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Abstract— Both humans and robots need a model of their
body, i.e., either a neural or numerical representation of it,
to successfully interact with the environment; notably, such
model needs to be continuously calibrated, i.e., though either
neural plasticity or some form of parameter estimation, to cope
with changes over time. In this work, we present an online
strategy that allows a robot to self-calibrate its body model by
touching known planar surfaces (e.g., walls). This is achieved
through an adaptive parameter estimation (Extended Kalman
Filter) which makes use of planar constraints obtained at each
contact detection. We compare different update methods using
a realistic simulation of the iCub humanoid robot, showing that
the model inaccuracies can be reduced by more than 80%.

I. INTRODUCTION

Humans develop a neural representation of their body (i.e.,
a body schema [1]) through an incremental learning process
that starts in early infancy [2], and likely even prenatally [3],
and goes through continuous adaptations over time, based on
multimodal sensorimotor information acquired during motor
experience [4]: visual, tactile, proprioceptive. This (physical)
body schema is a crucial part of human self-awareness and
supports the precise control of body movements, coping
with the morphological changes that occur in the body over
time, e.g.: body growth, tool assimilation. Clearly, endowing
artificial agents with similar learning and adaptation capa-
bilities is a major challenge for cognitive robotics and it
paves the way for the next generation of robots able to act
in complex environments. Indeed, an accurate model of the
robot structure (i.e., kinematics) is required for any robotic
task. A variety of factors, such as friction, worn joints and
bended rigid bodies, induce changes to the robot kinematic
model over time. As a consequence, such model needs to be
calibrated, either offline or online: clearly, online techniques
are desirable as they can be performed by the robot during
its normal operations, without requiring to collect data in a
separate procedure.
In this work, we develop an incremental calibration strategy
that is performed automatically by the robot during the
execution of any arm movement that involves contacts on
known planar surfaces, using the Extended Kalman Filter
for adaptive parameter estimation. To do so, we make use
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Fig. 1. Simulation of an iCub robot reaching for three different walls in
its workspace.

of contact (pressure sensitive fingertips) and proprioceptive
(joint encoders) sensors, commonly present in many robots.

II. RELATED WORK

Body schema learning and adaptation in robots has been
widely studied (see [5] and [6] for a survey on this topic).
Online solutions using on-board robot cameras have been
studied [7], [8], [9], in which markers are used to easily
detect the end-effector position; the inclusion of additional
parts into the kinematic chain (i.e., tools) has been considered
as well [10]. Interestingly, goal-directed strategies ([11] and
[12]) show to enhance body schema learning, for example,
by reducing the time necessary for calibration convergence.
Marker-free solutions have been explored [13], [14] in which
the robot visual and proprioceptive information are compared
by using a realistic 3D computer graphics model of the robot,
to estimate simultaneously the robot hand pose and kinematic
model, with a Particle Filter.
Contact information was used in [15] to develop an offline
automatic kinematic chain calibration resorting to self-touch
events, which was proven to be highly effective to optimize
the robot model Denavit-Hartenberg parameters; however,
joint angle measurements inaccuracies are not assumed,
and a sensitive skin covering the robot body is required.
Online calibration based on contact information has also been
studied [16], using an implicit Manifold Particle Filter.

III. OUR APPROACH

Here we propose a novel online approach to adapt the
kinematic model of the robot body using proprioception
and contact sensors. Information about contacts on known
planar surfaces feeds a low computational cost estimation
method (Extended Kalman Filter) enabling real-time model
adaptation.

