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Abstract—Understanding how an object will move under ma-
nipulation comes naturally to humans. Encoding these mechanical
laws analytically is challenging. Recently, data-driven approaches
have been applied to learn predictive models of motion. In this
paper we present a method to generalise predictions of motion
across different object shapes. This uses a novel descriptor of the
combined shape and pose as input to a neural network predictor.
The predictor is a Mixture Density Network (MDN) and so it
gives a measure of uncertainty in the action outcome. The system
is evaluated by testing its ability to generalise its predictions to
unknown 2D shapes after training with simpler shapes.

I. INTRODUCTION

Central to object manipulation in humans is the ability
to predict the outcomes of manipulation actions. In robotics,
attempts have been made to apply the analytic laws of me-
chanics to perform such predictions. This is hard because such
models make approximations and require precise knowledge
of parameters that are challenging to estimate online, such
as frictional coefficients, coefficients of restitution, and mass
distributions. An alternative is to learn a predictive (forward)
model of object motion from experience. This paper shows
how to use a neural network learner with Gaussian output units
to learn a probabilistic predictive model based on sensorimotor
input-output pairs. This model can predict the uncertainty in
action outcomes and generalise to unknown objects.

We know that the human motor system can learn to model
the complex non-linear relationships between motor action,
object properties and pose, so as to predict the motion of a ma-
nipulated object. There is evidence that the cerebellum contains
just such a forward model; both predicting the consequences
of motor actions and detecting errors in these predictions [1],
[2], [3], [4]. Repeating cerebellar units comprise a modularised
and highly parallel architecture [5]. It has been suggested that
this is an efficient strategy for modelling sensorimotor pre-
diction by making modules context-specific [6], [7], [8], that
is, modules learn simple features which collectively predict
complex motions. Generalisation to novel conditions such as
unknown object shape thus uses a combination of relevant
features. Inspired by this, here we explore the application
of a mixture density network (MDN) [9] to the problem
of prediction learning. This variant has the added benefit of
modelling the uncertainty in an action outcome.

II. RELATED WORK

Modelling object behaviour under action can be tackled
by the application of the laws of mechanics, either using
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quasi-static assumptions or incorporating dynamics [10], [11],
[12], [13], [14]. This is challenging, due to the approximations
made by simulators and the difficulty of estimating necessary
parameters. Another approach to the prediction problem is
based on data-driven learning. This has previously been applied
to planar pushing [13], [15], [16], [17], [18] as well as rigid-
body motions [19]. Data based methods are gaining traction as
larger data-sets become available [20]. We employ the high-
fidelity planar pushing data-set provided by Yu et al. [21].

Neural networks have already been used to model 3D rigid
body transformations in several ways, including the "physical
intuition of object manipulation [22], [23], [24], ball motion
[25], stability of stacked blocks [26] and object dynamics in
static images [27]. Of the object manipulation work conducted,
there has been some limited success in generalisation across
scenes [23] and objects [24]. All research has used convolu-
tional filters with high-dimensional input data, typically in the
form of images. The data-set we employ naturally allows a
lower dimensional representation of shape.

Non-neural machine learning approaches [19] include us-
ing a product of kernel density estimates (KDE) to predict 3D
rigid body transformations under push actions. This approach
afforded a degree of shape generalisation. Another approach
is the use of Heteroscedastic Gaussian Process models for
prediction [28], or for prediction and push planning [29]. In
these two cases the methods are trained to predict on individual
objects and show no capacity for shape generalisation

III. DEEP LEARNING WITH MIXTURE DENSITY
NETWORKS

A. Formal Definitions

Multi-layer perceptrons (MLPs) are global function ap-
proximators suitable for modelling non-linear vector functions.
MDNs are a variation that support any neural architecture
with a feed-forward structure. The stochasticity of planar push
effects means that to correctly model object manipulation, the
learned network would ideally generate an output density;
thereby modelling the uncertainty of a given manipulation
outcome. Using a mixture model [30], any general distribution
can be modelled in terms of probability densities of target data
being represented as linear combinations of kernel functions
in the form

p(t|z) = Zaxxm(tlx) (1)

where t represents a target vector which is conditioned on an
input vector z, m is the number of components in the mixture.



