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ABSTRACT
We introduce SCOTS a software tool for the automatic con-
troller synthesis for nonlinear control systems based on sym-
bolic models, also known as discrete abstractions. The tool
accepts a differential equation as the description of a non-
linear control system. It uses a Lipschitz type estimate on
the right-hand-side of the differential equation together with
a number of discretization parameters to compute a sym-
bolic model that is related with the original control system
via a feedback refinement relation. The tool supports the
computation of minimal and maximal fixed points and thus
natively provides algorithms to synthesize controllers with
respect to invariance and reachability specifications. The
atomic propositions, which are used to formulate the speci-
fications, are allowed to be defined in terms of finite unions
and intersections of polytopes as well as ellipsoids. While
the main computations are done in C++, the tool contains a
Matlab interface to simulate the closed loop system and to
visualize the abstract state space together with the atomic
propositions. We illustrate the performance of the tool with
two examples from the literature. The tool and all con-
ducted experiments are available at www.hcs.ei.tum.de

Keywords
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1. INTRODUCTION
In recent years, controller synthesis techniques based on

so-called symbolic models or discrete abstractions have re-
ceived considerable attention within the control systems com-
munity, see e.g. [1–13]. Following those methods, it is possi-
ble to synthesize correct-by-construction controllers for gen-
eral nonlinear systems to enforce complex specifications for-
mulated for example in linear temporal logic (LTL).
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There exist numerous theories [1–13] that account for a
great variety of different control system dynamics as well
as specifications. The dynamics range from simple double
integrators [5], over linear [1, 3, 8, 11] and piecewise affine
systems [10] to nonlinear [4, 6, 7, 9, 12] and stochastic con-
trol systems [2, 13]. The specifications range from reach-
avoid specifications [2, 4, 6, 7, 9, 13] and safety [4, 7, 11]
specification, over reactivity fragments of LTL [5, 8, 12] to
full LTL [1, 3, 10]. Additionally, there exist various soft-
ware tools such as Pessoa [14], CoSyMA [15], LTLMoP [16], and
TuLiP [17] were some of the previously mentioned theories
are implemented.

In this paper, we introduce SCOTS, yet another software
tool for the synthesis of symbolic controllers, i.e. controllers
based on symbolic models. Similar to Pessoa and CoSyMA the
tool supports the computation of abstractions of nonlinear
control systems. LTLMoP and TuLiP are more restrictive in
that respect and accept merely simple integrator dynamics
and piecewise affine control systems, respectively. Moreover,
the tool provides algorithms for the computation of minimal
and maximal fixed points and thus, again similar to Pessoa

and CoSyMA, natively supports the controller design to en-
force invariance and reachability (time-bounded reachability
for CoSyMA) specifications. More complex specifications like
GR(1) [18], which are supported by LTLMoP and TuLiP, are
currently not natively available in SCOTS.

The differences between Pessoa, CoSyMA, and SCOTS be-
come apparent in terms of the type of symbolic model which
is used to solve the synthesis problem. CoSyMA requires the
original system to be incrementally stable [19] and com-
putes symbolic models that are approximately bisimilar to
the original system. Pessoa, additionally to approximately
bisimilar symbolic models, supports the computation of ap-
proximately alternatingly similar symbolic models [4]. Ap-
proximate alternating simulation relations, compared to ap-
proximate bisimulation relations, are a one-sided notion of
system relations and the symbolic model can be constructed
without stability assumptions [9]. The symbolic models cre-
ated by SCOTS are based on feedback refinement relations, a
novel notion of system relation that was recently introduced
in [20]. Although the computation of symbolic models based
on approximate alternating simulation relations and feed-
back refinement relations are similar cf. [20, Chapter VIII]
and [9], the controller refinement procedure differs. Specif-
ically, the controller based on feedback refinement relations
requires quantized state information only, as opposed to ex-
act state information. Moreover, the controller does not
require to include the abstraction as a building block [20].
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Both properties are essential for a practical implementation
of the controller.