A. Body Model

We identify the robot body model as the kinematic chain
from the root reference frame to the end-effector, i.e., the



robot forward kinematics: Te = K (θ); with the associated
inverse model: θ = K −1(Te). Let us define Te as a 4x4
roto-translation matrix which encapsulates the pose of the
end-effector on the root reference frame. Due to modulation
errors, we only get an estimation of the robot kinematics
function (K̂ (·)) based on the joint angles (θ) retrieved: Te =
K̂ (θ), where K (θ) is the true robot kinematics. Moreover,
due to the existence of calibration bias, the real joints angles
are different from the ones read from proprioception (joints
encoders): θ = θp + β, where θ are the real angles values,
θp are the encoders readings and β are the angular offsets.
To better estimate the robot kinematics we take into account
the estimate β̂ :

Te = K̂ (θp + β̂). (1)

The parameter vector and our state (to be estimated
recursively) is defined as follows:

β = [β1β2 . . . βN ]T , (2)

where N is the number of degrees of freedom of the robot’s
manipulator. Assuming the joint offsets to be slowly varying
in time, we define the state-transition model as:

βt = βt−1 + εt, (3)

where εt is a multivariate zero-mean Gaussian noise.

B. Observation Model

The observation model relates the system state β with
a single measurement (zk) from the contact sensors. We
assume that there is a known planar surface described by:

x · n− d = 0, (4)

where n = [nx, ny, nz]T define the plane’s normal vector
(||n|| = 1), and d is the plane’s minimum distance to the
robot root frame. In a simulation environment, both n and d
are known a priori. In the real world, vision sensing could
be used to estimate the pose of the surface, e.g., using the
Aruco marker [17], or computing a planar fit on depth point
clouds from stereo vision. When a contact occurs, we are
ensuring that the arm’s end-effector 3D position (xe) respects
Eq. (4). However, due to errors in the kinematic model, each
set of coordinates x̂ek at an instant k, follows the equation:
x̂ek ·n−d = αk, where αk is the error produced by the model
inaccuracies. The observation model is then defined as:

zk(θpk + β̂t) = αk + δk (5)

where x̂ek is retrieved using the forward kinematics (Eq. (1)),
β̂t are the offsets estimation at time instate t and δk is
random Gaussian noise associated to an observation.

C. Parameter Estimation - Extended Kalman Filter (EKF)

We estimate the angular offsets β by exploiting contact
constraints obtained at each end-effector contact with a sur-
face. The strategy devised can be divided into two steps: i) a
movement towards the target planar surface, stopping when a
contact in the index finger occurs; and ii) a calibration phase

in which an Extended Kalman Filter is fed with multisensory
input (i.e., proprioception, surface characteristics and contact
feedback) adapting the state β. We incorporate the dynamics
(Eq. (3)) and observation model (Eq. (5)) into the EKF
algorithm, which outputs the current offsets estimation, β̂t,
and respective covariance matrix, Σt. The algorithm receives
as input zt and Ht which encapsulate a set of observations.
When a contact is detected and the joint encoders readings
are retrieved, we acquire an observation (zk) as well as
Hk = ∇zk(θpk + β̂t).
We evaluate 3 strategies for new data incorporation:

1) Aggregation of Multiple Observations: Coupling to-
gether a varying number of contact constraints (k) before a
filter update step (t):

Ht =
[
Hk−n · · · Hk−1 Hk

]T
, (6a)

zt =
[
zk−n · · · zk−1 zk

]T
, (6b)

where t is the instant when we perform an estimation step.
Using only one observation we have Ht ≡ Hk and zt ≡ zk.

2) Estimation Differential Entropy Evaluation: Upon con-
tact, we compute the predicted next step estimation covari-
ance matrix Σt. Following the approach in [18], we decide to
incorporate the new data if the current estimation differential
entropy decreases compared to the previous estimation:

1

2
loge

|Σt−1|
|Σt|

> 0, (7)

and discard new data that does not bring innovative infor-
mation. Here |.| denotes a matrix determinant and Σt−1 is
the current estimation covariance matrix.

