
Robotics and Autonomous Systems 62 (2014) 556–567
Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Autonomous online generation of a motor representation of the
workspace for intelligent whole-body reaching
Lorenzo Jamone a,∗, Martim Brandao a, Lorenzo Natale b, Kenji Hashimoto a,
Giulio Sandini c, Atsuo Takanishi a,d
a Faculty of Science and Engineering, Waseda University, Tokyo, Japan
b iCub Facility, Istituto Italiano di Tecnologia, Genoa, Italy
c Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genoa, Italy
d Humanoid Robotics Institute, Waseda University, Tokyo, Japan

h i g h l i g h t s

• Autonomous online learning of a representation of the robot workspace.
• Locations in space are encoded using gaze-centered motor coordinates.
• The robot is able to estimate the Reachability of visually detected objects.
• The robot can modify its body configuration to improve the quality of arm reaching.
• Overall, we realized a form of intelligent whole-body reaching in a humanoid robot.
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a b s t r a c t

We describe a learning strategy that allows a humanoid robot to autonomously build a representation of
its workspace: we call this representation Reachable Space Map. Interestingly, the robot can use this map
to: (i) estimate the Reachability of a visually detected object (i.e. judge whether the object can be reached
for, and how well, according to some performance metric) and (ii) modify its body posture or its position
with respect to the object to achieve better reaching. The robot learns this map incrementally during
the execution of goal-directed reachingmovements; reaching control employs kinematic models that are
updated online as well. Our solution is innovative with respect to previous works in three aspects: the
robot workspace is described using a gaze-centered motor representation, the map is built incrementally
during the execution of goal-directed actions, learning is autonomous and online. We implement our
strategy on the 48-DOFs humanoid robot Kobian andwe show how the Reachable SpaceMap can support
intelligent reaching behavior with the whole-body (i.e. head, eyes, arm, waist, legs).

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The ultimate goal of humanoid robots is to become effective
helpers for humans, showing some form of autonomy and flexibil-
ity that allows them to operate alongside humans during everyday
tasks, or even to substitute them in tedious or dangerous works.
To achieve this ambitious objective, researchers have been design-
ing more and more complex robots, having an increasing number

∗ Correspondence to: Instituto Superior Tecnico (Torre Norte), Av. Rovisco Pais 1,
1049-001, Lisbon, Portugal. Tel.: +351 920138558.

E-mail addresses: lorenzojamone@gmail.com, lorejam@liralab.it (L. Jamone),
martimbrandao@gmail.com (M. Brandao), lorenzo.natale@iit.it (L. Natale),
contact@takanishi.mech.waseda.ac.jp (K. Hashimoto), giulio.sandini@iit.it
(G. Sandini), contact@takanishi.mech.waseda.ac.jp (A. Takanishi).

0921-8890/$ – see front matter© 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.robot.2013.12.011
of degrees of freedom and sensors (see [1,2] for two recent exam-
ples, amongmany others); these robots should be able to copewith
the unstructured environment in which humans daily live and act.
In particular, they should be able to reach for objects using the
arms or even the whole body, and eventually to grasp and to use
such objects. A fundamental issue associated with these behaviors
is the definition of the space that the robot can reach for, i.e. the
reachable space or workspace. In theory, the robot workspace can
be computed analytically if a model of the system is available [3].
However, it might be difficult to obtain a closed form solution, es-
pecially in the case of complex and highly redundant systems like
humanoid robots. In general, computing analytical models of these
complex systems is a process that is never error-free; discrepan-
cies between the computed model and the real system arise due
to the assumptions that have to be made about the system to keep
the model mathematically tractable (e.g. the links are completely
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rigid, the sensory measurements are perfect and do not drift over
time, there is no backlash in the transmission from the motors to
the joints, the axes of rotation of the joints remain constant over
time), that inmost cases are not realistic. A classical example is the
calibration (i.e. finding the zero) of the incrementalmotor encoders
that are typically used tomeasure joints angular positions. This is a
procedure that has to be done every time the robot is switched on,
and that typically provides slightly different results from time to
time. Therefore, a static analytical model describing, for instance,
the robot kinematics is always going to be slightly wrong; online
learnedmodels, conversely, can adapt to this kind of changes in the
system.

Modernmachine learning techniques can be employed to equip
these complex robots with the necessary autonomous calibration
capabilities (see [4,5] for two recent surveys); moreover, the use of
learning techniques seems to be mandatory to eventually provide
robots with a human-like level of autonomy and flexibility.

Therefore, in this paper we propose a learning approach to
obtain a representation of the workspace of a humanoid robot:
we refer to this representation as Reachable Space Map. The
map is learned autonomously by the robot during the execution
of goal-directed reaching movements. After enough learning has
been performed, the robot can use the map to estimate the
Reachability of a visually detected object before starting the
reachingmovement. In our design, the Reachability is a continuous
value ranging from 0.0 (far from being reachable) to 1.0 (reachable
with an optimal arm configuration): therefore, we do not just
define the space that the robot can reach for in a binary way
(reachable/non-reachable), but instead we provide a Reachability
information (i.e. how well the robot can reach for) for all the points
in space that the robot can visually detect by moving its head
and eyes. As a consequence, this map can be exploited to realize
body movements (e.g. bending or rotating the torso, bending the
knees, walking toward the object) that increase the Reachability of
a visually detected object, by placing the robot in a configuration
with respect to the object that improves the effectiveness of the
subsequent arm reaching action. Our approach focuses on three
main concepts, which make our solution innovative with respect
to previous works: (i) locations in space are directly encoded
using the motor variables involved in the gaze control (i.e. a
gaze-centered motor representation), (ii) the sensory data used
to build the map are generated by the robot in a goal-directed
way and (iii) learning is performed autonomously and online. We
have already introduced this solution in two recent works [6,7]
in which simulation results are provided. In this paper we apply
our system to a real 48-DOFs humanoid robot, and we show
how the Reachable Space Map can be used to plan whole-body
reaching movements that involve the control of the robot head,
eyes, arm, waist and legs. We define this behavior ‘‘intelligent’’
because of two main reasons. First, among all the possible body
configurations that allow successful reaching, the robot looks for
the one that maximizes a specific performance metric. Second,
the knowledge that supports this decision process is acquired by
the robot autonomously and incrementally from its own motor
experience.