From an implementation point of view SCOTS is close to
Pessoa and CoSyMA. All three tools use boolean functions to
represent the atomic propositions as well as the transition
relations of the symbolic models and employ binary decision
diagrams [21] as underlying data structures to store and ma-
nipulate the boolean functions. Specifically, all three tools
use the CUDD binary decision diagram library [22]. Even
though binary decision diagrams provide a memory efficient
way to represent symbolic models, they result in a consider-
able computation-time overhead when it comes to the con-
struction of the boolean functions. A similar observation is
reported in [15] and CoSyMA offers hash tables as an alterna-
tive data structure.

2. SYMBOLIC CONTROLLER SYNTHESIS
We provide a short introduction to the solution of control

problems based on symbolic models as developed in [20]. In
general the notation should be self-explanatory. However, in
case of any ambiguity, the reader is referred to [20, Sec. II].

In our framework, a system is defined as simple system,
which is a triple S = (X,U, F ), where the state alphabet X
and input alphabet U are non-empty sets and the transition
function F : X × U ⇒ X is a set-valued map [23]. The
behavior B(S) consists of the set of the signals (x, u), with
state signal x : [0;T [ → X and input signal u : [0;T [ → U ,
that satisfy the transition function F for all t ∈ [0;T − 1[. If
T is finite then F (x(T − 1), u(T − 1)) = ∅ must hold. Any

subset Σ ⊆ (X×U)[0;T [, T ∈ N∪{∞} constitutes a specifica-
tion for S. Subsequently, we focus mostly on specifications
on state signals, in which case we omit the input signals and
consider B(S) and Σ as subsets of X [0;T [, T ∈ N ∪ {∞}. A
system S and a specification Σ (for S) constitute a control
problem (S,Σ). A controller C, which is itself a system that
is feedback composable with S, solves the control problem
(S,Σ) if the closed loop behavior satisfies B(C × S) ⊆ Σ.
We use US(x) = {u ∈ U | F (x, u) 6= ∅} to denote the set of
admissible inputs. The interested reader is referred to [20]
for the precise definitions of the various terms and objects.

A symbolic controller synthesis scheme as it is imple-
mented in SCOTS proceeds, roughly speaking, in three steps.
First, given a control problem (S1,Σ1), a finite simple sys-
tem S2 as a substitute of S1, together with an abstract spec-
ification Σ2 is computed. In this context S1 and S2 are
often referred to as plant and symbolic model, respectively.
In the second step, a controller C2, i.e., system that is feed-
back composable with S2, which solves the control problem
(S2,Σ2) is computed. Provided that the synthesis process of
C2 is successful, the controller C2 is refined to a controller C1

that solves the original problem (S1,Σ1) in the third step.
The correctness of this approach is guaranteed by relating

the plant S1 = (X1, U1, F1) with its symbolic model S2 =
(X2, U2, F2) via a feedback refinement relation Q ⊆ X1×X2.
Here it is assumed that U2 ⊆ U1 and every pair (x1, x2) ∈ Q
satisfies two conditions (see [20, Def. V.2] for details):

1. US2(x2) ⊆ US1(x1) and
2. u ∈ US2(x2) =⇒ Q(F1(x1, u)) ⊆ F2(x2, u) holds.

A distinct feature of the utilization of feedback refinement
relations in a symbolic controller synthesis scheme is the
particular simple refinement step, in which the refined con-
troller C1 for the plant S1 is naturally obtained from the
abstract controller C2 by using the relation Q as quantizer

to map the plant states x1 to abstract states x2 ∈ Q(x1).
The refinement scheme is illustrated in Fig. 1.
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Figure 1: Refined closed loop (left) and abstract
closed loop (right).