3) Anti-Windup Control (A-W): In [19] a technique is
described in order to avoid windup associated to recursive
estimation methods, such as the Recursive Least Squares
(which can be recast into a EKF). They propose controlling
the parameter random walk covariance matrix, Q(t) (asso-
ciated to the EKF algorithm), so as to get Σt to achieve
a constant pre-defined covariance matrix, Pd, thus avoiding
it to get unacceptable large eigenvalues. We use the same
technique adapted to the EKF framework:

Q(t) =
PdHtH

T
t Pd

R(t) + HT
t PdHt

. (8)

IV. EXPERIMENTAL SETUP

Our system is evaluated on the iCub simulator [20], with
a setup composed of three reachable surfaces (see Fig. 1)
with a priori known parameters, n and d. For the first set
of experiments, the robot reaches for a single surface; then
we perform a second set of experiments where the contact
events alternate between all three surfaces. We control the
robot left arm and define its left index fingertip to be the
end effector. The angular offsets (i.e., model errors) on
the seven DoFs of the arm are artificially set as: β =[
−11, 11,−7,−17,−7,−17, 7

]T
deg (values consistent with

the calibration errors typically encountered on the real robot).
We compare the results obtained with all new data incorpora-
tion methods (see subsection IV-A), running ten simulations



for each method. For each experiment, we register 45 contact
events (49 for the 7-contact setting). After each filter update,
we compute the global estimation root mean squared error
(RMSE) relative to the real offsets:

RMSE =

√√√√1

7

7∑
i=1

(β̂i − βi)2. (9)

A. New Data Incorporation Methods

We evaluate six new data incorporation methods:
a) 7-Contact (7C): Upon each contact detection, zk and

Hk are stored in zt and Ht, respectively. The system per-
forms an estimation step after it collects 7 contact constraints
(equal to the number of the iCub’s arm DoFs).

b) Single Contact (SC): Upon each contact event, zk and
Hk are fed to the filter and an update step is performed.

c) Single Contact with Entropy (SC-E): Similar to the
previous technique, but now for each new data obtained
the system computes the predicted next step estimation
covariance matrix and evaluates whether or not the new
observation actively contributes to the estimation differential
entropy reduction using Eq. (7). If the condition is not
satisfied, the new observation is discarded.

d) Varying-Contact with Entropy (VC-E): Equivalent to
the previous method, but each time a new observation fails
to reduce the global estimation differential entropy, instead
of being discarded, zk and Hk are added to the matrices zt
and Ht, respectively. Every time new data is obtained, the
system evaluates if zt and Ht are able to reduce the entropy
of the next step estimation. If so, an update step is performed
regarding all previously stored observations.

e) Single Contact with A-W (SC-AW): Equivalent to the
Single Contact Estimation method, but Qt is controlled with
the anti-windup technique described in Eq. (8), rather than
being a predefined matrix.

f) Single Contact with Entropy and A-W (SC-EAW):
The system discards every new observation data which fails
to reduce the next step estimation differential entropy, and
controls Qt matrix so as to avoid estimation windup from
uncorrelated measures.

V. RESULTS

We evaluate the results of β estimation for contacts on a
single (Fig. 2(a)), and on three different surfaces1 (Fig. 2(b)).

A. Contacts on a single surface

Results can be seen in Fig. 2(a). For method 7C, the
estimation error decreases slowly over each estimation step,
and the model inaccuracies are reduced by 50% (RMSE ≈
5.87 deg) after 35 contacts. Method SC shows a worse
performance: the system keeps a slow steady error descend
during the whole estimation, reducing the estimation abso-
lute error by 50% after 37 contacts. Moreover, σ remains
relatively high, due to the slow reaction of the filter against
estimation steps taken in the wrong direction during periods

1a video can be found in https://youtu.be/EFx0OmRKTQg

of poor excitation. We attempted to improve method SC by
evaluating the estimation differential entropy or by using the
A-W control technique. For the first solution (method SC-E),
we conclude that it is able to stabilize the filter performance,
since the global estimation σ is reduced compared to the
simple single contact setting; however, this happens at the
cost of the filter converging sooner to a minimum. The latter
solution (method SC-AW) achieves a better performance as
well, being able to reduce both the time required for con-
vergence, and the absolute error achieved after 45 contacts.
Then, with method VC-E the estimation keeps a steady
error descend up until the 16th contact (reducing the model
inaccuracies by 50%), slowing the pace for the next contacts.
Finally, the SC-EAW method, that combines the estimation
differential entropy and the A-W control technique, shows
three key features: i) the system is able to converge to a
lower overall estimation minimum (reducing the estimation
error by 15% compared to the single contact setting, and 65%
overall, after 45 contact events), ii) the overall experiments
σ is 30% lower compared to method SC, and iii) the system
converges faster to a minimum (requires 10 steps to reduce
the model inaccuracies by 50%).

