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LIST OF SYMBOLS, NOMENCLATURE, OR
ABBREVIATIONS

O M X n matrix with entries 0

1., ™ X n matrix with entries 1

pF smoothed code measurement from receiveith respect to satellité

N# - estimated fixed integer ambiguities of a double differeneasarement

AN  column vector of number of cycle slips of double differenceasurements
AN,ea column vector of predicted number of cycle slips of doubféedence measurements
ANF  Number of cycle slips in the phase double difference measemey™!

n noise associated with code measurement or With

Nk estimated float ambiguities of a double difference measeneém

v a column vector stacking double difference phase and codsunements

Uiwea @ column vector stacking fixed double difference phase add nteasurements
Jou code measurement from receivewith respect to satellité

pM ~ adouble difference code measurement between receiardn and between satellite
and!

Pad ixea NOtation used in the context of cycle slip correction. Itoles the fixed phase double
difference measurement with cycle slip corrected.

H,., geometry matrix ofpqq Or paq
€ noise associated with phase measurement

Pkl exea @ fixed double difference phase measurement between receiemdn and between
satellitek and! scaled with2> unless stated otherwise

©ad fixed & COlumMn vector stacking fixed double difference phase neasents. The phase mea-
surements are scaled with wig}; unless stated otherwise

waa  acolumn vector stacking double difference phase measuntsimiEhe phase measurements
are scaled with Wit% unless stated otherwise

oM adouble difference phase measurement between receiaedn and between satellite
and! scaled With% unless stated otherwise

Or a column vector containing carrier-phase measurememtsdifberent satellites scaled with
ﬁ unless stated otherwise

©F carrier-phase measurement from recetveiith respect to satellité scaled Withﬁ unless
stated otherwise

!

S

nn  Daseline vector pointing from receiverto receivem

5



»

Contents

®
R

N SN
s @

j=p)

T &

H, geo

CSC
CSD
DD

normalized line-of-sight vector directing from satellit¢o receiven-
a mapping matrix of the double difference ambiguity pararseto the measureme#it
a mapping matrix containing/2 as diagonal elements

a mapping matrix of the double difference ambiguity pararseto the double difference
phase measurement

simplified version of;mn which does not state the order of the receivers
baseline vector in the local ENU frame if,,

concatenation off,., and A

geometry matrix of/

transformed ., H, Hye, in local ENU frame

identity matrix

multipath of code measurement

multipath of phase measurement

column vector stacking double difference ambiguities

integer ambiguity of phase measurement received by raceivéh respect to satellité
number of epochs needed for initialization

the transformation matrix from ECEF-frame to local ENUrfi&

time at epoch

cycle slip correction

cycle slip detection

double difference

ECEF Earth-Centered, Earth-Fixed Cartesian coordinaggesy with the origin defined at the

ENU

center of mass of the Earth
local East-North-Up coordinate frame

MAP Maximum A Posteriori probability

PAD

position and attitude determination

WSSE Weighted Sum Squared Error



1. Introduction

Attitude determination can be performed with inertial sgBsmagnetometers and satellite navi-
gation. Inertial sensors have three advantages: They aygataust, show a very low noise level,
and provide measurements at a rate@sf Hz already for low-cost devices. However, accelerome-
ters and gyroscopes need an initialization and a carefildrasibn to remove the drift and scaling
factors [1]. Magnetometers provide a heading informatioeaay without the need of an initial-
ization. However, one has to be sufficiently far away from riegnetic poles. In Munich, the
magnetic declinatioms only 2.4°. Moreover, magnetometers are extremely sensitive torfeag
netic materials such that they can be hardly used in autemagiplications [2].

Satellite navigation also enables precise attitude detation by performing differential car-
rier phase positioning between two or three GNSS receivtaiever, carrier phases are periodic
and integer ambiguities have to be resolved to fully bensadiinfthe precise carrier phase mea-
surements. In 1993, Teunissen invented the Least-squanbggAitiy Decorrelation Adjustmenet
(LAMBDA) method to estimate the double difference carribape integer ambiguities [3]. The
LAMBDA method is today widely used for RTK and differentiahrcier phase positioning over
short baselines.

Henkel and Gunther derived optimized multi-frequencydineombinations in [4] and [5], that
increase the ambiguity discrimination and thereby sigph€ integer ambiguity resolution. In [6]
and [7], Teunissen developed a constrained LAMBDA methaddcease the success rate by in-
cludinga priori information on the baselinength Henkel et al. further extended the constrained
ambiguity fixing in [8] by usingsoftinstead ofhard a priori information (MAP estimation).

Carrier phase measurement can be tracked with millimeteemtimeter-level accuracy even
with low-cost GPS receivers like u-box LEA 6T and is, thug kiey to accurate attitude (heading,
pitch, roll angle) determination. Using a baseline vectmniveed from carrier phase double differ-
ence measurements to determine the heading of a vehicls affere flexibility than a standalone
GPS receiver: heading can be determined even when the @edistationary. Furthermore, the
true heading of the vehicle can be determined when the atientof the vehicle deviates from its
moving direction, which can help to detect for example th& df a car.

However, there are three challenges to be considered witlttdést GPS receivers: The first
challenge is code multipath, which is typically at lea8tm for low-cost GPS receivers even
for open-sky conditions. This increased code multipatecff especially our integer ambiguity
resolution, which typically take8.5 to 3 minutes. We exclude measurement epochs of increased
multipath by carefully analyzing the code residuals. Ormmeambiguities are fixed, we perform
the coasting solely based on the carrier phases.

The second challenge affects cycle slips. While geodetigivers also experience cycle slips,
cycle slips do not occur so often and involve only a whole etip. Low-cost receivers however
experience cycle slips very frequently. Furthermore, €gtips occur also as half cycle slips and
affect multiple satellites simultaneously. We use an dlemamask of20° as satellites of lower
elevation are often affected by consecutive cycle slipse Qgtion for cycle slip detection (CSD)
and correction (CSC) would be to use an inertial sensor. itkiesis, we follow an alternative
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8 1. Introduction

option, i.e. we use a Maximum A Posteriori Probability (MAE5timator, which usea priori
information on the baseline (e.g. its length and the absalehicle velocity) for CSD and CSC.

The third aspect is caused by the oscillator, which typycsiiows clock offsets in the order of
milliseconds and, thus, requires a correction for the B&t@hovement within the time of the dif-
ferential receiver clock offset. Tab. 1.1 summarizes tlitecat aspects of low-cost GPS receivers
and our approach to overcome these issues.

Challenge Our solution
Code multipath use of more epochs for ambiguity fixing,
10 m even in good environments exclusion of measurement epochs,

attitude derived solely from
DD carrier phases after
initial integer ambiguity resolution

Cycle slips 20° elevation mask,

very frequent, also affecting MAP estimator, which uses

multiple satellites simultaneously DD phase measurements and
baseline a priori information

Oscillator: correction of satellite movement

clock offset of milliseconds within differential receiver clock offset

Table 1.1: Challenges of low-cost GPS receivers and ouoagprto overcome these issues.

In this thesis, the following algorithms were developedANAVS PAD system:

1) Extended synchronization correction
e Transformation of synchronization correction in case @rafe of reference satellite
e Precise extrapolation of synchronization correction @Gwegpochs
2) Improved float solution: elimination of measurement dyowith high phase and code multi-
path
3) Cascaded cycle slip detection and correction:
e Cycle slip detection and correction based on triple difieeephase measurements
for low dynamics, and MAP estimator with baseline a priori infonmatderived from
baseline length and code-based vehicle velocity vatteelocity is sufficiently high and
smoothed code residuals are sufficiently low
e A posteriori cycle slip detection and correction based onai@ing phase residuals

The algorithms were tested during extensive measuremergaigns in Garching, Nymphen-
burg, Konigsplatz, ESA/AZO, Starnberger See and Wolfsipdky). The last chapter of this work
provides a thorough description of the complete attituderdgination system. Detailed flow
charts illustrate how the modules are ordered, how the peteashare transferred from one module
to another and which algorithm is implemented in each mobulesferring the reader to a pre-
vious chapter/ section. With the explanation given in tts &oapter, this thesis also serves as a
handbook to those who wish to work on ANAVS PAD system.



2. Absolute Position Determination

A GPS receiver typically acquires signals franto 12 visible satellites and tracks the code and
carrier phases byRelay Locked LoogDLL) and aPhase Locked Loofi’LL). The DLL includes
a correlator, a discriminator, a loop filter, a code numdsiceontrolled oscillator (NCO), and
a code generator to track the signal traveltime (and, tinespseudorange). Similarly, the PLL
includes a phase NCO, which is driven by the difference ohtleasured phase and the oscillator
generated phase. As the carrier phase is periodic2aitlan integer ambiguity has to be resolved
for each satellite to obtain a range information from thekeal phases.

We model the pseudorange as described by Henkel, Cardeioagi &1d Gunther in [8] as:

p,’f(t +671,) = ||Z.(t + o1) — Z¥(t + 67, — )|| +c (57}( ) — oT*(t + 07 — ATf))
+ IF(t+ 6m) + TF(t + 67) + m’; (t+67) + b + V" +0f(t +67), (2.1)

with the receiver positior,, the satellite positior”, the speed of light in vacuum, the slant
ionospheric delay” varying between a few up to several tens of metres, the slapo$pheric
delayT;" being 2 m in zenith direction, the code multipath enrdy , the receiver code bids, the
satellite code bias® and the code noisg. The measurement was explicitly modeled at timér,
instead oft to take thesatellite movemerduring the receiver clock offset into account. All time
variables involved are listed out, with the GPS system timéthe time of signal reception, the
receiver clock offsefr,, the satellite clock offsetr* and the delay\r* between the transmission
time and the received time.

The carrier phase measurement is similarly modeled witlathkiguities and phase biases as
additional terms and the ionospheric error subtracte@ausbf added to the range, i.e.

%gpf(t +07,.) = ||@-(t + 07) — fk(t + 071, — ATk)H +c (5Tr(t +07.) — 57""’(15 + 07, — ATk))

— IF(t+ 67,) + TE(t + 67,) + ANF +mb (¢ +67,) + B + B + el (t + o7,).
(2.2)

2.1 Absolute Positioning with Carrier Smoothed Code Measwments

The pseudorange measurement is provided byilay Locked LoogDLL) and the phase mea-
surement by théhase Locked LoofPLL). The noise performance of both tracking loops was
derived by Guinther in [9] and is given for the DLL by

B d - Bprr, 2
Up_lc.\/2P/N0 (1+E/N0(2—d))’ (2.3)
and for the PLL by
A Bpr, 1
O-)\SD_% \/2P/NO<1+2E/NO)7 (2'4)

9



10 2. Absolute Position Determination

where P is the signal powerFE is the accumulated energy during correlation ajds the noise
power spectral densityBpr,;, and Bpy, are respectively the bandwidths of the loops dnd the
correlator-spacing in chips of the DLL. The ratio of the stard deviations of the code and phase
tracking errors is dominated by the chip length and the eamiavelength. A¢. = 300 m and
A = 19.03 cm, the phase can be trackés0 more accurately than the code measurements.
Carrier smoothing is a popular approach to reduce the cade aaod multipath with the help of
the low noise phase measurements without the need of aruédsalrier phase integer ambiguity
resolution. Fig. 2.1 shows the functional diagram of carsimoothing, where the code minus
carrier phase measurements (i.e. code multipath and cade, it also the ionospheric delay)
are low-pass filtered.

low-pass filter

" N k -

P D, m_ 7
N N

QOk

Figure 2.1: Hatch filter: The code minus phase measurementsva-pass filtered.

The carrier smoothed pseudorange measurement of satedlitepocht is given by

P = 2o ) + (L= 1) (M~ 1)+ (5(0) — H = 1)) (25)

wherer is the smoothing time constant.
The carrier smoothing is typically initialised wifif (1) = p*(1). Note that carrier smoothing
should be re-initialized always when cycle slips are dettiut can not be reliably corrected.
Gunther derived in [9] the variance of the smoothed code mjpiase noisg for white Gaus-
sian code and phase measurements as

g

>IN

1 2r—2 1,
N <2T Tt l)) (o + ), (2.6)

Whereo—?p and ag are the variances of the phase and code noises. The cowhateeen the
smoothed code minus phase measurement and the phase meagwithe current epoch follows
from EqQ. (2.5) as

Oxp = ——0, (2.7)

Thus, the variance of the smoothed code measurement inebtas

2 2 2
O’——O’X—FQO';@—FUSO

p
1 27 —2 Liog—1 2 2 1, 2
N (27—1 T )) H(opF0y) =270, + 0, (2.8)

For larget, the variance of the smoothed code measurements converges t

10



2.1 Absolute Positioning with Carrier Smoothed Code Measiants 11

1 1
: 2y _ 2 2 2 2
tlggo(aﬁ) = (o, +0,) - Q;Usa + 0,

(2.9)

We choose = 600 epochs, which results in a reduction of the standard dewiati the code noise
by a factor ofy/27 — 1 = 35.

2.1.1 Iterative least-squares estimation of absolute reer position and clock offset

The single-frequency carrier smoothed code measuremértsuisible satellites are rearranged
such that all known parameters (satellite position and kcloffsets, atmospheric delays) are
brought to the left side and the unknown parameters to tie sige of the equation, i.e.

P4 ezt +cort — IV =T B it
. S .
= H, < o ) + : , (2.10)

pE +EXFK 4 cork — K - TX i

where the ionospheric slant delay/scould be partially corrected using the Klobuchar model or
EGNOS corrections, and the tropospheric slant deldyare typically described through a blind
model. The absolute receiver position and clock offsetslatermined by least-squares estimation

as
Z .
r = min
CCSTT Tr,cOTr

As the geometry matrixi; is itself dependent on the unknown receiver position, amafitee ap-
proach is required. The Gauss-Newton algorithm of (1) islusaletermine the absolute receiver
position and clock offset.

This algorithm can also be applied to determine the floatswwf the baseline and ambiguity
parameters as described in chapter 4.

Fig. 2.2 shows the track of a test drive in front of the ESA / AE@Iding in Oberpfaffenhofen,
Germany. The track includes several turns and three saatiith reversing ad7—104 s,140—160
s and180 — 185 s. As the track was close to a high building, the code measmtsmvere affected
by substantial multipath. Even with severe multipath, weenstill able to determine the absolute
positions accurately.

Fig. 2.3 illustrates residuals of pure code and carrieregimed code measurement during abso-
lute position estimation. We observe severe multipath efiaténs of meter in the case where pure
code is used for absolute positioning. With carrier smawhmultipath is substantially reduced.
Remaining residuals of a few meters are due to unmodeledsatmeoic delays and satellite biases.

2

(2] - ew

—1
25

~1 >1=1 1 1 all
pp+ext+cor —I =T,

~K SK 2K K TK K
pr+errt oottt — 10 =T,
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12 2. Absolute Position Determination

Algorithm 1 Iterative least-squares solution

Input: pF, x>t Zk 67F Vk
Output: &, co7,, H;

7% =0 > Initialization of receiver position and clock offset
2. 679 =0
3:fori=1—7do
4. fork=1— Kdo .
5: rD = gk |20 = g = (67 — 57F) > Smoothed pseudorange residual
) (ki) G gk
S = =
7. end for
(é'(l,i))T 1
(@) .
8 H; = :
(e (K,i))T 1
(1,2)
7 Y Oyt OV st |
9 i T +(Hf Zer) HOYT 5>
o7, co7, 7Y () 2 He) - () 2 e
rr
10: end for

three reverse drives at 97 - 104 s, 140 - 160 s and 180 - 185 s.

12



2.1 Absolute Positioning with Carrier Smoothed Code Measiants 13

[N
o

=T I

fiam : : i

[

Residuals of absolute position estimation [m]
= '
o (4]

o

-15 ¢ ﬂw o a ' — PRN 02
: ‘ . | —— PRN 12

20 PRN 29
PRN 31

= PRN 02 with smoothin
= PRN 12 with smoothin
= PRN 29 with smoothin
PRN 31 with smoothin

code mUItipath'

100 200 300 400 500 600 700 800
Time [epochs]

Figure 2.3: Residuals of absolute position estimation ad-BZ0O. Thicker lines show the residuals of
smoothed code measurement during absolute position d¢stimahile finer lines show the residuals of
pure code measurement during absolute position estimation
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3. Attitude determination: measurement model

The relative position (and thereby the attitude) inforrmais completely included in the receiver-
satellite range in Eq. (2.1) and (2.2). All other terms aresamice parameters that we wish to
eliminate by differencing or to suppress by correction d&arrection data are provided for ex-
ample by SAPOS the IGS, the DGPS System and ASCOS. These services prowicecton
parameters which are valid over a local area since ionogpdued tropospheric delays are not sen-
sitive to the variation in geographical position over a feetens. However, ambiguities in carrier
phases are different for each receiver and, thus, canndirbmated by using a reference station.
The resolution of integer ambiguities is required and oyragch is explained in chapter 5.

3.1 Single difference carrier phase measurements

The single difference between the carrier phase measutaerhsatellitet observed by receivers
1 and2 is given by

A A
A= (=) = () () (T T+ cn —dm) @)
FANE = NE)+ (b — ) (81— Ba) + (&5 — ).

Satellite clock offsets as well as satellite phase biasesdeaconsidered stable over the time of
the differential receiver clock offset and, therefore, eliminated by the differencing between two
receivers. We simplify the notation by writing the diffecémg as(-)15, i.e.