2.1 Computation of symbolic models
SCOTS supports the computation of symbolic models of the

sampled behavior of perturbed control systems of the form

ξ̇(t) ∈ f(ξ(t), u) + J−w,wK (1)

where f is given by f : Rn × U → Rn and U ⊆ Rm. We
assume that the set U is non-empty and f(·, u) is contin-
uously differentiable for every u ∈ U . The vector w =
[w1, . . . , wn] ∈ Rn+ is a perturbation bound and J−w,wK de-
notes the hyper-interval [−w1, w1]× . . .× [−wn, wn]. Addi-
tionally to the perturbations on the right-hand-side of (1),
we consider measurement errors, with bound z ∈ Rn+, which
we model by a set-valued map P : Rn ⇒ Rn,

P (x) = x+ J−z, zK. (2)

Let τ > 0 be the sampling time. Formally, we represent
the τ -sampled behavior of the control system (1) as simple
system S1 = (X1, U1, F1), with X1 = Rn, U1 = U and F1 is
implicitly defined by x′ ∈ F1(x, u) iff there exists a solution
ξ of (1) under input u ∈ U so that ξ(0) = x and x′ = ξ(τ).

The construction of a symbolic model of S1 is based on the
over-approximation of attainable sets. To this end, we use
the notion of a growth bound introduced in [20]. A growth
bound of (1) is a function β : Rn+×U ′ → Rn+, which is defined
with respect to a sampling time τ > 0, a set K ⊆ Rn and
a set U ′ ⊆ U . Basically, it provides an upper bound on the
deviation of solutions ξ of (1) from nominal solutions1 ϕ
of (1), i.e., for every solution ξ of (1) on [0, τ ] with input
u ∈ U ′ and ξ(0), p ∈ K, we have

|ξ(τ)− ϕ(τ, p, u)| ≤ β(|ξ(0)− p|, u). (3)

Here, |x| for x ∈ Rn, denotes the component-wise abso-
lute value. A growth bound can be obtained essentially by
bounding the Jacobian of f . Let L : U ′ → Rn×n satisfy

Li,j(u) ≥

{
Djfi(x, u) if i = j,

|Djfi(x, u)| otherwise
(4)

for all x ∈ K′ ⊆ Rn and u ∈ U ′ ⊆ U . Then

β(r, u) = eL(u)τr +

∫ τ

0

eL(u)sw ds,

is a growth bound on [0, τ ], K, U ′ associated with (1). The
domain K′ on which (4) needs to hold, is assumed to be
convex and contain any solution ξ on [0, τ ] of (1) with u ∈ U ′

1A nominal solution ϕ(·, p, u) of (1) is defined as solution of
the initial value problem ẋ = f(x, u), x(0) = p.
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and ξ(0) ∈ K, see [20, Thm. VIII.5]. Note that β is obtained
by evaluating the solution of the initial value problem

ζ̇(t) = L(u)ζ(t) + w, ζ(0) = r. (5)

In the computation of a symbolic model S2 of S1 we re-
strict our attention to the case in which X2 forms a cover of
the state alphabet X1 where the elements of the cover X2

are non-empty, closed hyper-intervals, subsequently, referred
to as cells. Specifically, we work with a subset X̄2 ⊆ X2 of
congruent cells that are aligned on a uniform grid

ηZn = {c ∈ Rn | ∃k∈Zn∀i∈[1;n] ci = kiηi} (6)

with grid parameter η ∈ (R+ r {0})n, i.e.,

x2 ∈ X̄2 =⇒ ∃c∈ηZn x2 = c+ J−η/2, η/2K. (7)

The remaining cells X2 r X̄2 are considered as “overflow”
symbols, see [6, Sect III.A]. The symbolic model of S1 is
given by S2 = (X2, U2, F2) where U2 is a finite subset of U1

and F2(x2, u) = ∅ for all x2 ∈ X2 r X̄2. For the remaining
cells x2 ∈ X̄2, the transition function is computed according
to Alg. 1. For a correct implementation, the growth bound
β needs to be defined w.r.t. τ > 0, ∪x2∈X̄2

P (x2), and U2.

