLSurfaceView and implementing
the corresponding listeners directly. Customizing the GLSurfaceView is possible by
using its “set” methods. This leads directly to the second option, adding external
listeners to the view.

GLSurfaceView.Renderer The renderer interface provides all necessary methods for draw-
ing objects in OpenGL. Since an interface cannot be instantiated, it has to be inte-
grated in a custom class, which implements the functionality:

� onSurfaceCreated(...): On GLSurfaceView creation and recreation, the sys-
tem calls this method once. All permanent settings to the OpenGL state ma-
chine, initialising and loading objects as well as their textures have to be per-
formed here.

� onDrawFrame(...): This method is repeatedly called and responsible for draw-
ing the objects. Additionally, some other settings have to be managed here, too.
Typically, the model-view matrix is loaded and the framebuffer is reset by clear-
ing its colour and depth buffer.

� onSurfaceChanged(...): Altering the GLSurfaceView, such as changing the
size or rotating the device, triggers the onSurfaceChange(...) method. To react
to these changes, the viewport has to be set once again. If the scene is based on
a fixed camera, the projection matrix and viewing frustum can also be loaded.

As the onDrawFrame(...) method indicates, the renderer runs on its own dedicated
thread. This architecture decouples the performance of the OpenGL representation

11

2. Background Information

and the user interface, but comes along with problems when the render thread inter-
acts with other threads, for example the logic behind the game. Synchronisation can
be achieved by any standard Java technique for cross-thread communication or the
queueEvent(Runnable) method, which allows to paste a new Runnable object to the
renderer queue and execute it once the renderer becomes active.

To understand the graphics engine of the project, the most important OpenGL ES func-
tionalities are now explained and then addressed to further in section 4.1 Graphics engine
on page 31.

OpenGL context The EGL API, developed by Khronos Group, manages the drawing sur-
face including surface creation and destruction. EGL is the link between the devices
windowing system and OpenGL ES and defines the communication of Android OS
with the hardware. EGL is also responsible for managing rendering resources and all
available drawing surfaces. However, Android developers do not have to touch these
features, because the GLSurfaceView takes care of that.

By default, double buffering is enabled for GLSurfaceView so that the image is ren-
dered in an invisible framebuffer first, and then displayed to the user as a whole.
Otherwise, the user would notice a flickering of the screen while the rendered image
is created. [27][30]

Viewport At the beginning and every time the size of the surface view changes, the viewport
size has to be set. The viewport determines the portion of the surface, the renderer is
drawing to. Typically, the viewport is set up to match the surface area’s resolution,
but can also be configured to show only a subsection of the surface framebuffer. The
purpose of the viewport is to transform the projected object coordinates to device
window coordinates. [19][30]

Viewing Frustum In 3D graphics, the viewing frustum defines the portion of the world
which actually can be seen. In perspective projections, the frustum is a pyramid like
volume, in orthographic projections it is a box. The viewing frustum coincides with
the camera’s field of view, but additionally is cut off at the near and far clip which
exclude objects that are too far away or too close to the camera.[29]

Orthographic Projection Since this project only allows two dimensional graphics, a so-
called orthographic (or parallel) projection is used for rendering. The corresponding
OpenGL function takes the boundary pixel coordinates as input and creates a view
frustum box. All points in the frustum box are then projected to the near clipping
plane for rendering. Near and far clip of the box are mostly set to 1 and -1 one, which
makes the viewing frustum completely flat. Therefore an object is not influenced by
the perspective, as they are all in the same layer. Note that the coordinate system
in OpenGL differs from the UI framework and Canvas coordinate system (see figure
2.3), as it has its origin in the bottom left instead of the top left corner. [30]

Geometry In order to render objects, their geometry has to be defined. It is either possible
to load an object representation from a resource file, or to create the geometry in the
application. The first approach is normally used for complex objects with hundreds

12

2.2. OpenGL ES

Figure 2.3.: Viewing frustum of an orthographic projection with standard values for a sur-
face resolution of 480 x 320 pixels. [30]

or thousands of polygons, the second one is the right choice for simple geometry like
2D rectangles, which is used as part of this thesis.

Objects in OpenGL are composed of triangles which are for their part composed
of vertices. To create a rectangle for displaying textures, two triangles are required.
Instead of defining every triangle on its own - this would lead to duplicate edges -
only the four edge vertices are defined and then connected to a triangle with an index
array. The index array determines the vertices of the triangles in counter clockwise
order. Both, the array holding the vertex, as well as the array holding the index data
is then translated and put in separate ByteBuffers. After that, the vertex buffers’
reference is passed to OpenGL ES for drawing the rectangle. Drawing the objects is
then realised by the glDrawElements function of OpenGL ES which takes index buffer
data as input parameters. [29][30]

World and model space Two different coordinate systems have to be distinguished in
graphics programming: The world and model space. World space is responsible for
global positioning of objects and contains every object of the scene. On the contrary,
the model space is a local coordinate system for every object, in which the vertices of
an object are defined. Therefore, vertices are not positioned relative to the origin of
the global coordinate system, but relative to their own local system. The motivation
of this design is to display a single object at different positions in the space with-
out redefining the vertex positions, but by using internal transformation functions of
OpenGL ES. [30]

Transformations The distinction of world and model space makes it easy to rotate, scale
and move objects. It is possible to rotate around specified axis, translate the object
by a given amount of units and scale it with a scalar. Note that matrix operations -
rotating, translating and scaling is nothing else than multiplying matrices - are not
commutative, thus their order is crucial. Figure 2.4 demonstrates the difference of

13

2. Background Information

Figure 2.4.: Rotation and Translation versus Translation and Rotation. [29]

first rotating and then translating an object, and vice versa. [29]

The following matrix equations give an insight into the operations performed by the
corresponding OpenGL ES functions glRotatef(), glScalef() and glTranslatef():

R(x, α) =

1 0 0 0
0 cosα sinα 0
0 − sinα cosα 0
0 0 0 1

(a) Rotation around x-axis

R(y, α) =

cosα 0 − sinα 0

0 1 0 0
sinα 0 cosα 0

0 0 0 1

(b) Rotation around y-axis

R(z, α) =

cosα sinα 0 0
− sinα cosα 0 0

0 0 1 0
0 0 0 1

(c) Rotation around z-axis

S =

α 0 0 0
0 β 0 0
0 0 γ 0
0 0 0 1

(d) Scaling in all directions with
scalars α, β and γ

T =

1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

(e) Translation in all directions

Figure 2.5.: 3D transformations with matrices in OpenGL ES.

Every matrix operation manipulates the currently active model-view matrix. This is a
problem, since all object transformations have to be based on the original model-view
matrix, otherwise transforming an object would affect the previously drawn objects.
Therefore, the current model-view matrix has to be stored so that the model-view
matrix must not be created multiple times. Luckily, OpenGL provides functions to
save and restore the currently active matrix.

14

2.2. OpenGL ES

Texturing Texturing a surface is an essential part of every advanced graphics application as
it allows to map all kind of textures to an object instead of just displaying its wireframe
representation or simple colors. Two different texturing methods are available in
OpenGL ES: Cubemap textures, which are not used as part of this project, and 2D
textures. A two-dimensional texture consists of texels, which represent the individual
data elements of the image, and generally - there are other representations, as well -
holds a red, green, blue and alpha value. Just like the geometry of an object, textures
also have their own coordinate space, ranging from

(
0, 0
)

to
(
1, 1
)
. These so called

uv-coordinates make it possible to map any portion of the texture to vertices of an
object. Figure 2.6 shows the normalized uv-coordinate system, as well as a schematic
mapping example.

Figure 2.6.: Mapping a 2D texture to a rectangle consisting of two triangles. [29]

Two steps have to be performed in order to map a texture to a polygon (a polygon
is a group of vertices): First, the texture coordinate - vertex combinations must be
specified in a float array and then, similar to creating the object’s geometry, trans-
lated into a ByteBuffer. The buffer only holds the coordinate data of the image parts,
the connection to the vertices is allocated by their position in the buffer (2 float or
2*4 byte values are connected to one vertex). The second step is telling OpenGL
ES which image to use as texture. The state machine is capable of using Bitmaps
or other image representations directly for texturing and already implements base
functionality to load a texture in the content pipeline which holds all resource data.
To make use of the texture, OpenGL creates a unique ID and returns it for further
interaction with the texture. Note that in version 1.0, 1.1 and 2.0 a non-power-of-two
texture size is not possible.

Finally, some drawing options are missing. Graphic programmers have to specify
the texture filtering methods minification and magnification and their parameters.
Minification is applied when screen pixels are larger than one texel of the image - the
texel is then scaled up - magnification works the other way round. Linear interpola-
tion is the right choice for smooth rendering output, but other parameter values are

15

2. Background Information

possible as well.

There are many other options that influence lighting, blending options, the shading
model and further texture filtering settings which are explained in the implementation
part of the thesis, if they are used. [27][29][30]

16

Part II.

Editor and Game Implementation

17

System Design

3.1 System Requirements

Requirement analysis plays an important role in software engineering and is fundamental for
the development process. Thus, this section lists the requirements the system has to meet.
The functional requirements - these specify a particular result of the system - are listed
in the form REQ-X and the corresponding non-functional requirements - they describe the
system characteristics - are listed in the form REQ-X.Y. The analysed requirements for
this thesis are divided in three different categories: Editor, Game and Editor & Game
requirements.

3.1.1 Editor Requirements

REQ-1 The editor is able to create new games and manage already created games.

REQ-1.1 The user can input information about himself and the game, especially a name
for the game is essential. Additionally he can select the orientation of the game
and select an icon for the game.

REQ-1.2 The input fields for all information do not allow special characters and the input
field for the game name has to be empty.

REQ-1.3 All game information is not final and can be changed at any time.

REQ-1.4 The user can delete an existing game. To prevent accidental deletion, a dialog
is shown and the user has to confirm his action.

REQ-2 It is possible to add new levels to the game and delete levels from the game.

REQ-2.1 The levels are identified by their number and a screenshot of the scene

REQ-2.2 Adding a level automatically inserts it at the end of all levels and names it
accordingly. The standard screenshot image is solid black.

REQ-2.3 Changing the sequence of the levels is not possible.

REQ-2.4 The user can delete an existing level. To prevent accidental deletion, a dialog
is shown and the user has to confirm his action.

19

3. System Design

REQ-2.5 Removing a level except the last one in the list changes the internal numbering
of the levels. The levels’ numbers subsequent to the deleted level are decreased
by one to maintain the correct sorting.

REQ-2.6 Deleting a level removes all its objects and triggers from the database. Addi-
tionally, the screenshot is deleted from the storage device.

REQ-3 The user can change the physical world of the game in scene editor and manip-
ulate it.

REQ-3.1 The scene editor indicates the level boundaries by a green box and the target
device’s display rectangle with a red box.

REQ-3.2 The level minimum level size is equal to the camera rectangle of the target
device, the maximum size is 100 meters.

REQ-3.3 Changing the level size is only possible in “Editing Mode”.

REQ-3.4 Changing the level size is immediately applied and the database is updated.
This can lead to out of bounds objects. The user has to confirm a dialog to
proceed with the action and delete the corresponding objects or cancel the
dialog to keep the size unchanged.

REQ-4 The user can place objects from his favorite list in the physical world, remove
them and manipulate their size, position and rotation.

REQ-4.1 Placing objects is only possible in “Placing Mode”, whereas editing is only
possible in “Editing Mode”. The editor has a control element to switch between
these two modes.

REQ-4.2 The rotation of an object lies between 0 and 360 degrees. The maximum size
matches the level size, the minimum size is 0.1 meters. The object can be
positioned everywhere in the level, but its dimensions always have to be within
the level bounds.

REQ-4.3 Newly added objects have a standard size based on their category.

REQ-4.4 Objects added to the scene are immediately stored in the database, removed
objects on the contrary are immediately deleted from the database. When
changing the object’s attributes, an update to the database values is made at
the end of the action.

REQ-4.5 The favorite list is grouped into categories for better organisation.

REQ-4.6 Only one player object is allowed in the game at the same time.

REQ-4.7 The physics engine is able to handle at least 50 objects at the same time.

20

3.1. System Requirements

REQ-5 The editor offers functionality to add events to the game and also to remove
events. The trigger and functionality of the event can are selected separately.

REQ-5.1 An event consists of exactly one trigger and functionality.

REQ-5.2 Triggers concerning lives and points only allow non-negative numbers as input.

REQ-5.3 Events concerning objects in the level only show valid objects. Therefore deleted
objects in the level are also removed from all events.

REQ-5.4 The user can select objects for triggers and functionality in an object picker
which shows the whole level. Clicking the object assigns it to the trigger or
functionality.

REQ-5.5 It is obvious which events have adjustable settings and if these have already
been edited.

REQ-5.6 The description of a trigger and functionality is obvious, too.

REQ-6 The editor allows the user to select favorite objects which he can place in a level
from a large gallery.

REQ-6.1 The gallery and favorites are divided into different categories to give a better
overview on the objects. The naming conventions for all objects clearly point
out their purpose.

REQ-6.2 The favorite data is linked to the gallery so that both show the same categories
at any time.

REQ-6.3 An object item consists of a name and a texture.

REQ-6.4 Adding and removing favorites is performed by clicking on the item in the
corresponding list.

REQ-6.5 Duplicate objects cannot be added to the favorite list.

REQ-7 The scene editor makes extensive use of touch controls to reduce the amount of
buttons and other control elements.

REQ-7.1 Depending on the mode the scene editor is in (“Placing mode” or “Editing
mode”) it offers different gestures. Independent from the mode, the editor
offers a gesture which shows a navigation menu to switch between all available
sub-editors.

REQ-7.2 “Placing mode” offers gestures for scrolling around the level, zooming and plac-
ing objects.

21

3. System Design

REQ-7.3 “Editing mode” offers gestures for scrolling around the level, zooming, selecting
objects, moving objects and resizing objects.

REQ-8 The user can export a created game which is then automatically compiled and
copied to a specific output folder.

REQ-8.1 The created APK file is signed with debug key.

REQ-8.2 Exporting is fully automated and no user input is required.

REQ-8.3 While exporting, the editor indicates the progression of the process.

REQ-8.4 Errors in the export process are displayed to the user with a description of the
error.

REQ-8.5 The system identifies only the necessary data for the game to achieve a minimal
package size.

3.1.2 Game Requirements

REQ-9 The game is able to detect the device resolution and adjust the graphics ac-
cordingly. The detection is initialised automatically when the game is started.

REQ-9.1 The device resolution is recognised reliably and does not require any user inter-
action.