A

%aplfz =71y, — Ify + Tty + c0T1a + ANfy + m 15 + Bia + €l (3.2)
For attitude determination, the baseline length variesvéen 1 m (car application) an@0 m
(ship application) and therefore, ionospheric and tropesp delays are also cancelled by the
differencing between two receivers. Hence, Eq. (3.2) cautiber simplified to

A
%<Pl1€2 = 7y + O + ANY, + m’;,u + Bra + €l (3.3)

3.2 Double difference code and carrier phase measurements

We observe that the single difference model described irpteeious section still contains the

receiver clock offsets and receiver phase biases which ealitminated in a similar manner by

differencing measurements from two satellites. The dodifference (DD) measurement between
receiverl and2 and satelliteék and! follows from Eq. (3.3) and is given by

A
(@, = Ply) = (rfy — m15) — A(Nfy — Ni,) + (ml;,m - mip,lz) + (efy — £ly) (3.4)

2T
=1y — AN +mll, + el (3.5)

14



3.2 Double difference code and carrier phase measurementb

Satellitel
., Satellitek

m - ek 3
N N
\

\ \ s s
’X' / /
\ X 7
y \ s/ s
/\ \ Ve /
\ 4 X
\ 7 /
\ \ s s
k.7 k k \ V7 d
€y ~biz = pi — p3 A Tr ! !
\ E%z < €1 b1z = p1 — py
\
. e .
Receiver \q Receiverl
bia =71 — 7o

Figure 3.1: Double difference with short baseline

The main objective of this work is to determine the heading afr or a ship in harsh envi-
ronments. The heading can be easily obtained from the ba$elsing trigonometric functions.
Therefore, it is practical to introduce the baseline ve&grinto the double difference equation.
Knowing that512 =7 — To, Wherefr is the position vector of receiverin the ECEF frame, and
that for short baselines® ~ ¢, wherec? is the line-of-sight vector directing from satelliteto
receiverr (see Fig. 3.1), we can therefore rewrite Eq. (3.4) as

A S

5= (01 — o) =170 = M| = 172 = 28) = (170 — 21| = 172 — ']) + A3 + misy + <l

=<*’“T @ —F) et (@ —ah) (@ (@ ) -t (@ - 3)
+ANf2l+m 2+512

(e*f“ — &N byy + B+ ANTE A+ mb, + R (3.6)

Q

wherec}, is a correction for the projecteshtellite movemenwithin the time of the differential
receiver clock offset, which was derived by Juan Cardendssmaster thesis [10] and will be
explained later in this thesis. The same derivation cantssapplied to the pseudorange, resulting
in the following relationship:

Pra = Pha —(lel — &) - |7 - x'“ll) (3 = 2" = |72 = &) + myhs + 0y
ST - - AT (@ - ) - @ (@ -7 - T (5 - )
+C12 +mp 12 +7712
(61k - 61)T bl2 + 012 + mp 12 T 7712 (3.7)

Assuming that" satellites are visible at a certain epoch and that satéligechosen as reference
satellite, we can write th& — 1 respective double difference carrier phase measurenmemizstiix-

1satellite Positioning Service of the German State Survepas around 200 stations nationwide and provides
correction up to centimeter precision in real-time [9].
2Baseline is the vector linking the two receivers.

15



16 3. Attitude determination: measurement model

vector notation as:

21 21 S1 S\T 21 21
¥12 — €12 (€1 —er) AN, €12
i = : b1z + : + ; . (3.8)
K1 K1 21 KT K1 K1
¥12 — Ci2 (ef —eit) ANT, €19

Note that in Eq. (3.8), multipath is considered as part of sueament noise’.. Besides,
M (2m)oht was redefined agh, to simplify the notation. Due to the presence of ambigujties
there are3 + (K — 1) unknowns in the above matrix equation. Teunissen suggasféd] to use
phase measurements from multiple epochs to avoid having@ertdetermined system. However,
Gunther pointed out in [9] that these phase measuremenéstbdye sufficiently spaced in time
domain to ensure linear independence as multipath can béyldgrrelated between consecutive
epochs while the line-of-sight unit vector varies littl®rin one epoch to the other. In order to
reduce the observation time needed to solve for baselindiartde ambiguities, we use code
measurements in addition to the phase measurements. Cadrimaents, although noisy, are
useful in our case as they are not affected by ambiguitiesS@icking corrected double difference
carrier phase and code measurements taken frgnepochs, we obtain the following system of
equations:

©15(t1) — cf5(t1) (€)' (t1) — e2(t))" N3 e13(t1)
e (t) — el (t) (el (t1) — el ()T Nt ey (t)
w%%(tnep) - C%% (tnep) (_'11 (tnep) - glz(tnep))T N1221 E%%(tnep)

80{(21 (tnep ) B C{(Zl (tnep )

(511 tnep) B g{((tnep))T 512_'_)\ Nllgl + E{(Ql (tnep)

PAt) — i) || @) —eEm)T 0 ()
1) — (1) E(t) = K ()T 0 ns(t)
A = 3 GO e | |
: p{zwtn@)ic{?(w -\ (@) —;e*f(tncpw ] Vé an>
o Hegeo AN

n
(3.9)
By introducing the differential geometry matriX,., and the mapping matrix which maps
the differential ambiguity to its measurement, we can fergimplify the notation of Eq. (3.9) to

W = Hyeobys + AN + 1 = HE +1), (3.10)

= ( bia ) and H = ( ngo A ) and A= ( A - ]'(tnep)X(K—l) O(tnep)x([{—l) )T.

16



3.3 Attitude determination 17

3.2.1 Least-squares float solution

Eqg. (3.9) is an over-determined system of equations. Werdete a weighted least-squares float
solution ofb;, and N (see e.g. [12] and [13]). The positive-definite weightingtmxaprioritizes
good and penalizes noisy measurements. The weightingxiatgipically chosen as the inverse
of the measurement covariance mattix as described by Misra and Enge in [13].

We analyze two approaches to determine the variances anariamces of . The first one
is based on the residuals of the polynomial fitting of the dewlifference measurements. The
number of epochs and the order of the polynomial are chossumdin a way that

1) thetemporal variationsof the double difference measuremenlise toreceiver and satellite
movementsan be described by thplynomial

2) the number of epochs is sufficiently large to reflect theaotf code multipath even in sta-
tionary conditions

The second approach is based on a model of the code noisaustateViations: It assumes
that the code noise standard deviations are elevation dapgrand that the dependency follows
an exponential function.

The least-squares float solution of Eq. (3.10) is given by

( gjlv? ) = (H'"WH) *H"WWV. (3.11)

3.3 Attitude determination
In this section, we derive the 3D-attitude (heading andhpifrom the relative position between

two GPS receivers. We focus on two receivers mounted on tifeof@ car along its longitudinal
axis, and with equal distances to both the left and right efdbe car as shown in Fig. 3.2.

North

Receiver 2

Figure 3.2: Heading determination of a car with two GNSSikere

17



18 3. Attitude determination: measurement model

The distance between both receivers is a priori determiyed tmeter with an accuracy of
approximatelyl cm and included in the ambiguity fixing and attitude detemtion. The height
difference between both receivers is in general negligiolé is constrained to zero in environ-
ments with an insufficient number of visible satellites.

3.3.1 Heading determination

We count the heading clock-wise on the East-North plane 8fith Northern direction. The least-
squares float solution of the baseline vedtgrin Eq. (3.11) is given in the ECEF (Earth-Centered,
Earth-Fixed) frame. For heading determination, it is maaepcal to express the baseline vector
in the ENU (East, North, Up) coordinate frame centered atémer of inertia of the car:

512,ENU = RL 512 = (bE, bN, bU)T Wlth RL = R1 (77'/2 — ¢)R3(7T/2 + )\), (312)

where¢ and\ are the latitude and longitude of the center of inertia ofddéweat the current epoch;
R, and R3 are the rotation matrices about theaxis and respectively the-axis in the ECEF
coordinate frame. The heading is thus given by:

Y = arctan(bg /by ). (3.13)

3.3.2 Pitch angle determination
The pitch angle (and thereby the slope of the road) can alsabiéy obtained from the baseline

vector:
f = arctan (biU> (3.14)

Vb + 0%
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4. Determination of least-squares float solution

In this chapter, we first review the iterative Gauss-Newtathad for estimating the baseline and
double difference ambiguities using the measurement nadded). (3.10). The float solution dis-
regards the integer property of ambiguities and is subsglyuexed to an integer one as described
in Chap. 5.

Besides the traditional float solution, this thesis alsduides a new method to efficiently de-
termine a baseline length constrained float solution. Saafaterative solution was required for
calculating the derivative of the baseline length constrainction with respect to Lagrange pa-
rameter. In this thesig, closed-form expressiasderived by exploiting aroperty of the derivative
of matrix inversionswhich does no longer require an iterative solution.

4.1 Synchronization of low-cost GPS receivers

Clock offsets of low-cost GPS receivers (e.g. u-blox, Skyjrtypically are in the order of mil-
liseconds to seconds, which ¢s9 orders of magnitude larger than of geodetic receivers. The
receiver clock offsets do not directly affect the doubldedénce measurements as they are can-
celled by the double differencing. However, there is anrigxti affect: As satellites move with
a speed of approximately #4mn /s, the satellite movement within the time of the receiver kloc
offset can vary between several metres (for u-blox recg)vap to several kilometres (for Sky-
traq receivers). Thus, there is a need for correcting thalgatmovement within the time of the
differential receiver clock offsets, i.e. the differenegween the clock offsets of both receivers.
The most accurate model available today for double diffegeneasurements twfw-costGPS
receivers was developed by ANAVS and is described in [8F given by

PY(E+ 0m) = ph'(t + 672) = (&5(8)) T Bua(t) + (¢, 0m, 0m0) + mib(0) + (1), (4.1)

wherem!}, is the differential code multipath and}(¢, 67, §72) is the correction for the satellite
movement within the time of the differential receiver claifksetdr; — i, which was derived by
Henkel and Cardenas in [8] and [10] as

Ayt +0m,t+0m) = (Ef(t+6m))" (Zi(t+6m) — T+ om — ATY))
— (et +611)) V(@ (E+0m) — Zl(t+om — AT{))
—(&F(t + om)) ( (t +079) — Z*(t + 079 — ATQk))
(e}t + 6m)) T (xl(t +61) — Tt + 07y — AT%)) ) (4.2)

H/—\

It shall be stressed that the correction has millimetre @ayudespite the use of noisy code mea-
surements. This high accuracy is achieved due to the diffi@tenature of the correction, i.e. the
satellite positionsg*(t + d7, — Arf) andz*(t + 67, — Ar¥) are both derived solely from the
measurements of the first receiver and the clock offsgbf the second receiver. The noise in the
clock estimate of the second receiver has still only a ndgégmpact on the correction, dsm
noise in the clock estimate corresponds to a time of ariBy/- 10~ s during which the satellite

19



20 4. Determination of least-squares float solution
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Figure 4.1: Double difference phase measurements of zselibe stationary receivers subtracted with DD
measurement of the first epoch. The differential DD measentsnrdemonstrate a linear drift.

movement can be neglected. The satellite posititi{g + 67, — Arf) are first calculated and then
linear interpolated ta**(t + o, — A7¥).
A similar model was suggested for the double difference@aphase measurements, i.e.

221 (Gt + 071) — QB E+ 0m)) & (7 (1) Tbia(t) + L(t, 071, 0m) + ANE + 5 (1),  (4.3)

where the phase multipath has been mapped to the phase sdisetgpically less tha cm.

Fig. 4.1 shows the temporal change of the double differeyicelsonization correction relative
to the first epoch for a zero-baseline test. As the baselirsebyalefinition zero, the synchroniza-
tion correction should be constant if the differential ieeeclock offset is negligible. However, a
drift is visible which could be derived directly from Eq. 3.

The synchronization correction term is quasi linear as @meabserve from Fig. 4.1. In order
to keep the computational complexity at a minimum, we deteerthe synchronization correction
only every50-th epoch (i.e. every0 s), andinterpolatec}(t) in between. The coefficients and
& of the linear polynomial are found by least-squares estomats

~ t—1 1
(6] .
( @ ) —argmin Y () =D ay- o (4.9)
! O w50 p=0
Data analysis showed that eartrapolationcan also be performed oved epochs with an accuracy
of 1 mm to1l cm. Therefore, we determine the correction term e¥@rth epoch and extrapolate

it based on the last two analytically computed correctigf&; ) andctl(t,), i.e.

() — ih(ta)

(1) = ) + B
17— b2

(t — tl), for to <11 < t. (45)
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4.2 Unconstrained least-squares float solution 21

However, clock jumps and changes in the reference satetktguire a careful adaption of the
synchronization correction. In detail, the following atlap has been integrated:

¢ Interpolation of satellite positiong* andé* over time of differential receiver clock-offset
— every50 epochs {0 s)
— additionally in case of clock jumps
— additionally in case of change of reference satellite
e Analytical computation of correction
— every 50 epochsl( s)
— additionally in case of clock jumps
— additionally in case of change of reference satellite
— remarks:
x in all cases except of clock jumps: update of slope of cowact
« in all other cases: interpolation of correction based ontrexzent analytical correction
and slope
e Change in reference satellite
— transform correction
— additionally interpolate transformed correction in catbss lock (no signal)

4.2 Unconstrained least-squares float solution

This section briefly reviews the calculation of the float hias# ambiguity solution using the it-
erative Gauss-Newton algorithm. The sum of squared relsiduaninimized, whereesidualsare
defined as the difference between tieservedand thecalculateddouble difference (DD) mea-
surements. The so-calledlculateddouble difference measurements are derived directly fram t
receiver and satellite positions as described by Borre4ih [W/e also include theynchronisation
correctionalso for thecalculatedDD to be consistent with the synchronized DD measurements.

4.2.1 Unconstrained least-squares float solution

We subtract the synchronisation correction directly fréra tlouble difference measurements of
Eqg. (3.9). We now model the corrected double difference oreasents as

W:H§+<Z‘P>+<;), (4.6)

H A b
H = g0 and = ,
( Hge, 0(K—1)~tnep><(K—1) ) . ( N )

with the pure geometry matri)’EIgeo including the normalized line-of-sight vectors, the maygpi
matrix A = )\ - 1Dt x(K=1) dependent only on the wavelength the baseline vectdr in
ECEF coordinates, the ambiguitié§ the code and phase multipath, andm,, and the phase
and code noisesandn.

Note that the/ matrix does not need to be updated during the iterationsomb®btained from
the initial absolute position determination can be re-useds accuracy is sufficient for relative
positioning over short baselines. This is very beneficaifa computational point of view as the
H matrix typically includes,,, = 800 epochs to achieve a sufficiently accurate convergence of

where
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22 4. Determination of least-squares float solution

the float ambiguity solution. Measurement analysis has sitbat there is no need to update the
3+ K -800 = 2400 - K parameters of thé matrix at each iteration, which is a substantial benefit
for real-time implementations on a microprocessor.

The calculation of the synchronization correction alsoethe}s on théZ-matrix. However, the
H matrix of the absolute position determination has a sufiiceecuracy such that there is also
no need to update the synchronization correction afteraééng the float (or fixed) solution.
Although H is already pre-determined, aterative solution is still required for estimating the
baseline and float ambiguities: The benefit of the iteratianses from thecalculateddouble
difference measurements, which are updated after updttengosition estimate of the second
receiver.

Our algorithm for calculating the weighted least-squareatfsolution with the synchroniza-
tion correction is shown in diagram 2. The first receiver iss#n as reference receiver. Its position
estimate is averaged while the receiver is stationary. Tdmighm then uses the iterative Gauss-
Newton method which requires an initialization of the unkmgparameters. We initialize both
baseline and ambiguities with zero (dee 3 and4). This implies that the absolute position of
receiver2 is initialized with the position estimate of receive(line 2). In lines 8and9, receiver-
satellite ranges are calculated based on the estimateideeead satellite positions. The latter
ones were obtained with the ephemeris data of the navigatessage. Subsequenttglculated
double differences (DD) are obtained using solely theseutated rangedifie 14) and the syn-
chronization corrections. The calculated DD are then stdk a vectorl{ne 17).