Algorithm 1 Computation of F2 : X̄2 × U2 ⇒ X̄2

Require: X̄2, U2, β, ϕ, z, r = η/2, τ
1: for all c+ J−r, rK ∈ X̄2 and u ∈ U2 do
2: r′ := β(r + z, u)
3: c′ := ϕ(τ, c, u)
4: A := {x′2 ∈ X2 |

(
c′ +

q
−r′ − z, r′ + z

y)
∩ x′2 6= ∅}

5: if A ⊆ X̄2 then
6: F2(x2, u) := A
7: else
8: F2(x2, u) := ∅

Using a similar line of reasoning as in [20, Thm. VIII.4],
we can show that Q′ = Q ◦ P with Q ⊆ X1 × X2 defined
by (x1, x2) ∈ Q iff x1 ∈ x2, is a feedback refinement relation
from S1 to S2. It follows that a refined controller from an
abstract controller is robust w.r.t. the measurement errors
P , see [20, Thm. VI.4].

2.2 (Abstract) Specifications
Currently, SCOTS supports the synthesis of controllers to

enforce reachability and invariance (often referred to safety)
specifications [4]. Given a simple system S1 = (X1, U1, F1)

let X∞1 = ∪T∈N∪{∞}X [0;T [
1 . A reachability specification as-

sociated with I1, Z1 ⊆ X1 is defined by

Σ1 = {x1 ∈ X∞1 | x1(0) ∈ I1 =⇒ ∃t∈[0;T [ : x1(t) ∈ Z1}.

An invariance specification associated with I1, Z1 follows by

Σ1 = {x1 ∈ X [0;∞[
1 | x1(0) ∈ I1 =⇒ ∀t∈[0;∞[ : x1(t) ∈ Z1}.

SCOTS supports two classes of sets to define I1 and Z1:
• polytopes R = {x ∈ Rn | Hx ≤ h} parameterized by
H ∈ Rq×n, h ∈ Rq, and
• ellipsoids E = {x ∈ Rn | |L(x − y)|2 ≤ 1} parameter-

ized by L ∈ Rn×n and y ∈ Rn, where | · |2 denotes the
Euclidean norm.

Consider the plant S1, the symbolic model S2 and the rela-
tionsQ,P as defined in the previous subsections. Let Σ1 be a
reachability (invariant) specification associated with I1 and

Z1. An abstract specification Σ2 for S2 is simply obtained as
reachability (invariant) specification associated with I2 and
Z2, where I2 is an outer approximation of I1, i.e., x1 ∈ I1
implies Q ◦ P (x1) ⊆ I2 and Z2 is an inner approximation,
i.e., x2 ∈ Z2 implies P−1 ◦Q−1(x2) ⊆ Z1.

2.3 Synthesis via fixed point computations
For the synthesis of controllers C to enforce reachability,

respectively, invariance specifications, SCOTS provides two
fixed point algorithms. Consider S2 = (X2, U2, F2) with X2

finite and I2, Z2 ∈ X2. For Y2 ⊆ X2, we define the map

pre(Y2) = {x2 ∈ X2 | ∃u∈US2
(x2)F2(x2, u2) ⊆ Y2}.

Consider the functions

Ǧ(Y ) = pre(Y ) ∪ Z2 and Ĝ(Y ) = pre(Y ) ∩ Z2.

SCOTS supports the minimal fixed point computation of Ǧ
and the maximal fixed point computation of Ĝ. Let us
shortly recall how we can extract a controller from a fixed
point computation.