REQ-9.2 Object and texture dimensions are preserved and neither of them are deformed
when using different resolutions.

REQ-9.3 Adjusting the resolution is not affecting the performance of the game.

REQ-10 The game provides different control methods which allow the user to interact
with the physical world of the game.

REQ-10.1 The controls are the same on every device, meaning that yaw, pitch and azimuth
are oriented to the device’s coordinate system the same way.

REQ-10.2 User input is not delayed and directly affects the game.

REQ-10.3 The game controls are self-explanatory and easy to learn, even without instruc-
tions.

REQ-11 The game has a standard main menu to start a new game, exit the game and
view game informations like developer, description and publishing date. The
HUD (Head-up display - a transparent display presenting data as an overlay
in the game scene) informs about the player’s current points and lives.

22

3.1. System Requirements

REQ-11.1 All main features of the game are accessible with just one button click.

REQ-11.2 The graphical user interface of all menus is standardised and locked to portrait
mode.

REQ-11.3 The orientation of the game is declared in the editor, but is then locked to this
particular setting.

REQ-11.4 The HUD is always up-to-date and refreshes itself on certain events.

REQ-11.5 The HUD only displays non-negative numbers for lives and score.

REQ-12 The user can start a new game and play all available levels created with the
editor.

REQ-12.1 The levels of the game are arranged in a fixed chronological order.

REQ-12.2 Completing a level automatically presents a screen with the scored points and
loads the next level.

REQ-12.3 If the last level is completed the users highscore is calculated and displayed.
After that the game returns to the main menu.

REQ-12.4 Completing a level automatically loads the next level.

REQ-12.5 If the player has no lives left, the game is over and returns back to the main
menu.

REQ-13 The editor can persistently store objects placed in a scene, game and level data.

REQ-13.1 Objects are immediately stored and updated on placement and manipulation.

REQ-13.2 The database tables which store the data have minimal null values.

REQ-13.3 All data is stored application specific and deleted on uninstalling.

3.1.3 Editor & Game Requirements

REQ-14 Both, game and editor implement a physics engine to simulate a world with
correct physical interaction of the objects.

REQ-14.1 The physics engine is designed specifically for two-dimensional simulations.

REQ-14.2 The physics engine runs fast and smooth for a reasonable amount of objects.

REQ-14.3 The engine allows rectangle and circle shaped objects.

23

3. System Design

REQ-14.4 The user can influence the gravity of the world physics if the corresponding
control methods is activated.

REQ-15 Both, game and editor implement a simple graphics engine to display objects
on the screen.

REQ-15.1 The graphics engine is limited to a two-dimensional orthographic view.

REQ-15.2 The graphics engine runs fast and smooth for a reasonable amount of objects.

REQ-15.3 The engine is configured to display arbitrary objects.

3.2 Data Model

The data representation model of the project is designed to store editor and game objects
as well as events and convenient data such as user favorites. All data tables except the
game objects are populated dynamically while using the application. This design follows
the rather simple approach to supply premade objects instead of creating new ones by the
user. A more complex approach was not realised due to the limited time of the thesis.

Storing all the data in a database has many advantages. A database is very flexible for
future enhancement, e.g. when adding additional objects or completely new editor com-
ponents and their respective functionality such as a sound editor. Additionally, Android’s
SQLiteOpenHelper and SQLiteDatabase classes provide fast and easy access to store per-
sistent data. Especially the possibility to add, update and delete one or many records at
a time justifies their implementation. Furthermore, selecting objects from tables based on
given parameters and joining table rows is also a crucial part of the editor and therefore
underline the database approach as base for the data model.

The exported games use a slightly different approach with a combination of database tables
and translated Java code. Similar to the editor, all game objects are stored in a database
table (actually in the same table but only with records of the exported game). The only
difference is that the events created for a game have to be translated to Java code and then
included in the compilation process, otherwise it is not possible to make use of them in the
game cycle.

The Entitiy-Relationship model, ER models are an abstract way to describe databases
and often used for conceptual design, figure 3.1 illustrates the data organisation of the game
editor. Section 3.2.1 and 3.2.2 describe the entities and relationships of the diagram in more
detail. Note that the actual implementation is not necessarily similar since the ER model
has to be translated into a relational database scheme. In the course of this process all
relationships between the entities are resolved and integrated in the database tables.

24

3.2. Data Model

Figure 3.1.: The data model of the game editor with all components.

3.2.1 Entities in the data model

Game The Game entity type represents a single game created by the editor. It stores
all user and game data, such as author (String), description (String) and the game’s
Name (String). A Game is uniquely identified by its id (Integer, primary key). Most
of this data is not only used in the editor, but also designated to be displayed in an
exported game.

Level The Level entity type holds data concerning a single level instance. PreviewImage
(String) and LevelName (String) help the user to recognise a Level in the overview
list, Gravity (Integer), width (Float) and height (Float) specify its dimensions and
physical background. A Level is uniquely identified by its id (Integer, primary key).

Object All objects in a Level are stored in the Object entity. Its current state including
position, size and rotation is defined in the corresponding attribute fields, to name
just a few PositionX (Float), SizeY (Float) and Rotation (Float). Additionally,
information about the graphical and physical representation are stored in this entity.
The TextureName (String) field stores the path to the texture of the object, Shape

25

3. System Design

(Integer) - this identifies if the object is a rectangle or a circle - and Type (Integer)
which specifies whether the object is (non-) physical. The Version (Integer) field
stores the version number of the latest export of the game. An Object is uniquely
identified by its id (Integer, primary key).

Event To script game events the Event entity has significant benefits. An Event consists
of a triggering action and a functionality which is started by the the trigger. They
are stored in the triggered (Integer) and functionality (Integer) fields. Some triggers
and functions are associated with objects in the level. Instead of introducing a new
relationship, the concerned object’s id ’s are stored as attributes (object1 (Integer),
object2 (Integer)) of the Event to simplify the query structure of the event editor. The
value attributes of an Event - from value1 (Integer) to value4 (Integer) - also store
information for triggers and functions such as point values or rectangle coordinates.
As well as all other entities, an Event is uniquely identified by its id (Integer, primary
key).

3.2.2 Relationships in the data model

contains The contains relationship between Game and Level is used to assign levels to a
game. A game can consist of multiple levels at a time, but a level can only be part of
one game.

has This relationship between Level and Object assigns objects to be part of a level. A
level can contain multiple objects at a time, but an object can only be assigned to
one level.

includes Assigning events to a level includes relationship. An Event is always only part
of one Level, whereas a Level can include several events.

3.3 System Architecture

Now that all requirements for the application and the data model behind the editor are
defined, the system architecture and the design intention are described in more detail.
First of all the underlying design pattern is explained, then a structural analysis of the
editor and the game part is presented.

3.3.1 Model-View-Controller Pattern

Apart from Android’s ordinary activity design and program flow, this project is based on the
MVC (Model View Controller) pattern which clearly separates the presentation (View),
logic (Controller) and data (Model) part. It was first introduced by Trygve Reenskaug, a
Smalltalk developer, in 1979 and is one of the most successful design patterns in software
engineering.

26

3.3. System Architecture

The reason for the distinction in these three subsystems is that the user interface natu-
rally changes more often than the program logic and the data system of the application.
Therefore, closely tied components are hard to maintain and change. Additionally, this
design allows to build and test the model independent from its graphical representation.
The MVC pattern greatly simplifies the complexity of the system and increases maintain-
ability as well as extensibility. Most of the implemented classes can be reused in other
projects or even, with slight changes, in the same one. It can be used in both, desktop
and web applications. Usually, every object in a project should be part of one of these
subsystems: [6][9][24]

Model A model is composed of different attributes and responsible for storing data. More-
over, it provides methods for object manipulation and rules for processing. In an
ultimate implementation, nothing but the combination of all models encapsulate the
application state. However, in most scenarios some application data is located in a
controller. [6][9]

View The view subsystem requests the data stored in a model and renders the output for
the user. Additionally, it provides functionality to interact with the data model. It
is possible to have multiple views for the same data model which generate different
output for the user interface, for example a command line or graphical representa-
tion. [6][9]

Controller A controller’s primary task is to define the application behaviour and map the
user interaction with the view subsystem to data model manipulations. Preparing
the model data for representation in a view is also part of the controller, for example
sorting an unordered list in the model which is then rendered and shown to the user.
The controller decouples the model and view subsystems and allows to change or
completely replace them easily. [6][9]

Figure 3.2 shows the dependencies between the subsystems model, view and controller.
Note that the view as well as the controller subsystem depend on the model, but the model
is not connected with them at all. This design results in the above mentioned separation of
the application data.

Most of the structural organisation in this project is based on the simpler approach shown
in figure 3.2(a). Contrary to the design shown in figure 3.2(b) which additionally uses the
Observer pattern, commonly known as publish-subscribe, the model does not notify the
other subsystems on data changes. Its purpose is to notify objects about a state change
without establishing an interdependency of the objects involved. In some applications for
example, the view subsystem has to be informed about state changes in the model and
refresh the visual representation. [24][25]

3.3.2 Editor Design

Providing a clear and simple user interface is a key feature of every application and is a
main goal of this project. A fundamental part in the planning and implementation is the

27

3. System Design

(a) Model-View-Controller class structure [24] (b) Using the Observer pattern to decouple model and
view [24]

Figure 3.2.: Different implementations of the MVC pattern

arrangement and layout of the editor’s activities. Every activity is specialised and respon-
sible for one main task, for example creating events or building the level’s scene. Figure 3.3
outlines the layout of the editor and gives information about the connection of the editor’s
components.

The root of the layout and entry point of the application is the StartScreen activity. It
offers GUI elements to create a new game (1), load any existing game (2) or resume the
lastly created one (3). Each of the three elements starts another activity on activation.
Option 1 starts the GameSetup activity which is able to create new games and also change
an existing game, which is explained later. Option 2, namely loading a game, starts the
LoadGame activity. Not only loading is handled by this part of the editor, but also deleting
games can be initialised. The last leaf of the root is the EditorLevel activity and corre-
sponds to option 3, resuming a game. This part is responsible for handling all the levels in
a game and also has a connection to the GameSetup for changing a game’s data. Note that
both, loading a game and creating a new one start this activity.

3.3.3 Game Design

In order to create the graphical user interface and activity flow of the game several other
games in the Google Play Store have been analysed, such as “Temple Run”, “Angry Birds”
and “Inotia 3”. However, harmonisation of an universally usable and customisable design
could not be put into practice due to time limitations. Because of that, the design has been
based on activity diagrams.

The statechart diagram in figure 3.4 - statechart diagrams are a graphical representation
for process organisation and part of the Unified Modeling Language (UML) - illustrates
the structure and program flow for every created game. In the main menu the user can
choose between three options:

� The “About” item allows him to take a look at the description of the game, the
developer and other info,

� The “Exit” item quits the application,

28

3.3. System Architecture

Figure 3.3.: Game editor layout and interaction between the components of the editor.

� The “Start Game” item initialises a new game and starts it at the beginning.

The most interesting part is certainly the “Start Game” option as it results in a more
complex activity flow than the other options. All actions and events in the game can be
specified in the game creation process of the editor and allow varying level implementations,
thus instead of going into detail only a rough structural overview of the activity flow is
presented in figure 3.4.
Once a game is started, the application loads all necessary game data and the user can start
playing. If he does not want to continue playing, it is possible to return to the main menu
with the device’s back button, otherwise he has to play until he reaches the specified level
goal. When he completes a level a score screen is shown, indicating how much points have
been scored in the last level. Tapping on the screen proceeds the game to the next level
loaded by the application or, in case the end of the game is reached, a highscore screen is
displayed. Of course a game can also end prematurely, for example if the player dies to
often or all attempts are consumed. In this case a game over screen is shown and tapping
on it will return to the main menu.

29

3. System Design

Figure 3.4.: Complete state machine diagram of every game created by the editor.

30

Implementation

4.1 Graphics engine

The graphics engine is a fundamental part of each game and can be arbitrarily complex.
With respect to the short processing time of this bachelor thesis, writing an own implemen-
tation of a complete graphics engine would go over the top. One possibility to work around
this problem would be to integrate an already existing engine for Android platforms, such
as AndEngine, or to implement only the absolutely necessary parts of a 2D engine with
minimal graphics settings. By weighing the pros and cons, the following section gives a
short overview over both approaches and points out, why an own implementation of the
engine has been realised.

4.1.1 Complex versus lightweight implementation

Integrating a premade graphics engine is accompanied by large benefits, especially regarding
complexity and adjustability. The already mentioned AndEngine for example ships with
support of automatical device scaling, Box2D physics extension, particle system controller
and much more. But on the other hand, the complexity is also the biggest problem of this
approach. Most of the mentioned features are not needed or supported, neither in the game
editor, nor in the created game. The functionality overhead also results in greater training
time and therefore decreases the time advantage compared to the proper implementation.

Developing a solution of one’s own which is broken down to only the absolutely neces-
sary features, such as displaying two dimensional objects with an orthographic view, can
be implemented nearly as fast as learning to handle foreign code and additionally provides
better overview and control.
Finally, device limitations are not negligible and tip the balance towards a self-created
graphics engine. At first glance an already existing engine seems to satisfy perfectly the
requirements for a fast and efficient solution, but this is only true for executing a compiled
application. The game editor as well as the created game, considered in isolation, match
this scenario, but the problem lies in between. Due to the memory limitation of an appli-
cation it is not possible to link and compile projects on the device itself, which exceed a
certain dimension. Chapter 4.8.3 Memory limitation on Android devices on page 63 goes
into more detail about this issue on mobile devices.

31

4. Implementation

All in all the chosen approach is a more reasonable way to combine fast accessibility,
sufficient settings and above all, lightweight functionality for mobile devices with limited
resources.

4.1.2 Render settings

The largest part of the view component is implemented in the graphics class of the project
and is responsible for rendering all objects currently in the game. Like every other con-
troller, the graphics also uses the singleton design pattern and thus only allows a single
instance active at any time. Graphics class only contains one noteworthy member variable,
the camera. Its functions are explained in the next section.
By implementing the Renderer interface from the OpenGL graphics library, the three main
components onSurfaceCreated(GL10 gl, EGLConfig config), onDrawFrame(GL10 gl) and
onSurfaceChanged(GL10 gl, int width, int height) are provided for implementing the draw-
ing logic.