The rest of the paper is organized as follows. In Section 2 we
describe the state of the art, discussing the biological inspiration
of our approach and reporting the relevant work in robotics. Then
in Section 3 we present the robotic platform on which we applied
the proposed system. In Sections 4 and 5 we illustrate the gaze
and reaching controllers respectively,while in Section 6we explain
how the Reachable Spacemap can be learned incrementally during
the execution of goal-directed reaching movements. In Section 7
we show how the Reachable Space Map can be used to improve
the robot reaching skills, involving additional degrees of freedom
in the reachingmovement. Finally, experimental results are shown
in Section 8, while in Section 9 we report our conclusions and we
sketch the future work.
2. State of the art

We have chosen to describe the robot kinematic workspace
using motor coordinates: in particular, the location of a point in
space is defined by the motor positions of the head and eyes after
the robot has fixated that point, or in other terms by the gaze
configuration. This choice is inspired by converging evidence both
in monkeys [8–10] and humans [11]: recent studies suggest that
areas within the posterior parietal cortex (PPC) maintain updated
representations of the reaching targets in different frames of
reference (i.e. gaze-centered, visual, body-centered), and perform
the reference frame transformations required to switch among
the different representations [12]. Head motor signals modulate
this neural activity as well [13]. Furthermore, behavioral studies
on humans enforce the hypothesis of the presence of a gaze-
centered frame of reference for the control of pointing [14–17] and
reaching [18], even in the case of whole-body reaching [19].

In fact, the idea of encoding locations in space with the
robot gaze configuration has been already investigated in robotics
[20–22], as it simplifies both learning and controlling reaching. A
motor–motor mapping from arm configuration to gaze configura-
tion can be learned during fixations of the end-effector (i.e. the
hand) in different positions, achieved by means of gaze control;
then the mapping can be inverted to reach for a fixated object
(i.e. retrieving the arm configuration which brings the hand to
the fixation point). In [21] the mapping is learned during a train-
ing phase separated from the subsequent execution phase, while
in [20,22] it is updated during action execution. Thismapping itself
provides information about the space surrounding the robot, what
part of it can be reached and how. A similar approach has been
considered also in recent works [23,24] in which the authors men-
tion a motor representation of the space surrounding the robot,
either referred as ‘‘embodied representation of space’’ or ‘‘visuo-
motor representation of the peripersonal space’’. However, none
of these works makes this representation explicit, and they only
represent the space that the robot can reach (not the space that
the robot cannot reach); therefore, it is not clear how this knowl-
edge can be used for planning body movements that facilitate the
subsequent reaching action. It would be desirable instead to have a
map that provides information about the Reachability of thewhole
visible space, so that a trajectory from non-reachable to reachable
regions can be planned.

Recently, numerical methods have been applied to build an
explicit representation of the reachable space of humanoid robots.
In [25] an optimization-basedmethod and theMonte Carlomethod
are compared: locations in space are associated with a binary
information (i.e. reachable/non-reachable) which is stored in a
database for later utilization. A richer description of the robot
workspace is provided in [26], where reachable points in space
are ranked by their reachability, a measure indicating the number
of possible approaching directions for the arm (note that the
definition of reachability in [26] is different from the one we
propose in this paper); on the basis of that measure a capability
map is built which has a directional structure and can be used to
identify good approach directions for grasping objects, as shown
in a subsequent work [27]. In [28] the reachability space is
represented by a grid of voxels holding information about the
success probability of an IK (inverse kinematics) query, and it is
used to speed up a randomized IK solver.

In all theseworks the robotworkspace is describedwith respect
to a Cartesian frame of reference (either placed in the world or on
the robot). With respect to this solution, representing locations in
space using the gaze configuration has several advantages. First,
we can easily represent all locations the robot can see, even if
not reachable, in a compact map, which is limited by the robot
joints limits. This is not possible using other representations, and
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Fig. 1. Kobian humanoid robot. Left image: Kobian expressing surprise. Right image: description of the robot 48 DOFs.
in fact otherworks either encode only reachable locations or create
arbitrary limitations around the robot (e.g. bounding box). Second,
this representation is directly linked with the visual search: after a
visually detected object is fixated the Reachability information can
be retrieved without the need of any additional transformation.
Moreover, the gaze configuration can be used to directly trigger
the reaching movement, as described in the literature [20–24].
Furthermore, previous works provide a discrete representation of
the space (i.e. grid of voxels). Conversely, in our approach the
representation of the workspace is approximated using an LWPR
(Locally Weighted Projection Regression) neural network [29],
which deals with continuous input and output: this is particularly
important when using the map for planning body movements.
Noticeably, LWPR is an online algorithm for non-linear regression
that provides a compact representation, which can be queried fast
in real-time.

Another crucial improvement brought by this study with
respect to previous works is that the representation of the
workspace is learned incrementally (i.e. continuously and on-
line) during the active process of reaching for objects (i.e. goal-
directed exploration). Continuous online learning assures that the
representation is always up-to-date even in case of changes in
the robot kinematics (e.g. link lengths, deformation of materi-
als), actuation (e.g. replacement of a motor) and sensing (e.g.
replacement of the cameras). Goal-directed exploration implies
that learning is performed in the regions of the space that aremore
relevant for the task at hand (as opposed for instance to random
motor babbling in themotor space): this allows faster convergence
inside those regions, as shown for example in [30].