Suppose we are given a reachability problem (S2,Σ2), i.e.,
Σ2 is a reachability specification for S2 associated with I2
and Z2. Let Y∞ denote the minimal fixed point of Ǧ and
consider the sets Y0 = ∅, Yi+1 = Ǧ(Yi) obtained in the fixed
point iteration. Let j(x) = inf{i ∈ N | x ∈ Yi}. Then we
derive a controller as a system according to [20, Def. III.1]
(ver. 2) by C = ({q}, {q}, X2, X2, U2, Fc, Hc) with

Hc(q, x2) =

{
H ′c(x2)× {x2} if x2 ∈ Y∞
U2 × {x2} otherwise

Fc(q, x2) =

{
{q} if x2 ∈ Y∞
∅ otherwise

where H ′c(x2) = {u ∈ US2(x2) | F2(x2, u) ⊆ Yj(x2)−1}.
To solve an invariance problem (S2,Σ2), i.e., Σ2 is in an

invariance specification associated with I2 and Y2, we com-
pute the maximal fixed point Y∞ of Ĝ(·). The controller
is identical to the reachability controller with the difference
that H ′c is set to H ′c(x2) = {u ∈ US2(x2) | F2(x2, u) ⊆ Y∞}
if x2 ∈ Y∞ and otherwise to H ′c(x2) = U2.

For both cases, it is well known that C2 solves the control
problem (S2,Σ2) iff I2 ⊆ Y∞, see e.g. [4]. Also for both
types of specifications the controller is memoryless or static.

3. TOOL DETAILS
In this section we describe the architecture of SCOTS. The

C++ part of the software tool provides the algorithms to
compute the symbolic model and to compute the minimal
and maximal fixed points. The algorithms are basically dis-
tributed across three classes:
• SymbolicSet

• SymbolicModel > SymbolicModelGrowthBound

• FixedPoint

3.1 SymbolicSet
The class SymbolicSet is used to define the symbolic state

space X̄2 (excluding the overflow symbols), the symbolic
input space U2, and the atomic propositions such as the
target set or safe set Z2 ⊆ X̄2. It accepts the state space
dimension n, the grid parameter η ∈ Rn+ and a compact
hyper-rectangle Ja, bK, a, b ∈ Rn, a ≤ b as input. Optionally,
the measurement error bound z ∈ Rn+ as given in (2) can
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be provided. The default value is set to z = 0. We use
the SymbolicSet to represent a subset of the grid points in
Ja, bK ∩ ηZn. Initially, the set is empty and one should use
the various methods of the SymbolicSet like addGridPoints,
addPolytope, remPolytope, addEllipsoid or remEllipsoid
to add and remove grid points to the symbolic set. Each
command (except the addGridPoints) accepts the option
INNER and OUTER whose usage is as follows.

Suppose we want to add grid points associated with the
set R = {x ∈ Rn | Hx ≤ h}. In order to add the set
{p ∈ Ja, bK∩ ηZn | p+ J−η/2− z, η/2 + zK∩R 6= ∅} we pick
OUTER as option in addPolytope. If we pick INNER, the set
{p ∈ Ja, bK ∩ ηZn | p + J−η/2− z, η/2 + zK ⊆ R} is added.
Similarly, for an ellipsoid {x ∈ Rn | |L(x − y)|2 ≤ 1} with
L ∈ Rn×n and y ∈ Rn, the outer and inner approximations
are determined by {p ∈ Ja, bK ∩ ηZn | |L(p − y)|2 ≤ 1 + r}
and {p ∈ Ja, bK ∩ ηZn | |L(p − y)|2 ≤ 1 − r}, respectively,
where r = maxx∈J−η/2−z,η/2+zK |Lx|2.

Technically, we interpret the map H ′c : Z∞ ⇒ U2 as a sub-
set of X̄2×U2 and represent the controller function H ′c also
as SymbolicSet. To this end, we can instantiate a Symbol-

icSet with two instances of a SymbolicSet with parameters
n, η, Ja, bK and m,µ, Jc, dK, where n, η, Ja, bK and m,µ, Jc, dK
are the parameters associated with X̄2 and U2. respectively.