B. Contacts on three different surfaces

By broadening the robot spatial exploration and perform-
ing contacts on 3 surfaces, we expect an overall better β
estimation performance, since contact constraints obtained in
this manner provide richer information to the filter. Fig. 2(b)
shows the convergence of the different methods. Evidently,
methods 7C and SC-E are the ones which benefit less
from the richer information acquired from contacts on 3
different surfaces, since they both converge to the highest
estimation errors. The 7C setting has a steady slow error
reduction slope due to not being able to quickly compensate
for estimation steps given on wrong directions. The SC-E
estimation converges early (5th contact) to a local minimum,
not being able to easily find relevant observations from there.
The best results are obtained with the SC-EAW method,
reducing both the estimation error by 45% relative to the
single surface scenario (and 80% overall), and presenting
the lowest overall σ value.
Then, in Fig. 2(c) we see the results of using the method SC-
EAW for β estimation of 3 different sets of artificial offsets
(10 experiments for each set). Up until the 60th contact event,
all experiments reach an estimation minimum; moreover,
independently of the true readings offsets, the filter is always
able to reduce the estimation error to approximately 2.5 deg,
illustrating the reliability of the devised strategy.
Finally, to evaluate the filter robustness to estimating slowly
varying offsets values, we simulate a scenario where we
start by introducing the artificial β values set described in
section IV, inducing random small changes to the offsets
values after every 15 contacts events, up until 60 contacts.
The offsets values variation is achieved by the addition of
random values with Gaussian distribution, with zero mean
and a standard deviation of 1.7 deg. By using the SC-
EAW method, we see the system stabilizing around µ[◦]
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(a) Comparison between data in-
corporation methods for contacts
one surface, using EKF.
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(b) Comparison between all data
incorporation methods using con-
tacts over three surfaces.
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(c) 3 different offsets sets estima-
tion using the SC-EAW method
and contacts on 3 surfaces.
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(d) Slow changing β estimation
using EKF (SC-EAW) and NLS
settings.

Fig. 2. β estimation performance of all data incorporation methods with contacts on either one or three surfaces. The error lower bound is the estimation
performed by the Non-Linear Least squares (NLS) algorithm. This method uses the information of 45 contact events, i.e., a batch estimation method.

= 2.80 deg (Fig. 2(d)), corresponding to an improvement of
76% relative to the initial true offsets values. This experiment
shows that the system is capable of coping with small
changes in β throughout time, achieving a low estimation
error after 60 contacts, keeping with a low standard deviation
(σ[◦] = 0.73 deg), and even outperforming a batch estimation
baseline.

VI. CONCLUSIONS AND FUTURE WORK

We devised a novel approach for online body schema
adaptation based on proprioceptive and contact sensing,
implemented on the iCub humanoid robot. The robot arm
offsets (i.e., model inaccuracies) are estimated with an EKF
fed with contact constraints obtained during the execution
of touch movements. Overall, our experiments prove our
strategy successful in correcting model inaccuracies in real-
time. Moreover, results show that touching surfaces with
three different orientations is more effective than touching
only one surface: model inaccuracies can be reduced up to
80% by performing contacts on 3 different surfaces, and up
to 63% for contacts on a single surface.
Clearly, these simulations must be taken as a preliminary,
though promising, result. To realize the proposed strategy in
the real-world, the non-trivial problem of estimating the pose
of the touched surfaces from on-board vision sensing should
be solved. However, it could also be assumed that the pose
of a few surfaces within a certain environment is known by
the robot in advance: imagine for example a service robot in
an indoor space, that could touch the ground and the walls.
Then, it would be interesting to relate this strategy to other
ones, e.g., based on vision or self-touch, both in robots and in
humans: could they be effectively combined? Do they appear
in the developing child, maybe at different stages? Indeed,
toddlers do interact with a number of familiar surfaces during
development (e.g., the walls of the crib, the floor at home,
the eating table of the booster seat), and in some cases these
surfaces have an almost constant orientation with respect to
the body: do they provide stable (and important) references
for the development and continuous self-calibration of the
body schema?