OnSurfaceCreated(...) is called once at surface creation and responsible for all permanent
rendering settings like depth testing, shader model and lighting mode. Since editor and
game are only designed to be a two dimensional orthographic view, only a few settings are
sufficient to initialise the OpenGL interface. Perspective correction is set to the GL NICEST
filter function which results in perspective correct interpolation of textures and colors and
therefore minimizes computed fragments. Additionally, blending is enabled and the blend
function is defined as GL SRC ALPHA (src), GL ONE MINUS SRC ALPHA (dest) to sim-
ulate correctly alpha blending.

After the surface is created and each time the surface changes, for example when the device
is rotated or the surface view changes its dimensions, onSurfaceChanged(...) is called. Since
the global coordinate system has its origin in the bottom-left corner, rotating the device as
well as manipulating the size of the surface view will change width and height. Therefore,
all camera settings have to be changed. This includes adjusting the viewport size to match
the surface size, plus specifying the viewing frustum. As the physics engine is based on the
metric system and uses meters as a unit of length, this is adapted here and frustum dimen-
sions are also represented in meters. Conversion between pixels, which is the input from
surface size, and meters is calculated by the formula: Meter = Pixel / MeterToPixelFactor .
The only change to the OpenGl state machine in this method is setting the viewport to the
newly given width and height of the surface.

All remaining functionality of this method serves the purpose of displaying the screen size
of the target device in the scene editor and will not be explained in detail.

Now that all adjustments to the OpenGL interface are made it is time to draw something.
The onDrawFrame(...) method runs on its own thread and is called multiple times per
second. In each drawing step all camera settings have to be loaded, as described in section
4.1.3 on page 35. To avoid thread exceptions when objects are added to the game object list,
this is because OpenGl runs on a different thread as the main UI thread and is not synchro-

32

4.1. Graphics engine

nised, all objects have to be stored in a temporary buffer and then loaded into the actual
game object list in the OpenGl thread, which is done by calling managePendingObjects().
Thread safety is always a big problem when OpenGL functions are called from other threads
or when objects in two threads interact. Another problem when using OpenGL on mobile
devices is, that the context of OpenGL is only valid if one of the three main methods of
the OpenGL interface are executed. Accessing OpenGL functionality from outside these
methods will always lead to an exception and crash the application. There are two different
approaches to deal with these problems: it is either possible to add a Runnable object
to the respective thread with a Handler and its .post(Runnable r) method and specify all
actions there, or to provide flags for all actions which then trigger the addressed functions
in the next iteration step of the thread. Sometimes even both options have to be used in
order to work correctly. An example is the takeScreenshot() function in the graphics class,
which takes a screenshot of the currently rendered image in the surface view of the editor.
First of all, the context has to be active, so the screenshot flag in graphics has to be set.
In the next rendering iteration, the onDrawFrame(...) function then takes the screenshot
and a new Runnable which finishes the scene editor activity is posted to the main UI thread.

The actual drawing code can be divided into two parts, drawing with textures and drawing
just the outer bounds of a shape, their bounding boxes. For both scenarios the OpenGl
state machine has to be adjusted to draw with the correct settings. Before drawing either
of them, the appropriate options are set once to avoid constant rearranging of the graphics
pipeline and therefore optimise GPU and memory usage.

Listing 4.1: Setting options for drawing objects with textures.

1 g l . g lEnable (GL10 .GL TEXTURE 2D) ;
g l . g lEnab l eC l i en tS ta t e (GL10 .GL VERTEX ARRAY) ;

3 g l . g lEnab l eC l i en tS ta t e (GL10 .GL TEXTURE COORD ARRAY) ;
g l . g l C o l o r 4 f (1 f , 1 f , 1 f , 1 f) ;

Code example 4.1 illustrates textured drawing. At first, OpenGl is configured to draw
two-dimensional textures and is also told to accept vertex arrays and texture coordinate
arrays when drawing objects with glDrawElements. Additionally, the blending color for
all following drawing calls is set to solid white which is necessary to disable external color
influence to the object texture. Each pixel color of the texture is multiplicated component-
by-component with the color set by glColor or variations of this method. White as four-
dimensional vector (1,1,1,1) therefore does not alter the texture and keeps every pixel color
as is:

C = (1 ∗ r, 1 ∗ g, 1 ∗ b, 1 ∗ a) (4.1)

Next, a loop which iterates over all game objects calls the rendering code of each object
separately. The drawObjectWithAnimationOrTexture(DrawableObject d) function shown in
listing 4.2 on the next page is responsible for object positioning, scaling and rotation and
arranges each object correctly in the world space. For this purpose OpenGL provides special
functions to manipulate the active model-view-projection matrix.

33

4. Implementation

Listing 4.2: Translating rotating scaling and finally drawing of a texture.

private void drawObjectWithAnimationOrTexture (DrawableObject d) {
2 g l . glPushMatrix () ;

g l . g l T r a n s l a t e f (d . g e t P o s i t i o n () . x , d . g e t P o s i t i o n () . y , 0) ;
4 g l . g l T r a n s l a t e f (d . g e t S i z e () . x / 2 , d . g e t S i z e () . y / 2 , 0) ;

g l . g lRota t e f (d . getRotat ion () , 0 , 0 , 1) ;
6 g l . g l T r a n s l a t e f (−d . g e t S i z e () . x / 2 , −d . g e t S i z e () . y / 2 , 0) ;

g l . g l S c a l e f (d . g e t S i z e () . x , d . g e t S i z e () . y , 0) ;
8 d . draw (g l) ;

g l . glPopMatrix () ;
10 }

To ensure that every object has exactly the same base matrix, the standard model-view-
projection matrix created by the camera is pushed onto the matrix stack and therefore
stored for the next objects without any change. After that, all following matrix operations
are only applied to one single object. In general, matrix multiplication is not commutative
and therefore all operations have to be applied in a strict order. Note that all operations
have to be called in reverse order to produce the correct output. Since the bottom left
corner of each shape is defined as object origin, it can be directly scaled to its size (the
original size of each object is Vec2(1,1)) . Next up, the object’s center is translated to the
world space origin by subtracting half its size from the current position. Now that world
and object origin share the same point, rotation around the z-axis spins the object right
in place without any offset. Then, the translation mentioned two steps earlier has to be
reverted. This is absolutely necessary because it only serves the purpose of rotating the ob-
ject around its center point. A last translation moves the object to its position and finishes
all matrix manipulations. Last but not least, the objects drawing method is executed.

Even though the project underlies the MVC pattern, it is only applied weakened here.
Instead of realising the drawing in the graphics class, the OpenGL context is passed to
the currently processed object which then sends all necessary data to the graphics pipeline
itself. Every object consists of a shape with customised code to match perfectly the texture
with its boundary. For more information about object and shape organisation see chapter
4.6.6 Object editor, on page 55. Listing 4.3 shows the drawing code for the rectangle shape.

Listing 4.3: Drawing method of the rectangle shape.

public void draw (GL10 g l)
2 {

// bind tex ture
4 g l . glBindTexture (GL10 .GL TEXTURE 2D, t e x t u r e s [0]) ;

// s p e c i f y the l o c a t i o n and data format f o r r ender ing and draw
6 g l . g lVer texPo inte r (2 , GL10 .GL FLOAT, 0 , ve r t exBu f f e r) ;

g l . glTexCoordPointer (2 , GL10 .GL FLOAT, 0 , t e x t u r e B u f f e r) ;
8 g l . glDrawElements (GL10 .GL TRIANGLES, i n d i c e s . length , GL10 .

GL UNSIGNED SHORT, indexBuf f e r) ;
}

34

4.1. Graphics engine

Data passed to OpenGL has to match the previously activated states and therefore in-
clude texture binding, specifying all vertices and texture coordinates. Finally, OpenGl is
instructed to draw all vertices which are defined as triangles in the indices array. At this
point, textured drawing is complete and all activated OpenGL options can be deactivated
again. Only vertex array drawing is left active for rendering bounding boxes and screen
rectangles.

In code example 4.2 one essential line was left out. To restore the model-view-projection
matrix before manipulating it, glPopMatrix() has to be called. It pops the top of the matrix
stack and makes sure that all matrix operations of the following objects have the same base
matrix.

Up to now, only the term bounding boxes have been mentioned, although there are ac-
tually no bounding boxes in the scene editor. This is because the object’s bounding box is
not used as such, but utilised as selection indicator. Just like textured rendering, drawing
the bounding boxes is realised by the exact same matrix operations. The only difference
lies in the rendering part. Bounding boxes do not have a texture but only consist of colored
lines. Instead of defining a color for these lines in every rectangle and passing these addi-
tional values to the graphics pipeline, the current drawing color is set to a specific value,
in case of the bounding boxes completely red. Multiplying the set color with the standard
color of a vertex, which is always white, will result in displaying the set color (see equa-
tion 4.1). To draw the box, the object’s vertex buffer pointer has to be passed to OpenGl
again. Rather than creating a box out of triangles, this time a line loop is used. Thus,
it is possible to use the exact same vertex array as for textured drawing. The function
glDrawArrays(GL10.GL LINE LOOP, 0, 4) then tells the renderer to create a box out of
four elements.

The remaining part of the onDrawFrame(GL10 gl) function is less interesting, because
it only creates two additional bounding boxes which are stored in the graphics class. These
indicate the level boundaries and the camera rectangle size in scene editor. The lastly
mentioned one shows the camera clipping of the target device. Information about level size
is stored in the LevelInstance class, target device size and camera rectangle position are
defined in the camera class and explained in the following subsection.

4.1.3 Camera

After defining all render settings a camera has to be created. As specified in the requiremets
(REQ-15.1 on page 24), the camera is limited to a two dimensional orthographic view and
contains position, zoom factor, viewport and frustum size as well as information about the
camera rectangle which indicates the screen size of the target device.

All camera settings have to be loaded in every draw cycle, for that reason the camera
class provides the loadCameraSettings(GL10 gl) function which handles all necessary ac-
tions to prepare the OpenGL interface for drawing with the correct settings. First of all the
depth and color buffer are cleared and the backbuffer color is set to black. The backbuffer

35

4. Implementation

is part of the framebuffer and instead of drawing to the screen directly which would cause
flickering, everything is first drawn into the backbuffer then displayed when the rendering
and drawing is finished. After that the viewport, this is the part of the screen where the
drawing happens, is set. Next, the projection matrix is set and initialised with the identity
matrix. It is crucial to not combine previous transformations matrices with the current one.

Finally, the call of glOrthof(...) produces a parallel projection where the position of the
camera is the center of the viewing frustum. Depending on the zoom factor the left, right,
top and bottom clipping planes increase or decrease the size of the viewing projection. Near
and far clip do not change and are set up to show everything between -1 and 1 on the z axis.
These settings result in a two-dimensional side view, where the z-coordinate of a polygon
has no effect on the size of the displayed projection. Especially side-scrolling and platform
games prefer this setup.

Listing 4.4: Loading the camera settings for drawing with a two dimensional parallel pro-
jection.

1 public void loadCameraSett ings (GL10 g l) {
// Clear s the s c r e en and depth b u f f e r :

3 g l . g lC l ea r (GL10 .GL COLOR BUFFER BIT | GL10 .
GL DEPTH BUFFER BIT) ;

g l . g lC l ea rCo lo r (0 . 0 f , 0 . 0 f , 0 . 0 f , 1 . 0 f) ;
5

// s e t iewport , r e s e t p r o j e c t i o n martrix , s e l e c t mode matrix
7 g l . g lViewport (0 , 0 , (int) viewportWidth , (int) v iewportHeight) ;

g l . glMatrixMode (GL10 .GL PROJECTION) ;
9

g l . g lLoadIdent i ty () ;
11 g l . g lOrtho f (p o s i t i o n . x − frustumWidth * zoom / 2 ,

p o s i t i o n . x + frustumWidth * zoom / 2 ,
13 p o s i t i o n . y − frustumHeight * zoom / 2 ,

p o s i t i o n . y + frustumHeight * zoom / 2 ,
15 −1.0 f , 1 . 0 f) ;

g l . glMatrixMode (GL10 .GL MODELVIEW) ;
17 }

Section 4.1.2 already mentioned the screen rectangle indicator of the target device. All
information about this rectangle is stored in the camera class. The target device size is set
in the game settings and optimised for small smartphone screen resolutions. Additionally,
the size depends on the currently active screen orientation of the game (a size of (480, 800)
in portrait mode is changed to (800, 480) if landscape mode is activated). The extra position
variable for the screen rectangle is crucial for correct positioning, depending on the level
bounds. The camera is configured to move freely through level space without any barrier,
but this is not the case for the screen rectangle which is kept inside the level boundaries at
any time.

36

4.2. Physics engine

4.2 Physics engine

A physics engine introduces the laws of physics to the application with the purpose to
appear more realistic. As with the graphics engine, a careful consideration concerning the
implementation approach was made and resulted in choosing an already existing physics
engine, the JBox2D physics extension. The complex physical calculations which are hard to
implement in a short period of time, as well as its ease of use and fairly good performance
where crucial for this decision. However, when this thesis was nearly completed it turned
out that there are problems with heap space when compiling on the device. Since this
physics engine is very large compared to implementing an own solution, it is necessary to
overhaul the physics part if the application gets improved in the future to make sure the
device provides enough resources. This issue is addressed further in section 4.8.3 Memory
limitation on Android devices on page 63.

JBox2D is a Java port close to the the popular C++ based Box2D physics engine available
for multiple platforms including iOS, XBox360 and Windows Phone. Basically, “Box2D
is a rigid body simulation library for games” [7]. The source code is provided as .jar file
and imported to the project as external library. Additionally, the SLF4J Android logging
framework, also provided as .jar and imported as external library, has to be included in
order to make JBox2D work correctly.

In the following the main components of the engine and their used functionality are de-
scribed briefly to provide basic knowledge of the physics engine. For further explanation
see the reference manual [7].

World The world is a collection of bodies, fixtures, constraints and joints. All objects in this
container class can interact with each other. Running and managing the simulation
is also handled by the world with parameters such as step duration and position
iterations per update.

Shape A shape describes the basic collision geometry and is used for collision detection.
There is only one shape template for a circle but it is also possible to create own
shapes like rectangles or other multi-polygon shapes.

Fixture To attach a shape to a body, the fixture class is used. It also holds additional
non-geometric data such as friction, density and restitution to make the simulation of
an object more realistic.

Body Simulating object movement in the world is possible with the body class since it
holds position and velocity data. Applying forces, torque and impulses to a body is
also possible. There are different types of bodies, two of them are actually used in
the game editor: On the one hand there is the static body which does not move and
has a fixed position, on the other hand the dynamic body is fully simulated. It can
collide with all body types and moves according to the applied forces.