« denotes mixing coefficients which act as prior probabilities
conditioned on x of the target vector ¢ being generated by the
i*" mixture component. ¢ represents the conditional density

of the target vector for the i*” kernel. The Gaussian kernel is
given by the form
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where vector y; represents the it" kernel centre, with variance
o; and c denotes the dimensionality of the target vector.

As the mean, variance and mixing coefficients are general
continuous functions of x, these can be modelled as outputs
of an MLP that uses vector x as an input [9]. Implementing
this merely requires replacement of the least-squares error by
the negative log likelihood

E?= m{ Zai(a:%i(t%q)} 3)
i=1
for pattern ¢. This is the same error function used in Jacobs
et al’s [31] model of competing local experts.

B. Training and Predicting Planar Manipulation

In this paper, we use the high fidelity experimental planar
pushing data-set of Yu et al. [21]. Simple, flattened 3D shapes
(limited to transformations on the plane) were pushed by a
cylindrical robotic finger. For a full description of the shapes
and setup, see [21] and [32].

We represent motion of the pusher and the object as
2D rigid body transformations. A 2D rigid body transform
[R,t] can be specified by a 3-parameter axis-angle transform
made up of a single rotation R € SO(2) and a translation
t € R2 Using TensorFlow we trained an MDN using the
adaptive moment estimation (ADAM) optimiser to predict
the transformation of the object from its initial pose, pusher
trajectory and the average forces exerted on the pusher. Several
techniques employed to improve generalisation included L1
weight regularisation, early stopping and dropout [33]. A
schematic of the network architecture is provided in Figure 1.
Outputs were generated with a convex combination of kernel
means weighted by network output mixing coefficients and
averaged across 500 dropout permutations.

IV. MODULAR PREDICTION WITH ACTION
GENERALISATION

In this experiment we studied the ability of learned models
to predict the effect of a push for a specific object. Each
learner was split into modules, one for each object, following
the principles outlined in [19], [8] for modularisation. Thus,
generalisation was over the action space: push location and
push direction. We created this architecture seperately with
an MDN, a MLP with sigmoid units trained on squared error
loss and a kernel density estimator (KDE) for comparison. We
implemented the KDE following [34], choosing a bandwidth
according to Silverman’s rule of thumb. The appeal of KDE
is that it offers greater data efficiency and avoids extensive
parameter tuning. Figure 2 shows the performance comparison.
The MDN and MLP outperforms the KDE and thus advocates
the use of neural networks for action generalisation, however
the mixture model implemented in the MDN did not improve
action generalisation, suggesting its redundancy in this case.
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Fig. 1: Neural Architecture for Transformation Prediction.
Inputs included initial object and pusher pose (P1), end pusher
pose (P2), average force/torque and (for shape generalisation)
the SDV. Module outputs (e.g. i*") are combined using a
convex combination and averaged over permutations of the
dropped out network generating a predictive density of object
end pose. One such dropout permutation is shown.
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Fig. 2: Displacement predictions of regression neural networks,
kernel density estimation and mixture density networks trained
on each shape individually. Error bars denote SEM.

V. PREDICTION WITH SHAPE GENERALISATION

The first experiment shows an ability to generalise with
respect to action, but not with respect to object shape. To
achieve shape generalisation, we could use a variety of repre-
sentations. We draw on ideas from the neuroscience literature
that suggest that internal models are typically influenced by an
egocentric frame of reference. In addition, while we could use
the full image as an input vector it is sensible to assume some
simple edge based processing to reduce the dimensionality and
increase the invariance of the input space. To this end we
introduce a shape descriptive vector (SDV), as well as using
mass and moment of inertia as part of the input space.