REFERENCES

[1] G. Berlucchi and S. Aglioti, “The body in the brain: neural bases of
corporeal awareness,” TINS, no. 20(12), pp. 560–564, 1997.

[2] P. J. Marshall and A. N. Meltzoff, “Body maps in the infant brain,”
Trends Cogn. Sci., no. 19(9), pp. 499–505, 2015.

[3] R. Joseph, “Fetal brain behavior and cognitive development,” Devel-
opmental Review, vol. 20, pp. 81–98, 2000.

[4] C. von Hofsten, “An action perspective on motor development,” Trends
Cogn. Sci., vol. 8, pp. 266–272, 2004.

[5] M. Hoffmann, H. Marques, A. Arieta, H. Sumioka, M. Lungarella,
and R. Pfeifer, “Body schema in robotics: a review,” IEEE TAMD,
vol. 2, no. 4, pp. 304–324, 2010.

[6] P. Lanillos, E. Dean-Leon, and G. Cheng, “Enactive self: a study
of engineering perspectives to obtain the sensorimotor self through
enaction,” in IEEE ICDL-Epirob, 2017.

[7] S. Ulbrich, V. de Angulo, T. Asfour, and C. Torras, “Rapid learning of
humanoid body schemas with kinematic bezier maps,” in IEEE-RAS
Intl. Conf. on Humanoid Robots, 2009, pp. 431–438.

[8] L. Jamone, L. Natale, G. Metta, F. Nori, and G. Sandini, “Autonomous
online learning of reaching behavior in a humanoid robot,” Intl. J. of
Humanoid Robotics, no. 9(3), pp. 1 250 017(1–26), 2012.

[9] L. Jamone, M. Brandao, L. Natale, K. Hashimoto, G. Sandini, and
A. Takanishi, “Autonomous online generation of a motor represen-
tation of the workspace for intelligent whole-body reaching,” Rob.
Auton. Syst., no. 64(4), pp. 556–567, 2014.

[10] L. Jamone, B. Damas, N. Endo, V. Santos, and A. Takanishi, “In-
cremental development of multiple tool models for robotic reaching
through autonomous exploration,” Paladyn, no. 3, pp. 113–127, 2013.

[11] L. Jamone, L. Natale, K. Hashimoto, G. Sandini, and A. Takanishi,
“Learning task space control through goal directed exploration,” in
2011 IEEE ROBIO, pp. 702–708.

[12] M. Rolf, “Goal babbling with unknown ranges: A direction-sampling
approach,” in 2013 IEEE ICDL, pp. 1–7.

[13] P. Vicente, L. Jamone, and A. Bernardino, “Online body schema
adaptation based on internal mental simulation and multisensory
feedback,” Front. robot. AI, vol. 3, p. 7, 2016.

[14] ——, “Robotic hand pose estimation based on stereo vision and gpu-
enabled internal graphical simulation,” J. Intell. Robotic Syst., vol. 83,
no. 3-4, pp. 339–358, 2016.

[15] A. Roncone, M. Hoffmann, U. Pattacini, and G. Metta, “Automatic
kinematic chain calibration using artificial skin: self-touch in the icub
humanoid robot,” in 2014 IEEE ICRA, pp. 2305–2312.

[16] M. Klingensmith, C. Koval, S. Srinivasa, S. Pollard, and M. Kaess,
“The manifold particle filter for state estimation on high-dimensional
implicit manifolds,” 2017 IEEE ICRA, pp. 4673–4680.

[17] S. Jurado, R. Salinas, J. Cuevas, and J. Jiménez, “Automatic generation
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