Contact For every two overlapping axis-aligned bounding boxes (AABB) - these correlate
to their fixtures - a contact exists and holds all contact points. The calculation of the

37

4. Implementation

contact points is based on the shapes of the involved fixtures (for example circle-circle
or polygon-polygon collisions). This functionality is the essence of the contact class,
please see the manual for further description.

Based on this short introduction into the terminology of the physics engine, the essential
parts of the Physics.java class are outlined. Instead of only using the physics engine in an
exported game it is also implemented in the game editor. Due to the fact that both of them
require a representation of physical objects and customisation of different solutions is very
time consuming, the physics engine is also activated in the game editor but simulation is
paused to prevent objects from moving (4.5).

Listing 4.5: Creating the physical world with paused simulation state and specified gravity
value.

1 boolean doSleep = true ;
world = new World (getGravity (grav i ty Index) , doSleep) ;

The implementation of the JBox2D physics engine was extended with basic functions for
creating rectangle and circle structures with different body types. Listing 4.6 shows an
example implementation for a circle - also known as ball - with special physical properties.

Listing 4.6: Sample code for creating a physical circle object.

public Body addBall (Vec2 pos i t i on , f loat radius , BodyType type) {
2 // Create Dynamic Body

BodyDef bodyDef = new BodyDef () ;
4 bodyDef . type = type ;

bodyDef . p o s i t i o n . s e t (p o s i t i o n . x , p o s i t i o n . y) ;
6

// Create Shape with P r o p e r t i e s
8 Circ leShape c i r c l e = new Circ leShape () ;

c i r c l e . m radius = rad iu s ;
10

// Create a f i x t u r e f o r b a l l
12 FixtureDef fd = new FixtureDef () ;

fd . shape = c i r c l e ;
14 fd . dens i ty = 0 .9 f ;

fd . f r i c t i o n = 0 .3 f ;
16 fd . r e s t i t u t i o n = 0 .6 f ;

18 // Assign shape to Body
Body b = world . createBody (bodyDef) ;

20 b . c r e a t e F i x t u r e (fd) ;
b . setUserData (b) ;

22

return b ;
24 }

38

4.3. SuperController

In line 3 and 12 definitions for the body and fixture are created and their attributes are
set. Line 8 shows the instantiation of the underlying shape and finally, in line 18 and 19,
the actual body is constructed with the specified data. This procedure is the base of every
body creation process and has to be repeated for all objects.

In contrast to the graphics engine which runs on its own dedicated thread, the physics
engine’s update function must be called from within the gameloop. Besides, the update()
function is also responsible for applying user input to the player object as illustrated in
listing 4.7.

Listing 4.7: Managing the simulation process and control input.

// apply jumping f o r c e to p laye r
2 i f (p != null && p . getRemainingJumpSteps () > 0) {

f loat f o r c e = p . getJumpForce () ;
4 p . getBody () . applyForce (new Vec2 ((p . getRemainingJumpSteps () ==

0) ? p . getBody () . g e tL inea rVe l o c i t y () . x * 7 : 0 f , f o r c e) , p .
getBody () . getWorldCenter ()) ;

}
6 // s imulate world

world . s tep (timeStep , i t e r a t i o n s , i t e r a t i o n s) ;

4.3 SuperController

The SuperComtroller is part of the MCV pattern design and primarily important for the
game, despite also implemented in the editor. It controls the program flow of the game and
keeps track of the game state and all objects in a single level. Moreover, it supervises the
GameLogic, Physics and StorageManager components.

Once the SuperController is created its initialize() method instantiates the above men-
tioned controllers and loads all necessary game data into the LevelInstance and starts to
drive the simulation with the UpdateThread classes.

4.3.1 LevelInstance

The LevelInstance represents the actual game and holds the currently active objects, ref-
erences to the player and level information. Only one instance of the class can be active
at a time and is referenced from the SuperController. This design allows minimal memory
usage while playing the game. After a level is finished - either by completing it or exiting
the game - the level instance is disposed by its dispose() method that frees all allocated
memory. Loading the next level creates a completely new LevelInstance, ready to be filled
with the latest level data.

39

4. Implementation

Listing 4.8: LevelInstance holds all game specific data like all objects in the scene or the
current Score.

1 public Leve l In s tance (Vec2 l e v e l S i z e , int levelNumber) {
this . l e v e l S i z e = l e v e l S i z e ;

3 this . levelNumber = levelNumber ;
gameObjects = new ArrayList<DrawableObject>() ;

5 addObjects = new Vector<DrawableObject>() ;
removeObjects = new Vector<DrawableObject>() ;

7 c o l l e c t i b l e O b j e c t s = new ArrayList<C o l l e c t i b l e >() ;
}

All of its data is also accessible from the outside via special getters and setters. This
functionality is mostly used by the SuperController, when it comes to calculations based on
the level size or dynamically removing or adding objects to the game.

4.3.2 UpdateThread

Unlike rendering the graphics which does not need any configuration by the developer as it
is handled by internal Android components, continuously executing the logic of the game
requires an external thread. For this particular purpose, the UpdateThread - also referred
to as “gameloop” - class was implemented. It is started by the SuperController and runs
in a fixed time step, meaning that the time between an update is (nearly) the same at
any time. The fixed time step simulation was preferred to a variable time step due to the
following reasons:

1. Since physical calculations should rely on a fixed time step (for reproducible and
deterministic execution - if this is supported by the engine), it is easier to use the
same timer for logic procession. [7]

2. In addition to the physics, nothing but the GameLogic is updated by the gameloop
and therefore interpolation between the updates is not necessary to smoothen the
game experience.

In order to make sure every simulation step consumes exactly the same amount of time, the
thread sleeps dynamically between two steps. The sleeping time is calculated depending
on the processing time of the last step and the fixed time step duration, compare line 3 of
listing 4.9.

Listing 4.9: Frametime (1/60 second) minus time consumed by the update.

long d i f f = System . nanoTime () ; − beforeTime ;
2 s leepTime = (frameTime − (d i f f)) / 1000000L ;

It is mandatory that the thread only runs if the application is active (cf. Android’s running
activity state). Thus, executing the thread can be stopped with a pause flag. As listing
4.10 demonstrates, the thread’s run method is executed while the paused flag is set to false.

40

4.4. GameLogic

Once the flag is changed, for example by exiting the game the SuperController sets the flag
to true, the gameloop finishes its current loop and stops running it.

Listing 4.10: The gameloop’s run() method.

public void run () {
2 while (paused == fa l se) {

//do something
4 }
}

4.4 GameLogic

The GameLogic works much like a referee which controls and guides the game flow. The
class is not implemented in the editor but only part of its created games. There are three
main tasks which are handled by the GameLogic. It provides methods to...

1. ...manipulate and store player data such as scored points and lives.

2. ...process detected collisions and check event trigger.

3. ...update the graphical user interface (HUD) depending on changed data values.

Instead of storing the player specific data in the player object of a level, this data is man-
aged by the GameLogic. Due to the fact that the game completely drops a level with all its
objects and creates a new one from initial values when a new level is loaded, the player’s
score and lives would be lost. Therefore, this approach was chosen to avoid constantly
copying data from one level to another. Moreover, the GameLogic class checks the winning
and loosing condition and finishes the game if the player has lost all his lives.

Most functionality of this class is processed by the update function which is called mul-
tiple times a second by the gameloop thread via the SuperController.

Listing 4.11: The update function controls the game logic.

1 public void update () {
c h e c k C o l l e c t i b l e s () ;

3 p r o c e s s C o l l i s i o n s () ;
processEvents () ;

5 }

Listing 4.11 illustrates the main functions of the GameLogic class which are now explained
in more detail:

checkCollectibles() This function checks if the player picked up a Collectible. Since this
object does not have a physical representation in the world of the game, a collision
with the player cannot be recognised. Because of that, checkCollectibles() checks if
the player object and any Collectible overlap and triggers the corresponding events,
for instance adding points or lives for the player.

41

4. Implementation

processCollisions() As already mentioned in the physics engine section, all collisions be-
tween ActiveObjects are stored in a list in the GameLogic. The processCollisions()
method now checks all collision pairs in this list and triggers events which have been
defined by the developer with the event editor. Listing 4.12 is an example for a
populated processCollisions() method which demonstrates its intention.

processEvents() The processEvents() function completes the detection of events. Every
trigger which does not depend on collisions is processed by this method and immedi-
ately handles the attached functionality. An example implementation is demonstrated
in figure 4.13.

Listing 4.12: Excerpt from the processCollisions() function illustrating how the triggering
works.

1 int playerID = SuperContro l l e r . g e t In s tance () . g e tLeve l In s tance () .
ge tP layer () . getID () ;

i f (idA == playerID | | idB == playerID) {
3 switch (Const . currentLeve l ID) {

case 1 :
5 i f (idA == 4 | | idB == 4) {

k i l l P l a y e r () ;
7 }

break ;
9 }
}

Listing 4.13: Excerpt from the processEvents() function with two levels and their respective
events.

switch (Const . currentLeve l ID) {
2 case 1 :

i f (s co r e >= 25) {
4 gotoNextLevel () ;

}
6 break ;

case 2 :
8 i f (s co r e >= 150) {

SuperContro l l e r . g e t In s tance () . removeGameObject (33) ;
10 }

break ;
12 }

Note the additional switch statement in figure 4.12 and 4.13. It subdivides the events for
each level of the game and is explained in section 4.8 on page 59, concerning the export of
a game with the export manager.

Updating the graphical user interface is not part of the gameloop since changes to this

42

4.5. EditorGestureListener

data is only applied occasionally. The respective methods are not called in every update
step, but rather on demand when the data is actually changed. Changing the players score
for example will directly affect the HUD.

4.5 EditorGestureListener

Gestures play a very important role as they greatly improve the user experience. The im-
plemented gestures facilitate every interaction with the level and its objects. The Android
libraries provide different kind of pre-built gestures which can be recognised, but they have
to be adjusted to work correctly. The EditorGestureFilter class implements all desired in-
terfaces and processes the gestures which are then forwarded to a custom interface. This
interface is implemented in the scene editor and the integrated callback methods are trig-
gered, every time the gesture listener invokes them.

Most of the custom interface gestures are an extended version of their base implementa-
tion, but with modified parameters, such as onClick(int, int, View) or onLongClick(int, int,
View). The given interface is designed to interact with the SurfaceView and its displayed
objects, as it provides additional information about the touch coordinates. For example,
clicking on an object cannot be recognised with a preset OnClickListener, because it is
not part of the hierarchical view structure, thus the surface has to provide the touch point
which can then be used to take further actions.

The custom interface implements three other interfaces - OnLongClickListener, OnTouch-
Listener and OnClickListener - to react to standard actions. Every interaction with the
View the interface is registered to, calls the onTouch(...) function, which is the basis for
every other gesture. It is possible to extract the absolute interaction point with the surface.
Since onTouch() is the basis of every more or less complex gesture, it is always called first.
The coordinates of the touch point are stored and therefore available until other gestures
are triggered. Since the EditorGestureFilter implements interfering interfaces - onScroll(...)
and onLongClick(...) can be triggered simultaneously - the involved methods have to set
an enum lock, so that only the gesture first started can proceed. The realised gestures and
their corresponding functionality are described as follows:

onScroll(MotionEvent, float, float) This fundamental gesture already exists in Android’s
SimpleOnGestureListener interface and is completed by simply adding a scrolling lock.
The MotionEvent, which contains the pointer coordinates, starting the gesture and
the method’s x- and y-distance values are sent to the custom interface function.

onScrollEnded() Each time the onTouch() event handler is triggered by an “ACTION UP”
event, this means a pressed gesture is finished, it checks the gesture lock state and
calls onScrollEnded() if the lock is set to “SCROLL”.

onPinchZoom(double, Vec2) The pinch zoom gesture is more complex. It is composed
of two independent motion events which come after each other. If the event is of type
“ACTION POINTER DOWN”, the application checks the distance between primary
and secondary pointer on the surface and, if the distance is above a defined threshold,

43

4. Implementation

initialises the pinch zoom by setting the “ZOOM” lock. From now on, every move
event checks for the zoom lock and calculates the x- and y-distance between the update
steps. In the end, the traveled distance for both directions and the squared distance
are passed to this interface function.

onLongClick(int, int) Nearly the same as onScroll(), onLoncgClick() additionally takes
the coordinates of the touch event.

onClick(int, int, View) Completely equals the onLongClick() functionality, but is triggered
by another event.

onUpEvent() Extends the onScrollEnded() gesture so that every other finished gesture is
perceived.

4.6 Game editor components

In this chapter, all editor activities are described in detail and a connection to the
MVC components of the project is established. All activities are defined in the package
de.tum.gamestudio.Activities and provide the structural basis for the game editor.

4.6.1 Start screen

The StartScreen class is the entry point of the whole application. It handles all neces-
sary start configurations on first launch and offers the user the possibility to create a new
game or resume previously created games. Every time the application is started, it checks
whether the object database for the editor already exists or not. For this purpose a new
DatabaseLoader is instantiated which then checks the existence of the object database and,
if necessary, copies the pre-populated object database to the memory card of the device.

The DatabaseLoader class inherits from SQLiteOpenHelper, “a helper class to manage
database creation and version management” [18] which is provided by the Android OS.
Checking for installed databases is not natively supported by SQLiteOpenHelper, but can
be simulated with other functions. To check for the database a new file is created with the
database file as target and the dbFile.exists() methods then returns true if the database al-
ready exists. Based on this knowledge, createDataBase(...) either returns or begins to copy
the data from assets directory to a path specified in Const.java. The default application
directory is not used as described by Google, because this directory is private and other
applications can not access it. This would lead to problems when compiling the game since
the external compiler tool has to access the copied libraries. Therefore the “AndroidGameS-
tudio” folder on the SD-Card will not be uninstalled with the application, so the user has
to do this on his own.

Input- and OutputStreams are created with the data file as input source and directory
path, plus filename as destination file. The functionality to copy files from an InputStream
to an OutputStream is very general and therefore defined in the static Functions.java class to
make it accessible from anywhere in the project. Both streams are passed to that function,

44

4.6. Game editor components

which then partially buffers the input and writes it to the output file. Finally, it also flushes
the streams and closes them to avoid memory leaks. After this procedure, the database is
ready to be use until user data for the application is wiped, or the game editor is uninstalled.

The activities’ graphical user interface offers buttons to create a new game, resume a pre-
vious game or load a saved game. Rather than processing the corresponding functionality
directly, a new activity is started.

4.6.2 Game setup

The GameSetup activity is prepared to handle two different scenarios. In scenario one, the
user wants to create a completely new game, hence all input fields are left empty and the
“Create game” will trigger the creation of a new game. Scenario two is based on an already
existing game, but the user wants to change, add or delete data which has been entered
earlier.

