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LIST OF SYMBOLS, NOMENCLATURE, OR
ABBREVIATIONS

0mn m× n matrix with entries 0

1mn m× n matrix with entries 1

ρ̄kr smoothed code measurement from receiverr with respect to satellitek

Ňkl
mn estimated fixed integer ambiguities of a double difference measurement

∆N column vector of number of cycle slips of double difference measurements

∆Npred column vector of predicted number of cycle slips of double difference measurements

∆Nkl
mn Number of cycle slips in the phase double difference measurementϕkl

mn

η noise associated with code measurement or withΨ

N̂kl
mn estimated float ambiguities of a double difference measurement

Ψ a column vector stacking double difference phase and code measurements

Ψfixed a column vector stacking fixed double difference phase and code measurements

ρkr code measurement from receiverr with respect to satellitek

ρklmn a double difference code measurement between receiverm andn and between satellitek
andl

ϕ̃dd,fixed notation used in the context of cycle slip correction. It denotes the fixed phase double
difference measurement with cycle slip corrected.

H̃geo geometry matrix ofϕdd or ρdd

ε noise associated with phase measurement

ϕkl
mn,fixed a fixed double difference phase measurement between receiver m andn and between

satellitek andl scaled with λ
2π

unless stated otherwise

ϕdd,fixed a column vector stacking fixed double difference phase measurements. The phase mea-
surements are scaled with withλ

2π
unless stated otherwise

ϕdd a column vector stacking double difference phase measurements. The phase measurements
are scaled with withλ

2π
unless stated otherwise

ϕkl
mn a double difference phase measurement between receiverm andn and between satellitek

andl scaled with λ
2π

unless stated otherwise

ϕr a column vector containing carrier-phase measurements from different satellites scaled with
λ
2π

unless stated otherwise

ϕk
r carrier-phase measurement from receiverr with respect to satellitek scaled with λ

2π
unless

stated otherwise
~bmn baseline vector pointing from receivern to receiverm
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6 Contents

~e k
r normalized line-of-sight vector directing from satellitek to receiverr

A a mapping matrix of the double difference ambiguity parameters to the measurementΨ

Acs a mapping matrix containingλ/2 as diagonal elements

Aϕ a mapping matrix of the double difference ambiguity parameters to the double difference
phase measurementϕ

b simplified version of~bmn which does not state the order of the receivers

bL baseline vector in the local ENU frame ofbmn

H concatenation ofHgeo andA

Hgeo geometry matrix ofΨ

HL transformedH̃geo,H, H̃geo in local ENU frame

I identity matrix

mρ multipath of code measurement

mϕ multipath of phase measurement

N column vector stacking double difference ambiguities

Nk
r integer ambiguity of phase measurement received by receiver r with respect to satellitek

nep number of epochs needed for initialization

RL the transformation matrix from ECEF-frame to local ENU-frame

tn time at epochn

CSC cycle slip correction

CSD cycle slip detection

DD double difference

ECEF Earth-Centered, Earth-Fixed Cartesian coordinate system with the origin defined at the
center of mass of the Earth

ENU local East-North-Up coordinate frame

MAP Maximum A Posteriori probability

PAD position and attitude determination

WSSE Weighted Sum Squared Error
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1. Introduction

Attitude determination can be performed with inertial sensors, magnetometers and satellite navi-
gation. Inertial sensors have three advantages: They are very robust, show a very low noise level,
and provide measurements at a rate of100 Hz already for low-cost devices. However, accelerome-
ters and gyroscopes need an initialization and a careful calibration to remove the drift and scaling
factors [1]. Magnetometers provide a heading information already without the need of an initial-
ization. However, one has to be sufficiently far away from themagnetic poles. In Munich, the
magnetic declinationis only 2.4◦. Moreover, magnetometers are extremely sensitive to ferromag-
netic materials such that they can be hardly used in automotive applications [2].

Satellite navigation also enables precise attitude determination by performing differential car-
rier phase positioning between two or three GNSS receivers.However, carrier phases are periodic
and integer ambiguities have to be resolved to fully benefit from the precise carrier phase mea-
surements. In 1993, Teunissen invented the Least-squares Ambiguitiy Decorrelation Adjustmenet
(LAMBDA) method to estimate the double difference carrier phase integer ambiguities [3]. The
LAMBDA method is today widely used for RTK and differential carrier phase positioning over
short baselines.

Henkel and Günther derived optimized multi-frequency linear combinations in [4] and [5], that
increase the ambiguity discrimination and thereby simplify the integer ambiguity resolution. In [6]
and [7], Teunissen developed a constrained LAMBDA method toincrease the success rate by in-
cludinga priori information on the baselinelength. Henkel et al. further extended the constrained
ambiguity fixing in [8] by usingsoft instead ofharda priori information (MAP estimation).

