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the Alignement Paradigm for Modeling the Self
Alexandre Pitti

Abstract—We propose to develop the notion of Alignment
as one general design principle to understand how to model
the Self. Alignment encompasses the temporal contingency de-
tection between sensors and motors to calibrate the self, the
spatial alignment between sensors of different reference frames
to represent the physical limits of the body for ego-centered
representation. and the memory construction and alignment
for the design of a worknig memory and the construction of
the autobiographical self. Behind this concept of alignment we
identified three complementary neural mechanisms that may
serve to achieve this autonomous construction, namely spike
timing-depent plasticity, gain-modulation and predicitive coding.
We review several robotic researches performed to answer this
question in this perspective.

Index Terms—Alignment, Contingency, STDP, Multimodal In-
tegration, Gain-Field, Body Image, Predictive Coding, Working
Memory

I. INTRODUCTION

I propose to review in this manuscript different robotic
researches I have done in the last decade to understand the
development of agency and of self-other differenciation in
robots as infants might do and to find which design principle
should be replicated in robots in my viewpoint. Although it
is now well admitted that the notion of Embodiment is linked
to intelligent and autonomous systems, the design principles
behind the very idea of what it means for an autonomous
system to have a body –, agency, self-recognition, self-other
representation, awareness, sensorimotor expectaction, action
observation – are still in a current research investigation state
by roboticists.

In so far, no robot can even roughly recognize itself on
a mirror, really grasp an objet, understanding where its own
hand is or learn to predict internal or external events and be
surprised if they did not occur as expected. If sensorimo-
tor learning in robots is still poorly achieved by cognitive
architectures, any changes in the sensorimotor configuration
or in the environment achieves to ruin it as any contextual
changes modify just slightly sensorimotor contingencies (like
perceptual illusions, tool-use, changes of reference frame) and
perturb the mapping across the senses.

Thus, it appears that the imprinting of the body in a neural
representation in silico should follow some design principles
and mechanisms to be robust to changes. In this attempt,
we would like to emphasize the concept of Alignment as a
paradigm to understand (and create) a notion of Self in a
robot. For instance, the Alignment Paradigm (AP) incorporates
the idea of body calibration by that has been enounced by
Rochat [1], [2] and Meltzoff [3], [4], temporal synchronization
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and timing contingency by Watson [5], [6], as well as of spatial
contiguity and dissonance studied by Heed [7], [8], [9].

We propose that Alignment can be one unity measure that
can be quantified, ever causal (unidirectional) or mutual (bi-
directional) and multidimensional. Furthermore, AP is not
necessarily centered to physical interactions, it conveys also
aspects seen in social interactions: as we interact with others,
we can align ourself to the partner as well as to its motion and
to its intention. The social alignment can be in the opposite
way with the partner adjusting its actions to our owns. And
finally, AP can be bidirectional between oneself and its partner,
together aware of the joint motions. In this case, the mutual
alignment cannot be easily separated as it becomes one joint
motion or one joint intention. I suppose this last stage is at the
root of communication with the development of joint attention,
empathy, ethics and theory of mind, which may be the ground
for even broader cognitive skills like abstract representation,
language.

Another dimension of this Alignment hypothesis is ’Mem-
ory’ Alignment, which I define as the recursive and cumulative
capacity to compare current actions to old ones experienced
in the past and stored in the working memory and to decide
either to explore new tracks or to follow old paths that were ad-
vantageous in the past. We possess some intrinsic mechanisms
of predictive coding, reinforcement learning, novelty detection
important for the developping of an auto-biographical mind.
Hesslow and Adolph called this autothelic force the capacity
of Learning-to-Learn [10], [11]. As we acquired more infor-
mation about our environment, we can form some intuition
about the success or failures of our own actions, our working
memory can select which actions to choose; that is, to align
to old memories or to search for new ones. Some examples
are the A-not-B problem or the mirror test as exemplified
in [12], [13], they are constitutive of a conscious notion of
Self in the human brain. The dynamical comparison between
old memories and new actions, knoswn as predictive coding,
permits to construct habits and to form memory sequences.

All-in-all, I suggest three bio-inspired mechanisms poten-
tially interesting to develop this idea of Alignment for the
construction of the Self, namely (1) the Hebbian learning
mechanism of Spike Timing-Dependent Plasticity (STDP)
which permits to neurons at the neuron level to learn causally
dependent temporal rules, (2) topographic networks based on
the mechanism of Gain Modulation for multimodal integration,
body representation and sensorimotor transformations at the
population level, which can serve for learning a body ego-
centered spatial representation as well as for changing it into
an allocentric perspective, (3) a hierarchical memory system
based on predictive coding for a rule-based episodic memory
at the brain level.

All these three alignment mechanisms underlying Tem-
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poral Contingencies, Body Space and Top-Down Prediction
are compatible with each other and have been investigated
elsewhere by many researchers already. It is not clear however
how they can be combined in the brain to give rise to a seeming
unity to oneself.