One important feature of the proposed system is the robustness
with respect to calibration inaccuracies; this is not a specific,
novel, contribution of this work (the same feature is present
in previous works as well), but nevertheless it is a noteworthy
advantage which is made possible by the adoption of (i) motor
representations and (ii) online continuous learning. In most robots
the motor positions are measured through incremental encoders,
therefore a calibration procedure is needed each time the robot is
switched on, to determine the zero position of the encoders. Then,
the transformation frommotor to Cartesian space requires that the
robot cameras are accurately calibrated as well. These calibration
procedures lead to slightly different results each time they are
executed, and therefore a fixed kinematic model cannot describe
the system in an accurate way. Since here the 3D object position
is encoded in the motor space (and not in the Cartesian space), the
calibration of the cameras is not needed.Moreover, themodels that
we use (both for controlling reaching and for estimating the robot
workspace) are learned online and continuously updated, and
therefore they can cope with slight inaccuracies in the calibration
of the motor encoders.

Among many possibilities, we have chosen to rely on the LWPR
algorithm because of its excellent memory requirements and low
computational complexity. Moreover, the algorithm is well known
within the robotics community, as proven by many publications,
and therefore it could be easier for other researchers in the field
to replicate and validate our experiments. However, the system
we describe in this paper is very general, and independent of the
particular learning algorithm used for the Reachable Space Map
estimation; more recent algorithms can be used as well, like for
instance Local Gaussian Process Regression (LGPR, [31]), and they
may even allow to achieve a more accurate estimation.

3. The humanoid platform

The robotic platform we use in this work is the 48-DOFs full
humanoid robot Kobian, that has been designed to integrate the
bipedal walking skill of Wabian [32] to the emotion expression
capabilities of the human-like head robot WE-4 [33], as described
in [34]. Kobian can express different emotions (e.g. happiness,
sadness, fear, anger) with face and whole-body movements [1],
also during locomotion [35]. The robot size is similar to that of an
average Japanese woman (see left image in Fig. 1) and the overall
weight is 62 kg. The degrees of freedomof the robot are distributed
as follows: 12 in the two legs, 3 in the waist, 14 in the two arms, 8
in the two hands, 4 in the neck and 7 in the head (see right image
in Fig. 1).

All the joints are driven by DC motors with encoders activated
by electric motor drivers (Tokushu Denso Co., Ltd.); counter read-
ings of the encoders (i.e. measure of joint angular positions) and
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Fig. 2. The humanoid robot Kobian reaching for a red ball. A small green ball is
attached to the wrist as a visual marker for the hand (i.e. the robot end-effector).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

output of the velocity references to the motor drivers (i.e. motor
commands) are done by a PC (Pentium M 1.8 GHz, QNX Neutrino
6.3.0 operative system) embedded in the robot back through the
I/O boards (HRP interface boards of ZUCO, Co., Ltd.). This PC is in-
terfaced through Ethernet (or wireless) connection to an external
laptop (SONY VAIO, Intel i7 processor, Windows 7 operative sys-
tem) on which the higher level programs run (i.e. learning, visual
processing, coordinated control). The laptop is a node of a local
network of several PCs, that can be exploited to realize distributed
computationwhenmultiple behaviors and reasoning processes are
executed together. This modular distributed computation is sup-
ported by the use of the YARP software framework [36]. Two CMOS
color cameras (ARTRAY, ARTCAM-022MINI) are embedded in the
robot eyeballs, and directly connected to the laptop through USB
connection; the cameras provide images of 640 × 480 pixels at a
frame rate of 30 Hz.

As we want to realize visually guided whole-body reaching, we
aim at controlling the Kobian head, arm (in this case, the right
arm), waist and legs. The robot end-effector is represented by a
visual marker (a green ball in this case) that is attached to thewrist
(as a marker for the hand); in the experiments, the target of the
reaching movements is a red ball. Fig. 2 shows the robot reaching
for the red ball; the green ball used as visual marker can be noticed
attached to the robot wrist. The position of the centers of the two
balls (both the green and the red one) in the camera images is
computed through visual processing (i.e. color based segmentation
using a simplified version of the technique described in [37]) with
a precision of about ±2 pixels (this error is due mainly to slight
changes in the illumination, as we perform the experiments in
natural environment).

The joints involved in the control are the following:

. qgaze = [θny θnp θev]
T

∈ R3

. qarm = [θsp θsy θsr θe]
T

∈ R4

. qwaist = [θwy θwp]
T

∈ R2

. qrleg = [θrar θrap θrk θrhp θrhr θrhy]
T

∈ R6

. qlleg = [θlar θlap θlk θlhp θlhr θlhy]
T

∈ R6

where θny and θnp are the neck yaw and pitch rotations (head
rotation and elevation/depression, joints 40 and 39 in Fig. 1), θev is
the eyes vergence angle, which is the coordinated inward/outward
yaw rotation of the eyes (joints 43 and 44 in Fig. 1), θsp, θsy, θsr are
the shoulder pitch, yaw and roll rotations (elevation/depression,
adduction/abduction and rotation of the right arm, joints 16–18 in
Table 1
Joint limits of the Kobian robot.

qgaze qarm qwaist

min −40° −10° 0° −70° −30° −15° −90° −90° −20°
max 40° 20° 20° −5° −5° 15° −5° −90° 60°

qrleg/qlleg

min −50° −45° −90° −50° −10° −30°
max 50° 45° 0° 90° 25° 50°

Fig. 1), θe is the right elbow flexion/extension (joint 19 in Fig. 1),
θwy and θwp are the waist yaw and pitch rotations (rotation and
elevation/depression of the torso, joints 14 and 15 in Fig. 1), θrar
and θrap are the right ankle roll and pitch rotations, θrk is the right
knee rotation, θrhp, θrhr and θrhy are the right hip pitch, roll and yaw
rotations (joints from 1 to 6 in Fig. 1), and qlleg are the same joints
for the left leg (joints from 7 to 12 in Fig. 1).