—=— PRN2

E c
c 2 2% PRN12
S g 10 : —6— PRN29 ||
3 = PRN31
£ 102 3
o
(8] [%]
o Be!
£ S 1072}
g £
s §
T 10—6 =
i £ \/
o 107°r : 1
— e
—10 i i i —10
10777 5 3 7 5 107777 5 3 z 5
Iteration Iteration

(@) (b)

Figure 4.2: a) Convergence of baseline correction term;dnv€rgence of float ambiguities correction term

In line 18 double difference residuals are determined. They are etkfas the difference
between thealculatedand measurediouble differences. The residuals will then be used to de-
termine the least-squares baseline and ambiguity casrecifine 19. The baseline and float
ambiguity estimates are subsequently updated by addimgrésting) the corrections to the esti-
mates of the previous iteratiofines 20and21). Figure 4.2 shows the convergence of the float
solution. Each of the first two iterations reduces the uiagaty of the float estimation by orders
of magnitude. At the third iteration, the correction termes smaller thai0—> m. Given the speed
of convergence, a maximum ofiteration is definitely sufficient for our algorithm 2.
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4.2 Unconstrained least-squares float solution 23

Algorithm 2 Iterative least-

squares float solution with synchron@atiorrection

Inlet: fl (t)> flk(t)a

Output: T ave, N

W,

1 «fl,avo = E{fl<t>}
2: 7. é?;vo = fl,avo
3: bcorr = 03><1
4: Neorr = O —1)x1
5. fori=1—=5do
6: fort=1— ty. do
7: fork=1— K do
8: Tl (t) = [7(2)
k(i =)
o: T2,(Ea)1(t) = [|7*()
10: end for
11: end for
12:  fort =1 — t. dO
13: for k=2 — K do
k1,(i
14: 12,£a)l(t> = (Tlf,cal
15: end for
16: end for
i 21,(2
17: T((i(i,cal = < TlZ,éa)l<1>
(@)
18: 7‘%?)7@
Tad,p
b
Bl N,
20: xg;)avo = Zlfg’a_vlc) - bg?rr
21:  N® = NG-1 L O
22: end for

) =V - ]‘2><1 ® Té@,eal

= (H™WH) ' H™W (

H, AG(t), W, kit

> Averaging receiver 1 absolute positions
> Initialization of relative position and correction terms

> Newton iterations

— T avel| > Calculation of receiver-satellite ranges
)
— L3 ave ||

> Calculation of double difference ranges

(t) = 1l ea(®) = (5500 = 2 0(®) = h3 (1)
K1,33) 21,(i) K1,33) T
12,cal (1) ‘ ct ‘ 127ca1(tmax) TlZ,cal (tmax) )

> Calculation of phase and code residuals

(@)
Tdd,e
)

dd,p

) > Determination of correction terms

> Update receiver 2 position and float ambiguities
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24 4. Determination of least-squares float solution

4.3 Covariance matrix

This section focuses on two methods to determine the cowvaianatrix of the tracked phase

and code measurements. The first one is particular suithbdi@uble difference measurements

of two static receivers are available for a few hundred epochhe second one is based on a
stochastic model, which assumes that the standard dewsadie elevation-dependent and that this
dependency follows an exponential function. The inversthefcovariance matrix provides the

weighting matrixi¥’ that we used in our weighted least-squares float solutialifs=19).

4.3.1 Estimation of noise statistics

We estimate the statistics of the double differences froargel number of measurements. Let us
first take a closer look at Eq. (3.6) and its dependency onfiimstaticreceivers:

Pla(t) ~ (& (1) = (1) - bia + AN} +l3(1), (4.7)

where the multipath has been included in the noise.

-326.365 ; . .
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©
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0 500 1000 1500 2000
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Figure 4.3: Carrier phase double difference measuremeatstétic receivers. The red curve represents
the interpolated measurements using a second degree pogin®@eviation of the measurements from the
interpolation is considered as measurement noise andpathiti

The ambiguity is constant if no cycle slips occur. With staiceivers, the baseline vector is
constant but the satellite-receiver line of sight vecttitschange over time. We use a polynomial
to describe this time dependency. Measurement analysgshloas that a second order polynomial
is sufficient to describe the dynamics of the projected ki&glositions over up t@000 epochs
(see Fig. 4.3).
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4.3 Covariance matrix 25

The coefficients of the second order polynomial are obtabyechinimizing the squared dif-
ference between the double difference carrier phases ambtiinomial, i.e.

a¥t | =arg min y Z ((plf%(t) - Z a;k’ : t”) . (4.8)

k k
a5t aghertest 4o p=0

An estimate of the variance gf}} then follows from

tmax 2 2
(%) ~ 1/tnax Z (golfé(t) — Z@;k . t”) . (4.9

t=1 p=0

Similarly, the covariance between the double differenggsand!}, follows from

tmax

2 2
(A ) R 1t S (ﬁg 0 -3 an tp> <¢az<t> yan tp> @)
t=1 p=0

It shall be stressed that the estimation of the noise statifom the residuals of a least-squares
polynomial fitting can only be performed for static receszer

4.3.2 Estimation of noise/ multipath statistics with an expnential delay model

Signals from satellites of lower elevation are typicallfeated more by multipath than signals
from satellites of higher elevation. McGraw et al. [15] dally analyzed the noise statistics for
Local Area Augmentation Systems (LAAS). They showed thatdbpendency of the noise stan-
dard deviations on the elevation angle can be well desctiyegh exponential function. Henkel
and Gunther used this model to analyze the impact of codepathiton ambiguity fixing and de-
rived a partial integer decorrelation for the optimum tradfdbetween variance reduction and bias
amplification in [16].

The exponential multipath delay model can be expressedlas/fo

U];(Ek) =0p0" e_Ek/Ep and O'Z;(Ek) = 0'90’0'e_Ek/Ego7

Whereo—’; andag are the code and phase standard deviations respectivelietifte £ with a certain
elevation angleé”*; £, andE,, are the decay constants whitg, ands, , denote the upper bounds
of the exponential function since both the decay constamhtlaa elevation are strictly positive.

By modeling the noise standard deviations at two elevatiowles {E., L.} as
{0)10w: 7pup}, We can derive the decay constant. We first take the ratiodsivboth standard
deviations

Eup—FElow
Oplow _ eT17 (4.11)
Op,up
and then take the logarithm and solve foy:
Eu - EOW
E,= p_ low (4.12)

I (010w /T pup)
Similarly, we derive the decay constant for the model of thage noise standard deviation:
Eup - Elow

E, = )
In (Ugo,IOW/U%up)

©

(4.13)
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26 4. Determination of least-squares float solution

Once the decay constants are determined, we can easily deewpper bounds,, ando,, o by
evaluating Eq. (4.3.2) df:

O p,low O low
= elw _ and = elow 4.14
7T BBy M T BB @19

Note that the standard deviations determined here are &mlate (i.e. undifferenced) measure-
ments. To obtain the standard deviations of double difle@aneasurements, the individual stan-
dard deviations have to be added.

4.3.3 Elimination of epochs with high multipath

Temporally correlated code multipath typically requirderag observation period (we chooS@)
epochs which corresponds 2amin. 40 s) to obtain a sufficiently accurate float solution. In this
long time period, temporal variations might take place ia émvironment even if both receivers
are static. We can perform a selection of ‘good’ measuremeoths based on theighted Sum
of Squared Errors (WSSEY the code measurements (see appendix Al.2) after comgldte
baseline estimation of Algorithm 2:

WSSE,,,, (t) = [[raa, ()|, (4.15)

with rqq ,(t) being the residual of the least-squares float solution.

- \WSSE of phase residualg
4y = \WSSE of coderesiduals §-- g~

| e B | e e ...,
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Figure 4.4: Normalized WSSE of phase and code residualsiaft®nstrained float solution

We use only code measurements fridm epochsvhere the weighted sum of code residuals
(of the float ambiguity/ baseline solution) is below a preuedi threshold. As the WSSE also
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4 .4 Constrained float solution 27

Selection strategy Heading Heading error lr:teger isf |mati? I
N Nio N2

all epochs —73.7 +1.7° 647 335 399

constrained WSSE of

code residuals

(689 out of 800 epochs) —73.3 +1.7° 647 335 399

constrained WSSE of

code residuals

(689 out of 800 epochs)

and phase residuals

(738 out of 800 epochs) —75.4 —0.4° 647 335 398

Table 4.1: Heading estimate and its error after ambiguifndixvith different selection strategies

increases with the number of visible satellites, we addéity normalize it by the number of
satellites excluding the reference satellite. The epotgtsgen is thus based on

ﬁwss&dd,p(w < WSSEqy,. (4.16)
Figure 4.4 shows the square root of the normalized WSSE cfepfressiduals after solving for

unconstrained float solution. Between epoch 380 and 45@ahtunk was left open and hence,
introduced more noise in the receive signals is caused kactifh on the hard metal surface. This
short-term disruption is reflected by the sudden jump in WSBte sudden increase in WSSE
does not only occur to code measurements but also to phaseiregeents although carrier phase
measurements are less sensitive to multipaths. Such plegrmonis predictable since weights
attributed to phase measurements are larger than weiglgs ¢ code measurements by two
order of magnitude. Therefore, a selection of ‘good’ phasasurements shall also be performed:

ﬁwss&dw(zﬁ) < WSSEyy,. (4.17)

Table 4.1 groups results obtained after resolving for theger ambiguities with only the
selected measurements. Complete methodology to arriveetoesults shown is described in
section 7.2.1. Elimination of only code measurements withsaderable residuals (larger than
WSSEy, = 4) does not affect the fixing decision. This is due to the comlplgrlow weights given
to code measurements (see section 4.3.1). An additiomaingtion of phase measurements with
substantial noise is hence performed.

We observe that elimination of both noisy code and phase uneaents improve the phase
residuals after the fixing (see Fig 4.5).

4.4 Constrained float solution

The least-squares solution described previously solve§E0) by estimating the baseline as well
as the ambiguities which together, minimizes the squareskenélowever, the solution might not
be precise when the actual noise contained in the measutemdig or when the noise statistics
are not correctly estimated. Error can be shifted from thbiguities to the baseline or vice versa
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28 4. Determination of least-squares float solution
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Figure 4.5: Phase residuals with different selectionegiata) Phase residuals after ambiguities fixing with
constrained tree search. No epoch selection is performdah&ise residuals after ambiguities fixing with
constrained tree search. Only code measurements with [oBBA#Be selected to perform the search. No

selection on phase measurements; c) Phase residualsrafigjuities fixing with constrained tree search.
Only code and phase measurements with low WSSE are selegbedférm the search.

to minimize the noise during the estimation. However, gitr@nconfiguration of our setting with
a fix baseline, we can use the fix baseline length as a cortdivasnlve Eq. (3.10):

N
3

= H( b )+5, with (B[] = Lo,. (4.18)

We use Lagrange multiplier to express the optimization {imization) problem with a known
constraint [8]. The problem can be formulated as below:

2

R I O () (4.19)

—1
ElI/
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4 .4 Constrained float solution 29

By introducing a selection matri& = (1<%, 03X(K‘1>)T, we can reformulate the optimization
problem above as follows:

A(§, 1) = 1@ = HE|1S 0 + n(1SEN* - 13,)
= (7 — HE) 'Sy (¥ — HE) + u([|SEN* — I3,)- (4.20)

The optimization problem is solved by finding staple pointsicki correspond to when the
partial derivative of the cost functia is zero. If X! is symmetric, we obtain:

A, )
o3

=0& (0-HO" 25" H=2u£'S™S

& (H'Y,'H + pStS)é = HY X ,'w
&&= (H"Y,'H+pS"S) ' H' X, 'w. (4.21)

Note that forz a vector and4 a matrix independent aof, the derivative of:™ Az with respect
toriszT(A+ AT).

Eq. (4.21) is then injected into the original equation of ¢bestraint and we obtain

(H' S, 'H + pSTS) ' HY S, W STS(HY X H + pSTS) T HY X, ') — 12, = 0. (4.22)

Let f(u) denote the entire left term. We observe tfigt) can be rewritten as follows:

F(u) = |S(H" S5 H 4 pS™S) H 50 |2 - 2, (4.23)
— |Sew)I? - 2, (4.24)
— (SE()"(SE(n)) — 2. (4.25)

The above equation has unfortunately no close form soluti@mefore, secant method is used
to find the root withy initialized to 0, which corresponds to the case of an unconstrained float
solution. The(n + 1)-th iteration is given by:

(n+1)

where

%ﬂm - 2<S£>TS%<§<M>>

=278 1 (€(0). (@.27)
Let A(u) = H™ X, H + uS™S, we can thus expreggy) as follows:
E(n) = A7 () H X', (4.28)
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30 4. Determination of least-squares float solution

and the partial derivative @f(.) is given by

_ﬁ i—1 T y—1
5, (€)= 5 (A7 ) - 1w (4.29)
= A Y ) STSAT (W) HT D, v (4.30)
Eq. 4.30 is obtained with the following:

= A ) Ap) & 0= %(/I‘l(u)) A+ A () - %Mw (4.31)
e (A () = A7 () () A ). (4.32)
p u
=STg

The algorithm below describes step-by-step the secantadetbed to solve Eq. 4.23:

Algorithm 3 Secant method

1t finew =0

2: while |finew — p| < Apigr, do

31 = fhnew

& f(u) = |S(HT S5 H + pSTS) " HT 5 'w)|2 - 2,
5. A(u) = H' Sy H + uS'S

6 2(E(n) = — A7 (WSTSAT (W HT ;W

7 fp) = 2.§T(/,L)ST53_8H(£(M>>

8 finew = p" — L4 ()

9: end while

4.4.1 Two dimensional baseline estimation

Fig. 4.6 shows the length convergence of baseline estimaitddalgorithm 3 performed using
different measurement sets. ESA AZO is to simulate an urbaim@ment as the measurements
are taken in front of office buildings with concrete walls ehStarnberger See is to simulate a
suburban environment as the measurements are taken on &hoad crosses a field. In both
cases, measurements from 800 epochs were used to consiruEly. 4.18 and the car remained
stationary during the acquisition.

We observe that the length difference between the estin@seline and tha priori baseline
converges to less thaih—> m after five iteration.

For on-road automobile use, the fixed baseline on the car(saef Fig. 3.2) has a length of
less than 2 m. Therefore, the relative height between batiwers in the local ENU frame can
be neglected or assumed zero. With the assumption that tghtleomponent is known, we
need fewer satellites to estimate the baseline, which ésesting in urban environment as visible
satellites are rare. Fig. 4.7 illustrates length convergesf estimated baseline with algorithm 3
performed using the same measurement sets taken at ESA AZ€llas Starnberger See.

Similarly, after five iterations, the length differenceween estimated baseline and hgriori
baseline is less thar)—>.
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4 .4 Constrained float solution

10l = lap | [M]

1]l = lap | [m]

10° ! ! ! !
—O— ESAAZO 1
—@— ESAAZO?2
L0-2 —f— ESAAZO3
0 Starnberger See 1
1074
10—6 L
10—8 L
10710
0 10
Iteration

Figure 4.6: Convergence of 3-dimensional constrained §olaition
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Figure 4.7: Convergence of 2-dimensional constrained §lottion
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5. Determination of fixed solution

This chapter focuses on the integer least-squares estimatthe baseline vectérand the double
difference carrier phase integer ambiguities, i.e.

min |¥ — Hgeob + AN |2 1. (5.1)
1

b€R2X1,N€ZK*1X1

As we would like to reuse the float MAP estimate of the previohapter, we have to perform
a mapping from float to integer numbers. Blewitt [17] alregagposed in 1989 a bootstrapping
method, which performs conditional least-squares adjestnHowever, bootstrapping is depend-
ing on the order of fixings and is not fully exploiting the colete correlation.

Today, Teunissen’s Least-squares AMBIguity Decorrefaf\ajustment (LAMBDA) method
[3] is widely used. This chapter first reviews Teunissen’sMBDA method as well as Henkel’'s
MAP estimator. The latter one clearly outperforms both timeamstrained and constrained
LAMBDA methods. The latter one uses an unconstrained seamchthen selects the integer
candidates that comply with the baseline constraints. ifigdies the unnecessary calculation of
numerous integer candidate vectors. We directly includelo@e a priori information in the tree
search, which leads to a shrinking of the search intervals.

We analyze the performance of the constrained search angazent to the performance of
the traditional LAMBDA search. Additionally, we also stutlye benefit of the use of an integer
decorrelation with & -transformation for both the LAMBDA search and the consteai integer
tree search.

5.1 LAMBDA method for integer ambiguity estimation

LAMBDA method implies four major steps. Sections 5.1.1 th.&.review these steps. A more
detailed explanation can also be found in [18] and [9].

5.1.1 Float solution

The first step is performed by estimatingnd V in R. There are many ways to obtain a float so-
lution for the underlined problem. In [18], Teunissen andglwsuggested to use normal equations
and Cholesky factorization. The Cholesky factor will alsoyide us a variance-covariance matrix
of N which is required later in the fixed solution.

However, in our solution, we use iterative approaches dseatiin the previous chapter (see
Algo. 1 and 3) to obtain the float estimates of the baselinetb@@mbiguities. The estimates are
noted as

b Xy Ly
{N} and [ENA Ly } :2)

where the latter one denotes the variance-covariancexdttie float ambiguities.
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5.1 LAMBDA method for integer ambiguity estimation 33

5.1.2 Decorrelation

[11] shows that the correlation between ambiguities rentlee integer search extremely ineffi-
cient. Teunissen observed a discontinuity in the spectruoomditional standard deviations: the
first ambiguity searches have much larger standard demsfmlowed by a sudden drop for the
subsequent searches. This discontinuity is even moreesgvire case of GPS double-difference
ambiguities.

By decorrelating the float ambiguities, we can flatten thecgpen of conditional standard
deviations. In other words, we eliminate the discontinbigya decorrelation. Teunissen proposed
in [11] to use the Z-transformation for decorrelation as ol it preserves the search space, it
accepts integer entries. However, Z-transformation isfulbt decorrelating the ambiguities but
only reducing the correlation. Such trade-off is to ensheeihtegerness of the transformation
[19].

The decorrelated ambiguities are obtained as,

N, =ZN, (5.3)

which could also be interpreted as a set of multi-satellitedr combinations. The variance-
covariance matrix becomes an almost diagonal matrix anbdeanitten with the triangulat D L*
decomposition as:
Yo =232
= Z"(LDL")'Z
=7 DT 7 (5.4)

In the following sections, ambiguities are always decaesl. After fixing is accomplished,
the decorrelation is reversed:

N =Z"N.. (5.5)

To increase readability, we omit the subscript “z" for deetated variables. Bear in mind that
the ambiguities are always decorrelated during the integarch.

