Reaching and Grasping in Peripersonal Space:
Extended Abstract
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We present a model by which an autonomous agent may
construct reach and grasp actions, and learn features to make
these actions more reliable. The model is evaluated with a
physical Baxter Research Robot (pictured in Fig. le). The
resulting behaviors may be compared qualitatively with early
human infant manipulation actions, thanks to existing studies
on infant learning and behavior (e.g. [2] for reaching).

Our model is driven by intrinsic motivation [12], [1],
where the reward signal is based on the rate of learning
or improvement in prediction or actions. New and unusual
events perceived by the agent present opportunities to learn
at a much higher rate than typical events that are already
well explained by the current model. The agent will receive
the highest intrinsic reward over time by repeating this
procedure:

1) Practice the most recently learned action on self-
identified target objects for several trials.

2) Identify a small group of observed results with a
qualitative difference from the larger group. These
cases will define a new unusual event.

3) Generate and test features of the executed trajectories
and target position that best classify the results as
unusual or usual.

4) Identify values of the selected features that make future
attempts to repeat the unusual event most reliable.
These will define the prerequisites and policy for a
new action to cause the event purposefully.

5) Continue evaluation to refine each feature’s ideal range
of values. As the agent becomes more skilled and the
action is performed reliably, the reward for observing
the event it causes decreases. This makes way for a
new unusual event, often a subset of, or related to, the
previous event.

Our agent begins by constructing a graph representation
of its environment, the Peripersonal Space (PPS) Graph by
recording states visited during motor babbling. Nodes of this
graph store the proprioceptive and visual states of the hand at
the time of recording, with a vector of arm joint angles and
segments of of RGB-D image, respectively. The edges of the
PPS Graph connect nodes that have a feasible move between

This work has taken place in the Intelligent Robotics Lab in the Computer
Science and Engineering Division of the University of Michigan. Research
of the Intelligent Robotics lab is supported in part by a grant from the
National Science Foundation (IIS-1421168).

1 Division of Computer Science and Engineering, University of Michigan,
2260 Hayward St, Ann Arbor, MI 48109. {jonjuett, kuipers} at umich.edu.

(d) (e)

Fig. 1. (a) The RGB image portion of the visual percept at the beginning
of a reaching or grasping trial. In this work all target objects are upright
rectangular blocks, and can be identified by their distinct color. (b) The
depth image portion of the visual percept taken at the same time as (a).
The combination of disparity values in this image and the RGB image
approximate human stereo vision. The agent stores prior percepts of the
hand in various poses, but does not receive any other visual or geometric
information for this task. (¢) The agent’s RGB percept after executing a
successful reach. The object has been bumped to a new quasi-static location
where it will remain as the agent returns the arm to the home position. (d)
By revising the reach trajectory to satisfy learned prerequisites, the agent can
grasp the object instead. This is the agent’s RGB percept after initiating a
grasp. (e) The Baxter Research Robot used to evaluate our learning model.
In this image, the agent has returned the arm to the home position after
initiating the grasp in (d) and observed the target object following the hand
along this trajectory. It classifies this grasp attempt as successful.
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Fig. 2. (a) The Peripersonal Space (PPS) Graph shown in terms of the
agent’s visual space. Each marker superimposed with this base RGB percept
corresponds to the (u, v) center of mass location of one of the 3000 nodes,
with color and size scaled by the mean disparity value d of the node. (b)
The PPS Graph in the default frame of reference for the robot, which is
unavailable to the agent. Each blue point shows the true world (z,y, z)
coordinates of a node, and each dotted red line corresponds to an edge of the
graph. The 2999 edges shown were all proven by construction to be feasible
moves during motor babbling, while additional edges added according to a
length threshold for feasibility are not displayed here. For comparison, the
surface of the table in the workspace is plotted as a gray plane. It can be
observed that the surface and space above it are generally well-covered by
the graph. As might be expected, one of the regions where nodes are more
sparse is the corner opposite the natural position of the agent’s left hand,
and acting here is more difficult for the agent.

them, and may be traversed by linear interpolation of the
stored configurations of the endpoint nodes. Trajectories for
moving the hand may be composed from these edges, and
provide the agent with an initial move(hand) action. Fig. 2
provides two visualizations of the PPS Graph, and Fig. 3
gives an example of the state representation stored for a
single node.