The corresponding limits are defined in Table 1 (note that the
limits are the same for both legs, qrleg and qlleg ).

4. Gaze control

The gaze controller allows the robot to track and to eventually
fixate a 3D point in space by moving the head and eyes. We will
refer to this point as the ‘‘target’’ (i.e. target of the gazing action)
to explain how this controller works. Then, in the rest of the paper,
the target can be either the center of the green ball (i.e. the marker
for the hand) or the center of the red ball (i.e. the object, target
of the reaching action), and we use the expressions ‘‘to gaze’’, ‘‘to
fixate’’ or ‘‘to track’’ to indicate the activation of this controller.

If the target is visible (i.e. inside the image plane) joint velocities
are generated as follows:

q̇gaze = −Gx (1)

where G ∈ R3×3 is a positive definite gain matrix and the position
of the target x ∈ R3 is defined as follows:

x =


(uL + uR)/2
(vL + vR)/2
uL − uR


=

1/2 1/2 0 0
0 0 1/2 1/2
1 −1 0 0

 uL
uR
vL
vR


being uR and vR the coordinates of the target on the right image
plane and uL and vL the coordinates of the target on the left
image plane. Indeed, the goal of the controller is to reduce to zero
[uL uR vL vR]

T , which entails bringing the target to the center
of both cameras (i.e. the fixation point). However, since vL = vR
(perceived targets have the same vertical position on both images)
it is sufficient to reduce to zero [uL − uR (uL + uR)/2 (vL + vR)/2]T .

If the target is not visible a stereotyped motion strategy (i.e.
random left–right and up–down movements of the neck) is used
to detect it; then the gaze controller (Eq. (1)) is activated.

After fixation is achievedwe encode the target position in space
using the gaze configuration qgaze; since we actuate only 3 DOFs
of the head+eyes system the mapping from gaze configuration to
target position is unique. If more DOFs are used the redundancy
should be solved by the gaze controller, as we did for instance
in [38].

5. Reaching control

The approach we use for learning and controlling reaching is
very similar to the one described in [39]; minor modifications
have been made to assure the repeatability of the redundancy
resolution over multiple reaching movements. Hereinafter we
provide the details that are important for the understanding of this
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paper, focusing in particular on the description of the redundancy
resolution technique.

The reaching movement starts after the target object has been
fixated, therefore the goal is to bring the hand to the fixation
point (by actuating the arm joints). Two controllers are used in
combination to achieve this goal: open-loop and closed-loop. The
open-loop controller is activated first, and presents two interesting
features: it can be executed even if the hand is outside the visual
field and it does not suffer from velocity limits imposed by visual
feedback delays. However, a closed-loop controller which exploits
visual feedback (i.e. visual servoing) is necessary to reduce to zero
the hand positioning error; this controller is activated when the
hand enters the central part of the visual field.

The open-loop controller exploits a kinematic model of the
robot arm, head and eyes, namely the arm-gaze forward kinemat-
ics, qgaze = fAG(qarm). The model is inverted to retrieve the arm
joints configuration which places the hand in the fixation point. As
our system is redundant (qgaze ∈ R3 while qarm ∈ R4) we can have
multiple solutions (i.e. the same fixation point defined by qgaze can
be reached with different arm configurations qarm). We solve the
IK (inverse kinematics) as an optimization problem by using IpOpt
(Interior Point Optimizer [40]), a minimization algorithm which
has been proven to be fast and reliable (see for example [41] for a
precise evaluation of its performance in solving an inversion prob-
lemsimilar to the onediscussedhere). The IK computation involves
two stages: first we look for a valid solution, then, if at least one
exists, we look for an optimal solution according to a given criteria
(thus resolving the redundancy).

The first stage is formalized as follows:

qS
arm = argminqarm∈Ω

qgaze − fAG(qarm)
 (2)

where Ω ≡ [qmin
arm, qmax

arm ] (i.e. arm joint limits) and qS
arm is the IK so-

lution. We say that qS
arm is a valid solution if

qgaze − fAG(qS
arm)

 ≤

ϵ, where ϵ is an arbitrary low error threshold (we set ϵ = 0.0001).
In that case, the optimal solution is found solving the following
problem:

qS
arm = argminqarm∈ΩM(qarm) (3)

s.t. 0 ≤
qgaze − fAG(qarm)

 ≤ ϵ (4)

whereM(qarm) is themeasurewewant tominimize.We consider a
solution optimal if it maximizes the distance of the arm from joints
limits, as proposed in [42], and therefore we defineM(qarm) as fol-
lows:

M(qarm) =
1
N

N
i=1


qarm(i) − ai
ai − qmax

arm (i)

2

(5)

where ai = (qmax
arm (i) + qmin

arm(i))/2.
The closed-loop controller uses a model of the visuo-arm for-

ward kinematics, x = fAV (qah), where qah = [qgaze qarm]. The
visuo-arm Jacobian JAV (qah) ∈ R3×4 is obtained differentiating
fAV (qah) and is used for control. The redundancy is resolved
through null-space projection by selecting the solution which
maximizes the distance of the joints from the limits (as originally
proposed in [42]). Arm motor velocities are generated as follows:

q̇arm = Km · C1 + Ks · C2 (6)

where

C1 = JĎAV (qah) ẋd (7)

C2 = (I − JĎAV (qah)JAV (qah)) q̇d
arm (8)
where JĎAV (qah) is the JacobianMoore–Penrose generalized inverse,
(I − JĎAV (qah)JAV (qah)) is a null-space projector, and ẋd and q̇d

arm are
defined as follows:

ẋd = xd − x (9)

q̇d
arm = −Kg ∇M(qarm) (10)

where xd and x are the desired and actual positions of the hand
in the visual space (in our case, xd = 0 since we want to bring
the hand to the fixation point) and ∇M(qarm) is the gradient of
M(qarm), the function we want to minimize to keep the joints far
from their limits (as defined above in Section 5). Km, Ks and Kg are
positive definite diagonal gain matrices.