5.1.3 Discrete search
5.1.3.1 Problem separation

Since the ambiguities have to be solved in the integer s@ad@gect application of least-squares
solution to obtain simultaneously the baseline and the guitdés cannot be used. Teunissen [19]
decomposed the error norm of Eq. 5.1 in order to separatetbgdr discrete search and the float
baseline least-squares problem:

17— Hyeob — AN|[S 0 = [ID(N) — b3, 2 +||N NI, 1+||P3Pﬁgcoﬂp!\§;, (5.6)

whereb(N) is the baseline estimated with fixed integer ambiguitﬁ%{,i,eo is the orthogonal

projector on the spacH,,, andA = Pl A
Gunther derived the decomposmon in [9]. The least-scuiaactution of the baseline is given

by
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34 5. Determination of fixed solution

b(N) = (HE: X Hyeo) "HE S5 (W0 — AN). (5.7)

geo geo

We can define a projection operator which projects into thEehglane spanned by, :

Pngo = ngO(HT E_ngeo) 1HT 2 1 (58)

geo geo

With the above projector, we can also define its orthogorgéptor with respect to the metric
ot

Py =1— Pu,,, (5.9)

such thatPy; % 'Py,., = 0and thatPy  Hgeo = 0.
With these two projectors, we can express an arbitrary veatoa sum of two orthogonal
vectors. Applying this concept to the error norm of Eq. 5.&,abtain:

19 — Hyeob — AN5 0 = (| Prye (¥ = Hyeob — AN)|[500 + | Prr,,, (¥ — Hyeob — AN)|3
= || Phtpeo (¥ — AN) = Hyeob|I31 + (| Pir,,, (7 = AN)|S.. (5.10)
v v

The second term of the above equation can be solved usingtesigaares estimation, i.e.

N:arg min ||Pﬁgeo(¢—AN)||2,

= arg mln ||1DL v — AN||
Ne

= (AT2W1A) AT ! (Pﬁgeom, (5.11)

with A = PﬁgcoA to simplify the notation. However, to further simplify the@/e equation,
we will have to develop all variables with only geometry nias and covariance matrix.
Let's first only developA™ X, lPﬁL in the above least-squares solution:

T - 1T ¢—
ATY Py = ATPp X P
= AT(I = Hyeo(Hypo Xy Hyeo) ™ H oy X0 )T 2051

geo geo

(I — Hyoo(H X0 " Hyeo) Ho X0 h)

geo geo

= AT(I — X, Hyeo (H oy X5 Hyeo) P Hooo ) X0

geo geo

(I — Hyeo(H - X Hyeo) " H- X0 )

geo geo

= AN(X, = Xy Hyeo(H o X Hyeo) P Ht X0

geo geo

— X Hyeo (HE X Hyoo) " HE X1

geo geo
+ EingeO(Hg;oE_ngeO) 1H§302_ )
= ATY NI — HgCO(HgTOOE‘ngOO) 1HgT002—1)
= ATE, Py

= ATPEgeO it
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5.1 LAMBDA method for integer ambiguity estimation 35

= ATy, (5.12)

The second last line is obtained using a general propertyy#aebitrary projection matrix’
with the associated metri@: P*Q = QP. A
With the above simplification, we can therefore expr&¥sas follows:

N = (AT A TAT S, (5.13)
Similar to the first decomposition step we made to obtain Bd5we define a projection
operator which projects into the hyperplane spanned by

Py = (ATY;tA)TTAT S (5.14)
and by using the orthogonal projecth as well, we can decompose the second term of Eq.
5.10, i.e.

1Pir,., (& = AN)[5, 0 = |1 PaPy,,,(F = AN)IS 0 + |1P3 P 2150 (5.15)

If we try to solve N in the real-number space, the first term of the above equaaonbe
made zero becausk is projected into the hyperplane spannedAyWe can thus express =
Hgeob + AN, whereN is determined with Eq. 5.13. This expressionZoéllows the first term to
be zero ifN € RE-!,

We can thus rewrite

HPIJ{_geO(W_AN> ~-1 = ||PAPJJ—[_geO<Hg00b+AN_AN)

12 L+ IPEPG, P

2
s,
= [|[AN — AN|5 0 + [|1PA Py, 2115,
=[IN = N5 + I1P5 Pig, 21150 (5.16)

whereX ! = ATX, A,

Eq. 5.16 provides us a decomposition of the second term o5 H. The first term of Eq. 5.10
can also be simplified by using the fact tha; P ¥|% . of Eq. 5.16 is an irreducible error
independent froniV. Therefore, we can first seek to minimize the second term obHE® by only
looking at the error nornﬂN — N||22,1. Then, we inject the resolved integer ambiguitiésnto
the first term of Eq. 5.10. The deconposition into three emayms becomes

||!p - chob - ANH22,;1 = ||Pcho<!p - AN) - ngob||22u;1 + ||N - N||221;1 + HP,%_PIJ{_gCO!szggl

= [B(V) = b3+ I8 = NI +IPEPE, WIS, (67)

1
N
with X = Hoeo 5y Hyeo-

The above decomposition allows us to separate real-valogdnéeger-valued minimization.
With the decomposition, we can :

e First, determine the ambiguities in its integer space wagpect to the metriEJ‘vl.
e Then, by using the fixed ambiguities, we determine the aatatibaseline in its real-number
space with respect to the metﬂ%‘(}v) using a least-squares estimator.
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36 5. Determination of fixed solution

5.1.3.2 Sequential conditional least-squares estimation

As mentioned above, we first try to minimize the following:
min ||V — N3, with NeZzN ™ (5.18)

If N is a real-number integer, taking the float soluti§rminimizes automatically the above.
SinceN is an integer vector, we have to perform a discrete seardfinin ellipsoid region?.
How 2 is defined for LAMBDA method can be found in [18].

The mathematical formulation of the integer searclydno minimize 5.18 is written as:

(N=N)"Z HN - N) < x% (5.19)

Sinceﬂj‘v1 is positive-definite, we can decompoE([J‘v1 into a product of diagonal matrix and
triangular matrices [18]:

r=LDL" (5.20)
lll dl
l l d
whereL = | = ” andD — 2

Ik k=12~ lx—1)x-1) dg 1
Note that th(aE];[1 can also be partitioned intb" D L.
On the one hand, the algebraic expansion of Eq. (5.19) watmehts of. and D yields

dI(N; = Ni) + > L (N; = N2 < X2 (5.21)

2
<2 (5.22)

Ambiguities are often correlated to each other. Thereforthe sequential search, we have to
take into account the conditional adjustment on ambiguitameters2 which are already
fixed.

The comparison of the algebraic expansion and the staistionulation yields:

NilL,...

d_ i and NZ|1 ..... i—1 — Ni — Z lZJ(N] — N]) (523)

Notice that if there is no correlation between different &yuities, L is a diagonal, or more
precisely, an identity matrix. Thus, in the absence of dati@n, NH 77777 1= N,

The sequential conditional adjustment can be done re@lysby fixing first of all the first
ambiguity and subsequently the following ambiguities byuating the search region. ; to
N; — 1 are already conditioned, the bound for the searci;dé determined as follows:
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5.2 Constrained integer tree search 37

i—1 2 i—1 i—1
((N; — N;) + ; Lij(N; = Nj)? < Z— - di((Ni = No) + ) Ui(N; — Nj))? . (5.24)

=1 j=1

~
bound;

Hence,N; is bounded by:

—+/bound; + N; — Zzw (N; — N;) < N; < y/bound; + N; — le (N; — N;).  (5.25)

All candidates ofV; within the search region is considered a¥idis subsequently fixed to the
one which minimizes Eq. 5.18. The fixéd is denotedV;.

5.1.4 Fixed baseline solution

After fixing the ambiguities, the baseline solution can baaoted directly using a linear minimum
mean square error estimator [18]:

b(N) =b— Ty T (N = N), (5.26)

where variables with an inverse hat are determined afterdixi

The fixed baseline solution can also be determined usindg-$egmres solution after fixing
the double difference measurements, i.e. subtracting@nitas from the measureme®t,.q =
W — AN:

b(N) = (HE Xy Haeo) ™ Hooo X Waea- (5.27)

geo geo

5.2 Constrained integer tree search

LAMBDA method offers an efficient search which uses leastaggs estimator to solve the ambi-
guities of a carrier-phase measurement. LAMBDA methodsgbe ambiguity candidates based on
the distance (in a metric sense governed by the measuremariance matrix) to the ambiguity
candidate determined in the float solution.

In the case where the distribution of the baseline vectongn, thisa priori information on
the baseline can be used witiviaximum A Posteriori Probability (MAR)stimator to estimate the
ambiguities and determine the baseline. The fixing is im@das the determined integer ambigu-
ities fulfill the baseline constraint. When only knowledgetbe baseline length is available, a soft
constraint can be imposed in the search [8].

5.2.1 Hard-constrained minimizer

We intend to solve Eq. (4.6). We assume in this subsectidratpaori knowledge on the distri-
bution of the baseline vector in the local ENU coordinateavisilable:b, ~ N (by, ., Xb). The
determination ob,, ,, must be as less dependent as possible on the measurememegarellpy
obtained from another source rather than measurementsugedb,, ., can be obtained either
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38 5. Determination of fixed solution

by using the Doppler shift or from two carrier smoothed absolposition estimates when the
receivers are moving.

Since thea priori knowledge is known in the local ENU coordinates, it is thugenaractical
to rewrite Eq. (4.6) as

U =H +n (5.28)
where
Hy, = ( Hgeop, A) with Hgeor = HyeoRp', (5.29)
and
b, .
§L = N with by, = Rpb. (5.30)

In this section, we work with a baseline vector in the locallEbbordinate system as it is
more practical to determine the heading. Note however bligatdncept still works with a baseline
vector in the ECEF coordinate system.

The MAP estimator can be defined as follows [8] [20]:

< by ) = arg max P(&Lw) (5.31)
N bL c Ri’,xl
N e zZx!

We can assume that we haaeriori knowledge over the distribution @f, by simply setting
the mean of the ambiguities and the variance as infinity. agssimption is as good as havingano
priori knowledge. Therefore, Eq. 5.28 can be reformulated andlgiegbusing a monotonously
decreasing logarithmic function:

( b ) =arg max  P(b,,N|¥) (5.32)
N b, € R
N e ZK!

= arg max (5.33)
bL c Ri’:xl P(!p)

N e 7K1

(5.34)

HM%NW&NWW)

= arg min —log < P

bL c R3><1
N e 7K1
= arg min —log (P(¥|br, N)P(b,)P(N)) (5.35)
bL c R3><1
N e 7K-!
_ : . 2 . 2
= arg bL Ien%ngl ||LP HL&HZ'Ql + HbL bL’apHEl:; (536)
N e 7K1
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5.2 Constrained integer tree search 39

Searching for an argument to maximize the probability isshme as searching for an argu-
ment to maximize the logarithm of the probability due to thenmtony of the logarithmic func-
tion. Taking the negative of the function inverses then tlaimization to a minimization (see
Eq. 5.34). Given the ambiguities and the baseline vectaigcgphase measurement is assumed to
be Gaussian distributed as the measurement follows a Gaudisitribution. The baseline vector
is assumed to follow a Gaussian distribution. Thereforenimmizing the logarithm of the joint
Gaussian probabilities is the same as minimizing the surhethe squared norms because the
density function of a normally distributed random vectottwi elementse ~ N (., X) is given
by:

1 1 T w1 )
o1, =————%¢ ——(x — )" X (= pe) |- 5.37
ooy 20 = e (5o = )5 o = ) (5.37)

However,P(¥) no longer plays a role in the minimization as the probabisitindependent of
&1 (see EqQ. 5.35). This independency can be explained by

PW)= [ > P(by,N)Ndb. (5.38)

R3 NGZN71

Without anya priori knowledge on the ambiguities, the search can be extendée twtiole
natural number spacg”~!, which is extremely inefficient and even infeasible. We daantlimit
the search within a defined volume like in LAMBDA method and thinimizer becomes

min (1= Hib = AN+~ bl ) < (5.39)

How x? is determined will be explained in 5.2.4.

In this work, we do not use the hard-constrained minimizethas priori baseline vector is
not available since the ambiguities have to be fixed whilecdneis stationary and the Doppler
shift of u-blox LEA 6T is too noisy to be exploited for detemmg theb;. The search using
a hard-constrained minimizer is however similar to the search explained below for the soft-
constrained minimizer.

5.2.2 Soft-constrained minimizer

In the case where repriori knowledge on the baseline vector is available but only ob#sline
length is known, we can modify the minimizer usin@aft Length Constraint (SL@)stead of a
hard constraint on the complete vector:

2
min <||w — Hpb, — AN|% 0 + M) <\ (5.40)
by, w o’lap
wherel,;, is the known baseline length anﬁ;p is the variance of the baseline length.

LAMBDA integer search for ambiguities have a final goal to imize Eq. 5.17. The third
term of the error sum depends solely on the measurement.efbiney it can be considered as
irreducible noise. As mentioned earlier in section 5.1.8h& search consists of in the first place
finding integer ambiguities which minimize the ambiguitycer The search for integer ambiguities
is said to be performed partially as it uses a sequentialitondl adjustment to take into account
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40 5. Determination of fixed solution
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Figure 5.1: Search tree for MAP/ SLC ambiguity resolutioacErow refers to the integer candidates of one
double difference ambiguity. For each candidate, a lowdnemupper bound are derived for the subsequent
double difference integer ambiguity. If there is no integerbiguity in the interval between the lower and
upper bound, then this path is no longer considered. Otkepior each candidate inside the set, a lower
and an upper bound are determined for the subsequent amybigui

the correlation between ambiguities. With the found amibigs; we then solve the least-squares
problem posed by the first quadratic error norm to deterntieeassociated fixed baseline vector.

With a soft-constrained minimizer, the search will be digldifferent. We still use the se-
guential conditional fixing. Therefore the search resemhblaee search but each layer of the tree
search is conditioned by Eq. 5.40. With the latter, a lowet an upper bound are derived and
only candidates within the bounds are considered. If at ayerino integer ambiguity is available
between the bounds, the path is no longer considered. Thischeshich aims to achieve a higher
efficiency in the integer search was developed by Henkel ¢8F]20].

If the sequential conditional adjustment is donef@mbiguities, the ambiguities can be sub-
divided into a set of integer valued and a set of real-valuediguities with the real-valued ambi-
guities grouped together with the baseline coordinates:

b
Nl NkL+1
N _ . € kal éL _ c R(S-I—K—l—k)xl
Nk Nll{—l
The error decomposition becomes
9 = Huge = ANI0 = IN = NI+ JEV) = € +IPEPR IS, (64D
N E(N)
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5.2 Constrained integer tree search 41

wheref(N) is the baseline found by using the ambiguities

N
N
F (5.42)
N1
concatenated with the real-valued ambiguities.
We can perform aih. DLT on the ambiguity error norm like in Eq. 5.20:
P .
< < Ni = Nip,i1)?
15— = 3 B N (5.43)
N i=1 UN,L-H _____ i1
with 012\7‘ = d; ! the conditional float ambiguity variance (see Eq. 5.23).
i|1,...,i—1

We now intend to fix the next ambiguity,... In other words, we are &t + 1)-th layer of
the tree search (see Fig. 5.1). In order for an integer to bepaed asV, ., 1, it has to fulfill the
inequality below obtained by combining Eq. 5.43 and 5.40:

(Nps1 — Nigapr,n)? Y (Ni = Niy.ooic1)?
+02A +1] < X2_||P§P;qu‘;;_z - |
Ney1j1,.. k i=1 Nij1,.. i1
. s o2 SE(N)|| = Lop)?
—m;n<||£(N>—£H§:g+(” W] p>>, (5.44)
£ (W) Olap

wheresS = (13><3, O3><(K—1—k))-
The minimization of the last term can be done by using the flzsgeline vector hard-
constrained float solution described in section 4.4. Thgtle-constrained baseline concatenated

with the real-valued ambiguities is denotedday, (V) and

x . 2 S:N — 1, 2 x - 2
min (ns(m—sn;&w(” ) ) (V) =G (64)

Solving the inequality 5.44 gives us a lower and upper boondV,, ; which respectively are
expressed as:

lNkH = {Nkﬂu ..... L A Ak+1(N)J

,,,,,

ug,,, = {Nmm ..... FY R Ak+1(N)—‘a (5.46)
with
k-1 .
. N (N, — Nypi-1)?
A (V) = X = IPEPR 30 =Y g
=1 Ny,
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42 5. Determination of fixed solution

_ (||§Opt(N> B §||2 Lo (||S§opt(]\;)|| — lap)2> | 5.47)

&) lap

These upper and lower bound can be used to limit the searcle $paV*+!. Integers within
the bounds can be the candidateg/of- 1)-th layer in the tree search.

We repeat the process and search for the next candidate.vEhalsearch resembles a tree-
search whereby only branches which survive at the mostindager are eligible candidates for
integer ambiguities.

Finally, among all candidates, we select one which miniskg. 5.40.

5.2.3 Evaluation of soft-constrained tree search

[N
(=]

"""""" Wrong h'ead'iﬁg e R

Number of candidates
=
o

10" § —e— ESA-AZO
—O— Starnberger See
—E-— NymphenburgPalace =~

10
unconstr. w.o. dec. unconstr. w. dec. constr. w.o. dec. tcomsdec.

Figure 5.2: Comparison of constrained (constr.), uncairgtd (unconstr.) integer tree search either with
(w.) or without (w.0.) decorrelation (dec.)

By subtracting the last two terms frog? in Eq. 5.47, the search space is substantially reduced
at each layer compared to the unconstrained integer seakrh t

Figure 5.2 compares the soft-constrained and the uncamstirenteger ambiguity search using
three different sets of data. ESA-AZO simulates an urbamr@mment as the data was collected
right in front of a building (see Fig. 2.2). Starnberger Seeutates a suburban environment while
Nymphenburg Palace simulates a relatively calm urban enment.