The different usage is identified by a single boolean value passed with the intent. A true
init value will cause the activity to store all entered data in a database. For every game
the user wants to create he has to enter some game specific data. This includes information
about the game, as well as author and is specified in the GameSetup.java class. At least
the game’s name must be entered and it is also necessary to select the screen orientation.
Possible screen orientations are vertical and horizontal, which are equivalent to Android’s
standard orientations, portrait and landscape. To create a new game, this information is
sufficient, but there are also other additional input fields. It is up to the user if he wants
to fill in his name and a description for the game right away. Besides that, the user is also
asked to select an image or icon for his game.

Listing 4.14: Starting the MediaStore content provider to select a gallery image.

In tent i = new In tent (Intent .ACTION PICK, android . prov ide r .
MediaStore . Images . Media .EXTERNAL CONTENT URI) ;

2 s t a r t A c t i v i t y F o r R e s u l t (i , 1234) ;

On click, the image selector button creates a new Intent which opens a gallery where the
user can select any image stored on the device. As code example 4.14 shows, the im-
age is selected by taking advantage of the MediaStore content provider of Android OS.
The intent tells the content provider to return the selected image in the gallery by set-
ting the ACTION PICK flag of the intent. The result is then handled in the activity’s
onActivityResult(...) method. With the function’s result code, the success of the operation
can be checked. If the code of the received data equals the pre-defined RESULT OK value,
the path to the image and its filename are extracted from the received Intent by query-
ing the data rows of the MediaProvider and selecting its first entry. Image filename and
directory path are temporarily stored for further treatment and the image is decoded and
converted to fit the image button’s dimensions. DecodeImage(String path) takes a file path
as input, creates a new bitmap by utilising the BitmapFactory function decodeFile(String s)

45

4. Implementation

and re-calculates width and height of the target image. Depending on the current size a
scale value is calculated which, multiplicated by the source image size, limits width and
heigth to a maximum size of two hundred device independant pixels (DIP). This function’s
purpose is to match image to button size and properly display the result to the user.

By hitting the back or cancel button, all entered data is discarded and the editor returns to
the main menu. To finally set up a new game, the user has to click on the “Create game”
button.

The DatabaseController.java class handles the access to the database and implements the
functionality mentioned above. CreateNewGame(...) for example takes all information
from the setup activity, encloses them in a ContentValues instance and puts the values
into GameData table. Name, author, description and image path are stored as strings, the
orientation is an integer value. A significant part of this function is the return value of
the insert command. It returns “the row ID of the newly inserted row, or -1 if an error
occurred”, as described in JavaDoc. Since the row ID is the primary key of the table, it
identifies the game uniquely and can be used for further interaction with other tables, for
instance the the subsequent creation of a new level in the game. For the users’ convenience,
right after the game also a level is created and linked with it. The game ID, standard level
number and name are passed to addLevelToGame(...) which then constructs a new level
and stores it in the database. Code example 4.15 depicts this functionality.

Listing 4.15: Creating a new level and storing it in the database.

public Level addLevelToGame (int gameID , int l eve l ID , S t r ing
textureNamePI) {

2

// i n s e r t data
4 ContentValues args = new ContentValues () ;

a rgs . put (”Game” , gameID) ;
6 args . put (” Leve l ” , l e v e l ID) ;

args . put (”PreviewImage” , ” ”) ;
8 args . put (”LevelName” , ” Leve l ” + l eve l ID) ;

args . put (” Gravity ” , 0) ;
10 int combinedID = (int) db . i n s e r t (Const . tableSavedGames , null ,

a rgs) ;

12 return new Level (l eve l ID , combinedID , textureNamePI , ” Level ”
+ l eve l ID) ;

}

A level consists of a name, preview image, gravity index, game ID, level ID and, most
important, a combination of game and level ID. Section 4.6.4 (see page 50) goes into more
detail about the gravity index. Surprisingly, level ID is not marked as a primary key of the
table, but the id field is. This is because enumeration of the levels must be the same in each
game, to ensure correct sorting order. It starts at one and increases by one with every new

46

4.6. Game editor components

level. The additional id field is not absolutely necessary but without it, more tables would
need additional fields to clearly join data between the tables. LevelObjects and Events ta-
ble make use of this design. The return value of addLevelToGame(...) is not processed here.

Once the level is ready for use, the createNewGame() method now returns the id of the cur-
rent game which is then stored in the static class Const.java. This is an appropriate way to
make it available from everywhere in the editor and simplify access to often used variables.
Otherwise, the value would have to be passed to every single activity and sub-method.
Finally, a directory on the SD-Card is constructed with game ID as name. Yet, the folder
is not used, but it is required to store screenshots for all levels. To proceed towards the
next step, the EditorLevel activity is started. To make sure that the user cannot navigate
back to the setup activity, the next command in the program flow is a finish() statement.
It exits the activity immediately by popping it of the activity stack and returns to the main
menu.

The second application scenario describes altering an existing game. Both scenarios are
very similar but yet different. If the boolean init variable is not true, this means it is no
new game but the user wants to change data, all data of the game is loaded. Addition-
ally, the “Create game” button is renamed to “OK” and will now update the data in the
database instead of inserting new values. By calling getGameData(...) with the ID of the
game, a query is executed on the GameData table. The resulting cursor holds all required
data which is then displayed to the user. The records can now be changed as usual and
by clicking the “OK” button, their database fields are updated. The DatabaseController
function updateLevel(...) is configured to modify the game according to the active game.
Changing the game’s name with an already existing .apk file or installation on the device
may lead to problems, especially duplicate installations with different names are a prob-
lem. The game setup takes care of these problems and renames already existing .apk files
together with the database entry and also takes care that the currently installed game has
to be uninstalled in order to rename the game.

4.6.3 Level editor

Every time the user creates a new game, resumes or loads an old one, the LevelEditor activ-
ity is called. Its main goal is to display all existing levels in the selected game and provide
functionality to manage the game and its levels. This activity also offers buttons to export
a game and play an already existing game.

In order to make use of the GridLayout of the GUI, a LevelAdapter is instantiated and
set as the grid’s data adapter. As mentioned in the previous section, often used variables
are stored in a static class to access them quickly. However, this design also entails risks. It
is possible that the context of the class gets lost when the application runs in background
for a long time and the garbage collector clears the data of the static class. In order to load
the game and its levels correctly, the currently active game ID is additionally written to the
shared user preferences every time he enters the LevelEditor activity. When the activity is
started or resumed, it checks the content of the static variable and, if it is not valid, reloads

47

4. Implementation

the game ID from shared preferences. Another check of the game ID is performed and, in
case it is valid, starts loading the levels.

To display all the levels in the game, the program has to process three different tasks.
The level data has to be queried from the database, translated into a suitable data rep-
resentation for object oriented implementation and then loaded into the grid adapter. All
three steps are explained in more detail in the following section.

The first task is made up of a simple database query, executed on the already opened
DatabaseController . It requests the level’s name and image, as well as its ID and, of course,
the combined ID by selecting all levels, where game ID in the table and in Const.java class
are the same. Since the query command of every SQLiteDatabase is able to order the se-
lected rows, the resulting Cursor object will hold the data ordered by level ID in ascending
order. Accordingly, the grid will always show the correct sort order of the levels.

This very simple step is followed by the preparation of the Cursor data. An array list
of levels forms the basis for the adapter. All data is read from the Cursor row by row and
translated to a level object. The object does not have any functionality, but only serves the
purpose to encapsulate the data and make it available to represent it in the array list.

Now that the levels are prepared for further actions, the application can proceed with
the last step. By subclassing an ArrayAdapter, a concrete implementation of BaseAdapter,
a creation is constructed to use custom objects in a more complex layout. All essential
functionality is inherited from its parent, like getCount() and getView() and are overrid-
den to match the layout’s requirements. The level list is passed to the newly created level
adapter and can now be used by the adapters methods. As described in the Android API
documentation, getView() creates a view that displays the data at the specified position in
the data set. The standard implementation is only applicable for a single text view, how-
ever, the used layout file consists of an image and text. The extended getView() method
is configured to inflate a specific layout for the grid item if the view does not already exist
and, if possible, reuse an old view to save resources. In both cases, the level’s name is set to
the TextView and the image is loaded from SD-Card and set as content of the ImageView.
The adapter is now ready to display an item in any list or grid.
A missing piece is the adapter’s getCount() method. It has to return the total number of
elements stored, which in this case, equals the number of elements in the ArrayList of levels.
This will be of more significance when the user deletes a level and is therefore explained
later in this section.

To interact with the items in the grid, two different kinds of listeners are registered on
the grid and the interface with the logic is implemented in the activity. Simple clicks on an
item in the grid are handled by an OnItemClickListener. As could be expected, a click on
a level opens the scene editor with the corresponding level. The triggered callback method
contains the logic behind this. Right after the opened level and combined ID is written
to Const.java class the scene editor is started. All information about the scene editor are
explained in the next section.

48

4.6. Game editor components

Figure 4.1.: Level editor with sample levels.

To delete a level from the game, the user has to click on a grid item and hold it down
for a while. Pressing the confirm button in the delete dialog will then delete the level not
only from the game, but also from the database. As already mentioned, it is crucial that
all level numbers of a game are consecutive, so deleting a level other than the last one will
result in an invalid state. Luckily, this problem can be circumvented with a simple SQLite
statement. The database controller decreases the level ID of every level in the game, with
a level number greater or equal to the deleted one, by one. As a result, the required order
is maintained. Additionally, the level is then removed from database and adapter. Wasting
resources is prevented by iterating over the adapter and manually decreasing the level ID
similar to the database operation. The leading thought behind this procedure is, that the
system does not have to reload the whole adapter. Instead, only the data is touched which
is not visible to the user and therefore it is not necessary to update the layout.

The three-button layout at the bottom of the screen provides functionality to create a
new level, edit game information and, most importantly, compile the game. After compil-
ing a game two additional buttons are added to this layout, which offer the functionality to
start the newest version of the exported game and share the created game via email.

The most basic part is triggered by the “New level” button. Section 4.6.2 already in-
troduced the addLevelToGame() method, but this time the return value of the function
comes in handy. The created level is written to the database and then directly translated
into a Level object. Adding it to the level adapter finishes the instruction.

The edit game functionality has been mentioned in section 4.6.2, too, and refers to the

49

4. Implementation

second scenario. The game setup intent is started without extra information about the init
state, thus interpreted as “false” by the getExtra() method by default.

The “Publish game” button triggers a routine which outputs a complete playable game.
Publishing requires the “JavaIDEdroid” application to be installed, thus the level editor
checks if this requirement is met by calling the PackageManager’s getApplicationInfo(...)
method with the package name of the application. If the application is not installed the
user is asked to install it. See section 4.8 for more information about the ExportManager.

Other than the already mentioned buttons, the fourth button is not visible all the time, but
only when the created game is already installed or an .apk file exists to install the game.
To check the installation status of the game, the PackageManager is utilised once again.
Additionally, the versions of the currently installed game and the newest export are com-
pared. If the version numbers match, the game is started but not installed again, otherwise
the installation is started. To compare the version numbers, an intent filter is registered the
manifest file of the exported game, a version number is written in to the Const.java class of
the game and the main activity is capable of receiving intents. The game editor then sends
an intent with the newest version number stored in the database to the game, which then
checks if the installed version is up-to-date and simply keeps running if this is true. In the
event that they do not match, the result code “RESULT CANCELED” is returned to the
caller and triggers the installation of the game. Listing 4.16 shows the decision process in
the main activity of the game.

Listing 4.16: Comparing the game versions.

1 i f (ac t i on . equa l s (In tent .ACTION SEND)) {
i f (i n t e n t . get IntExtra (” Vers ion ” , 0) == Const . versionNumber+1)

3 return true ; // v e r s i o n s match −> play game
else {

5 this . s e tRe su l t (RESULT CANCELED, i n t e n t) ;
this . f i n i s h () ;

7 return fa l se ;
}

9 }

The “Share game” button creates a new intent and puts all necessary information for
an email to the intent. Only the email address is left out and has to be handled by
the email application. To send an APK file, the MIME type of the file has to be set
to application/vnd.android.package-archive and the file path has to be parsed as an Uri.

4.6.4 Level settings

Each level has some additional information which can be adjusted in the LevelSetup activity.
This part of the editor only has minimal settings. It is possible to change the name of the
level and select the gravity and control methods for the game. Gravity and control method
are interdependent and offer three settings to choose from:

50

4.6. Game editor components

Standard gravity The game is configured to have a side view to the scene, therefore the
earth’s gravity is applied and all physical objects with a mass are attracted to the
bottom of the screen. The player’s movement is controlled by the orientation sensor
but limited to the x coordinate. Jumping is initiated by tapping the screen anywhere,
which applies an impulse to the player’s body inverse to the gravity.

No gravity There is absolutely no gravity applied in any direction. Forces applied to an
object make it travel endlessly without reducing its speed. Player controls are based
on the orientation manager and enabled for x- and y-direction. This setting is similar
to a top-down view.

Sensor gravity The sensor gravity option is also a top-down view, but instead of control-
ling the player’s movement the orientation sensor controls the gravity of the level,
thus influences all dynamic physical objects (Terrain is not influenced for instance, as
its fixed flag of the physical body is set).

Selecting multiple options is prevented by the RadioGroup the items are arranged in. Check-
ing a RadioButton in the radio group deselects any other checked option in the radio group.
Initially, the standard gravity option is checked and enabled by default for every level.

4.6.5 Scene editor

The core of the whole application is the scene editor which allows the user to modify a level
and also serves as interface between event and object editor.

Graphical user interface

The GUI can be divided into two base components. The LinearLayout on the left is designed
for object and level manipulation and also acts as object gallery. The large ViewGroup on
the right implements the graphics engine and shows the level with all its objects as well as
level and camera bounds. Depending on the mode the editor is in, the layout holder on the
left either shows the user’s object favorite list, or it displays properties of level and selected
objects.

Placing mode

The first of the modes mentioned is the placing mode. It allows the user to select ob-
jects from his favorite list and place them in the level. The favorite list is positioned in the
holder on the left and shows all favorite objects in a specific category, e.g. “Background”
objects. All data for the list is loaded in the loadObjects() function. Similarly to other load
functions in the different application activities, a cursor with the data is requested from the
database, which is done by getObjectGalleryFavoriteData(...). It is sufficient to load name,
image path and ID of the DrawableObject, since it is only designed to be displayed in the
favorite list and not yet for usage within the MVC part of the editor.