Both the arm-gaze forward kinematics and the visuo-arm for-
ward kinematics are learned online using LWPR. Whenever the
robot is fixating the hand, the arm-gaze forward kinematic is
trained with the arm configuration qarm as input and the gaze con-
figuration qgaze as output. Fixation of the hand occurs either when
the reaching controller brings the hand to fixation or when the
robot gazes at the hand (this is done after an unsuccessful reaching
action). Then, whenever the hand is moving inside the visual field
the visuo-arm forward kinematics is trained with the robot con-
figuration qah = [qarm qhead] as input and the hand position x as
output.

6. Reachable space map

The Reachable Space Map is a function that defines the Reacha-
bility of a fixated object. Because the position of a fixated object is
determined by the robot gaze configuration, qgaze, we can express
the Reachable Space Map as follows:

R = fRS(qgaze) (11)

where R is the Reachability of the fixated object (i.e. the Reachabil-
ity of the fixated location in space).

The Reachable Space Map is estimated using an LWPR neural
network, which is trained online during goal-directed reaching
movements. Training data is collected after each reaching action in
the form ⟨qgaze, R⟩: qgaze is the gaze configuration (which identifies
the position of the target object) and R is an evaluation of the
Reachability following the reaching action. The value R is in inverse
proportion to the final error of the closed-loop controller if the
target object is not reached (case A), while it is proportional to
a measure of ‘‘optimality’’ of the arm configuration if the target
object is reached (case B):

(A) R =
1 − ecl

2
(12)

(B) R =
1 + optarm

2
(13)

where ecl = ∥xd − x∥ /emax
cl is the normalized final visual error

of the closed-loop controller (i.e. the 3D distance from the end
effector to the fixation point, in camera coordinates, measured
after the reaching movement is finished), emax

cl is the maximum
possible visual error (i.e. image boundaries) and optarm = (1 −

M(qarm)) is the optimality measure, which in our implementation
is the distance from joint limits. R ranges from 0.0 to 1.0, where
0.0 means far from being reachable (high error of the closed-
loop controller) and 1.0 means reachable with an optimal arm
configuration (as far as possible from the arm joint limits).

7. Whole-body object tracking and reaching

The Reachable Space Map defined in (11) can be exploited to
plan and execute preparatory whole-body movements that place
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the robot in an optimal posture with respect to the object before
performing the arm reaching movement; for optimal posture we
mean a posture from which the object can be reached with an
optimal arm configuration (i.e. as far as possible from joint limits,
as defined in Section 6).

Assuming that the robot is maintaining fixation on an object,
any motion of the robot body with respect to the target object
causes the gaze configuration to change in order to keep the
object in fixation; as a consequence, the Reachability of the object
(i.e. the output of the Reachable Space Map) also changes. This
means that, at least implicitly, it exists a motor–motor relation
(i.e. a kinematic model) between the movement of the robot body
and, through qgaze, a change in the Reachability. Assuming that
this kinematic model is known (either computed analytically or
learned from motor experience), given a desired change in the
Reachability dRd (e.g. from low Reachability to high Reachability)
an appropriate body motion can be retrieved and executed: we
call this motion a preparatory whole-body movement. In previous
work [6] we proposed to learn such a model from motor data: the
model was estimated online using LWPR, and initialized with data
gathered during a motor babbling phase in which the robot was
moving the waist randomly while keeping fixation of the object.

The main limitations of this approach are that: (i) body
movements are executed only after fixation of the target object
has been achieved, and (ii) accurate fixation of the object must be
necessarily kept during the execution of the preparatory whole-
body movement (otherwise the learned model is no longer valid).
Due to the first limitation the overall robot behavior follows a static
sequence (control the neck and the eyes to track and fixate the
target object, then control the body, then control the arm reaching)
that does not look natural and does not allow to exploit the body
motion also during the visual tracking of the object; the second
limitation may impose limits on the velocity of the body motion.

Here we propose a different approach, in which the body
motion is used not only to place the robot in an optimal
configuration with respect to the object, but also to extend the
robot tracking capabilities. Indeed, it canhappen that target objects
that are detected in the periphery of the visual field cannot be
fixated using only the head joints, whereas the use of additional
joints may allow to achieve fixation. In particular, we employ the
joints of the waist and the legs. Another important constraint
is that we need to add a postural task to ensure that the robot
maintains its balance (i.e. it does not fall).

While the waist joints qwaist are used to tilt and rotate the
torso, the legs joints qlegs = [qlleg qrleg ] are employed to control
the Cartesian position of the waist with respect to a reference
frame placed on the ground, between the feet, namely pwaist =

[xwaist ywaist zwaist ], as follows:

q̇legs = JĎL (qlegs)ṗd
waist (14)

where ṗd
waist is the desired velocity of the waist and JĎL (qlegs) is the

pseudo-inverse of the Jacobian obtained differentiating the legs
forward kinematics, pwaist = fL(qlegs), which is computed analyti-
cally.