Note that all integer ambiguity resolutions are correcegtdor the ESA-AZO data set where
decorrelation was not used. Whether the ambiguities arerddated or not, results show that
the unconstrained integer search is less efficient in thgestirat it finds more candidates given a
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5.2 Constrained integer tree search 43

search spacg?®. The search tree is thus more elaborated and more irrelexamthes are produced
at each layer which can be eliminated by using a constraimedeér search.

Besides, without decorrelating the ambiguities, the rggmh of integer ambiguities also be-
comes less reliable as one can conclude from the wrong hgeddiermination with the test drive
at ESA-AZO.

2500 T .

—©— without decorrelatior
with decorrelation

2000r

1500r

Number of nodes

1000r

500

Tree level

Figure 5.3: The flattening of standard deviation spectrunefiected in the number of nodes at each layer
of the soft-constrained integer tree search. The disaaityiis reduced with Z-transformation.

Figure 5.3 shows number of nodes found at each layer of thtecenbtrained integer tree
search. The sudden increase of the number of nodes can heabgethe case where no decor-
relation was done while the number of nodes increases digdadahe case where ambiguities
are decorrelated. The results conforms with Teunissersgmhtion in [11]: Without decorrela-
tion with Z-transformation, the spectrum of conditionarsdard deviations is discontinued and is
reflected by a sudden increase of nodes at the last few treghdagers.

Fig. 5.4 shows the double difference phase residuals dthinitial 160 s after integer ambi-
guities are fixed. The car was standing during the measurtegguaisition. The phase residuals of
all four double differences are less than two centimetees the complete period, which indicates
a correct integer ambiguity resolution.

5.2.4 Search volume

The discrete integer search of ambiguities is conditione&dp. 5.39. The search space volume
can be adjusted as wished upon condition that at least oegentandidate is contained within
the search volume. Teunissen [18] had proposed variousoaeth define an appropriate search
space, for instance by defining the number of candidates @tew/to obtain.
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44 5. Determination of fixed solution
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Figure 5.4: Phase residuals during initial integer amibygugsolution.

Since the constrained integer tree search is to optimizeffi@ency of the search, instead
of defining the number of candidates that we wish to evalwagegdefine the search spagé in
such a way that it contairet leastone candidate and evaluates all ambiguity candidates found
within the search space. Since the unconstrained treehsealess efficient compared with the
constrained tree search (see Fig. 5.2), the search spanediaBing one of the candidates given
by the unconstrained integer search ensures that at leastadidate will be found with the
constrained integer search.

We take for instance the best candidate (i.e. the candidateest to the float ambiguities in
a metric sense) given by the unconstrained integer se¥igh,.«. to define the search space for
constrained tree seargf

onstr*

7 \] \ lv) Nunconsr - la 2
Xzonstr = ||!p - HLbL(Nunconstr) - ANunconstrH;u;l + (H L( 0.2t )H p) (548)

lap

We know that we will obtain by the end of the constrained tregrsh at least one ambiguity
candidate set, which i&,,.nst: itself. The above equation can be further simplified to omig o
term instead of a sum of two weighted quadratic residualsdigrchining thehard-constrained
float baseline solutioﬁLppt(Nunconstr). With the hard-constrained baseline, the second term which
indicates the baselireepriori residuals becomes negligible and therefore, we can defnserch
volume with the following

X?onstr - ||¢ - HLBL,opt(Nunconstr) - ANunconstrHé;/l- (549)

44



6. Cascaded cycle slip correction

This chapter provides eascadectycle slip detection and correction method fow costGPS
receivers. The cycle slip correction is a crucial point as

A/2 cycle slips occur due to undetected changes of the navightip

receivers occasionally track a reflection rather than thectisignal;

multiple satellites might be affected simultaneously;

phase changes due to high receiver dynamics have to be szbfman cycle slips.

Challenging environments include narrow street canyouisadlieys, where the direct signals
might be shadowed. We strengthen the cycle slip detectidrtarrection by taking the following
information into account:

fixed phase residuals of all double differences and theiotys
heading of previous epochs and its prediction to the cugpath,;
length of the baseline between both receivers;

code-based absolute velocity of the vehicle.
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Figure 6.1: Phase double difference measurement of onkiteatéhen the vehicle is stationary. At epoch
122, cycle slip happens and causes a jump in the measurement.
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46 6. Cascaded cycle slip correction

Fig. 6.1 shows the temporal evolution of the double carrierge measurement fetationary
receivers. Under normal conditions, the double differgpitase measurements of stationary re-
ceivers only slightly drift due to the satellite movemenawever, when cycle slips happen, sudden
jumps can be observed in the phase measurement like in HEig. 6.

A cycle slip means a jump of a wavelengthn the phase measurement scaled to length unit.
For geodetic receivers, cycle slips are always an integdiiptaeuof a wavelength. Unfortunately,
with low-cost receivers, cycle slips can be also a multigle &, as shown in Fig. 6.1. The half
cycle slip originates from an undetected bit transitiorhi@ havigation message, which leads to a
jump by~ /2.
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Figure 6.2: Phase double difference of visible satellitdgracted with the measurement of the first epoch.
Measurements were acquired when the vehicle was moving.

Cycle slips cannot be detected in a single phase measurdoneta satellite movement. How-
ever, it is possible to detect cycle slips in double diffeeemeasurements which are important in
our case as heading is derived from double difference meamnts. Fig. 6.1 shows a situation
where cycle slips can be easily recognized and solved fdyiataking the difference of two con-
secutive measurements. We however do not always have ssithidantifiable jumps especially
when the receivers are moving. Fig. 6.2 shows the doublerdifice phase measurements of a car
moving in an urban environment. The double differences sahstantially during the movement
and make cycle slips harder to recognize with naked eyesammore complicated to identify
formally. Furthermore, cycle slips can affect simultanggumultiple satellites. Therefore, cross
checking double difference phase measurements can albelpot

In the case of L1 band being used, a cycle slip of half a cyaleamaount for at least 9 cm
of error in the measurement and therefore introduce an efrer 0.1° in the heading if we have
a baseline of 1 m. The error can be increased in the case wdeestips affect simultaneously
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6.1 Phase measurement model with cycle slip considered 47

several satellites. If left uncorrected, this error can muenulative: When cycle slip happens at
one epoch, measurements of the subsequent epochs willeatftebted (see Fig. 6.1).

6.1 Phase measurement model with cycle slip considered

To adapt to the use ddw costGPS receiver, the double difference measurement modaiilbdedc
in Eg. 3.6 will be refined in this chapter to take into accodfi cycle slips:

VA - A
Pla = P12 & (6 = @)1 bia + ey + AN + SANG +mi 1, + €. (6.1)

We define here the term “fixed double difference phase meawsunt, which is simply cal-
culated by subtracting the resolved double difference goities N from the double difference
phase measurement:

P13 fixed =P12 — ANT 6.2)
In the case where cycle slip happens, we have to take the mumhlogcle slipsAN into

account in the fixed double difference measurement. By nmgpiultipath to noise, the above
equation becomes:

. . - A
(plfé,ﬁxed %(6; - 621)T ) b12 + §AN{€21 + glfé (63)

By grouping double difference measurements obtained frifereint satellites with respect
to the reference satellitdPRN = 1), the above equation can then be written in matrix-vector
representation:

21
¥12,fixed
1

()0:152,ﬁxcd
Pdd fixed = .
@g}ﬁxed
:F[geobm + ACSAN + glfé (64)
=Hyb, + AGAN + et (6.5)

whereA, is the mapping matrix to map the number of cycle slips to thesphmeasurement. Note
that Eg. 6.5 only considers carrier phase measurementibfevgatellites of the epoch in question.
The last line is obtained by performing a ECEF to ENU framadfarmation with the help oR;,
given by Eq. 3.12:

f{gcobm = ﬁgeoRilRLbIZ
by (6.6)

Working in the local ENU frame has its advantage: the Up-conemt can be constrained
to zero in the case where movement is limited to a flat surfadech is often an acceptable
assumption with on-road automotive. By doing so, we neecfesatellites to determine the
baseline which is especially critical in urban environmeéntthe following, we will reason in the
local ENU frame and eventually reduce the problernwto dimensionby assuming nullity for the
Up-componentt, € R?*1),

a7



48 6. Cascaded cycle slip correction

6.2 Cycle slip correction with MAP

Blewitt proposed in [21] an approach using triple differeqghase measurements to correct for
cycle slips of a stationary receivers. The method becomss s@on insufficient when the re-
ceivers are moving at high dynamics. A quick turn of a vehize lead to a change in the double
differences oft-)\ /2 or even of+\, which might be misinterpreted as a cycle slip [8].

Lipp and Gu proposed in [22] a cycle slip detection and cdiwacmethod using accelera-
tion and angular rate measurements provided by inertidaen However, when inertial sensors
are not available, reliable cycle slip correction can s@limplemented using more sophisticated
estimators.

6.2.1 MAP estimator with a priori baseline and ambiguity information

Instead of correcting for cycle slips satellite by sate|liive detect cycle slip by processing all
visible satellites jointly and by analyzing the error norerided with a Maximum A Posteriori
Probability (MAP) estimator. Furthermore, since we are @NSS compass model configuration,
we can also combine the length residual together with the MA$ed error norm to correct for
cycle slips.

We intend to solve for the baseline vector in local ENU frabpen Eqg. 6.5. The solution
requires however phase measurements corrected with a kmawher of cycle slipgA/V. Subse-
guently, we can use a least-squares estimator to solvetamewuslyAN andby,:

min H(pdd,ﬁxcd — (HLbL —+ ACSAN>H2£,—1 ) . (67)
bL c R2><1 ¥Ydd,fixed
AN € 7K1

[23] used a MAP estimator with aa priori knowledge on the baseline length to resolve for
ambiguities. Section 5.2.2 also demonstrated the benetisiofy constraint derived from aan
priori knowledge on the baseline while performing an integer $e@ee Fig. 5.2). Embracing the
same concept as Eq. 5.32, we can trydasolve forAN with a MAP estimator which exploits a
priori information on the probability distribution of thedseline and the number of cycle stips

~

b, )
-~ = arg max P(bL, AN‘@dd,ﬁxcd)- (68)
( AN bL c R2><1

AN € 7K1

With the same reasoning (Eq. 5.32 to 5.35), Bayes’ rule snfleat the MAP estimator can be
expressed as a product of a likelihood term and a prior terogether with the assumption that
measurement noise is Gaussian distributed and that greri information is independent from
the measurement and also follows a Gaussian distributiertan express the MAP estimator as a
sum of two least-squares estimators:

A~

( b )_ P(pad fixed|br, AN ) P(by,, AN)
- | = arg max
AN by, € R?x1 P(@ad fixed)
AN e 25!
= arg max P(ad fixed|br, AN ) P(br,, AN)
bL c R2><1
AN e 75!
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6.2 Cycle slip correction with MAP 49

= arg min | Pdd,fixed — Hrbr, — AcsANH;*1
bL 6 R2><1 ¥dd,fixed
AN € 751
bL bL7ap ’
) )l - o
by, AN

The baselina priori information can be derived using either an interpolatiothefpreviously
determined headings or a smoothed code based velocity. \+¢oywee do not have ang priori
knowledge on the number of cycle slip. Furthermore, Eq. B¥@lves an integer least-squares
estimator asAN is an integer, which can lead to a complicated discrete bedbata analysis
shows that the number of cycle slips are normally small ieeg Therefore, the search can be
limited to {—2, —1, 0, +1, 42} from the predicted number of cycle slips which can be olediby
differencing the measured phase double difference and/apuiial fitted phase double difference.
The next section proposes a cascaded cycle slip correctamedded CSC) which consists of first
a dynamic-based CSGsing a predicted number of cycle slips and a MAP estimattr anly a
priori information on the probability distribution of theabeline. Subsequently, with the estimated
baseline, the cascaded CSC corrects for remaining cyple afithe low-weighted measurements
with ana posteriori CSQusing the remaining phase residuals.

6.2.2 Dynamic-based cycle slip correction

Henkel and Kiam proposed a method to fully benefit from the M&Bmator by using a “pre-
corrected" phase double difference andagpriori baseline information [20] when it is available:

BL = arg max P(by|@ad fixed(ANcand)), (6.10)
bLE]R2><1
where @44 fixed (ANcana) 1S the fixed phase double difference measurement corredtédaw
candidate of number of cycle slid/V...q from a defined search space:

@dd,ﬁxed(ANcand) = ¥dd fixed — ACSANcand- (611)

How AN...q IS determined will be described thoroughly later. The gahgfea is to first
calculate the difference between the measured phase ddifielence and the polynomial fitted
phase double difference to determine the possible numbeyadé slips. Other candidates are
obtained in the neighborhood of{, —1, 0, +1, +2} around the predicted number of cycle slips.

With Bayes'’ rule and Gaussian assumption, we rewrite the Mstitnator as follows:

b P p Xe! ANcan b Pb
bL<ANcand> =arg max <g0dd’ﬁ d( d)‘ L) ( L)

b, € R2x1 P(@ad fixed)
=arg  max  P(QPad fixed(ANeana)|br) P (br)
bL c R2><1

=arg min H@dd,ﬁxod(ANcand) - HLbL||22f1
bL c R2><1 ¥dd,fixed

+ |brap — bL||§;L1 . (6.12)
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50 6. Cascaded cycle slip correction

We further develop the above equation by assuming thad fréori baseline information and
the phase measurements are uncorrelated. We obtain then:

~

bL(ANcana) =arg min  (@Gad.fxed(ANeand) — Hbr) 251  (Padsied (ANeand) — Hibr)

¥dd,fixed
b, € R¥

+ (bL,ap — bL)TEl;Jl (bL,ap — bL)

(6.13)
and by introducing the following notations
D Xe ANC&I’I H
ZMAP = Pa e a) and Hpmap = b, (6.14)
bL,ap IZ
we can rewrite the minimization as
~ T -1
. — Py 0
bL(ANeana) =arg — min ( Pad ixea (ANeana) = Hibr ) ( Pddfixed )
bL c R2><1 bL,ap - bL 0 EbL
Zivar
Pad fixed (ANeana) — HLbL
bL,ap - bL
=arg min HZMAP — HL’MAPbLHE;I\/lIAP . (615)

bL c R2><1

With the found baselines and their associated number otclgh candidates, we select the
best pair $1,(AN), AN} by using error norms derived from a MAP estimator 6.12:

( bL(AN) ) g i

. 2
AN Pad fixed (ANcand) — HLbL(ANcand)H .

BL (ANcand> E¢dd,ﬁxcd
ANcand

2

| [erep = b(ANana)| (6.16)

-1
EbL

Nevertheless, we have preferred to use onlyahaiori baseline length information as the
orientation of thea priori baseline is not reliable in our case. Hence, we choose the#edidate
by minimizing the following:

b ~ 2
( bL(AA]VN> ) =arg - min H@dd,ﬁxed(ANcand) - HLbL<ANCand) .
bL (ANcand) E¢dd,ﬁxcd
ANcand
b (AN and) || = lap)?
+ (SN = L) (6.17)
lap
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6.2 Cycle slip correction with MAP 51

MAP estimator is extremely useful for determining cycleslivhen thea priori baseline in-
formation is available so that the measurement is check#dam external reference. However,
this is not always the case especially wiery GNSS-based measurements are available.

We developed aynamic-basedSC which adapts the determinationaopriori baseline in-
formation according to the dynamics of the receivers sollga6.17 can be used for detecting and
correcting cycle slips. Three main modes of correction wideneeloped according to the dynamics
of the receiver:

High dynamicsn the sense that receiver speed is high enough;
Low dynamicsn the sense that previous headings are almost constant;

e All other cases which are not qualified for the two dynamicsvabare classified amedium
dynamics

The following sections explain step by step how dynamiedasSC is performed according
to the dynamics of the vehicle.

6.2.2.1 Cycle slip correction at high dynamics

1 . 1 1
Ncs,pred 1 Ncs,pred Ncs,pred +1
2
| Apid fixed > Ain I
| I
| I
2 _ 2 2
Ncs,pred 1 Ncs,pred Ncs,pred +1
71\ 7|\ 7'\
/ N / N Z N A3 <A
SN M X X | e M

/ \ s N 7 N

3 _ 3 _ 3 —

Ncs,pred =0 Ncs,pred =0 Ncs,pred =0

I I I I

i i i i

| | | |
Figure 6.3: Combination of all possible cycle slips: A branm¢hich survives until the end layer are consid-
ered as a candidate &N cand-

Line 2predicts the heading of the current epoch by extrapolatimegfly.

Line 4determines an a priori baseline information. When the \eh&cmoving, the baseline
fixed on the vehicle is parallel to the velocity. Therefohes smoothed-code based velocity vector
v can be exploited to find the priori baseline in local ENU coordinate frame:

,UE,N,U
bL,ap = =l (618)

JoP o

However, this approach to set the baseline is only legitmdien the speed is high enough
due to the norm in the denominator. Note that in the algorjtivenlimit ourselves to only the East
and the North components since heading determination isittie goal in this work.