As the agent practices this move action, the typical result is
for the appearance of the hand to change without a significant
effect on the rest of the visual field. However, this static
background model is violated in the rare event that the hand
collides with another foreground object. This bump event
can be detected by visually observing the object in a new
quasi-static location. The agent learns that bumps are highly
correlated with motions to a node where the stored image of
the hand intersects the image of the target at the beginning of
a trial. This is especially true when the intersection is in both
the RGB image segments and the range of values for those
pixels in the depth image. The reach action is defined as
motion along a graph trajectory ending with a node with this
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Fig. 3. (a)-(b) The agent’s vision system provides an RGB image and a
concurrent registered depth image in each percept. During motor babbling,
these images are recorded along with the joint angles of a node. (¢) The full
representation the agent will store for this node, derived from the recorded
images. The representation consists of binary masks for the full hand (red
and yellow regions) and its grasping region (yellow), as well as the center
of mass for each region and an estimated direction of the grippers. When
planning a move, reach, or grasp, the PPS Graph serves as a mapping from
a desired visual state to the configuration necessary to visit that state. The
agent searches through the representations of all nodes for the one best fit
to the task, and can look up the configuration recorded for that node.

property. A successful reach causes a bump, as in Fig. la-c.
Our agent has nearly mastered reaching, with a success rate
of 97%. We discuss an earlier process of learning to reach
with an alternative visual system in [8].

Once the agent has a reliable reach action, it interacts
with foreground objects much more often. In a few cases,
this interaction places the object between the gripper fin-
gers. Human infants have a Palmar reflex where the hand
will automatically close around an object that touches the
palm. Our robot does not have tactile sensors, but we have
simulated the Palmar reflex with a break beam sensor. When
an object passes between the gripper tips and breaks the
beam, the grippers close. Both the real and simulated Palmar
reflexes allow these rare cases with an object in the hand
to cause an accidental grasp without an additional decision
to close the hand at that precise moment. Removing one
event from the necessary sequence does not make grasps
common, but prevents them from being so rare that they
cannot be observed and learned from. Our agent identifies
grasps (Fig. 1d-e) by the new property of the object to move



along with the hand until it is ungrasped, returning the object
to a quasi-static state.

Learning a grasp action requires a much larger number of
considerations than learning a reach action. At this time, our
agent has improved the reliability of its grasp action in four
ways. First, comparing hand images for a neighborhood of
nodes in the PPS Graph allows estimation of adjustments to
the final node configuration that will improve its intersection
with the target object. This and continued practice with
reaching have improved the accuracy of the agent’s approach.
Second, the agent has learned that the grippers are closed by
the Palmar reflex more often if they are initially fully open
to better allow the object to be surrounded. Collision with
the object may still prevent a successful grasp, but increasing
the frequency of Palmar reflex activations tends to increase
the number of grasps. Third, the agent draws and evaluates
specific vectors on the stored hand images to select a well-
aligned penultimate node for the grasp trajectory. This is
important so that the gripper opening leads the motion to
the final node, avoiding a bump with the exterior of the
hand that would prevent a grasp. Finally, the agent orients
the wrist perpendicular to the major axis of the target object,
attempting to ensure the gripper opening is wider than the
cross section of the object it attempts to grasp. We discuss
these prerequisites for grasping in more detail in [9]. With all
of these features considered, our agent now grasps the object
from previously unseen positions approximately 50% of the
time. That grasping is much more difficult than reaching
is understandable, and a focus of future work will be to
improve this reliability. After grasping is suitably reliable, the
agent may repeat the learning process to discover additional
actions, such as specific ungrasps to set the object in a stable
position, and a move(target) action to combine all of these
capabilities.