Carrier phase measurement can be tracked with millimeter tocentimeter-level accuracy even
with low-cost GPS receivers like u-box LEA 6T and is, thus, the key to accurate attitude (heading,
pitch, roll angle) determination. Using a baseline vector derived from carrier phase double differ-
ence measurements to determine the heading of a vehicle offers more flexibility than a standalone
GPS receiver: heading can be determined even when the vehicle is stationary. Furthermore, the
true heading of the vehicle can be determined when the orientation of the vehicle deviates from its
moving direction, which can help to detect for example the drift of a car.

However, there are three challenges to be considered with low-cost GPS receivers: The first
challenge is code multipath, which is typically at least10 m for low-cost GPS receivers even
for open-sky conditions. This increased code multipath affects especially our integer ambiguity
resolution, which typically takes0.5 to 3 minutes. We exclude measurement epochs of increased
multipath by carefully analyzing the code residuals. Once the ambiguities are fixed, we perform
the coasting solely based on the carrier phases.

The second challenge affects cycle slips. While geodetic receivers also experience cycle slips,
cycle slips do not occur so often and involve only a whole cycle slip. Low-cost receivers however
experience cycle slips very frequently. Furthermore, cycle slips occur also as half cycle slips and
affect multiple satellites simultaneously. We use an elevation mask of20◦ as satellites of lower
elevation are often affected by consecutive cycle slips. One option for cycle slip detection (CSD)
and correction (CSC) would be to use an inertial sensor. In this thesis, we follow an alternative
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8 1. Introduction

option, i.e. we use a Maximum A Posteriori Probability (MAP)estimator, which usesa priori
information on the baseline (e.g. its length and the absolute vehicle velocity) for CSD and CSC.

The third aspect is caused by the oscillator, which typically shows clock offsets in the order of
milliseconds and, thus, requires a correction for the satellite movement within the time of the dif-
ferential receiver clock offset. Tab. 1.1 summarizes the critical aspects of low-cost GPS receivers
and our approach to overcome these issues.

Challenge Our solution
Code multipath: use of more epochs for ambiguity fixing,
10 m even in good environments exclusion of measurement epochs,

attitude derived solely from
DD carrier phases after
initial integer ambiguity resolution

Cycle slips: 20◦ elevation mask,
very frequent, also affecting MAP estimator, which uses
multiple satellites simultaneously DD phase measurements and

baseline a priori information
Oscillator: correction of satellite movement
clock offset of milliseconds within differential receiver clock offset

Table 1.1: Challenges of low-cost GPS receivers and our approach to overcome these issues.

In this thesis, the following algorithms were developed forANAVS PAD system:

1) Extended synchronization correction
• Transformation of synchronization correction in case of change of reference satellite
• Precise extrapolation of synchronization correction over50 epochs

2) Improved float solution: elimination of measurement epochs with high phase and code multi-
path

3) Cascaded cycle slip detection and correction:
• Cycle slip detection and correction based on triple difference phase measurements

for low dynamics, and MAP estimator with baseline a priori information derived from
baseline length and code-based vehicle velocity vectorif velocity is sufficiently high and
smoothed code residuals are sufficiently low

• A posteriori cycle slip detection and correction based on remaining phase residuals

The algorithms were tested during extensive measurement campaigns in Garching, Nymphen-
burg, Königsplatz, ESA/AZO, Starnberger See and Wolfsburg(VW). The last chapter of this work
provides a thorough description of the complete attitude determination system. Detailed flow
charts illustrate how the modules are ordered, how the parameters are transferred from one module
to another and which algorithm is implemented in each moduleby referring the reader to a pre-
vious chapter/ section. With the explanation given in the last chapter, this thesis also serves as a
handbook to those who wish to work on ANAVS PAD system.
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2. Absolute Position Determination

A GPS receiver typically acquires signals from7 to 12 visible satellites and tracks the code and
carrier phases by aDelay Locked Loop(DLL) and aPhase Locked Loop(PLL). The DLL includes
a correlator, a discriminator, a loop filter, a code numerically controlled oscillator (NCO), and
a code generator to track the signal traveltime (and, thus, the pseudorange). Similarly, the PLL
includes a phase NCO, which is driven by the difference of themeasured phase and the oscillator
generated phase. As the carrier phase is periodic with2π, an integer ambiguity has to be resolved
for each satellite to obtain a range information from the tracked phases.