The three components of ṗd
waist are obtained in different

ways, and serve different purposes: while żwaist (i.e. the vertical
component) contributes, together with q̇waist , both to realize
tracking with the whole-body and to place the robot in an optimal
configuration for reaching, ẋwaist and ẏwaist (i.e. the horizontal
and lateral components) keep the robot balance. For the sake
of simplicity, we describe these control contributions separately,
even if they are realized simultaneously.

Balance control aims at canceling the ZMP (ZeroMoment Point)
error, keeping the ZMP in the center of the support polygon, by
setting ẋwaist and ẏwaist as follows:
ẋwaist
ẏwaist


=


αx
αy

 
ZMPd

x − ZMPx
ZMPd

y − ZMPy


(15)
where αx and αy are control gains, ZMPx and ZMPy are the x and
y components of the measured ZMP, and ZMPd

x and ZMPd
y are

the correspondent reference values. For each component, we call
ZMPd

− ZMP the ZMP error.
To describe the other controllers we define a vector of body

velocities as follows:

q̇b = [q̇waist żwaist ] ∈ R3. (16)

During object tracking the head and eyes joints, qgaze, are actuated
using the gaze controller described in Section 4 (Eq. (1)).

If qgaze reaches the limits, the waist and legs joints are used to
extend the robot range of action, as follows:

q̇b = −Gwx (17)

where Gw ∈ R3x3 is a positive definite gain matrix and x ∈ R3 is
the visual position of the target as defined in Section 4. The intuitive
idea behind the design of this controller is that the rotation of the
head, θny, can be replaced by the rotation of the waist, θwy. The
same holds for θev and θwp (i.e. eyes vergence replaced by bending
of the torso), and for θnp and zwaist (i.e. head elevation/depression
replaced by vertical motion of the waist).

If qgaze is within the limits, the tracking (i.e. fixating) task can be
accomplished actuating only the qgaze joints (using the controller
of Eq. (1)), and therefore the waist and legs joints can be used to
position the robot in an optimal configuration with respect to the
object. To realize this task, first we compute the head and eyes
velocity that would realize a desired change in the Reachability.
To do this, we exploit the pseudo-inverse of the Jacobian of the
Reachable Space Map, which is obtained differentiating Eq. (11),
as follows:

JRS(qgaze) : Ṙ = JRS(qgaze)q̇gaze (18)

q̇d
gaze = JĎRS(qgaze)dRd (19)

where dRd is the desired change in the Reachability, which is typi-
cally chosen as the difference between the maximum Reachability
(Rmax = 1.0) and the actual one R, leading to dRd

= Rmax −R. Then,
from the desired head and eyes motion q̇d

gaze we derive a motion
of the body q̇b that, if executed, would cause the head and eyes to
follow the desired motion q̇d

gaze because of the gaze controller of
Eq. (1). This transformation from head and eyes motion to body
motion is obtained exploiting an approximated kinematic model,
as follows:

q̇b = Kbhq̇d
gaze (20)

whereKbh is the constantmatrix defining themodel. Again, the idea
behind is that the robot redundancy can be exploited replacing the
motion of the head and eyes joints with the motion of other body
parts.

Summarizing, during this whole-body object tracking and
reaching behavior the head and eyes joints (qgaze) are controlled
using Eq. (1), thewaist horizontal (ẋwaist ) and lateral (ẏwaist )motion
is controlled using Eq. (15), while the waist vertical motion (żwaist )
and the waist joints (qwaist ) are controlled using Eq. (17) when
the head and eyes reach the physical limits, and using Eq. (20)
otherwise. Thehorizontal, lateral and verticalmotion of thewaist is
realized actuating the legs joints (qlegs) throughEq. (14). This allows
the robot to realize two tasks simultaneously (while keeping the
balance): to track and eventually fixate the target object moving
the whole body (i.e. head, eyes, waist, legs), therefore increasing
the range of fixation, and to find an optimal body configuration
to perform reaching. We show an example of this behavior in
Section 8.2.
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Fig. 3. From top to bottom, Reachable Space Map of the right arm after 25, 50,
200, 500 reaching trials respectively. Left image: 3D visualization. Right image:
2D visualization on the vergence/yaw plane, with pitch = 10◦ . Green/blue colors
identify non-reachable regions (R < 0.5), yellow/red identify reachable regions
(R > 0.5), as shown in the color bar on the top. The white dots in the right images
are representative reachable points (i.e. ground truth).

8. Experimental results

We have performed experiments with the humanoid robot
Kobian to show that the robot is able to learn autonomously
a motor representation of the workspace (i.e. the Reachable
Space Map) and use it to perform complex whole-body reaching
movements. During a first phase we showed a red ball to the
robot, placed in 500 different positions: the robot used the gaze
controller described in Section 4 to fixate the ball, and then the
reaching controller described in Section 5 to reach for it with the
right arm. The learned models used for reaching control (namely,
qgaze = fAG(qarm) and x = fAV (qah)) had been trained already
during previous goal-directed movements (this part of learning is
not considered here), and therefore they allowed to successfully
reach for reachable targets; nevertheless, those models were also
updated online during the movements, as described in Section 5.
For more details about the autonomous online learning of the
reaching controller the reader should refer to [39]. Object positions
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Fig. 4. Reachable Space Map of the right arm after 500 reaching trials. Four 2D
visualizations on the vergence/yaw plane are depicted, with different values of
pitch, namely [−10◦ 0◦ 10◦ 20◦

].

were chosen randomly, and they were either reachable (about
60%) or non-reachable. During the execution of these goal-directed
movements the Reachable Space Maps was learned incrementally
as described in Section 6: the data collected during this experiment
is reported in Section 8.1. Then, in Section 8.2 we show how the
robot was able to exploit the learned Reachable Space Map to
realize optimal whole-body reaching, as introduced in Section 7.