Any instance of a SymbolicSet set can be written with all
the relevant information to a file. Such a file can be loaded
within the C++ library as well as within Matlab. In that way
one can use Matlab’s build-in functions not only to visualize
various entities like atomic propositions and the domain of
the controller, but also to simulate the closed loop.

We use binary decision diagrams (BDDs) [21] as underly-
ing data structure. Specifically we use the object oriented
wrapper to the CUDD library [22].

3.2 SymbolicModel
The class SymbolicModel is the base class of Symbolic-

ModelGrowthBound. The base class manages BDD related
information, such as number and indices of BDD variables.
Alg. 1 to compute S2 = (X2, U2, F2) using growth bounds is
implemented in the class SymbolicModelGrowthBound which
requires the ordinary differential equations (1) and (5) as in-
puts. In our case studies, we use a Runge-Kutta scheme.

3.3 FixedPoint
The FixedPoint class is instantiated with an instance of

a SymbolicModel and provides two methods minimalFixed-
Point and maximalFixedPoint for the fixed point compu-
tation of Ǧ and Ĝ. The input to those methods is a BDD
that represents the set Z2. The outputs are two BDDs, one
represents the fixed point and one the map H ′c. The results
can be stored to file by first, adding the BDDs to the ap-
propriate instances of a SymbolicSet and second, using the
writeToFile method provided by SymbolicSet.

The general work flow with the different user inputs and
the possible tool output is illustrated in Fig. 2.

4. NUMERICAL EXPERIMENTS
The tool and all details of the conducted experiments can

be found at www.hcs.ei.tum.de

4.1 A path planning problem
As a first example we consider a path planning problem,

also considered in [20] and [9], for the bicycle dynamics of a

SymbolicSet

η, z ∈ Rn+
Ja, bK ⊆ Rn

User Input:

SymbolicSet

µ ∈ Rm+
Jc, dK ⊆ Rm

User Input:

SymbolicModel
SymbolicModelGrowthBoundode solver

τ > 0
ξ̇ = f(ξ, u)

ζ̇ = L(u)ζ + w

User Input:

U2X̄2

SymbolicSet
η, z ∈ Rn+
Ja, bK ⊆ Rn

Init:

FixedPoint

F2 ⊆ X̄2 × U2 × X̄2

Z2 ⊆ X̄2

SymbolicSet

H′c ⊆ X̄2 × U2

controller.bdd

writeToFile

(η, µ) ∈ Rn+m
+

Ja, bK× Jc, dK

Init:

(η, µ) ∈ Rn+m
+

Ja, bK× Jc, dK

Figure 2: The work flow in SCOTS to compute a sym-
bolic model S2 = (X2, U2, F2) of the sampled system
S1 associated with (1) and to synthesize a controller
to enforce an invariance (reachability) specification
where Z2 ⊆ X̄2 is the safe (target) set.

vehicle. The control system consists of a 3-dimensional state
space and a 2-dimensional input space. The states (x1, x2)
and x3 correspond to the position, respectively, orientation
of the vehicle in the 2-dimensional plane. The inputs are
given by the velocity and steering angle. There are no mea-
surement errors or perturbations present. The objective is
to steer the robot from a given initial position (green dot)
to a target set (red rectangle) while avoiding the obstacles
(blue rectangles), see Fig. 3. The precise control problem
can be found in [20].