The SDV has a polar frame of reference that is influenced
by both the object’s position and the agent’s viewing position.
The origin of the polar axis is the visual centre of mass of
the object. The direction of the polar axis is upwards in the
image frame. The SDV is a vector of polar coordinates in
this frame, obtained by sampling the boundary of the shape at
regular angular intervals, in its current orientation as projected
onto the image plane. The start point and end point occur in the
direction of the polar frame. We used a sampling rate (Figure 3)



of 15°, creating a 24 dimensional vector. The SDV captures
both the orientation relative to the observer and the shape of
the object in a single representation. To achieve prediction with
shape generalisation the SDV may serve as part of the input
space for any of the learners specified above.

To test the hypothesis that the SDV would enable good
generalisation of predictions with respect to shape and orien-
tation we retrained an MDN, but now using one network for
all training shapes and the SDV as part of the input vector
(SDV-MDN). Training was performed using rectangles (rect2-
3), ellipses (ellip2-3), triangles (tri2-3) and the hexagon. We
then tested predictions on an unseen hold-out set of shapes
(rectl, ellipl, tril, butter). The results are shown in Figure 3.
We present the prediction error in translation (mm) and rotation
(rads) plotted against the number of output kernels in the
MDN. The bottom panels show the prediction of motion for
a specific action for each test shape with the ground truth
marked.
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Fig. 3: SDV Design and Shape-Generalised Predictions using
SDV-MDN. Plots show motion predictions with increasing
numbers of kernels in the output layer of the MDN. The
SDV is a vector of polar coordinates sampled at shape borders
conveying shape and orientation. Error bars denote SEM. The
mean predictions (shapes with bold blue lines) came from
a network trained on samples from rect2-3, ellip2-3, tri2-3
and hex. Uncertainty (thin blue lines), shifted by one standard
deviation in each direction from the mean for x, y and 6. The
initial (green) and ground truth final (red) object pose and
pusher position are shown.

A. Prediction of Uncertainty in Object Motion

In the data-set the same action, when repeated, results
in a distribution of displacements [21]. We examined the
ground truth versus predicted uncertainty in push outcome
using 100 repeated pushes on one side of the ’rectl’ shape
(at every contact position and pushing angle). Comparing
the predicted displacement from the MDN with the observed
(ground truth) displacement shows that the network can capture
this uncertainty for planar pushes. Figure 4 shows the mean and
standard deviation of displacement of the x, y and 6 predicted
by the MDN compared with the ground truth. This shows an
ability of the MDN not only to generalise the prediction of the
mean motion with respect to shape, but also to generalise the
predicted uncertainty with respect to shape.

VI. DISCUSSION

In this paper we introduced MDNs as a method to model
push mechanics inspired by cerebellar neuro-circuitry. Our
results are comparable to existing methods [28] that use varia-
tional heteroscedastic Gaussian processes (VHGP) on the same
data. Normalised mean square error (NMSE) of our shape
generalisation model ranged from 0.4-0.6, marginally worse
than the 0.37 reported error using VHGPs [28]. This reflects
the greater complexity of making predictions under shape-
generalisation. Further, increasing module outputs within the
MDN improved prediction. Such improvements were not seen
with action generalisation in Figure 2 (MLP vs MDN). This
likely highlights the benefit of modularisation in cases of
greater complexity. Our model also outperformed KDE.

We introduced a simple combined shape and orientation
representation. This affords accurate shape generalisation, even
with complex shapes such as ’butter’. This representation is
akin to intrinsic frames of reference, that may be utilised by
humans for predicting manipulation dynamics [35]. Learning
with MDNs and shape-pose generalisation offers a way to
build forward models for object manipulation. As shown here,
forward models can be trained to predict the displacement
of objects from planar pushes and express uncertainty in this
motion.
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Fig. 4: Shape generalisation for mean and standard deviation of motion. The first two columns show the mean motion
(Az, Ay, Af) predicted by the SDV-MDN (column 1) for a range of contact positions and pushing angles compared to the
ground truth (column 2). The third and fourth columns show the standard deviation in the motion predicted by the SDV-MDN
(column 4) compared to the ground truth (column 3). Units are in mm and radians.
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