8.1. Estimation of the robot workspace

Fig. 3 shows the progressive acquisition of the Reachable
Space Map of the right arm, during the sequence of 500 reaching
movements. A 3D and a 2D visualization of the map (left images
and right images respectively) are depicted at four stages of the
learning, namely after 25, 50, 200 and 500 reaching trials. Referring
to the description in Section 3, yaw, pitch and vergence are θny,
θnp and θev respectively. The color bar on the top of Fig. 3 relates
the output of the map (i.e. the Reachability R = f (qgaze)) to the
colors used in the images: green/blue colors identify non-reachable
regions (R < 0.5), yellow/red identify reachable regions (R > 0.5).
The normalized mean squared error (NMSE) of the estimation has
been computed with respect to a given test set of 250 ⟨qgaze, R⟩
samples, not used for training: the NMSE is 0.35 after the first
25 reaching trials, and it drops to 0.17 (after 50 trials), to 0.10
(after 200 trials), and eventually to 0.08 (after 500 trials). In the
2D visualization of the map (a slice on the vergence/yaw plane,
with pitch = 10◦) some reachable points are displayed (i.e. the
white dots) to provide a ‘‘visual’’ understanding of the quality of
the estimation: the envelope of these points coarsely indicates the
boundary between the reachable and the non-reachable part of
the workspace. Noticeably, the yellow/red area highlymatches the
envelope of the reachable points already after 200 reaching trials,
and even better after 500.

Fig. 4 provides amore detailed 2D visualization of the Reachable
Space Map after 500 reaching trials, showing four slices on the
vergence/yaw plane, with pitch = [−10◦ 0◦ 10◦ 20◦

].
The vergence variable is proportional to the distance of the fix-

ated point from center of the eyes: the more the eyes are rotated
inward (i.e. high value of vergence), the closer the fixated point is.
Therefore, points with very low vergence are not reachable; as we
are showing the map of the right arm, this is especially true for
points that lie on the robot left side (yaw > 0◦, i.e. head look-
ing to the left). Also some points with high vergence cannot be
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Fig. 5. Different optimal whole-body configurations for different positions of the object with respect to the robot.
reached (or can be reached but with a non-optimal configuration
of the arm); on the robot right side (yaw < 0◦), this is mainly due
to the limit of the elbow joint θe (i.e. the elbow cannot bend more
than 90◦). As expected,when the yaw variable is close to the higher
limit (yaw = 40◦, robot looking to its left side) most targets are
not reachable with the right arm, mainly due to the lower limit of
the shoulder yaw joint θsy (i.e. arm adduction/abduction); as the
yaw variable gets closer to the lower limit (yaw = −40◦, robot
looking to its right side) the Reachability progressively increases.
In general, when the robot looks down (pitch > 0◦) the reachable
part of the workspace (i.e. yellow/red area) is bigger; this is due
to the upper limit of the shoulder pitch joint θsp (i.e. arm eleva-
tion/depression), which does not allow the robot to reach for most
of the target placed over the head.

8.2. Intelligent whole-body reaching

As we described in Section 7, the Reachable Space Map can be
used to support the execution of complex reaching behaviors. In
particular, we aim at realizing an integrated behavior in which
the robot tracks and gazes at an object by controlling the head,
eyes, waist and legs joints, finding an optimal posture with respect
to the object, and then reaches for the object with an arm
movement. The optimality is defined with respect to the reaching
movement: optimal is a configuration that allows to perform the
arm reachingmovement optimally. In this specific implementation
of our strategy, the optimality of reaching is defined as a kinematic
metric, measured as the distance of the final arm configuration
from the joint limits.
To test this behavior we conducted an experiment in which the
robot makes reaching attempts toward targets placed in different
positions. Each reaching attempt is organized as follows:

- the robot starts from a given whole-body configuration, qs (the
same for all the reaching attempts);

- the target (i.e. red ball) is placed within the visible space of the
robot, and perceived by the robot with position xi (in camera
coordinates);

- the robot gazes at the target actuating the head, eyes, waist and
legs, using the control strategy described in Section 7;

- as soon as the target is in fixation, and the Reachability is
maximized, the robot reaches for the target with the right arm,
using the controller described in Section 5;

- when reaching is completed, we measure the final arm
configuration qf

arm.

During the experiment the robot performed 25 reaching attempts
toward target objects placed in different positions. These targets
were distributed over the whole visual field, as it can be seen in
Fig. 6, where the initial visual positions of the targets are plotted:
for visualization purposes only the first two dimensions of the x
vector are displayed. All these target locations require whole-body
movements to be reached for: most of them cannot be directly
fixated using only the head, due to the head joint limits, and the
ones that can be fixated have a low value of Reachability (i.e. lower
than 0.5) if whole-bodymovements are not exploited. Fig. 7 shows
the final values of the Reachability for all the 25 reaching attempts:
all the values are higher than 0.5, meaning that the target objects
were always made reachable by the whole-body movement, and
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Fig. 6. Initial position of the target in the visual field, for the 25 reaching attempts.
The first two components of the x vector are displayed.