The DrawableObject class is able to create subclasses of its own by passing the proper

51

4. Implementation

parameters. The objects resulting of this procedure are then added to an array list and
finally, the adapter for the list is created out of them. The adapter used to display data
in the favorite list equals the adapter used in the level editor. Instead of Level objects it
holds instances of DrawableObjects and is based on a different layout for its views, although
this only differs in its size. However, as both adapters are nearly the same, details are not
explained here any more.

The user is able to switch through all existing categories by clicking the “Change category’’
button on the bottom of the holder. The displayed information in the holder are then
changed to an overview of all possible categories. After selecting an entry in the ListView,
the favorite list is reinitialised with the corresponding data. The adapter is populated with
the data right after the favorite list by calling fillFavPicker() which creates a list of Hash-
Maps as basis for the list adapter. The Hash-Map allows to map object information to a
key, in this case the values for the text and the path to the icon of every list entry are
stored. The complete array list of the Hash-Maps is then used to provide the data for a
new SimpleAdapter instance. Together with the layout for a list entry and the resource IDs
of the views the data is now accessible by the list.

In placing mode, most of the interaction with the surface is not enabled. It is only possible
to change the camera position and zoom level, object manipulation is completely deacti-
vated in this mode. However, the user can select an object in the favorite list, which is then
highlighted, and place them everywhere inside the level bounds by clicking on the surface
view.

Although moving objects with a gesture is deactivated, it still shares the same function
as scrolling. If placing mode is active, onScroll(...) changes the position of the camera by
one per cent of the traveled distance and also considers the orientation of the device to
make sure x- and y-coordinates are recognised correctly, as illustrated in listing 4.18.

Listing 4.17: Moving around the camera.

1 i f (this . getResources () . g e tCon f i gura t i on () . o r i e n t a t i o n ==
Conf igurat ion .ORIENTATION LANDSCAPE) {

distanceY *= −1;
3 }

r endere r . getCamera () . changePos i t ion (distanceX / 100 , distanceY /
100 , fa l se) ;

Both, zooming and placing objects also share the triggering callback methods with other
functionality in editing mode. Zooming requires a cleared object selection. Only if no object
is selected, the zoom of the camera is changed by the incoming value. Object placement is
handled in the activities onClick(int, int) method. A click coordinate has to be transformed
from screen to world space, because the screen coordinates are always values between zero
and the length of the OpenGLView in x- and y-direction. Therefore, getWorldPos(int, int)
includes the current camera position, to obtain the correct interaction point in world space.
A last check makes sure that the object positioned at the pointer is completely inside the

52

4.6. Game editor components

level bounds and finally, a new DrawableObject is created and added to the game object
list. Name, texture path and type of the object are copied from the the DrawableObject
instance in the favorite list, the position is given by the world coordinates calculated in the
last step.

The size of the new object is based on a standard value for every object type and afterwards
adjusted to width and height of the texture so that non quadratic texture dimensions are
transfered to the object and do not deform it.

Listing 4.18: Moving around the camera.

i f (mode == EditorMode . Plac ing) {
2 Vec2 pos = getWorldPos (posX , posY) ;

i f (s e l e c t ed I t em < 0 | | ! s upe rCont ro l l e r . isCenterInGameArea (
pos , new Vec2 (1 , 1))) return ;

4

DrawableObject item = adapter . getItem (s e l e c t ed I t em) ;
6 pos . subLocal (new Vec2 (0 . 5 f , 0 . 5 f)) ;

8 DrawableObject d = DrawableObject . createCenteredFromValues (
item . getName () , item . getTextureName () , pos , new Vec2 (1 , 1) ,

0 , item . getType ()) ;
d . adjustSizeToTexture () ;

10 supe rCont ro l l e r . addGameObject (d , fa l se) ;
}

Editing mode

To switch between the editor modes, the user has to click on the mode selector button
on the top left corner of the render frame. In order to create a great game, the standard
attribute values for rotation and size are in most cases not very appropriate. Therefore,
the editing mode makes it possible to modify all attributes of a placed object. To do so, it
is necessary to select the object in the surface view. A chosen object is indicated by a red
bounding box. It is not possible to select more than one object at the same time. Since
many objects can overlap each other, a selection menu is shown to the user, when he taps
the overlapping spot. He can then choose the intended object.

In editing mode, the holder view is an interface to change both, object and level prop-
erties. When an object is selected, the holder integrates a layout which allows to change
the object’s size, position and rotation. Plus and minus buttons for size and position change
the object’s width and height, respectively move the object around in the world. The equally
labeled buttons for rotation apply counter- and clockwise rotation.

Additionally to this interface, it is possible to modify object’s via gestures on the OpenGL
surface. Assumed that the object is selected, its size can be changed with the pinch zoom
gesture. Moving it around requires the user to start the gesture on the object. Scrolling

53

4. Implementation

around on the surface then lets the object follow the path of the finger.
The paste bin button in the top left corner, which is only visible in editing mode, provides
functionality to remove a selected object from the level.

With the level size feature already addressed, the user can change the size of every level
individually. The layout of the main View is included in the holder on the left and al-
ways visible in editing mode. The vertical axis of the layout correlates to the height, the
horizontal axis to the width of the level. To modify the level boundaries, the user simply
has to press the plus and minus buttons provided by the layout. There is no limitation
for the size of a level, except the fact that it cannot be smaller than the target platforms
camera rectangle. In this case, the level bounds and the camera rectangle share the same
dimensions and overlap completely. Every time the size of the level is changed, the editor
checks the camera rectangle’s position and adjusts it to the new level bounds if it intersects
the level bounds rectangle. For example, decreasing the level width with the camera rectan-
gle nearby will change the x position of the rectangle and therefore keep it inside of the level.

What’s more, objects outside of the level bounds are not allowed either, so every inter-
action with an object has to guarantee that this requirement is satisfied. The editor makes
sure that placing an object, changing its position, resizing the object and also rotating it
will always keep the object in a well-defined state. Indeed, decreasing the level width or
height can lead to objects which are no longer inside the level bounds, but the editor also
takes care of this circumstance and deletes all affected objects.

Autosafe

The user does not have to worry about saving his level, as the editor takes care of that
automatically. Every object that is placed or removed, is immediately written to or re-
moved from the database. Furthermore, all object manipulations are identified and the
application updates the object data when onDestroy() is triggered. Certainly, this could
also be done while the user is manipulating an object, but this would lead to excessive use of
the memory card. Especially gestures used to resize the object or change its position, which
update the object multiple times per second, would greatly affect system performance and
quickly lead to “Application Not Responding” (ANR) errors.

Popup menu

In order to switch to EditorObjectGallery, EditorEvent, EditorLevel or LevelSetup ac-
tivity, an instance of MenuPopupWindow is created and shown to the user. It inherits
from the already described CustomPopupWindow class and additionally implements the
OnClickInterface to detect button clicks. The design of the class allows to set a special lay-
out for every specific implementation, in this instance the “menubar popup.xml” resource
is used which has a button for every of the named activities. Activity and button are then
associated with each other through an intent. To show the pop-up menu, the user has to
press and hold the OpenGLView. With the coordinates passed from the gesture listener,
the menu is then opened and centered at the pointer coordinates.

54

4.6. Game editor components

4.6.6 Object editor

A game editor without objects would be pretty useless. Therefore, a gallery provides the
user with objects in many different categories he can place in a scene. The layout of
EditorObjectGallery consists of a list on the left and a TabHost on the right. The TabHost
itself is composed of a tab for every category and shows all objects a particular category
within a grid. The object classification does not completely match the DrawableObject
pattern, but every listed object is translated to a subclass of DrawableObject. Some of
the object names clearly describe their main feature, such as Collectible, though not every
object alias is that obvious. The following section gives an overview of all categories:

Background Background objects are designated for embelleshing the level. They do not
have a physical representation, thus the user can not interact with them.

Collectible As its name implies, a collectible can be picked up by the player. It then in-
creases the player’s score by a specific amount. The analogue DrawableObject subclass
shares the name and is inherited from PassiveObject .

Moving Physical moving objects are called Moving. It is inherited from the ActiveObject
class, which is the parent class for all objects that provide a body and are able to
collide with each other.

Player A Player is a type of ActiveObject and can be controlled by the user. It is part of
the physical world simulation, but user input can apply forces to it depending on the
chosen control functionality. It is not possible to place more than one object of this
type in a level.

Terrain The Terrain is a type of ActiveObject, but it cannot move freely all over the world.
Instead, the Terrain has a fixed position and is therefore suitable for creating the
ground on which the player can move around. This object also has some special
textures which allows tileable patterns (edges of tileable textures do not mismatch
and create the illusion of a continous large texture).

The list makes use of the same objects as the grid. It is connected to the currently active
category and shows the user’s favorite objects. The intention behind the favorite list is,
that not every single object is shown in the scene editor, but only a small part of it. This
design is more comfortable for the user, as it allows faster and clearer navigation. To add
an object to the favorite list, clicking on it in the tab is enough. It is then added to the
adapter underlying the favorite list, as well as stored in the database so that the user does
not have to reselect his favorites every time. Removing an object from favorite lists works
similarly. A click on the object in favorite list removes it from both, adapter and database.
The background of the adapters is not addressed anymore, because it is already described
for the level adapter.

So far, the mechanics behind the TabHost and its content have not been mentioned.
At first glance it would be convenient to load the object data for every tab during the
start of the activity. Nevertheless, this design is very memory intensive for large lists
and should be avoided. To be sparing with the memory of the device, there is only one

55

4. Implementation

adapter for the favorite list, and one for the tabs which is reused on every tab change.
The OnTabChangeListener added to the TabHost triggers the loadObjects(...) method. It
creates the adapters data representation layer, clears and re-initialises the adapter. Ad-
mittedly, following this structure causes the application to reload the data on every tab
change, but since calculation time is rarely a limited resource on mobile devices, this design
is preferred to memory intensive preloading.

4.6.7 Event editor

Now that the level environment is set with all its objects it is time to specify the logic
and events which make a game more interesting. Based on this idea the Event editor was
introduced to create events with a trigger and functionality.

The event editor is mainly built upon the Event class which holds the definition of Trigger
and Functionality, provides functions to create text for its individual components and trans-
late between the enum and integer representation. Generally, the identifier for the com-
ponent type is stored as an enum value, but ListViews cannot handle these and therefore
the translation methods are absolutely necessary. Furthermore, the Event class is able to
create itself from previously stored database values.

Creating a new event is pretty simple: A click on the “New event” button is enough and a
custom dialog box pops up with templates for triggers and functionality. They are arranged
in two columns each one holding a ListView, one with the trigger templates, the other with
the functionality templates as depicted in figure 4.2. It is mandatory to select one item in
each ListView, otherwise the event cannot be created. Pressing the “OK” button adds the
event to the overview page and stores it in the database with initial values, including the
type of the trigger and functionality.

Note the purple question marks in figure 4.2. A text part highlighted in this colour signals
interaction possibility for the user. The question marks in this case additionally indicate
that the standard values have not been changed yet. Once a value is assigned, the question
mark is exchanged by the chosen option but still highlighted in purple. The values which can
be chosen are bound to a component type, meaning that the user can select ActiveObjects,
numbers or areas. Manipulating event values directly updates the database representation
to ensure data consistency between the editor’s displayed and the stored information.

Choosing the event options is implemented in different ways depending on the data type
that is used for the functionality or the trigger. For a integer data type for example, a
simple dialog is shown with an input field for a number. Creating an area or selecting
an object in the game is a bit more tricky. For these options the ObjectPicker activity is
started which simply shows a SurfaceView with all the objects in the game. To select an
ActiveObject the user has to click on an object displayed in the surface view. The activity
then returns the object’s id to the EventEditor which then links the object with the event.

56

4.6. Game editor components

Figure 4.2.: Dialog for choosing event functionality and trigger.

Instead of selecting an existing object, the user has to create a new one when he wants
to define an area. Clicking anywhere on the surface of the ObjectPicker creates a new rect-
angle with base values (position at the interaction point and size of one times one meters).
Clicking somewhere else, outside of the rectangle’s bounds will the currently created rectan-
gle to the new position. Furthermore, the user can change the size of the area and refine its
position by clicking on the existing rectangle. This is then highlighted by a bounding box
and the user can manipulate it just like all other objects. To complete the editing part an
accept the rectangle, pressing the “OK!” button is enough. Otherwise the user can cancel
the picker activity by pressing the “Cancel” button. When a valid rectangle is created,
its position and size is put into an intent and returned to the calling activity which then
updates the corresponding event in the database and updates the adapter display.

In the following there is a short description of the components already mentioned, “Trigger”
and “Functionality”, as well as a list of all their templates and respective value types.

Trigger As its name implies, a trigger defines the activating mechanism of an event. Most
triggers are preconfigured to involve the player. It would also have been possible to
remove the player from the trigger and replace it with an arbitrary object which can
be selected by the user, but this approach was not implemented to simplify the user
interface. Table 4.1 lists all available triggers.

Functionality The Functionality is activated by a trigger and defines the performed action.
They affect various different game mechanics. Table 4.2 lists all available options.

57

4. Implementation

Trigger Value type

Player has ? points. Integer

Player entered area from ? to ?. Integer Array

Player collides with ?. ActiveObject

Table 4.1.: All available “Triggered by” options.

Functionality Value type

Kill the player. Void

Remove ? from the level. DrawableObject

Go to the next level. Void

Increase score by ?. Integer

Increase player lives by ?. Integer

Table 4.2.: All available “Functionality” options.

4.7 DatabaseController

Requirement REQ-13 in section 3.1.1 describes the possibility to store persistent data for
a game which is created by the editor. The DatabaseController class complies this demand
and handles all storage operations initiated by a subcomponent of the game editor (cf.
section 4.6 concerning the game editor components). It extends the SQLiteOpenHelper for
managing the database.

Basically, this controller is used for processing SQLite queries. It provides basic functions
for inserting, deleting and updating object data. The code in listing 4.19 is an example for
deleting a DrawableObject from a level. Furthermore, all events associated with this object
are updated too, to avoid issues with inconsistent data stored in the database.

Listing 4.19: Database instructions for deleting a DrawableObject in a level and updating
affected event data.