II. TEMPORAL ALIGNMENT

One key mechanism for integrating different modalities
into a cohesive neural representation appears to lie in the
temporal encoding done by the synapses. Recent advances
in neurosciences two decades ago have permitted to find
the regulation mechanism based on timing known as Spike
Timing-Dependent Plasticity (STDP, cf. [14], [15]) responsible
for the functional integration in cortical neurons. Similar to
the Hebbian rule of associative learning, STDP reinforces
the synaptic links of the most congruous neurons as well
as their temporal delays. STDP consists on the bidirectional
adaptation mechanism which dynamically regulates the long-
term potentiation (LTP) and long-term depression (LTD) in
synaptic plasticity readjusting the synaptic weights to the
precise timing interval between the initiating and the targeting
neurons [14], [15].

Information processing in distributed neural networks is
performed at a precise temporal resolution of several millisec-
onds. Over time, the most congruous neural pairs aggregate
themselves into coherent neural patterns whereas the less
congruous ones delete their links. Thus, STDP extends the
hebbian rule to the temporal domain and can be defined as
follows: if neuronpre fires at time tpre , then
neuronpost is expected to fire at time tpost.

Keysers proposed that STDP could shape the specific
connectivity and structural organization of the multi-sensory
neurons in parieto-motor circuits to represent actions with
millisecond order precision [16]. It is proposed that the con-
tingent and redundant multimodal information learnt in the
sensorimotor circuits sustain then a neural representation of
the body in action [17], [18].

At reverse, various perceptual experiences in the environ-
ment with temporal discrepancies can modulate differently
the levels of integration in the sensorimotor circuits with the
disrupting of sensorimotor integration. For instance, perceptual
illusions like the McGurk effect or the rubber-hand illlusion
may be based on this timely-based mechanism. Rochat in [19]
and also Shimada and colleagues in [20] performed some
visual-delay based contingency detection tests for measuring
self-perception in infants and showed that temporal synchrony
was effective early at birth. Interestingly, their capabilities
for self-perception cover the temporal horizon over 200 and
300 milliseconds above which the feeling of agency was not
perceived. These discoveries give some indications on the level
of temporal binding in sensorimotor coordination.

In several robotic researches, my colleagues and I have
employed the STDP learning rule with spiking neural net-
works for temporal binding to study visuo-tactile anticipation
during prehension and action observation in [21], during
visuomotor coordination of a robot head and self-recognition
on a mirror in [22] and recently with Sotaro Shimada to

replicate the rubber-hand illusion with an artificial skin in [23].
In these experiments, we associate the level of synchrony
within the network to the level of agency, which means
the prediction across the neurons related to temporal events
detection. Depending on the robotic experience, the incoming
information was from vision (camera), touch (artificial skin)
or proprioception (motor activity) combined at the same time
scale with synaptic delays within the interval range between
0ms and 30ms. We showed that multimodal integration was
quite robust to temporal delays over 200ms, which were
ten times higher than the capabilities of each neural pairs
and that temporal binding was done at the population level.
In all the experiments, the study of the networks structural
organization presented interesting topologies following the
functional organizations of complex networks such as the
small-world networks. These types of networks, similar to
archipelagos with few interaction between the sub-clusters,
have interesting information processing properties for sparse
coding.

One hypothesis is that, depending on timing, temporal
alignment permits to switch the functional organization from
the Self -network into Other-network.

III. BODY ALIGNMENT

Perceiving objects in space is one of first tasks babies
have to deal with during infancy. It is a rather difficult
problem since infants have to represent one object with
multiple sensory modalities (vision, sound, tactile) encoded in
different reference frames (e.g., eye-centered, head-centered
or hand-centered). This curse of dimensionality requires to
construct some mapping between the reference frames relying
on multiple coordinates transformation between the senses.
One brain mechanism I found important is the one of Gain-
Field (GF) modulation, which addresses this problem of spatial
transformation and multi-sensory representation. The gain-
field modulation mechanism describes the phenomenon where
the motor and the sensor signals (resp. A and B) mutually
influence the amplitude activity of their afferent parietal neu-
rons (resp. C) [24] such that the corresponding mathematical
function is similar to a multiplication: C = A × B. This
result is surprising because most neurocomputationnal models
rely on classical summing or integration function. Yet, there
some advantages to use multiplication to integrate easily
information, like estimating probabilities from two density
proabilities or computing matrix-like 3D transformation.

For instance, multiplicative GF neurons have been found
to monitor nearby objects in the peripersonal space [25],
[26]. These neurons combine diverse incoming information
from multiple modalities to process multiple body-centered
coordinate systems invariant to motion. Similarly, multimodal
GF neurons have been found in the motor cortex to be
activated with respect to where the hand is moving in the visual
space [27], [28] or the wrist orientation [29]. In both regions,
we observe a neural field activity sensitive to both the preferred
motor activity and the preferred visual orientation [30]. Thus,
these neurons may participate to the construction of a body
image and of the peripersonal space.
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Since GF neurons construct body-centered representations
based on the integration of body posture, tactile information
and vision, we believe its mechanism is important not only
for self-perception but also for any kind of sensorimotor
transformation such as those during social interaction such as
imitation or joint attention. Based on these considerations, I
propose that the GF mechanism is at the ground of the Mirror
Neurons System (MNS) also.