We model the pseudorange as described by Henkel, Cardenas, Giorgi and Günther in [8] as:

ρkr(t+ δτr) = ‖~xr(t + δτr)− ~xk(t+ δτr −∆τkr )‖+ c
(
δτr(t)− δτk(t+ δτr −∆τkr )

)

+ Ikr (t+ δτr) + T k
r (t+ δτr) +mk

ρr(t+ δτr) + br + bk + ηkr (t + δτr), (2.1)

with the receiver position~xr, the satellite position~xk, the speed of lightc in vacuum, the slant
ionospheric delayIkr varying between a few up to several tens of metres, the slant tropospheric
delayT k

r being 2 m in zenith direction, the code multipath errormk
ρr , the receiver code biasbr, the

satellite code biasbk and the code noiseηkr . The measurement was explicitly modeled at timet+δτr
instead oft to take thesatellite movementduring the receiver clock offset into account. All time
variables involved are listed out, with the GPS system timet at the time of signal reception, the
receiver clock offsetδτr, the satellite clock offsetδτk and the delay∆τkr between the transmission
time and the received time.

The carrier phase measurement is similarly modeled with theambiguities and phase biases as
additional terms and the ionospheric error subtracted instead of added to the range, i.e.

λ

2π
ϕk
r(t+ δτr) = ‖~xr(t+ δτr)− ~xk(t + δτr −∆τkr )‖+ c

(
δτr(t+ δτr)− δτk(t+ δτr −∆τkr )

)

− Ikr (t+ δτr) + T k
r (t+ δτr) + λNk

r +mk
ϕr
(t+ δτr) + βr + βk + εkr(t+ δτr).

(2.2)

2.1 Absolute Positioning with Carrier Smoothed Code Measurements

The pseudorange measurement is provided by theDelay Locked Loop(DLL) and the phase mea-
surement by thePhase Locked Loop(PLL). The noise performance of both tracking loops was
derived by Günther in [9] and is given for the DLL by

σρ = lc ·
√

d · BDLL

2P/N0
(1 +

2

E/N0(2− d)
), (2.3)

and for the PLL by

σλϕ =
λ

2π
·
√

BPLL

2P/N0

(1 +
1

2E/N0

), (2.4)

9



10 2. Absolute Position Determination

whereP is the signal power,E is the accumulated energy during correlation andN0 is the noise
power spectral density.BDLL andBPLL are respectively the bandwidths of the loops andd is the
correlator-spacing in chips of the DLL. The ratio of the standard deviations of the code and phase
tracking errors is dominated by the chip length and the carrier wavelength. Aslc = 300 m and
λ = 19.03 cm, the phase can be tracked1500 more accurately than the code measurements.

Carrier smoothing is a popular approach to reduce the code noise and multipath with the help of
the low noise phase measurements without the need of an absolute carrier phase integer ambiguity
resolution. Fig. 2.1 shows the functional diagram of carrier smoothing, where the code minus
carrier phase measurements (i.e. code multipath and code noise, but also the ionospheric delay)
are low-pass filtered.

ρk

ϕk

χk
χ̄k ρ̄k

low-pass filter

- +

Figure 2.1: Hatch filter: The code minus phase measurements are low-pass filtered.

The carrier smoothed pseudorange measurement of satellitek at epocht is given by

ρ̄k(t) =
1

τ
ρk(t) + (1− 1

τ
)
(
ρ̄k(t− 1) + (ϕk(t)− ϕk(t− 1))

)
, (2.5)

whereτ is the smoothing time constant.
The carrier smoothing is typically initialised with̄ρk(1) = ρk(1). Note that carrier smoothing

should be re-initialized always when cycle slips are detected but can not be reliably corrected.
Günther derived in [9] the variance of the smoothed code minus phase noisēχ for white Gaus-

sian code and phase measurements as

σ2
χ̄ =

(
1

2τ − 1
+

2τ − 2

2τ − 1
(1− 1

τ
)2(t−1)

)

· (σ2
ϕ + σ2

ρ), (2.6)

whereσ2
ϕ andσ2

ρ are the variances of the phase and code noises. The covariance between the
smoothed code minus phase measurement and the phase measurement of the current epoch follows
from Eq. (2.5) as

σχ̄ϕ = −1

τ
σ2
ϕ, (2.7)

Thus, the variance of the smoothed code measurement is obtained as

σ2
ρ̄ = σ2

χ̄ + 2σχ̄ϕ + σ2
ϕ

=

(
1

2τ − 1
+

2τ − 2

2τ − 1
(1− 1

τ
)2(t−1)

)

· (σ2
ϕ + σ2

ρ)− 2
1

τ
σ2
ϕ + σ2

ϕ. (2.8)

For larget, the variance of the smoothed code measurements converges to

10



2.1 Absolute Positioning with Carrier Smoothed Code Measurements 11

lim
t→∞

(σ2
ρ̄) =

1

2τ − 1
· (σ2

ϕ + σ2
ρ)− 2

1

τ
σ2
ϕ + σ2

ϕ

∼ 1

2τ − 1
· σ2

ρ + σ2
ϕ. (2.9)

We chooseτ = 600 epochs, which results in a reduction of the standard deviation of the code noise
by a factor of

√
2τ − 1 ≈ 35.