51



52

6. Cascaded cycle slip correction

Algorithm 4 Cycle slip correction at high dynamics

Input: ¢, lapv @E’N> E:??la Ry, QOde,ﬁxod7 Hy, Olap
OUtpUt: ANaCC, ANcs,sel

L (ap,00) = argminaga, 3,05 |6t —nT) = 35, - (t = nT)|’

2! Pprea = ap + a1 (57) > extrapolate to predict current heading
3: while ¢t do
E,N . . .
41 bpap = H;’E—N”l > a priori baseline vector
5 Xy ., = RLYy RL ”ﬂggw > a priori baseline covariance matrix
6: ZMAP = Sp(éd,ﬁxed :
L,ap
7. Xl = E;dld*ﬁxed 0 > set up variables for MAP estimation
. ZMAP 0 E&lap
H
8  Hpmap = < [L )
2
A
9: AMAP — ( 2IK_1 )
O2x (K —1)
10: HT i = Hyyvap (He yap 25t o Honaar) " HE yap 25 > projection matrix
. 1 .
11: P HE an = = Igio— PHLTA/IAP,
12: br, MaAP = (HT DIas 4 )_IHT Y1 oz
) L,MAE zmap T L,MAP L,MAP“ zpap “MAP
13 omap = arctan(zhﬁﬁ) > predicted heading in degree without CSC
MAP
14: if Cbpred — ¢MAP > 2 then
15: IMAP = P;T ZMAP > MAP estimation phase residuals before CSC
L,MAP
16: WSSEymap = rMAPEZMlAPrMAp + W > WSSE of phase residuals before CSC
17: WSSEnapm = 22((K — 1) +2) + 2;
18: if WSSEMAP > WSSEMAP’th then
19: ANpred = [%LHLI’LP > predict number of cycle slips jointly for all satellites
20: for k=2 — K do > we assume satellite 1 is the reference satellite
21: (Bo, B1) = arg ming, 5, Z;i—g, ||80§d,ﬁxod(t —nT) — 211):0 By~ (t = nT)?|?
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6.2 Cycle slip correction with MAP 53

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

33:
34:

35:
36:
37:
38:
39:
40:
41.
42:
43:
44
45:
46:
47:
48:
49:
50:

51:
52:

53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:

ALy fixed = 198 iea (t) — (Bo + Pit)]

ANE = {ANI’jrlcd —1, ANI’jrlcd, ANI’jrlcd +1} >asearchin{1,0,+1}
else
ANfs cand — {0}1
end if
end for

Determine all combinations A N% , and group inA N cand

a.

Determine number of candidates,,.q
for c =1 — neanq dO

TMAP,Cand<C) = PIJ{_EMAP (ZMAP - %ANcs,cand<c>)
bL,cand(C) = (HE:MAPEZ_I\;APHL,MAP)_IHEMAPEZ:\;AP(ZMAP - %ANCS,CaHd(C));

— T —1 (HbL,cand(c)”_la )2
WSSEMAP,Cand(C) - TMAP,cand(C) EZMAP TMAP,Cand(C) + 2 £

Ulap
end for

end if

if miH(WSSEMAp7cand) > WSSEMAP,th ORNgng =1 then
fork=1— K do > extended search

. _1 1
(Bo, B1) = argming, 5, >~ 5 198 fealt = nT) = 22, By - (t = nT)P||?
A‘Pﬁd,ﬁxed = Sogd,ﬁxed(t) — (o + aut)

if Ay frea > Aun then > exclude trustable satellites
ANE o ={ANE -2, ANE. | — 1, ANEL | ANK. 41, ANEL | + 2} > search
else
ANfs,cand = 0'
end if
end for

Determine all combinations A N% , and group inA N cand

Determine number of candidates,,.q
for c =1 — neanq dO

TMAP,Cand<C) = PIJ{_EMAP (ZMAP - %ANcs,cand<c>)
bL,cand(C) = (HE:MAPEZ_I\;APHL,MAP)_IHEMAPEZ:\;AP(ZMAP - %ANCS,Ca;ld(C))
WSSEMAP,Cand(C) - TMAP,cand(C)TEZ_I\/}APTMAP,cand(C) + (HbL’canilg:j”_lap)
end for
end if
Select cycle slip candidat& NV, .1 which minimizes the WSSE

Determine index of the best candidatie_sel among all candidates
if WSSEMAP,Cand(in_Sel) < WSSEnap < WSSEMAP,th then

_ A
Jgixed — Jgixed T 9 cs,se
Pdd fixed = Pdd fixed — 5 A NVes sel

ANaee := ANgee + ANes sl > Increment accumulated cycle slips
else

Try cycle slip correction at medium dynamics
end if

end if

64: end while
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54 6. Cascaded cycle slip correction

Line 6 to 9prepare variables needed for MAP estimation describedcitnose6.2.2.
Line 10 to 11ldetermine the projection matri))Z)HEMAP as well as the orthogonal projection
matrix PﬁT of the least-squares problem in Eq. 6.17.

L,MAP

Line 12is determined here by assuming that there is no cycle slige CHiculated baseline
vector is then used to determine the MAP headingr. If the MAP heading is different from the
extrapolated heading,..q determined irLine 2by 2°, a search for cycle slips is thus necessary.
However, if the MAP heading is comparable to the extrapdldateading, no search for cycle
slips is required. By introducing this condition, we canueel the probability of false alarm, i.e.
correcting for cycle slip while in reality, no cycle slip ags.

Line 18checks again if a search for cycle slip is really necessatye Jearch will only be
performed if the MAP error normWVSSEyap (See Eq. 6.17) is greater than a predefined threshold
WSSEMmAP,th-

Line 19is performed to predict jointly for all satellites the numloé cycle slips by using the
phase residuals after fixing the baseline to the a priorillveseBy refering to Eq. 6.5, we know
that if the residuals are too big, the phase double differeneasurements contain probably cycle
slips. The number of probable cycle slips is calculated bidiig the residuals with /2.

Line 23is again to avoid false alarm in the correction. It is perfedindividually for each
satellite. If the difference between the extrapolated phdmuble difference and the measured
phase double difference is small, no cycle slip search isired.

Line 24 to 30and42 to 48search for candidates of number of cycle slips. The firstcbear
is limited to a smaller neighborhood around the predictemiimer of cycle slipAN/ ; and sub-
sequently extended to a bigger neighborhood if the firstchefails to provide a good cycle slip
candidate. The search is performed as illustrated by F3. 6.

Take the first search for example, each node at each layeedfehrch produces three new
branches. All branches will survive if the conditionLame 23is fulfilled at the next layer. Or else,
each node only produces one branch which is linked to a n@edpresents zero cycle slip.

Line 49 to 53select the best candidate by using the sum of error norms.if.E¢ derived with
a MAP estimator. If no candidate at the first search prodWi€esS Eyiap cana Which is smaller
than a desired threshold, an extended search will substygmnperformed. If the extended
search fails again to find the right candidate, we will the@ aisother cycle slip correction mode.

This approach however only works for movements like in owsecehere the direction of
displacement is aligned with the baseline. In maritime satiee orientation of the baseline is
often affected by the water flow, which renders Eq. 6.18 ioM&].

6.2.2.2 Cycle slip correction at medium dynamics

Although smoothed with carrier phase measurement, codsurgraent remains noisy to a certain
extend that the error in the velocity calculation is compbe#o the true velocity when the dynam-
ics are low. Therefore, when the dynamics are not high enougbcity is no longer usable to
derive thea priori baseline vector.

Since we have relatively low dynamics, the yaw and pitch efwahicle do not vary much: a
linear fitting of the previous yaw and pitch angles can hereeded to predict the angles of the
current epoch. Subsequently, with the predicted attitddbeocurrent epoch, the baseline vector
can be calculated with trivial trigonometric operationdatow:
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6.2 Cycle slip correction with MAP 55
Algorithm 5 Cycle slip correction at medium dynamics
Inlet: ¢7 lapv RLv gpgd,ﬁxcd? HL7 Ulap
Output: AN,ce, AN sel
1: while ¢ do
2 (g o1 ) =argminge, Y, 0t —nT) =Yt ja, - (t—nT)|?
3 Pprea = ap + a1 (5T) > extrapolate to predict current heading

Sin(¢pred) )
COS(¢pred)
if p(t —1) — ¢(t —5) > 5then

St = (Lot = 1) = 6t = 5))%, L)~
else

ot = (L (F55 1)

4. bL,ap = lap

10:  perform line 6 to 11 of algorithm 4
11: buar = (Hi yap 2o p Hunmar) " Hiyap XL 2vap

by
12: (bMAP = arctan(ﬁ)

> determine a priori baseline

end if > determine baseline covariance matrix

13: i ¢prea — ¢map > 2 then > determine WSSE of MAP estimation

14: perform line 15 to 17 of algorithm 4

15.  endif

16: if WSSEMAP > WSSEMAP’th then

17: AN s = [%LHLI’LP} > predict number of cycle slips jointly for all satellites

18: perform line 37 to 54 to search for cycle slip candidates ansketect subsequently the
best candidate

19: if WSSEMAP7cand(in_Sel) < WSSEMAP AND WSSEMAP’Cand(in_Sel) <
WSSEMAP’th then

20: Pdd fixed = Pdd,fixed — 3ANs sel;

21: else

22: cycle slip correction fails

23: end if

24: endif

25: end while
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56 6. Cascaded cycle slip correction

Sin(¢prod) COS(eper)
brap = | €OS(@pred) COS(Opred) | * lap, (6.19)
sin(@med)

with ¢,..a andé,,..q obtained by extrapolating from the previous five epochs Hier current
epoch.
Besides the baseline vector, the rest of the algorithm reenalgorithm 4.

6.2.2.3 Cycle slip correction at stationary

For the case of a stationary vehicle, carrier phase measmteramains stable and only a drift
due to satellite movement is observable over a long pericghclH, as described in [17], a triple
difference approach can be used to detect cycle slips.

pra(t) = wda(t) — gaalt — 1) (6.20)

denotes the triple difference operation using the douliferénce phase measurement of the
current epoch and from the previous epoch.
The number of cycle slips to be corrected is the rounded gnbdf the triple difference and

k,1
[(f;g )}. This approach is simple but very efficient when it comes tgdecslip correction for

cases like in figure 6.1.

6.2.2.4 Cycle slip correction at low dynamics

When the vehicle is coasting at very low dynamics, the phasssnrements do not vary much and
therefore we can adopt a triple difference method as in tee ofstationary vehicle:

Phy = o (t) — @aa (t — 1). (6.21)

However, an approach which depends entirely on triple iffee is not reliable. As the system
has to work in a real-time manner, we predict the dynamid leyéooking at the previous epochs.
If the previous epochs have phase measurements which aie,stas then very likely that the
current epoch does not vary much. Such reasoning does nktimvall cases. The low dynamics
here are defined as such by looking only at the vehicle previmadings. If the vehicle coasts
in a line at a high speed, a turn can cause a big change in lgeaddthin phase measurements
instantaneously. A naive approach which depends only otrifle difference will treat the turn
as a cycle slip and lead to a wrong correction, causing thagghén motion to happen later.
Therefore, when the previous epochs reveal that the vehasle very low dynamics, we use the
baseline of the previous epoch asapriori baseline but in order to not take the low dynamics
(only in heading sense) for granted, we also take the velagtived from the smoothed code
measurement into account (deae 15to Line 21).

Unlike in algorithm 4 and 5, the region of integer search iedrined first. Since this cycle
slip correction method depends on the triple differencd tfiple differences are small, no further
correction is necessary. Nevertheless, unlike in the ceaesttionary vehicle, a simple rounding
IS not appropriate since the phase measurements can b#yslegs stable when there is some

dynamics. Therefore, we need to define a "gray zone" Wtiéin< |f—§g — Lf—%J | < 0.75 (seeLine
4t09).
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6.2 Cycle slip correction with MAP 57

Algorithm 6 Cycle slip correction at low dynamics

Input: ¢, lap, Ry, (pgd’ﬁxcdy Hy, Olap» bL,ﬁxed(l 12,0 — 1)7 Zﬂf’(t - 1))
OUtpUt: ANaCC, ANcs,sel
1: while ¢t do

20 Qrafixed(t) = Cadsixed(t) — pad.ixea(t); > triple difference between two consecutive epochs
3. fork=2-— K do

4: if |f—;§ — Lf};“ > (.75 then

5: ANZE md = ;21 > determine individually cycle slip candidates for each liste

. oF o

6: else |f|A;g — |2 7 £| < 0.25 then

7 A Ckscan = |. SV J

8: else . .

o: A‘.]st,ccmd = {L%J ) 07 [%—I}
10: end if
11:  end for

12: determine allV.,,q combinations of candidate$ N
13:  if Neang > 0then

14: €h,head = % > predict directive vector by using previous fixed baseline

15: if JoL(1:2,¢)|| > 10 then

16: eb,vcl = %

17: ehap = Ebhead T Ebvel > Predict directive vector by using previous fixed baseling an
current velocity vector

18: bLap = HZZ:—:Hlap > determine a priori baseline

19: else

20: b ap = szz:j:j”lap > determine a priori baseline

21: end if

22: if JoL(1:2,¢)|| > 10 then > determine covariance matrix af,

23: Dy = g e (t — 1) + RL(Z3(8) + Zs(t — 1)) R

24: else

25: Zbap = ZbL,ﬁxed (t - 1)

26: end if

27: perform line 6 to 11 of algorithm 4 to prepare variables for MA

28: perform line 49 to 53 of algorithm 4 to determine the WSSE a@hezandidate

29: select cycle slip candidat& N s, Which minimizes the WSSE

30: determine index of the best candidaté_sel among all candidates

31 Pdd fixed = Pad fixed — 3ANes sel;

32. endif

33: end while

57



58 6. Cascaded cycle slip correction
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Figure 6.4. Test drive at at ESA-AZO: Corresponding phast&duals in the case where no cycle slip
correction was used.

6.2.3 Validation of dynamic-based cascaded cycle slip carction

We carried out extensive tests on the algorithm. First, tN&WAS attitude determination system
was performed without any cycle slip correction. Fig. 6ldstrates the phase residuals after fixing
baseline. Without any cycle slip correction, the residuatges from 0 cm to5 m, indicating that
the least-squares estimation of the baseline does not fitwiklthe fixed phase DD measurements.

With the use of dynamic-based CSC, the residuals are suladhareduced as seen in Fig. 6.5.
However, we still observe with some satellites (PRN 02 an® PR) phase residuals of meter
level. These are indeed satellites of the lowest elevatigiesamong all visible satellites. PRN 02
has an elevation angle a8 while PRN 27 has an elevation angle2sf. Therefore, a selection
based on the a weighted squared error (see Eq. 6.17) is zagdior low elevated satellites as
they have low weighting, which can be 100 times lower thandduwellite with the highest ele-
vation. Consequently, satellites with low weighting catihei be neglected in the correction and
be corrected wrongly. While a missed correction or a wromgembion does not affect much the
instantaneous heading determination given the low weaighthe error continues to propagate and
can even be accumulative since we often use information freprevious epochs to derive a
priori information for the current epoch.

A missed or wrong correction of a low-weighted satellite barcorrected using the following
equation:

Pdd, fixed — ACSAN = Hbﬁxed + ACSAN + g, (622)

where bg..q is the baseline calculated right after phase double diffezes corrected with
dynamic-based cycle slip correction, aiNds the remaining cycle slips.
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Figure 6.5: Test drive at at ESA-AZO: Corresponding phaseluals where dynamic-based cascaded cycle
slip correction was in use.

A, AN + ¢ represents the residuals that we observe in Fig. 6.5. Inasewhere no cycle slip
remains, the residuals must be small since they only reprélse noise level in phase measure-
ments. When the residuals become substantiatpntains remaining cycle slips that have to be
corrected.

The final corrected phase double difference is hence:

@dd,ﬁxed = $Pdd,fixed — ACS(AN + AN)) (623)

whereAN is derived from thelynamic-based CS@nd AN from thea posteriori CSC

Cascaded cycle slip correction is more robust than only ehyciddased cycle slip correction
as it does not only correct for satellites with high weigbtimith a WSSE derived with a MAP
estimator but also performs a posterior correction for \egighted satellites once the baseline is
fixed to avoid propagative errors.

Fig. 6.6 shows the phase residuals of the same data set withhthse double differences
corrected with cascaded CSC (first with the dynamic-basel &jip correction and subsequently
with a posterior correction). The residuals are below 5 chictvshows that cycle slips are reliably
corrected.

Fig. 6.8 shows heading obtained from sole dynamic-based(BB€ curve) and cascaded CSC
with a posteriori CSC in use after dynamic-based CSC (orangee). Different correction modes
of the dynamic-based cycle slip correction were use intéemily. Red markers indicate epochs
where very low dynamics cycle slip correction mode was in gseen markers indicate epochs
where medium dynamics cycle slip correction mode was inmsgenta markers indicate epochs
where very high dynamics cycle slip correction mode was i UEhe last section of the curves
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Figure 6.6: Test drive at at ESA-AZO: Corresponding phaseluals where dynamic-based cascaded cycle
slip correction was coupled with a fixing posterior correwoti

differ substantially; this difference is also easily ohsdale from the residuals (see Fig. 6.5 and
6.6). Comparing the heading curve to the plotted route ot#rgsee Fig. 6.8), we notice that the
heading estimated using only dynamic-based CSC is wrongwhscaded CSC is more reliable.

Another test drive was conducted in front of Volkswagen logdter in Wolfsburg, Germany.
Fig. 6.9 shows the track taken during the test and Fig. 6.d@skhe corresponding headings.

Fig. 6.11 illustrates the phase residuals of fixed solutiarng) coasting obtained with only a
dynamic-based cascaded cycle slip correction while FitR 6hows the phase residuals obtained
using additionally a posterior cycle slip correction.

With the dynamic-based cycle slip correction, we obsera¢ satellite PRN 32 is constantly
bearing big residuals. It is indeed low-elevated. The sai&l residual of this satellite persists
or even worsen when left uncorrected. With a posterior cglifecorrection, satellite PRN 32 is
corrected accordingly and the overall residuals are imguidyy at least a factor of 2.