1 public void removeGameObjectFromLevel (DrawableObject d) {
db . d e l e t e (Const . tab l eLeve lObjec t s , ” i d=?” , new St r ing [] {

St r ing . valueOf (d . getID ()) }) ;
3

// update events where the ob j e c t played a r o l e
5 ContentValues args = new ContentValues () ;

a rgs . put (” ob j e c t1 ” , −1) ;
7 db . update (Const . tableEvents , args , ” ob j e c t1=?” , new St r ing [] {

St r ing . valueOf (d . getID ()) }) ;
a rgs . c l e a r () ;

9 args . put (” ob j e c t2 ” , −1) ;

58

4.8. ExportManager

db . update (Const . tableEvents , args , ” ob j e c t2=?” , new St r ing [] {
St r ing . valueOf (d . getID ()) }) ;

11 }

The DatabaseController only serves one additional purpose which is to extract the game
data of a specific level for exporting the game. This is not absolutely necessary, precisely
because copying the whole database is easier and faster but produces large file outputs
if there are many games stored in the editor. Similar to selecting the games textures for
exporting (this surely has a greater impact on the resulting game file size), this approach
was also realised here.

4.8 ExportManager

The ExportManager bridges the gap between editing a game and actually making it playable
with an APK file. To start the export process, which consists of two independent main tasks,
the user has to click the “Publish game” button in the level editor. First of all, the entire
game data of the currently opened game is prepared by the editor - this is explained in the
next section 4.8.1 - then, the compilation process is started and forwarded to an external
tool which is illuminated in section 4.8.2. In addition to its blocking job, the progress dialog
also serves the purpose to inform the user about the export and thread status.

4.8.1 Exporting a game

Running the export is a major operation and processing it on the UI thread results in bad
performance and ANR errors. Therefore, it is encapsulated in a custom implementation of
AsyncTask which “allows you to perform asynchronous work on your user interface” [16].
Nevertheless, the GUI is locked by a progress dialog until finished and no user interaction is
possible to avoid data consistency violations when changing game content while exporting
it. Exporting a game is divided into four main parts, three of these - all except compiling
the application - are handled by the ExportManager class:

1. Copy the game template with its Java classes and the required libraries.

2. Insert customized game data including events, textures and game objects.

3. Compile and sign the game.

4. Delete all copied and temporary files except the output application file.

The first part, recursively copying the data is performed by the copyStandardFiles() and its
subsequent addRecursively(String path, String assetPath) and copyFilesInDir(String path,
String assetPath) functions, copies the entire “ProjectTemplate” directory and all of its
subfolders and files from the editor’s assets, to a destination directory on the SD-Card.
Game and layout files are part of this template, as well as bash files for the compilation
process and much more. In case the copied file is of type XML, BSH or Java, its content is
searched for the keyword “GameName” and each appearance is substituted with the name

59

4. Implementation

of the exporting game. Additionally, the folder names containing “GameName” are also
renamed the same way. This is necessary to adjust the package names and compiler options.

The next step is to insert the user customised game data into the exported game. Con-
trolled by the insertCustomizedData() function, first the game logic is processed, then the
required textures are identified and replicated. Exporting the game logic requires to trans-
late the specified events in the event editor to a text representation. This is handled by the
exportGamelogic(String gameName) method. A switch statement encapsulates the logic,
which holds all events of a single level in one execution path indicated by the level num-
ber. With this design, only events of the currently played level have to be checked and
errors with undefined objects can be avoided. Moreover, especially for large numbers of
events, the performance is quite better. The base for translating the events is created by
the createEvents(Cursor c, boolean rawData) function in the event class, which takes a
Cursor with game data as input and return an array list of Events. Again, the event data
is then translated by the eventToString(Event e) method, which combines an if-clause for
the trigger and formatted functionalities as execution code. Since different methods are
responsible for checking general events and collisions (they are not trigger based, but stored
in a list), both of these functions are manipulated during the export process. However, the
translation process is the same for both functions.

Copying the database and object textures is also part of this step. Instead of simply
copying the entire database, the editor’s copyGameData(String outFileName) extracts the
objects and game data of the chosen game. Furthermore, all used textures are identified
and their names are returned in a String array to copy only the necessary textures with the
copyTexturesToAssets(ArrayList<String> textures) function of the ExportManager. Partic-
ularly for games with few different objects this effort pays off, as the game editors texture
archive may be very large.

Building the game is handled by an external tool explicitly explained in section 4.8.2,
Compiling a game and finally all copied game files except the created *.apk are deleted.

4.8.2 Compiling a game

Writing a compiler for Android applications which runs on the same platform is a mas-
sive task to be carried out. The required working hours are probably enough to write a
separate thesis about this topic. This problem was remedied by using the external tool
“JavaIDEdroid” which handles the entire compilation and signing process. The Google
project page describes the purpose of the application:

JavaIDEdroid is an integrated development environment which runs on Android
and allows to create native Android applications without the need to use the
Android SDK on Windows or Linux. It should run on Android 1.6 or higher. [3]

Besides, the integrated development tools are listed in the online documentation, also briefly
described here and additionally illustrated in figure 4.3:

aapt tool The aapt compiler takes the project’s resource files and compiles them. [14]

60

4.8. ExportManager

Figure 4.3.: Outline of a typical build process of an application. [14]

61

4. Implementation

Java compiler The applications source code, the resource file and all Java interfaces are
compiled by the Java compiler and output as .class files. [14]

dx tool The dex compiler converts the Java .class files into .dex files, destined for the DVM.
Third party libraries such as the JBox2d physics engine are converted to .dex files,
too. [14]

ApkBuilder All compiled and non-compiled resources as well as the .dex files are packaged
by the apkbuilder to a single .apk file (only unsigned APKs). [14]

zipsigner-lib Installing the application on a device requires it to be signed by a debug or
release key. This is done by the zipalign-library. [14]

BeanShell Interpreter Interpreting and executing the shell scripts which start the indi-
vidual tools and compilers is done by the BeanShell Interpreter. It simplifies and
automates the build process. [3]

JavaIDEdroid supports Android’s ACTION SEND functionality and with the optional
setComponent(ComponentName component) statement, the component to handle the in-
tent is explicitly defined. The automated compiling process is started by the buildGame()
method as shown in listing 4.20.

Listing 4.20: Sends the compile request to JavaIDEdroid application.

1 private void buildGame () {
In tent i n t e n t = new In tent (Intent .ACTION SEND) ;

3 i n t e n t . setComponent (new ComponentName(”com . t a rn . JavaIDEdroid
” , ”com . t a rn . JavaIDEdroid . MainActivity ”)) ;

i n t e n t . putExtra (” android . i n t e n t . ext ra . Scr iptPath ” , Const .
pro jectPath + gameName + ”/0 bu i ld−prod . bsh”) ;

5 i n t e n t . putExtra (” android . i n t e n t . ext ra . ScriptAutoRun” , true) ;
i n t e n t . putExtra (” android . i n t e n t . ext ra . Scr iptAutoExit ” , true) ;

7 i n t e n t . putExtra (” android . i n t e n t . ext ra . WantResultText” , true) ;
a c t i v i t y . s t a r t A c t i v i t y F o r R e s u l t (intent , 123) ;

9 pub l i shProg re s s (6) ;
}

An essential component of the compilation process is the Android library, Android.jar. This
library file is available through the Android SDK and integrated in the editor application.
The copied bash scripts for JavaIDEdroid are customised and reference this system library
which is necessary for compilation.

Once exporting and building is finished, the user can finally play his game. The provided
APK file is ready for deployment on all devices running Android versions greater than 2.3.3
alias “Gingerbread”. Since it is only signed with a debug key, publishing the created game
in the Google Play store is not possible [17]. The game can only be shared via email and
installed as third party application.

62

4.8. ExportManager

4.8.3 Memory limitation on Android devices

As the paper “Memory management for Android apps” [8] from Google I/O 2011 states,
every application has a maximum amount of memory it can allocate. Once the application
hits this limit during execution, an “OutOfMemoryError” is thrown and the application
crashes or exits. Most standard applications will not exceed this limit, but the compilation
process is very memory intensive and the garbage collector can not free memory as fast as
it is allocated by the compilation process. The heap limit is not a problem for the game
studio application however, “JavaIDEdroid” suffers from this issue. There is an existing
bug report on the project page since October 2011 [2], but it has not been solved until now.
An appropriate solution to this problem would be to set the “largeHeap=true” option in
the manifest file of the application. Unfortunately this is not implemented in the applica-
tion hosted in the Google play store since this fix is only available for Android 3.x and newer.

The dimensions of the game editor are likely to not hit the maximum heap size most of the
time. However, under certain constellations it is possible that the compilation process fails
during execution. This can be caused by running many different applications concurrently
which allocate too much memory and therefore the compilation process lacks the required
resources. Furthermore, too many triggers and functionalities in a game can be a problem
as they increase the GameLogic.java class file and therefore extend the compilation process.
Besides, the maximum heap size is device dependent, it ranges from 16 MB to 48 MB, so
the application may cause problems on devices with a lower limit than this maximum. The
device used to test the application while developing the game studio, an Archos 101 G9, is
limited to 50331648 Bytes or exactly 48 MB (50331648 / 1024 / 1024). This limit can be
invoked by the following code part:

Listing 4.21: Requesting the maximum heap size of the executing device.

Runtime r t = Runtime . getRuntime () ;
2 long maxMemory = r t . maxMemory() ;

Log . v (” onCreate ” , ”maxMemory : ” + St r ing . valueOf (maxMemory)) ;

Rooting the device is a possible way to circumvent problems with application memory as
there are tools that allow to increase the maximum heap size of the device. An example is
the VMHeapTool [23] from the Google Play store.

As the potential target group of “Android Game Studio” are persons with no programming
skills, most of the users will not have the knowledge to use these tools, so the problems with
heap space can not be prevented inherently. Hopefully, the developer of “JavaIDEdroid”
will fix this problem in the future, but until then the game editor will be limited in its
range of functions and implementing additional features like animations, sounds or particle
systems will not be possible.

63

4. Implementation

64

Part III.

Quality Management

65

Software Testing

5.1 Types of Software Testing

Software testing is an essential part of every software project to prevent faults and errors
of the application. However, as stated by E. W. Dijkstra:

“Program testing can be used to show the presence of bugs, but never show their
absence!” [5]

This means that software testing is absolutely necessary to find bugs, but since not every
can be found, the costs of testing has to be weight up against its benefits.

Maybe one of the most famous accidents of computer related failures are the Therac-25
accidents which claimed the live of at least five patients. The Therac-25 is a linear ac-
celerator for treating cancer patients which had some severe software bugs, leading to an
overexposure to radiation. Investigations of the accidents revealed that no or minimal soft-
ware testing was performed and only the hardware of the device was checked [22]. Usually,
software systems and especially Android applications are not life-threatening, but at least
the image of the developer will suffer if bugs lead to unusable software or lost user data
and fixing these problems afterwards is very expensive. Therefore, most companies have
separate departments for software testing and employ many “Software Testers”, which has
become a full-time profession over the last years. The following subsections go more into
detail about the testing process and illuminate the performed tests to ensure the correctness
of the “Android Game Studio” application.

Software testing can be divided into four major categories, as figure 5.1 shows. The following
overview describes the test components and goals of each individual category:

Unit Testing is performed to verify the correctness of a specific code section, meaning that
it carries out the intended functionality. The test runs at the class level and includes
testing the constructors and destructions of a class. [5]

Integration Testing verifies the software’s interfaces against its subsystem design. The
complete system can be tested at once, however, usually only small groups are tested
to quickly identify defects based on the locality principle. [5]

System Testing determines if the system meets the specified functional and non-functional
requirements. In this step, the entire system is tested. [5]

67

5. Software Testing

Acceptance Testing is performed by the customer after the software was delivered and
may include typical transactions. This step demonstrates that the software meets the
requirements is ready to be used. [5]

In large software projects it is crucial to extensively perform all of the mentioned tests,
but since this project is carried out by a single person in a short time frame of three
months, most of the testing was performed during the development. Furthermore, manual
testing was preferred over automated testing. Indeed, there are many tools and frameworks
designated for automatic testing such as “MonkeyRunner” or “JUnit”, but as it is also very
time consuming to write the test cases for these tools, it was decided to only verify the
correctness of the application by manually testing it.

Figure 5.1.: Testing Activities and Models. [5]

5.2 Test Results

The following sections describe the performed tests and also present their results. Both
tests, running a static code analysis tool and a user test, were executed in the final stages
of this thesis to guarantee the correctness of the implemented project.

5.2.1 Code Analysis Tool

In order to identify potential types of errors the static code analysis tool “FindBugs 2.0” is
used as Eclipse plugin. The program searches for bug patterns which are likely to indicate
errors. The tool allows to set a rank report level which rangers from one to twenty (twenty
being least severe) and only shows possible error sources above this threshold. With the
standard setting of fifteen, which finds bugs “of concern”, nearly no bugs are found. Only

68

5.2. Test Results

activities writing to a static class are marked, but this can be safely ignored. More severe er-
rors of the types “troubling”, “scary” and “scariest” were not found in the editor project [1].

To make sure not only the editor is free of bugs but also the created games, another test
had to be run to approve this. Although the game is part of the project, the bug finder test
can not be run on the asset folder. Therefore, a new Android project based on the game
data was set up and then the test could be executed. The test did not find any serious bugs
here, too.

5.2.2 User Test

To validate the correctness of “Android Game Studio” beta testers were asked to try the
application and additionally, a test plan with precise instructions was created to test the
same functions on different devices. The test plan includes different scenarios based on hy-
pothetical user stories, which test possible sources of error in the application. All evaluated
scenarios and their results are presented in the following tables:

Table 5.1.: Test scenario 1 - Creating a new game

Tested functionality Device Passed / Annotation

� create a new game

� place object of every category

� create all combinations of triggers

� export and play game

Archos 101 G9,
Asus Trans-

former TF101
Yes, working as intended

Table 5.2.: Test scenario 2 - Renaming and extending an existing game

Tested functionality Device Passed / Annotation

� rename the game

� create new levels in the game

� delete a level in the list of levels

� export and play game

Archos 101 G9,
Asus Trans-

former TF101
Yes, working as intended

69

5. Software Testing

Table 5.3.: Test scenario 3 - Deleting a game

Tested functionality Device Passed / Annotation

� delete a game

� resume the game in main menu

� load another game

� wipe user data

� resume game in main menu

Archos 101 G9,
Asus Trans-

former TF101
Yes, working as intended

Table 5.4.: Test scenario 4 - Test events with exceptional values

Tested functionality Device Passed / Annotation

� create a game

� add events and do not assign values

� add events with coinciding func-
tionalities and triggers

� export and play game

Archos 101 G9,
Asus Trans-

former TF101
Yes, working as intended

Table 5.5.: Test scenario 5 - Test functions with exceptional input

Tested functionality Device Passed / Annotation

� create a game with an already ex-
isting game name

� add 50+ physical objects to the
level

� increase the level size to (100, 100)

� export and play game

Archos 101 G9,
Asus Trans-

former TF101
Yes, working as intended

70

5.2. Test Results

Table 5.6.: Test scenario 6 - Background work

Tested functionality Device Passed / Annotation

� randomly go to an activity in the
editor or game

� open other applications and do
something in background

� wait several minutes

� resume the editor or game activity

Archos 101 G9,
Asus Trans-

former TF101
Yes, working as intended

Additionally, the created games were sent to different Android devices, including a Sam-
sung Galaxy Wi8150 and a Google Nexus One. On both devices, no errors occurred and
the games ran without problems.