Related Work

Some robotics researchers (e.g., [4], [13]) focus on learn-
ing the kind of precise model of the robot that is used
for traditional forward and inverse kinematics-based motion
planning. A goal of our model is to make much weaker
assumptions about the variables and constraints in the model,
and the information available from visual perception.

Other researchers (e.g., [10], [11]) structure their models
according to hypotheses about the neural control of reaching
and grasping, with constraints represented by neural net-
works that are trained from experience. Oztop, Bradley &
Arbib [10] use a simulated robot arm and hand, focusing on
learning an open-loop controller that is likely to terminate
with a successful grasp, but assuming that reaching is already
programmed in. Savastano and Nolfi [11] describe an embod-
ied computational model with three developmental phases,
implemented as a recurrent neural network, and evaluated on
a simulation of the iCub robot. However, the transitions from
one phase to the next are represented by manually adding
certain links and changing certain parameters in the network,

begging the question about how and why those changes take
place.

Several recent research results are closer to our approach,
in the sense of focusing on sensorimotor learning without
explicit skill programming, exploration guidance, or labeled
training examples. Each of these (including ours) makes
simplifying assumptions to support progress at the current
state of the art, but each contributes a “piece of the puzzle”
for learning to reach and grasp.

Hiilse, et al [6] present a very nice review of the (2010)
neuroscience of visual search and reaching, and of the de-
velopment of saccades, visual search, and reaching in human
infants. They then present and evaluate two architectures for
combining these capabilities, and discuss their significance
for complete theories of reach learning.

Jamone, et al [7] define a Reachable Space Map, de-
scribing the learned reachability of fixated objects over
gaze coordinates (head yaw and pitch, and eye vergence
(to encode depth)). Within our framework, the PPS Graph
[8] is learned during non-goal-directed motor babbling, at
a developmentally earlier stage of knowledge, before goal-
directed reaching has a meaningful chance of success.

Ugur, et al [14] demonstrate autonomous learning of
behavioral primitives and object affordances, leading up to
imitation learning of complex actions. However, they start
with the assumption that peripersonal space can be described
by a 3D Euclidean space model. Our agent starts with only
the raw proprioceptively sensed joint angles in the arm, and
the 2D images provided by vision sensors. The PPS graph
represents a learned mapping between those spaces.

M. Hoffmann, et al [5] integrate empirical data from infant
experiments with computational modeling on the physical
iCub robot. Their model includes haptic and proprioceptive
sensing, but not vision. They model the processes by which
infants learn to reach to different parts of the body, prompted
by buzzers on the skin. The model is implemented and
evaluated on an iCub robot with artificial tactile-sensing
skin. However, the authors themselves describe their success
as partial, observing that the empirical data, conceptual
framework, and robotic modeling are not well integrated.
They aspire to implement a version of the sensorimotor
account, but they describe their actual model as much closer
to traditional robot programming.

Conclusion

Our agent has built a graph representation for peripersonal
space from autonomous exploration which allows simple
trajectory planning. These trajectories share qualities with
early human movements, such as jerky submotions. In our
model, these appear due to movements to discrete, memo-
rized configurations stored in nodes along the shortest graph
path. It has then applied an intrinsically motivated process
twice, first to learn a reach action to replicate the unusual
bump event, and then to learn to select reach trajectories
that are more likely to also grasp a target object. These



actions also have infant-like qualities, including the lack of
dependence on a current percept of the hand for successful
reaching (observed in [3], where infants reached for lit targets
in a dark room), and the necessity of preshaping before a
grasp. In our most recent results, the learned reach action
is almost perfectly reliable, and the grasp action succeeds
approximately 50% of the time.
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