In order to use SCOTS we create a C++ file vehicle.cc in
which we include, among other, the cudd library cuddObj.hh

and the header-only classes SymbolicSet.hh, SymbolicMod-
elGrowthBound.hh and FixedPoint.hh. We begin with the
definition of the dynamics and the growth bound. For ex-
ample, to provide the nominal solution ϕ for Alg. 1 we write

typedef std::array<double,3> state_t; /* state type */
typedef std::array<double,2> input_t; /* input type */
auto vehicle_post = [](state_t &x, input_t &u) {
/* the ode describing the vehicle dynamics */
auto rhs =[](state_t& xx, const state_t &x, const input_t &u) {
double alpha=std::atan(std::tan(u[1])/2.0);
xx[0] = u[0]*std::cos(alpha+x[2])/std::cos(alpha);
xx[1] = u[0]*std::sin(alpha+x[2])/std::cos(alpha);
xx[2] = u[0]*std::tan(u[1]);

};
size_t nint=5; /* number of intermediate steps */
double h=0.06; /* h*nint = sampling time */
ode_solver(rhs,x,u,nint,h); /* runge kutte solver */

};

Subsequently, we define the uniform grids for the sets X̄2

and U2 as SymbolicSet. To define X̄2 on the hyper-rectangle
Jlb, ubK with grid parameter η we write
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Figure 3: The green dot, the dark blue, and dark
red rectangles correspond to the original specifica-
tions. The light blue cells are added to the overflow
symbols in X2 and the light red cells are used to
define the abstract reachability specification.

double lb[3]={0,0,-M_PI-0.4}; /* lower bounds */
double ub[3]={10,10,M_PI+0.4}; /* upper bounds */
double eta[3]={.2,.2,.2}; /* grid parameter */
scots::SymbolicSet ss(mgr,3,lb,ub,eta); /* the uniform grid */
ss.addGridPoints(); /* fill the SymbolicSet */

At first the SymbolicSet is empty. In the last line we add
all grid points contained in Jlb, ubK to ss. It is possible to
account for the obstacles by adding them to the overflow
symbols, i.e., we remove an outer approximation from ss.
To remove an obstacle we write, for appropriately defined
H ∈ R4×3 and h ∈ R4

/* remove outer approximation of P={ x | H x <= h } from ss */
ss.remPolytope(4,H,h,scots::OUTER);

Similarly, we remove all the other obstacles and define a Sym-

bolicSet ts to represent the target Z2. The computation
of the transition function F2 is implemented by

scots::SymbolicModelGrowthBound<state_t,input_t> abs(&ss, &is);
abs.computeTransitionRelation(vehicle_post, radius_post);

and the minimal fixed point is computed by

scots::FixedPoint reach(&abs);
/* the fixed point algorithm operates directely on BDD’s */
BDD target = ts.getSymbolicSet(); /* extract the BDD from ts */
BDD fp; /* the fixed point is stored in fp */
BDD con; /* the controller is stored in con */
reach.minimalFixedPoint(target, fp, con);

We store the controller to vehicle_controller.bdd by

scots::SymbolicSet controller(ss,is);
controller.setSymbolicSet(con);
controller.writeToFile("vehicle_controller.bdd");

In order to load the controller in Matlab and to get the
inputs associated with a state x we use

>> con=SymbolicSet(’vehicle_controller.bdd’);
>> u=controller.getInputs(x);

After we compiled and executed the C++ program, we sim-
ulated the controlled vehicle in Matlab. A closed loop tra-
jectory is illustrated in Fig. 3.

A comparison of SCOTS with Pessoa and the tool devel-
oped at the University of Federal Armed Force (UniBW) in

CPU [GHz] #F2 tabs[sec] tsyn[sec]
Pessoa Core2Duo 2.4 34020088 13509 535
SCOTS #1 i7 3.5 37316812 100 413
UniBW i7 2.9 28398299 2.33 0.22
SCOTS #2 i7 3.5 18991758 53 210

Table 1: Comparison of SCOTS with numbers re-
ported in [9] and [20].