71

5. Software Testing

72

Part IV.

Conclusion and Outlook

73

Conclusion

The goal of this thesis was to implement an easy to use game editor which allows users with
actually no programming experience to create games and even share them with others. It
was intended that the editor is similar to a construction kit and allows the user simply to
click games together with different templates provided by default. Android was chosen as
development platform since it is very open and offers a large variety of functions. Especially
when delving deep in system functions like compiling and singing on the device, Android is
the best and perhaps even the only choice of realising these goals.

Due to the great extent of the application - designing and implementing the editor and
the created games as well as connecting them results in enormous outlay - not every func-
tion was implemented in detail, but rather targeted as a prototype. The best example for
this issue is the object editor which holds a small amount of objects for testing in each cat-
egory instead of providing the ability to dynamically create new objects with own settings
like texture, physics options or points for collecting an item. However, all main functions
have been realised and the editor is fully operable.

The thesis itself gives an overview about the design and implementation process of the
application. It presents details about game programming in common and transfers this
knowledge to the developed app. The research part at the beginning introduces the neces-
sary background knowledge to understand the Android operating system and also introduces
the basics of OpenGL ES and graphics programming on mobile devices. Furthermore, the
design part explains details of the model-view-controller pattern, an essential design pattern
for games and other software. Finally, the implementation part describes the main compo-
nents of a game, such as graphics and physics engine, and illuminates the logic background
of the editor and all of its components.

Finally, to guarantee and confirm the failure free operation of the implemented game editor
functionalities, a user test was held.

75

6. Conclusion

76

Outlook

As the previous chapter concluded, the “Android Game Studio” application implements all
planned functionality. Nevertheless, there are many possible improvements to enrich the
editor and create great games with it.

First of all, there are some functions to simplify the way of dealing with the editor. A
good example is to replace the buttons in the scene editor, which are responsible for object
and level manipulation, by sliders so that large changes do not require the user to press a
button multiple times, but instead control the same functionality with a slider. Another
possible feature is a snap-to-grid functionality, which aligns objects with each other when
they are closer together than a specific threshold. This will make level creation much more
easy, because the user does not have to manually align the object to get a considerable
output with no gaps between tiles.

There are also many possible extension for the game, for example an animation manager
which allows to play animations and therefore create a vivid game environment. Moreover,
implementing sounds could also be one of the next steps to improve the game editor, as
well as adding a simple and basic artificial intelligence for opponents.

However, to make all these improvements possible, the compiler used has to be fixed by the
developer. Since this is not likely to happen in the near future, it is more appropriate to
run another path and replace the large physics engine with a less powerful implementation
to decrease the lines of code and the code complexity of the project. The savings achieved
are then available for additional features in order to release the application in the Google
Play store.

77

7. Outlook

78

Appendix

79

A Storage Medium

This medium contains the source code of the “Android Game Studio” application including
all databases, bash files and assets.

81

Bibliography

[1] FindBugs� - Find Bugs in Java Programs. http://findbugs.sourceforge.net/.
[Retrieved: 09-October-2012].

[2] T. Arn. Issue 21: Out-of-memory condition when running dx on large projects.
http://code.google.com/p/java-ide-droid/issues/detail?id=21. [Retrieved:
06-October-2012].

[3] T. Arn. JavaIDEdroid. http://code.google.com/p/java-ide-droid/. [Retrieved:
25-September-2012].

[4] H. Barra. 500 Million. https://plus.google.com/u/0/110023707389740934545/

posts, September 2012. [Retrieved: 20-September-2012].

[5] B. Bruegge and A.H. Dutoit. Object-Oriented Software Engineering: Using Uml, Pat-
terns, and Java. Prentice Hall, 2010.

[6] E. M. Buck, D.A. Yacktman, and R. Engel. Cocoa Design Patterns. mitp-Verlag, 2010.

[7] E. Catto. Box2D v2.2.0 User Manual. http://box2d.org/manual.pdf. [Retrieved:
09-September-2012].

[8] P. Dubroy. Memory Management for Android apps. http://static.

googleusercontent.com/external_content/untrusted_dlcp/www.google.com/

de//events/io/2011/static/notesfiles/MemoryManagement.pdf. [Retrieved:
06-October-2012].

[9] R. Eckstein. Java SE Application Design With MVC. http://www.oracle.com/

technetwork/articles/javase/index-142890.html. [Retrieved: 28-August-2012].

[10] M. Gargenta. Learning Android. Oreilly Series. O’Reilly Media, Incorporated, 2011.

[11] Google. Android NDK. http://developer.android.com/tools/sdk/ndk/index.

html. [Retrieved: 16-August-2012].

[12] Google. App Framework. http://developer.android.com/about/versions/index.
html. [Retrieved: 17-August-2012].

[13] Google. Application Fundamentals. http://developer.android.com/guide/

components/fundamentals.html. [Retrieved: 17-August-2012].

83

http://findbugs.sourceforge.net/
http://code.google.com/p/java-ide-droid/issues/detail?id=21
http://code.google.com/p/java-ide-droid/
https://plus.google.com/u/0/110023707389740934545/posts
https://plus.google.com/u/0/110023707389740934545/posts
http://box2d.org/manual.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/de//events/io/2011/static/notesfiles/MemoryManagement.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/de//events/io/2011/static/notesfiles/MemoryManagement.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/de//events/io/2011/static/notesfiles/MemoryManagement.pdf
http://www.oracle.com/technetwork/articles/javase/index-142890.html
http://www.oracle.com/technetwork/articles/javase/index-142890.html
http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/about/versions/index.html
http://developer.android.com/about/versions/index.html
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/components/fundamentals.html

Bibliography

[14] Google. Building and Running. http://developer.android.com/tools/building/

index.html. [Retrieved: 12-September-2012].

[15] Google. OpenGL. http://developer.android.com/guide/topics/graphics/

opengl.html. [Retrieved: 03-September-2012].

[16] Google. Processes and Threads. http://developer.android.com/guide/

components/processes-and-threads.html#Threads. [Retrieved: 13-September-
2012].

[17] Google. Signing Your Applications. http://developer.android.com/tools/

publishing/app-signing.html. [Retrieved: 11-October-2012].

[18] Google. SQLiteOpenHelper. http://developer.android.com/reference/android/

database/sqlite/SQLiteOpenHelper.html. [Retrieved: 17-September-2012].

[19] Khronos Group. OpenGL ES Reference Manual. http://www.khronos.org/

opengles/documentation/opengles1_0/html/. [Retrieved: 23-August-2012].

[20] Khronos Group. OpenGL ES Version 3.0. http://www.khronos.org/registry/gles/
specs/3.0/es_spec_3.0.0.pdf, August 2012. [Retrieved: 23-September-2012].

[21] Tom Krazit. Google’s rubin: Android ’a revolution’. http://news.cnet.com/

8301-1023_3-10245994-93.html, May 2009. [Retrieved: 20-September-2012].

[22] N. Leveson. Medical Devices: The Therac-25. http://sunnyday.mit.edu/papers/

therac.pdf. [Retrieved: 06-October-2012].

[23] Martin. VM Heap Tool (root only). https://play.google.com/store/apps/

details?id=com.martino2k6.vmheaptool&hl=de. [Retrieved: 06-October-2012].

[24] Microsoft. Model-View-Controller. http://msdn.microsoft.com/en-us/library/

ff649643.aspx. [Retrieved:02-September-2012].

[25] Microsoft. Publish/Subscribe. http://msdn.microsoft.com/en-us/library/

ff649664.aspx. [Retrieved: 02-September-2012].

[26] H. Mosemann and M. Kose. Android. Hanser, 2009.

[27] A. Munshi, D. Ginsburg, and D. Shreiner. OpenGL ES 2.0 Programming Guide.
OpenGL Series. Addison-Wesley, 2009.

[28] PricewaterhouseCoopers. Milliardenspiel – Hart umkämpftes Wachstum auf dem
deutschen Videogames-Markt. http://www.pwc.de/de/pressemitteilungen/2012/

milliardenspiel_hart_umkaempftes_wachstum_auf_dem_deutschen_videogames_

markt.jhtml, August 2012. [Retrieved: 20-September-2012].

[29] M. Smithwick and M. Verma. Pro OpenGL ES for Android. Apressus Series. Apress,
2012.

[30] M. Zechner and R. Green. Beginning Android 4 Games Development. Apressus Series.
Apress, 2011.

84

http://developer.android.com/tools/building/index.html
http://developer.android.com/tools/building/index.html
http://developer.android.com/guide/topics/graphics/opengl.html
http://developer.android.com/guide/topics/graphics/opengl.html
http://developer.android.com/guide/components/processes-and-threads.html#Threads
http://developer.android.com/guide/components/processes-and-threads.html#Threads
http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html
http://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html
http://www.khronos.org/opengles/documentation/opengles1_0/html/
http://www.khronos.org/opengles/documentation/opengles1_0/html/
http://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.0.pdf
http://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.0.pdf
http://news.cnet.com/8301-1023_3-10245994-93.html
http://news.cnet.com/8301-1023_3-10245994-93.html
http://sunnyday.mit.edu/papers/therac.pdf
http://sunnyday.mit.edu/papers/therac.pdf
https://play.google.com/store/apps/details?id=com.martino2k6.vmheaptool&hl=de
https://play.google.com/store/apps/details?id=com.martino2k6.vmheaptool&hl=de
http://msdn.microsoft.com/en-us/library/ff649643.aspx
http://msdn.microsoft.com/en-us/library/ff649643.aspx
http://msdn.microsoft.com/en-us/library/ff649664.aspx
http://msdn.microsoft.com/en-us/library/ff649664.aspx
http://www.pwc.de/de/pressemitteilungen/2012/milliardenspiel_hart_umkaempftes_wachstum_auf_dem_deutschen_videogames_markt.jhtml
http://www.pwc.de/de/pressemitteilungen/2012/milliardenspiel_hart_umkaempftes_wachstum_auf_dem_deutschen_videogames_markt.jhtml
http://www.pwc.de/de/pressemitteilungen/2012/milliardenspiel_hart_umkaempftes_wachstum_auf_dem_deutschen_videogames_markt.jhtml

List of Figures

2.1. Android System Architecture . 6
2.2. Fixed function pipeline compared to programmable pipeline 10
2.3. Viewing frustum of an orthographic projection with standard values for a

surface resolution of 480 x 320 pixels. 13
2.4. Rotation and Translation versus Translation and Rotation. 14
2.5. 3D transformations with matrices in OpenGL ES. 14
2.6. Mapping a 2D texture to a rectangle consisting of two triangles. 15

3.1. The data model of the game editor with all components. 25
3.2. Different implementations of the MVC pattern 28
3.3. Game editor layout and interaction between the components of the editor. . 29
3.4. Complete state machine diagram of every game created by the editor. . . . 30

4.1. Level editor with sample levels. 49
4.2. Dialog for choosing event functionality and trigger. 57
4.3. Outline of a typical build of an application. 61

5.1. Testing Activities and Models. [5] . 68

85

Listings

4.1. Setting options for drawing objects with textures. 33
4.2. Translating rotating scaling and finally drawing of a texture. 34
4.3. Drawing method of the rectangle shape. 34
4.4. Loading the camera settings for drawing with a two dimensional parallel

projection. 36
4.5. Creating the physical world with paused simulation state and specified grav-

ity value. 38
4.6. Sample code for creating a physical circle object. 38
4.7. Managing the simulation process and control input. 39
4.8. LevelInstance holds all game specific data like all objects in the scene or the

current Score. 40
4.9. Frametime (1/60 second) minus time consumed by the update. 40
4.10. The gameloop’s run() method. 41
4.11. The update function controls the game logic. 41
4.12. Excerpt from the processCollisions() function illustrating how the triggering

works. 42
4.13. Excerpt from the processEvents() function with two levels and their respec-

tive events. 42
4.14. Starting the MediaStore content provider to select a gallery image. 45
4.15. Creating a new level and storing it in the database. 46
4.16. Comparing the game versions. 50
4.17. Moving around the camera. 52
4.18. Moving around the camera. 53
4.19. Database instructions for deleting a DrawableObject in a level and updating

affected event data. 58
4.20. Sends the compile request to JavaIDEdroid application. 62
4.21. Requesting the maximum heap size of the executing device. 63

87

List of Tables

4.1. All available “Triggered by” options. 58
4.2. All available “Functionality” options. 58

5.1. Test scenario 1 - Creating a new game . 69
5.2. Test scenario 2 - Renaming and extending an existing game 69
5.3. Test scenario 3 - Deleting a game . 70
5.4. Test scenario 4 - Test events with exceptional values 70
5.5. Test scenario 5 - Test functions with exceptional input 70
5.6. Test scenario 6 - Background work . 71

89

	Abstract
	Outline of the Thesis
	Introduction and Theory
	Introduction
	Background Information
	Android Framework
	System Architecture
	Application Fundamentals
	Application Components

	OpenGL ES
	The OpenGL ES Graphics System
	OpenGL ES Basics

	Editor and Game Implementation
	System Design
	System Requirements
	Editor Requirements
	Game Requirements
	Editor & Game Requirements

	Data Model
	Entities in the data model
	Relationships in the data model

	System Architecture
	Model-View-Controller Pattern
	Editor Design
	Game Design

	Implementation
	Graphics engine
	Complex versus lightweight implementation
	Render settings
	Camera

	Physics engine
	SuperController
	LevelInstance
	UpdateThread

	GameLogic
	EditorGestureListener
	Game editor components
	Start screen
	Game setup
	Level editor
	Level settings
	Scene editor
	Object editor
	Event editor

	DatabaseController
	ExportManager
	Exporting a game
	Compiling a game
	Memory limitation on Android devices

	Quality Management
	Software Testing
	Types of Software Testing
	Test Results
	Code Analysis Tool
	User Test

	Conclusion and Outlook
	Conclusion
	Outlook

	Appendix
	Storage Medium
	Bibliography