60



6.2 Cycle slip correction with MAP 61

17Q T T T T

120

7@

20

Heading [deq]

-130

40 80 120 160 200
Time [s]

1180 5 5
0

Figure 6.7: Heading determination of a test drive at ESA-ADBerpfaffenhofen. Headings were obtained
using the dynamic-based and subsequently a posteriori DE€rent colors show that different cycle slip
correction modes were used.
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120s - 220s

Figure 6.9: Test drive conducted at VW, Wolfsburg. Aftetiadization, the car moved round the open area.
At 60 — 80 s120 — 220 s, the car was stationary.
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Figure 6.10: Headings obtained from the test drive at VW,f§thirg.
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cycle slip correction.
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Figure 6.12: Test drive at VW, Wolfsburg: Correspondingggheesiduals where dynamic-based cascaded
cycle slip correction was coupled with a fixing posteriorrection.
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7. ANAVS PAD: Position and Attitude Determination research
platform

Advanced Navigation Solutions (ANAVS)s actively involved in absolute and relative position
determination as well as attitude determination. This Brasiesis consists mainly of the attitude
determination part or more precisely, heading determonatAlgorithms and methods explained
before are put into practice in tiRosition and Attitude Determination, (PABystem. The system
is tested extensively to provide precise headings in teraéaavigation. However, the system can
be further developed for maritime and aeronautical use.

The following sections will give a description of how the 8 is configured hardware-wise
and how the different methods are structured in modulesh@gware part of the system is mainly
conceived by Philipp Berthold and carefully developed bilipin Berthold and Naoya Oku.

7.1 Hardware configuration

Figure 7.1 outlines the basic setup of the heading detetromalatform. An i7 processing unit
and two u-blox LEA-6T receivers are integrated in a casivgo Teceivers are needed because we
are performing relative positioning. Two jacks on the reide of the casing are used to connect
the GPS antennas to the receivers. The box can be powered vatiable voltage betwedhand

30 Volts. The high voltage input range is to ensure that the atpmr remains reliable when the
power supply is connected to a running car battery. Suchrisgoneasure also enables the box to
be connected to high voltage board supply on a ship or a truck.

The box uses an Intel i7-CPU as in the research phase, thatlhigs are implemented in
MATLAB which requires high computing resources for a reaid systerd. The box is passively
cooled with heatpipes integrated in the aluminium casing.

The box can output results from the code to other electroenices with a graphical display
via a wireless local area network (WLAN) connection. HoweMATLAB only allows a single-
user connection. Philipp Berthold developed a networkriate (Fig. 7.2) which acts as a router
and outputs the results to up 12 users.

L ocated in Munich, Germany, ANAVS is created in October 2By Dr. Patrick Henkel, Prof. Christoph Giinther,
Sabine Schmitz, Peter Schmitz and Juan Cardenas.
2Since we are usingHz receivers, realtime requirements are met if each epquioessed in less thar2 second.
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Figure 7.1: Network interface of ANAVS PAD system
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Figure 7.2: Network interface of ANAVS PAD system
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66 7. ANAVS PAD: Position and Attitude Determination resgaplatform

7.2 Software architecture

The code is structured with modules. Each module contaiadgamithm aiming to solve the same
problem. Figure 7.3 depicts the general overview of the rfeovdarchitecture.

First the signal received from satellites is processed enublox receivers to output .ubx
files (containing navigation and observation messagesgtware later parsed to provide time
(week _1week 2,tow 1, tow 2), orbit data Or bi t) as well as code and phase measure-
ments (ho_1,rho_2, phi _1, phi _2). These data are obtained for every epoch and are tem-
porarily stored in two First In First Out (FIFO) buffersanpl eFi f ol andsanpl eFi f 02. The
buffers then feed data epoch by epoch to the main body of tte. co

Before using the phase measurements, we have to resolvetdgei ambiguities (see eq.
2.2). In the case where cycle slip is absent and the sasedlie continuously visible, the integer
ambiguities are invariant. With this concept in mind, weaege the code into two main parts:
Initialization and Coasting The former intends to solve the ambiguities which can theoded
in the latter to determine the baseline vector. Since theiguitles are constant once they are
resolved, no ambiguity resolution is required in the comgtihase. However, in the coasting phase,
cycle slips can happen and have to be corrected to ensunetélgeify of the phase measurements.

Due to the fact that we have two major modules which do not imilsaneously, it is practical
to set different timelines for each module and a timelinetf@ whole processep denotes the
epochs of the whole process whtle ep andt _ep_neas denote the independent timelines of
the initialization and the coasting phase respectivelg (Sigure 7.4).t _ep counts froml to
N _ep_i ni t which indicates the number of epochs needed for initidbratvhilet _ep_neas
has no upper bound. Bear in mind thatep_neas = 1 whenep =N _ep_init + 1.

7.2.1 Initialization

This section explains what each module incorporated in thi@ itialization module is perform-
ing. Figure 7.4-7.7 illustrate in the middle different méskiwith blue indicating that the module
is a separated module from thai ti al i zat i on. mwhile white indicates that the module is
writteninl niti al i zati on. m On the left are all variables needed in the module and on the
right are variables which are created or modified in the madTihe list of output variables exclude
intermediate variables which are used only within the medul

In the initialization phase, the receivers have to be statipin order to eliminate any eventual
cycle slips with a simple and reliable triple difference huoet described in section 6.2.2.3. With
the cycle slips eliminated, we can assume that integer antlag are constant and proceed with a
solution exploiting redundancy of measurements from dbfiiéepochs.

7.2.1.1 Absolute Position Determination - Initialization

As described in Chapter 4, float ambiguities have to be deteahbefore the search of an integer
solution. Due to the noise level in the received signal cdumseeither the noisy environment or
the low-cost receiver, we use a system of equation whicho#spihe redundancy (see eq. 3.9).
Using more measurements can improve the efficiency of integarch [24]. A total number
of N_ep_i nit epochs (in our cas&00 epochs) are collected and storeslumn-wisen vari-
ables bearing the same name ending witmmepoch (eg. rho_1_mepoch(1: 32,t _ep) =
rho_1).
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Figure 7.3: General architecture of modules
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68 7. ANAVS PAD: Position and Attitude Determination resgaplatform

N _ep_init epochs

t_ep t _ep_neas

ep

Figure 7.4: Timelines in the code

During the collection ofN_ep_i ni t epochs, the code-based absolute position of each re-
ceiver is determined with an iterative least-squares neklike in algorithm 1. Nevertheless, the
main goal here is to obtain the receiver clock offsets andggmmetry matrices from the least-
squares solution. A more precise code-based absolutequmsg using carrier smoothing will be
performed again at a later stage. Other data such as sapskition is also calculated using the
orbit data.

Variables required for receiver clocks synchronizatioohsas the geometry matrices, eleva-
tion angles and the satellite positions are stomdwisein matrices which begin witle_32_*.
Receiver clock offset for each receiver is also store@XnCLK 1 andRX _CLK 2.

With the absolute positions determined, latitudes anditadgs of each epoch are also stored
column-wisen | at _* mepoch andl on_* _nepoch.

t _ep isincremented by 1 after each epoch uNtilep_i ni t .

7.2.1.2 Determination of available satellites and refeecsatellites

This module is not a separate module but incorporated inrthialization given its relatively
simple task. It searches for satellites which provide code phase measurements through-
out the wholeN_ep_i nit epochs. The PRN identifiers of these satellites are storel@run
Avai | PRN init.

An elevation maslkel e_mask is also applied to all satellites éfvai | PRN i ni t . Satellites
with an elevation lower thaal e_nmask will be excluded fromAvai | PRN i ni t . Finally,N_S
number of satellites are available and the entiigalization module will only be working with
these satellites.

Satellite with the highes elevation angle normally suffex keast from multipaths. Therefore,
we select the most elevated satelN_r ef to be the reference sastellitBRN_r ef _i ndex
denotes the reference satellite indexAwai | PRN i nit. Avai | PRN_DD i nit contains all
satellites fromAvai | PRN i ni t excluding the reference satellite.

Single differences are determined with eqg. 3.1 and storemlv-wise in
DSDPH ms srefRr or D SD RHO s _sref Rv. With eq. 3.4, double differences
are determined and storealv-wisein D_DD_PHI _mandD_DD_RHO.

7.2.1.3 Synchronization Correction - Initialization

The problem that be intend to solve involve two receiversciwhare not synchronized. Each
receiver has its own clock; in other words, the measuremeintee same epoch are taken at
different time instants. The offset between both receivecks is although only at millisecond
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7.2 Software architecture 69

level, however as satellites are movinglatn /s, such an offset can cause an errorlof in range
measurements. Henkel et al. [8][10] developed a synchatiniz method which takes the clock
of one of the two receivers as the reference clock and inkatg@aneasurements from the other
receiver accordingly.

However, the synchronization is not done for each epochrbetpolated linearly instead. The
double difference correctioddD PSEUDO_DDto eliminate the differential clock offset is calculated
using eq. 4.2. Phase and code double difference for eacth epeccorrected with eq. 4.3 and
storedcolumn-wisen phi _dd andr ho_dd.

7.2.1.4 Remove the firdt+ max_i nt _degr ee epochs

Due to the interpolations for synchronizing the receivecks,D_PSEUDO_DDis not calculated

for the first1 + max_i nt _degr ee epochs. Measurements for these epochs are hence not cor-
rectable. We have to neglect these epochs in variablesswitiepoch for the subsequent opera-
tions and start only with epodh start _afi x =2+ nmax_i nt _degr ee.

At the same time, to keep homogeneity, we transpose thdiwapsition matrices, double
difference correction as well as the geometry matrix foenegr one so that each epoch is stored
column-wisen x_s_ECEF_Rx1,x_s_ ECEF_Rx2,pseudo_dd_init andH 1.

In all following modules, we only use geometry matrix fronceezer 1 as the normalized
elements in the matrix do not vary much with a short baseline.

7.2.1.5 Cycle Slip Detection and Correction - Initializati

After synchronizing the receiver clocks, double differerycle slips are corrected using a triple
difference approach (see section 6.2.2c3c_accunul at ed is incremented with the detected
cycle slips (already multiplied with /2. Since cycle slip affects all subsequent epochs as well
(see figure 6.1, the accumulated cycle slips will be used teecbosubsequent double difference
measurements acquired.

7.2.1.6 Noise Statistics - Initialization

Before proceeding with baseline determination or ambyg@solution, we have to define the sta-
tistical model of the system due to the random noise in eq. \®®assume that the measurement
noise is Gaussian distributed with zero-mean. The standievation is determined statistically
using a polynomial fitting over double difference measureimef theN _ep i ni t epochs (see
section 4.3.1. A statistical approach is preferred to a rhadehe receivers are stationary and
therefore a second degree polynomial fitting is sufficienitdch the satellite movement to the
measurements (see figure 4.3). The standard deviationsrile¢el for each double difference
measurement are used to fill the diagonal positions of the aod phase measurement covariance
matrices §i gma_r ho andSi gna_phi respectively). The off-diagonal elements are theoreti-
cally difficult to determine. For practical use, we také * min(c*). Si gna take the code and
phase covariance matrices as diagonal blocks to form theriemce matrix for measuremehtin
eq. 3.9.

However, the noise statistics above are only determineddéarble difference measure-
ments. We need section 4.3.2 to calculate standard dewsdfito code and phase measurements
(si gma_r ho andsi gna_phi ). These variables will be used in the next module.
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7.2.1.7 Carrier Smoothing - Initialization

Although the absolute positions are already determineah ataalier stage when data from each
epoch is collected, we perform again here an absolute pogigtermination. This time however,
is no longer using the pure code measurement but the smootidedneasurement. As explained
before in section 2.1, the geometry change of the code arskphaasurement should be identical.
Therefore, smoothing the code measurement using a Hateh(§éte Fig. 2.1) can help to improve
the precision of absolute positions.

si gma_r ho andsi gnma_phi are used to determine the covariance matrix of the Hatch fil-
ter according to eq. 2.8. Absolute positions are calculdédedeach epochx_1_snoot hed
andx_2_snoot hed). The middle of both receivers is taken as the absolute ipasif the
vehicle x_snoot hed. Its latitude and longitude are also calculatéct( snoot hed and
| on_snoot hed). The averaged absolute position of receiver 1 is also cheted by taking
the average over all epocks Rx1 _ave.

This module also provides the continuity of the satellfteag_cont .

7.2.1.8 Stack double difference measurements in vectors

This module is incorporated imitialization module itself. It stacks measurements from different
epochs into vectorghi _dd _nmul ti _epochandrho_dd multi epoch.

7.2.1.9 Unconstrained Iterative Least Squares Float Bolut

The final goal of the initialization phase is to determine dioeble difference integer ambiguities

of the measurements. We use here the LAMBDA method (se@sédetl) which requires first the
ambiguities to be solved in float form. As the PAD system iggmged to work under all possible
circumstances including noisy urban environment, we ekfile redundancy by taking a system
of eq. 3.9. By the end the this module, we will be able to deteera float solution for the baseline
vector as well as the double difference ambiguities. Howekies is not our goal here. Instead, the
residualont_phi _dd andont_r ho_dd of code and phase measurement respectively are out
main interest.

7.2.1.10 Selection Epochs Small Code Multipath

Since we have to wait foN _ep_i nit epochs before we can determine the ambiguities,
during the waiting period, some irregularities can happed eesult in a substantial multi-
path at certain epochs. The results can be distorted andhdaday will do us more harm
than good. Therefore, by studying the residuals obtained fthe float solution previ-
ously determined, we can eliminate irregular epochs in thdecmeasurements as well as in
the phase measurements. (see eq. 4.16 and 4.16). In thehentigdod” code measure-
ments from epochkess_code_nul ti pat h_epochs and phase measurements from epochs
| ess_phase _mul ti pat h_epochs will be used in the next step which consists of determin-
ing the final float solution.

| ength | ess code nultipath andl ength | ess _phase_nul ti path are the
number epochs from code and respectively phase measurewt@oh survive the selection.
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7.2.1.11 Unconstrained Iterative Least Squares FloatiBaluLess Multipath

Likewise, the float solution is determined with algorithm @t lusing only selected measure-
ments. The least-squares solution gives us an estimatetiopogector of the second receiver
X_Rx2_ave with respect to the first receivar Rx1_ave as well as the float double difference
integer ambiguitiedl acc. The least-squares solution also provides us an impongRpsoduct:
the double difference ambiguity covariance maixgnma_N_hat which is used to define the
metric of the search space in LAMBDA method.

The geometry matri¥d provided by the iterative least-squares will also be usédaguently
in other modules.

7.2.1.12 Intermediate absolute and relative positions

This module is incorporated imitialization module itself. Latitude and longitude of the sta-
tionary vehicle are determined here. Using these latitut langitude, we can established
the transformation matril®_L which transforms a position vector in the ECEF frame to a lo-
cal ENU frame. The unconstrained baseline vettohat f| oat and its vector in the local
ENU frame are calculated by subtracting the absolute positi The float ambiguitiesl_hat
is assigned witiN_acc found in the above unconstrained least-squares method. hdaeing
head_fl oat _unconstr ai ned is calculated with eq. 3.13.

The statisticSi gna_b_N hat ,Si gna_N_hat andSi gna_b_hat of unconstrained float
solution are also calculated.

Code and phase measurements are eventually stacked imancedetorPsi as in eq. 3.9.

7.2.1.13 Constrained Float Solution with Tight Length Gaaised

Float solution determined above does not exploit arpriori knowledge: the fix base-
line length b_| ength_apriori. This module uses Lagrange optimization and
Newton method (see section 4.4) to determine the baselingorven local ENU-
frame b_hat | ocal float _constrai ned and the constrained float ambiguities
N_hat _constrai ned. Eventually if the secant method in Lagrange optimizati@m-c
verges, the constrained float solution for ambiguitidshat will be used rather than the
unconstrained float solution. However, the unconstraireat #olution cannot be skipped because
we need the ambiguities covariance ma8ipxgma_N_hat later in the integer search.

The geometry matri¥ is transformed to be used with a baseline in the local ENU déréine.
Hy, = H = R;"). Its height component is truncated here as we only work tvithdimensions.

7.2.1.14 Fixing LAMBDA Decorrelation and Search

We start the search with first of all LAMBDA method usisg gma_N_hat andN_hat. The
search first executes a decorrelation for the above vasahith a Z-transformation. We ob-
tain theZ matrix and its invers&_i nv, as well as the decorrelated covariance ma@rand the
float ambiguitiedN _dec. A search space volume is defined according to how many catedid
we want the search to output. The search is then performddnwtiie defined space volume
and the candidates found are storedNirf i xed which is sorted according the squared norms
sgnor m unconst r ai ned (see eg. 5.18 of section 5.1).
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7.2.1.15 Fixing Constrained Search Tree Tight Length CGairgt

LAMBDA method is efficient as a discrete integer search bwvéwer does not integrate ttee
priori knowledge (see section 5.2.2). Our configuration with a figetiae length gives us an
advantage which can be used to eliminate candidates whidlotdlfill the baseline length con-
straint as in eq. 5.39. The sequential conditional leastsEs principle can be considered as a
tree search (see Fig. 5.1). Using a tight length constrainthelp the search be more efficient as
we eliminate invalid branches while going down the tree atiog to the inequality in 5.44 and
candidates which survive through the whole search aredstomd fi xed.

ncands register the number of candidates found with a search spauleme
Chi 2_const r ai ned defined as described in section 5.2.4 using the residualeobdist can-
didate found with LAMBDA method.

A back-transformation is performed oh f i xed usingZ_i nv to undo the decorrelation.