Their modeling corresponds to multiplicative Radial Basis
Functions (RBFs) or sigma-pi networks [31], [32] to learn
sensorimotor transformations. In image processing, these net-
works are known as gated networks, which have been recently
re-investigated by [33], [34] for affine transformations and
in developmental robotics [35], [36], [37] for multimodal
integration. These multiplicative networks can serve to learn
nonlinear transformations, which are common problems in
robotics to compute direct mapping and inverse kinematics.

In recent researches, we proposed to exploit the properties
of these GF neurons to construct neural networks that process
spatial transformations in body-centered coordinates based
on body posture, tactile information, sound and vision for
self-perception. Sensorimotor coordination was done either
in head-centered coordinates with the binding of audiovisual
signals and of the camera motor position [35] or in arm-
centered coordinates with a robotic arm from visual and tactile
inputs [36], [38].

We showed that GF networks can map efficiently nonlinear
transformations from one reference frame to another. This
feature was used to learn the effects of motor activity on
different sensor maps and to construct correspondences. By
doing so, the GF units serve to learn the sensorimotor map-
ping necessary to predict the sensory changes based on the
motor activity. One result was for instance the construction
of an ego-space around the body based on the integration
of tactile, visual and motor activity. Another result was the
learning of the visual transformation necessary for mapping
the motion of one person in front of the robot camera with
its most probable actions selected from its motor repertoire.
These two results describe how self-other representations and
the correspondence problem may be resolved based on the
Alignment across the modalities.

IV. MEMORY ALIGNMENT

Previous sections emphasized the modeling of the present
Self with candidate neural mechanisms that can support
temporal binding and multimodal integration. We consider
in this section auto-biographical memory cite Dominey and
incremental learning as an important component and comple-
mentary to the two previous ones.

Auto-biographical memory relies on the idea that we have
the capability to scrutinize our own past actions and to judge
them in comparison to current ones cite Neisser / de Waal.
Based on our self-judgment, the human working memory
(WM) has the ability to initiate flexible decision-making[39]
and to incrementally learn to optimize its actions in order to
perform better later. Stated like this, it is as if the Self brain
was monitoring its own activity online with regard to its past
performances.

One interesting framework that has emerged recently to de-
scribe this Self brain is the one of Predictive Coding (PC) [40]
and of the related mechanism of Free-Energy Minimization
(FEM) [41], [42]. According to PC, the brain is continuously
attempting to minimize the discrepancy or prediction error
between its inputs and its emerging models of the causes of
these inputs via neural computations approximating Bayesian
inference[43]. Therefore, its architecture has to be hierarchical
so that one neural circuit makes inferences about the causes
of another circuit’s own incoming signals. One network (top
layer) anticipate what is expected to be seen in another
network (bottom layer) and minimizes the prediction errors
for controlling it. According to Seth, One such Self memory
system may display the introspective capabilities of the human
brain to learn interosceptive signals and to infer hidden causes
(active inference) as well as errors (error-learning) when
they can(not) be predicted [43]. Seth identified the Anterior
Insular Cortex (AIC) as a comparator circuit to be engaged in
interoceptive inference usefull for error learning. We modeled
also the AIC system for error learning [44].The aim of the
study was to describe how recursive and online learning
could be done based on negative reinforcement learning. We
attached the network behavior with the capability of learning-
to-learn because the error detection served for interoceptive
comparison of old memory and the indirect selection of new
actions and therefore the indirect learning of new memories.

AIC is of course not the only place for interoceptive
inference and several overlapping sub-networks appear to
participate to the realization of the Predictive Brain [45] that
could constitute the Self. In previous researches, we modeled
the cortico-hippocampal system in order to investigate the
development of predictive coding and of an autobiographical
memory [46], [47], [48] with the rapid categorization of novel
memories and the consolidation of old memories [49]. Based
on previous developmental studies and neuro-functional anal-
ysis [50], [51], we simulated how the gradual activation of the
neuromodulator Acetylcholine (ACh) activated the functional
re-organization of the hippocampal system to start to detect
novelty and to code sparsely old memories. We could show
that a novelty detection mechanism in combination with habit
learning could create a flexible working memory. The resulting
system was capable to solve the A-not-B problem, which is a
marker during the first year of cognitive development and of
flexible action selection.

We extended our research on predictive coding with a
recent model based on the iterative free-energy optimization of
recurrent neural networks, which is the acronym for INFERNO
[52]. It consists on two learning systems coupled each other
that attempt to diminish their mutual prediction errors. The
result is the active control of one system on the other (active
inference). In sensorimotor tasks, the coupled system is similar
to a forward model and an inverse model, which attempt to
dynamically optimize their models to reduce error prediction
to better reach one goal and to better learn one body dynamics.
In memory sequence tasks, we showed that INFERNO was
capable to retrieve long-range sequences of spikes above 200
iterations which is above the state of art.

In the perspective of modeling one working memory, to
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learn and retrieve memory sequences, we believe that it
encompasses also some important aspects beind designing the
Self and autobiographical memories in one artificial system.
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