Munich (which is not publicly available), is listed in Tab. 1.
The table contains (apart from the CPU type) the number
#F2 of elements in the transition relation F2, the time tabs

spent to compute the symbolic model and the time tsyn spent
to solve the abstract synthesis problem. We conducted two
experiments. In SCOTS #1, we accounted for the obstacles in
the synthesis part. To this end, we implemented a modified
minimal fixed point computation so that we can solve reach-
avoid problems. In this case X̄2 also contains the obstacles.
While in SCOTS #2, we added an outer approximation of
the obstacles (as described above) to the overflow symbols
in X2, which results in a smaller X̄2 and, hence, a smaller
number of transitions.

Unsurprisingly, SCOTS outperforms Pessoa in terms of the
computation times for the symbolic model. This stems from
the fact that in Pessoa (at least for the nonlinear case) the
computation is partly implemented in C/C++ and partly im-
plemented in Matlab, which causes a large overhead. While
the difference in the synthesis times is explainable by the
different CPUs. The UniBW tool outperforms both Pessoa

and SCOTS with respect to both computation times. We be-
lieve that the difference in tabs is mainly due to the large
overhead that the management (accessing, iterating over,
adding, and removing elements) of the BDD data structure
requires, see also [15] for a similar observation. Additionally
to the efficient data structure and contrary to the iterative
implementation of the minimal fixed point in SCOTS and Pes-

soa, the UniBW tool uses a Dijkstra like algorithm [24] and
is therefore able to drastically reduce tsyn.

4.2 DC-DC boost converter
In this case study, we synthesize a controller for a DC-DC

boost converter to enforce a invariance specification. The
DC-DC boost converter is modeled by a switched system
with two modes, with a 2-dimensional linear dynamics in
each mode. The system is incrementally stable and there-
fore, amenable to the construction of approximately bisimi-
lar symbolic models, see [19] for details. We solve the syn-
thesis problem using SCOTS as well as Pessoa. The domain
of the controller, synthesized using SCOTS, together with a
closed trajectory is illustrated in Fig. 4. We run Pessoa

with two option #1 and #2. For option #1 we computed
an approximately bisimilar symbolic model, which results
in a deterministic transition function. For option #2, we
computed an approximately alternatingly similar symbolic
model, whose computation is based on attainable sets and
therefore closer to the symbolic model obtained with SCOTS.
The run times of various computations are listed in Tab. 2.
Surprisingly, SCOTS outperforms Pessoa in terms of the con-
struction of the symbolic model, even though, contrary to
the nonlinear case, all the computations are implemented in
C. In the last row of Tab. 2 we list the numbers reported
in [15] (tabs is not listed in [15]). Again we can observe the
substantial overhead induced by the BDD usage compared
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Figure 4: The domain of the invariance controller.

CPU [GHz] tabs[sec] tsyn[sec]
Pessoa #1 i7 3.5 478.7 65.2
Pessoa #2 i7 3.5 934.4 91.1
SCOTS i7 3.5 18.1 75.4
CoSyMA − − 8.32

Table 2: Comparison of SCOTS, Pessoa and [15].

to the hash tables in CoSyMA.

5. CONCLUSION
In this paper we introduced SCOTS, a software tool to syn-

thesize controllers for nonlinear control systems based on
symbolic models. Contrary to other available tools, it sup-
ports the construction of symbolic models in the framework
of feedback refinement relations and therefore facilitates a
rather straightforward controller refinement procedure [20].
We illustrated by two examples from the literature the ef-
fectiveness of the tool by synthesizing controllers for invari-
ance and reachability problems. For those experiments, we
could observe a reduction of the time complexity compared
to Pessoa, whose implementation similar to SCOTS is based
on BDDs. On the other hand, we observed substantial longer
run times compared to tools that uses alternative data struc-
tures, e.g. hash tables in CoSyMA. Hence, for the future we
plan to incorporate such alternatives in SCOTS and investi-
gate the various approaches not only in terms of time com-
plexity but also with respect to memory usage. Additionally,
we plan to exploit symbolic and/or automatic differentiation
and nonlinear optimization methods to support the user in
finding tight Lipschitz matrices that are needed in the com-
putation of growth bounds.
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