7.2.1.16 Constrained Fixed Solution For All Candidates

With integer ambiguities candidates found, we determinee tlibaseline vector
b _check_unveri fi ed with a tight length constraint as described in section 4.4owH
ever, is the tight length constraint is not fulfilled (il}é..|| — l,, >= 0.001), the associated
ambiguity candidate will be discardetd. check fi xed_const r ai ned takes in only those
which fulfilled the length constraint aridnd_cand_r el registers the indices of the candidates
in the original list of candidates determined in the pregionodule. The WSSE of the phase
residualSASSE_neas are then calculated to sort the candidates.

With the verified baseline vector, the corresponding hegldead is calculated with eq. 3.13.

7.2.1.17 Select the best candidate

The best integer ambiguities candidate is selebleidi xed_sel ect ed together with its asso-
ciated baseline vector and the heading is calculated witl3 4§.
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Figure 7.5: Initialization part-1
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Figure 7.6: Initialization part-2
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Figure 7.8: Initialization part-4

Once the receivers are initialized, any movement of theckels allowed. With the determined
ambiguitiesN_f i xed_sel ect ed, we can now use the phase measurements. Idhsting
phase, measurements are processed epoch by epoch inieneeaignner.
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7.2.2.1 Absolute Position Determination

This module is incorporated in treastingmodule itself. Similar to the first module imitial-
ization the code measurement of the current epoch is used to detethe absolute positions
(x_Rx1 andx_Rx2), the receiver clock offsetsl{ Rx1 anddt _Rx2), the geometry matrix for
receiver 1H 1 and the elevation angle for available satelle¢®v_1.

Satelite positions are determined first with the orbit datd kter corrected with the earth
rotation: xSat _Rx1_r ot andxSat Rx2_rot. An elevation mask is applied to the satellites
andN_Sregisters the number of available satelliéesai | PRNwhich are elevated higher than the
elevation mask.

7.2.2.2 Parameter Initialization-Coasting

This module is destined to structure the variables. Thastingphase can be running continu-
ously and therefore storing all data is not an option due tmorg limitation. However, previous
information is necessary for operations such as interjpolatWe need at mostax_epochs
previous epochs to process the current epoch ilCtestingmodule (see interpolation in receiver
clock synchronization). Therefore, we store the previoais_epochs epochs’ measurements in
the firstmax_epochs columns as well as the current epoch measurement in thedasho of
variables ending with _neas. Older epochs are discarded from the system.

Satellite positions of the current epoch are also saved ia_ ECEF Rx1 epoch and
X_s_ECEF_Rx2_epoch so that it is easier to mobilize the satellite position vestater.

7.2.2.3 Reference Satellite-Coasting

While only satellites which are visible throughoNtep_i ni t epochs are used in the initial-
ization phase, in the coasting phase, we use all visibldligatef the current epoch which are
higher than the elevation mask e_mask. Since the vehicle is moving and in an urban environ-
ment, the visible satellites become more variant. Theegfibre coasting phase must be designed
to cope with such versatile use. The reference satéd r ef has to be determined for each
epoch individually. We use preferably the reference staditom the previous epoch to avoid
complex computation as long as the elevation of the old eefsx satellite does not fall below
el e_ref _sat _m n. Or else, we use a satellite with the highest elevation aagleng all visi-
ble satellitesAvai | PRN as the reference. The reference sateRiRN r ef must also have been
continuously visible fomax_epochs so that it does not affect the linear interpolation used én th
snychronization [10]. Its index in the available sateNieztorAvai | PRNis PRN r ef i ndex.

7.2.2.4 Determine double difference measurements

Double difference phase and code measuremeiiis (dd_neas andr ho_dd_neas) are de-
termined with eq. 3.7 and 3.6 and are stored in the last colgmar_epochs+1)-th column of
phi _dd_neas andr ho_dd_neas.

Accumulated cycle slipgsc_accunul at ed are subtracted subtracted from the current
phase double difference measurenyamt _dd_neas(:, max_epochs+1).

7.2.2.5 Synchronization Correction - Coasting

Similar to the beginning of the initialization phase, theaer clocks are not synchronized which
causes the measurements to be taken at slightly diffemaet tAgain, the clock of receiveris
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used as the reference clock and measurements from regeiveinterpolated [10]. The correction
terms are stored in the last columnpsfeudo_dd_rneas; measurements from the last column of
phi _dd_neas andr ho_dd_neas (i.e the current phase and code measurements) are corrected
with eq. 4.3.

7.2.2.6 Identification of new and old satellites

We first perform a check if all available measurements atevsiid after the previous synchro-
nization module. The fact that synchronization requires/jmus epochs to interpolate, satellites
which are visible and higher than the elevation mask for tisetfime will not be properly correctly
with the synchronization. Therefore, these satellitetalslo be excluded from the list of available
satellitesAvai | PRN. After modifying the latter, we have to redefiNe S the number of available
satellites andPRN _r ef _i ndex, index of the reference satellite in the list of availableBaes.

Note that in the end, satellites which are in theai | PRN are not only visible, but also
elevated higher than the elevation mask and with correetdiflerential receiver clocks. With
Avai | PRN, we set up another list of satellites used in double diffeegkvai | PRN_DD, which
technically is a copy list ofvai | PRN excluding the reference satellite.

Unlike Initialization, we do not always use the same satellitesCtasting we consider all
visible satellites with a high enough elevation of the cotrepoch. Therefore at each epoch, we
can have new satellites and lost satellites, which have todaged differently when we correct
the cycle slips. PRN_| ost andPRN_new store lists of lost and new satellites respectively of
the current epoch, witPRN _| ost _i nd the indices of the lost satellites in the list of available
satellites of the previous epo@&vai | PRN_DD | ast _epoch, andPRN_new i nd indices of
the new satellites in the list of available satellites of therent epoctvai | PRN_DD.

In this module, we also set up another liavai | PRN_DD i nt er medi at e, which
technically is the list of satellites used in double diffeze of the previous epoch
Avai | PRN_DD | ast _epoch, with the lost satellites omitted (i.e. indic®RN_| ost _i nd
are omitted). This listis for cycle slip correction as we acantly correct for satellites available at
the current epoch as well as in the previous epoch. A newlisate#innot be corrected as its integer
ambiguity is not yet fixed. Therefore, if there are cycle slip the measurement provided by the
new satellite, it shall be considered as part of the ambjigibtice however that half a cycle slip
in the new satellite will therefore not be taken into accasimbiguity fixing for the new satellite
is only a multiple of a whole wavelength

We reset the accumulated cycle slgsc _accunul at ed for lost and new satellites to zero.

7.2.2.7 Noise estimation

Unlike in the initialization phase, we do not estimate theamwement noise statistically as the
satellites visibility is not continuous. A statistical appch will make noise estimation of newly
tracked satellites impossible. One compromise is to takeisermodel like explained in sec-
tion 4.3.2 and [16] which determines the standard deviat{ehgrma_r ho andsi gna_phi ) of
each measurement base on the elevation alegles 1.

Standard deviations for code measurementgma_r ho is used later in carrier smoothing.
Since we intend to solve the baseline vector based solelyhasgpmeasurements, we determine
here the double difference measurement covariance ng&tgxa_phi with only the phase mea-
surement standard deviatiorsi. gma_phi only provides standard deviation of phase measure-
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ment whileSi gma_phi is the double difference measurement covariance matrixus&ehence
a combination of standard deviation to form the variancescavariances:

agf = 20M2 4 25702 (7.2)
okl = 2572, (7.2)

The weighting matrix of the double difference measuren@rgna_phi _i nv is also deter-
mined to save computational effort later in the code.

7.2.2.8 Carrier Smoothing - Coasting

The receivers used in PAD system focus more on pseudorangguneenents. When a clock jump
is detected, which is alwayslans jump, the receivers correct the jump for code measurements
but not for phase measurements. We detect the jump by stibgydéice current code measurement
and the previous code measuremehb_1 prev. These jumps once detected, will be used
to calculate the equivalent jumps for the case of phase measmts phi _1 corr _acc and
phi _2_corr_acc). The current phase measuremeapits _1 andphi _2 are corrected. These
jumps do not have to corrected for double difference measemés since the cancel off each other.

The next step consists of using carrier smoothing technilgseribed in section 2.1 to deter-
mine the absolute position of the vehicle based on smootbdd measurements at the current
epochx_snoot hed. The covariance matri$i gma_x_snoot hedof the absolute position is
calculated with covariance matrices of both receivers lalbsgositions given while solving the
least-squares problem.

res_1 snoot hed is the residuals of each satellite code measurement aftErpeng an
iterative least-squares estimation of the absolutiontjposof receiver 1.

7.2.2.9 Intermediate absolute positions and velocityrdateation

This module is incorporated inCoasting module itself. Using x_snoot hed and
Xx_snoot hed_previ ous_epoch, we can calculate the speed of the vehicle
v_neas(max_epochs+1. Note however that the calculate speed does not represent th
current speed but can be approximated as the current spesdtiv time interval between two
epochs is short.

Latitudel at _snoot hed, longitudel on_snoot hed are determined; together with these
geodetic coordinates, we determine the transformationxatL and its invers® L_i nv. And
with the transformation matrix, we can calculate the veloei neas_| ocal _snoot hed in
the local ENU frame, and the heading of the vehicle based erthé direction of movement
head_abs_pos. The rate of turrr at e_of _turn_abs_pos is also calculated from the pre-
vious and current movement-based headings.

We determine here a threshold for the residuals of codedbamgsolute position
res_1 snoot hed_t hand its associated WSSE.

The next steps consist of estimating the baseline. Thergigrthe end of this module, we pre-
pare variables which we will need later in the iterative tetgiares solution, namely the geometry
matrix Hand receiver 2 absolute positien Rx2_neas( max_epochs+1) which is initialized
with receiver 1 positiox_Rx1 neas(nmax_epochs+1).
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7.2.2.10 Cycle Slip Detection and Correction - Coasting

In order to use phase measurements for relative positipmadhave to first eliminate abnormal
jumps in the measurements caused by cycle slips. While sjideorrection is done relatively
early in the initialization phase in order to have correqgibdse measurements for statistical noise
estimation, cycle slip correction is performed quite latdhie coasting phase. The main reason
is that while the vehicle is moving, the measurements are eaésier and cycle slips happen
more often. As the satellite movement is no longer the soleem@nt concerned, a naive triple
difference approach cannot be used here to detect and toye slips. We need otharpriori
information as explained in chapter 6 in order to be able maiMAP estimator to estimate the
number of cycle slips. The complete cycle slip detection emdection is divided into several
submodules as illustrated in figure 7.12. The different sade detailed in chapter 6.

Before deciding which cycle slip mode to use, the module fimgepares in-
termediate variables (i.e. H internmediate, Signma_phi _internediate,
Si gma_phi _internmediate_inv, phi_dd fixed_internedi ate) which take
into account all visible satellites of current epoch used double difference measurement
Avai | PRN_DD, while excluding new satellitd8RN_new _i nd in the list.

CSC_mode_1Cycle slip correction at very low dynamics (see section64). Mode 1 cycle slip
correction will be selectedf { ag_try CSC node = 1) when the phase-based heading
head neas of the previous 5 epochs do not vary much. By summing up thegdan
heading determined by phase measurements of the previoasseis not enough as it does not
take the current epoch into account. If the current epoclersipces a sudden turn, mode 1
cycle slip should also be excluded. Therefore, a linean{jtits done on code-based headings
head_abs_pos from the previous 4 epochs as well as the current epoch. Camgptoe
gradients of the linear polynomialead abs _pos fitted conpl et e of the previous
epoch and the current epoch will tell us if there is a suddematithe current epoch. Cycle slip
detection and correction is performed as described in gigo6. Cycle slip candidate which,
after determining the baseline with the corrected phasbldalifference measurements, bears
the lowest residual WSSBESE_CSC t d_cand is the number of cycle slip detected and will
be used to updatesc_accunul at ed.

CSC_mode_2Cycle slip correction at low dynamics. This mode is used winerde 3 fails to
correct cycle slip or when conditions to use mode 1 or mode 3at fulfilled. The correction
mode is performed according to algorithm 6.2.2.2.

CSC_mode_3Cycle slip correction at high dynamics is performed whenwbkicle is coast-
ing at high speedv_neas. The code-based speed should also not be too noisy and
WESE res_1 snoot hed should be kept low. The first condition is necessary since the
correction is dividing vectors with the speed. The last twaditions are to ensure that the
code-based velocity is not too noisy as theriori baseline knowledgb_apri ori is de-
rived usingv_neas_| ocal _snoot hed.

7.2.2.11 Determine baseline and fix ambiguities of new iat®|

With the corrected phase measurements, we determine tebrgagectorb _f i xed neas and
b_| oc_fi xed_neas with an iterative least-squares approach. With that, wefatsl an integer
ambiguity candidate for the new satellites by minimizing tioise. However, we do not completely
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trust the candidate. We search around it and the candidatdhwhs the smallest WSSE is the
ambiguity to obtain the finally chosen ambiguity for new HaeeN fi xed_sel ect ed.
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Figure 7.9: Coasting - Part 1
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Figure 7.10: Coasting - Part 2
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Figure 7.11: Coasting - Part 3
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Figure 7.12: Cycle slip correction during coasting

7.3 Verification of ANAVS PAD system in heading determinatia

The ANAVS PAD system was verified in several test drives, wtaio low-cost receivers (u-blox
LEA-6T) together with two single frequency low-cost patattennas were in use. The patch
antennas were mountéd- 1.5 m apart on the roof of the car as shown in Fig. 3.2. Both antenna
were aligned to the longitudinal axis of the car and had aigidg height difference.

7.3.1 Test Drive 1: Nymphenburg Palace in Munich

Figure 7.13 shows the track of the test drive conducted atphenburg Palace in Munich. The
integer ambiguities were resolved in the beginning witloathm described in section 7.2.1 while
the car was stationary. The orientation of the car was fourtldowt any movement. The track
shown is subdivided into sections 21 s.

Fig. 7.14 shows the course of the heading during the test @tiwWymphenburg Palace. The
enlarged regions show that the noise of the heading estimiaténe order of only).1°. The abrupt
heading changes @b s, 110 s and140 s indicate u-turns or turns from one road into another road.

Fig. 7.15 shows the phase residuals of our MAP estimator folewthe car is coasting along
the track at Nymphenburg Palace. The phase residuals oivthedtellites of highest elevation
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v

Figure 7.13: Track of car drive at Nymphenburg Palace. Ttegigr ambiguities are resolved in the begin-
ning with the car standing still. The subsequent track isiautbed into sections o0 s.
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Figure 7.14: Heading of track at Nymphenburg Palace. Theenof the heading estimate is in the order of
only 0.1°.
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Figure 7.15: Phase residuals of fixed baseline solutiorrdaktat Nymphenburg: The phase residuals of all
satellites are far below one wavelength. For the two stasltbf highest elevation, the residuals are only a
few millimeters.

(PRN 29, 30) are only of a few millimeters while the phasedesls of the other satellites are
more affected by multipath but still remain unbiased antt-fhee.

7.3.2 Test Drive 2: ESA AZO in Oberpfaffenhofen

We conducted another test drive in front of ESA/ AZO buildingOberpfaffenhofen. The track
is shown in Fig. 2.2. The ambiguities were resolved resoladtie beginning while the car was
standing in front of the building (se&s). Due to reflections from the concrete walls, the code
measurements were affected by substantial multipath. mdeless, we still managed to resolve
the integer ambiguities and determine the heading of th®stay car.

Fig. 7.16 shows the double difference phase residuals ofixad MAP solution during the
initial 160 s. The car was standing. The phase residuals of all four daiifiérences are less than
two centimeters over the complete period. This indicatesrgect integer ambiguity resolution.

Fig. 7.17 shows the course of the heading as obtained by olR Bsiimator. The estimated
heading is varying only by a few degrees during the drive fame end to the other end of the
road between s and35 s. The figure also shows three reversing sections in gooeagnet with
Fig. 2.2.
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Figure 7.16: Phase residuals during initial integer ambjgesolution.
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Appendix

Al. Weighted Sum of Squared Errors

Al.1 Cost function

One useful indication to know how precise if the estimatddevavithout knowing the true value
is by checking the measurement residuals. Residuals ayeweely used, to test the deviation of
the estimated and the measured values, for example in Kdhittan In the case where we have a
linear relation betweel the measurement vector aidthe parameter of interest that we wish to
determine.

Y = AX + B, (A1)

where A is the design matrix of the linear equationl is deterministic butB is Gaussian
distributedB ~ N (0, X).

We can determiné with an estimator and denotes the estimated value. The residual or
rather the cost function can be calculated by taking thegfice between the measurement and
the estimated value:

r=Y — AX. (A2)

Some measurement is better than others. Therefore, itdemahle to incorporate a weighting
matrix 1/ in the problem. In the case of a least-squares estimatog husied, the estimate takes
the following expression [13]

X = (A"TWA)tATwy, (A3)

and the residual can be deduced as follows:

r=Y — AX

=Y - AA"TWA)TATWY

=Y - PY

=({ - P)Y, (A4)

whereP = A(ATW A)~* ATW is a projector.

Al.2 WSSE, Weighted Sum Square Error

An approach to quantify how much the estimates deviate floennieasurements is by weight-
ing the residuals against the quality of each measuremardrder to ensure that any deviation,
whether negative or positive value, is accumulated but anoteling each other, we can use the
Weighted sum squared error (WSSE) to translate this deviatiathematically:
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WSSE = rTWr (A5)

As the noise vector in satellite navigation is always assutoebe normally distributed with
zero mean, the WSSE follows a central chi-square distoby@5].
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