Fig. 7. Final value of the Reachability for the 25 reaching attempts. In red (dashed
line), the attempts inwhichwaist or legs joint limits are reached,making impossible
to achieve a higher value of Reachability. In blue (solid line), all the other attempts.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

in fact all the 25 reaching attempts were successful. Some of the
values in the plot are marked in red: in those cases the robot
reached some of the joint limits of the waist or legs, making
impossible to achieve a higher value of Reachability. Moreover, we
evaluated the error of the Reachability estimation for each reaching
attempt, Rerr = ∥Ra − R∥, where Ra is the actual Reachability value
obtained from the final arm configurations qf

arm, using Eq. (13),
and R is the Reachability value estimatedwith the Reachable Space
Map: we verified that the Map provides a good estimation of the
Reachability, as the average of Rerr over the 25 reaching attempts
was avg(Rerr) = 0.0240, with standard deviation stdev(Rerr) =

0.0238. Fig. 5 shows some of the final body configurations obtained
by the robot to reach for the targets.
To describe the robot behavior more in detail, we show a
series of figures related to one of the 25 whole-body reaching
movements. In Fig. 8 a sequence of robot images taken during the
execution of the movement is presented: from the initial body
configuration, qs (first image on the left), to the final one, qf . The
plots in Figs. 9 and 10 depict the robot motor trajectories during
the movement, as well as the position of the target in the visual
field and the estimated Reachability. Fig. 11 shows the ZMP error,
that is almost always equal to zero; for reference, the limits of the
support polygon inmeters are [−0.10, 0.14] and [−0.18, 0.18], on
the X and Y directions respectively. Fig. 12 displays the trajectory
of the robot gaze projected on a slice of the Reachable Space
Map for which the head pitch angle is equal to 20◦, showing how
the Reachability changes during the movement as a function of
the robot gaze configuration; this 2D visualization is consistent,
as for most of the trajectory the head pitch angle (i.e. q1

gaze) is
actually equal to 20◦, as it can be seen in the gaze trajectory
depicted in the top right image of Fig. 9. The estimated Reachability
increases during the motion to reach a final value that is higher
than 0.5. However, it should be noted that what is estimated is
the Reachability of the fixated location (following the definition in
Section 6), and therefore it corresponds to the Reachability of the
target only when the target is in fixation; when the target is not
in fixation it is not reachable by definition, given the framework
that we use to control arm reaching (see Section 5). The gaze
motion is aimed at both (i) bringing the target in fixation and
(ii) maximizing the Reachability. Looking at the gaze trajectory in
Fig. 12 it can be noticed that in the very beginning the estimated
Reachability is decreased (this drop in the Reachability can be seen
also in the corresponding plot in Fig. 9): this is because initially
the fixation error is high (i.e. the target lies in the periphery of
the visual field), and therefore the gaze motion is mainly driven
by this error. Then, after this initial transient, the Reachability of
the fixated location starts to increase (due to the combination of
waist and legs motion), and when the fixation error is reduced it
corresponds to the Reachability of the target object: finally, as soon
as the Reachability is maximized and the fixation error brought to
zero, the arm reaching motion can be executed.

9. Conclusions and future work

We presented a learning strategy to build a map of the
workspace of a humanoid robot: a Reachable Space Map. The
workspace is representedwith gaze-centeredmotor variables, and
it is learned autonomously by the robot during the execution of
goal-directed reaching movements. In this regard, our approach
is innovative with respect to previous works in the literature, in
which the robotworkspace is describedwith Cartesian coordinates
Fig. 8. Sequence of robot images during the execution of one of the optimal whole-body reaching movements.
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Fig. 9. Motor and sensory trajectories during the execution of the optimal whole-body reaching movement. Top left: position of the target in the image plane. Top right:
gaze motor trajectory. Bottom left: waist motor trajectory. Bottom right: estimated Reachability.
Fig. 10. Legs motor trajectories during the execution of the optimal whole-body reaching movement.
and it is learned offline. To support the effectiveness of our
approach, we provide experimental results using the 48-DOF
humanoid robot Kobian. We first show how the robot learns
incrementally the Reachable Space Map for the right arm; then,
we present a possible application in which the robot uses the
learned map to realize a form of intelligent whole-body reaching.
Overall, we propose an autonomous behavior in which the robot
performs visual tracking of a target object using the whole body
(i.e. head, eyes, waist, legs) and then it is able to find a final body
configuration which is optimal for reaching.

The approach we propose to obtain the robot workspace is very
general and can be implemented on any robot equipped with arm
and binocular head. In the experiments presented in this paper
we exploit the map to include movements of the waist (bending
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Fig. 11. ZMP error during the execution of the optimal whole-body reaching
movement; X and Y components. The limits of the support polygon in meters are
[−0.10, 0.14] and [−0.18, 0.18], on the X and Y directions respectively.
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Fig. 12. Trajectory of the robot gaze configuration visualized on a slice of the
Reachable Space Map (with pitch = 20◦ , upper joint limit), during the execution
of the optimal whole-body reaching movement. The colors in the Map indicate the
Reachability value, as described on the color bar in the top. The empty circle is the
initial gaze configuration, the filled circle is the final one.

and rotation of the torso) and of the legs (flexion/extension of the
knees, hips and ankles). However, this strategy can be extended to
include locomotion as well: a low value of Reachability, combined
with a low value of vergence (i.e. indicating that the fixated target
object lies far from the robot), triggers a walking behavior in which
the robot follows the direction given by the gaze andwalks forward
until it gets close enough to the object (as measured from both
the vergence and the Reachability values) to start the whole-body
reaching. This would eventually constitute an integrated system
for complex goal-directed reaching behavior, able to deal with
the high level of redundancy that is typical of humanoid robots.
Preliminary results in this direction are presented in [43].

Finally, because reaching is typically realized in order tomanip-
ulate objects, our ultimate goal is to extend the proposed approach
to the case in which it is required not only to position the hand, but
also to orient it with respect to the object to be grasped. This would
require to extend the reaching map taking into account the hand
orientation: this can be done by augmenting the gaze configuration
(that encodes objects 3D position) with the 3D object orientation
expressed in the cameras reference frame. Based on this controller,
the Reachable Space Map can be extended accordingly: the out-
put of the map could estimate how well the fixated object can be
reached given a certain orientation and position. Thismap could be
learned incrementally following a similar approach to the one pre-
sented in this paper. This extension represents another interesting
research direction we are currently pursuing.
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