2.1.1 Iterative least-squares estimation of absolute receiver position and clock offset

The single-frequency carrier smoothed code measurements of K visible satellites are rearranged
such that all known parameters (satellite position and clock offsets, atmospheric delays) are
brought to the left side and the unknown parameters to the right side of the equation, i.e.






ρ̄1r + ~e 1
r ~x

1 + cδτ 1 − Î1r − T̂ 1
r

...
ρ̄Kr + ~eK

r ~x
K + cδτK − ÎKr − T̂K

r




 = Hρ̄

(
~xr
cδτr

)

+






η̄1

...
η̄K




 , (2.10)

where the ionospheric slant delaysIkr could be partially corrected using the Klobuchar model or
EGNOS corrections, and the tropospheric slant delaysT k

r are typically described through a blind
model. The absolute receiver position and clock offsets aredetermined by least-squares estimation
as

(

~̂xr
cδτ̂r

)

= min
~xr,cδτr

∥
∥
∥
∥
∥
∥
∥






ρ̄1r + ~e 1
r ~x

1 + cδτ 1 − Î1r − T̂ 1
r

...
ρ̄Kr + ~eK

r ~x
K + cδτK − ÎKr − T̂K

r




−Hρ̄

(
~xr
cδτr

)

∥
∥
∥
∥
∥
∥
∥

2

Σ−1
ρ̄

. (2.11)

As the geometry matrixHρ̄ is itself dependent on the unknown receiver position, an iterative ap-
proach is required. The Gauss-Newton algorithm of (1) is used to determine the absolute receiver
position and clock offset.

This algorithm can also be applied to determine the float solution of the baseline and ambiguity
parameters as described in chapter 4.

Fig. 2.2 shows the track of a test drive in front of the ESA / AZObuilding in Oberpfaffenhofen,
Germany. The track includes several turns and three sections with reversing at97−104 s,140−160
s and180− 185 s. As the track was close to a high building, the code measurements were affected
by substantial multipath. Even with severe multipath, we were still able to determine the absolute
positions accurately.

Fig. 2.3 illustrates residuals of pure code and carrier-smoothed code measurement during abso-
lute position estimation. We observe severe multipath of a few tens of meter in the case where pure
code is used for absolute positioning. With carrier smoothing, multipath is substantially reduced.
Remaining residuals of a few meters are due to unmodeled atmospheric delays and satellite biases.

11



12 2. Absolute Position Determination

Algorithm 1 Iterative least-squares solution

Input: ρ̄kr , Σ
−1
ρ̄ , ~x k, δτk ∀k

Output: ~̂xr, cδτ̂r, Hρ̄

1: ~̂x
(0)
r = 0 ⊲ Initialization of receiver position and clock offset

2: δτ̂
(0)
r = 0

3: for i = 1 → 7 do
4: for k = 1 → K do
5: r

(k,i)
r = ρ̄kr − ‖~̂x(i−1)

r − ~x k‖ − c(δτ̂
(i−1)
r − δτk) ⊲ Smoothed pseudorange residual

6: ~e (k,i) = ~̂x
(i−1)
r −~xk

‖~̂x
(i−1)
r −~xk‖

7: end for

8: H
(i)
ρ̄ =






(~e (1,i))T 1
...

...
(~e (K,i))T 1






9:

(

~̂x
(i)
r

cδτ̂
(i)
r

)

=

(

~̂x
(i−1)
r

cδτ̂
(i−1)
r

)

+
(

(H
(i)
ρ̄ )TΣ−1

ρ̄ H
(i)
ρ̄

)−1

(H
(i)
ρ̄ )TΣ−1

ρ̄






r
(1,i)
r

...
r
(K,i)
r






10: end for

Figure 2.2: Track of car drive in front of the ESA/ AZO building in Oberpfaffenhofen. The track includes
three reverse drives at 97 - 104 s, 140 - 160 s and 180 - 185 s.
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2.1 Absolute Positioning with Carrier Smoothed Code Measurements 13
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Figure 2.3: Residuals of absolute position estimation at ESA-AZO. Thicker lines show the residuals of
smoothed code measurement during absolute position estimation while finer lines show the residuals of
pure code measurement during absolute position estimation.
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3. Attitude determination: measurement model

The relative position (and thereby the attitude) information is completely included in the receiver-
satellite range in Eq. (2.1) and (2.2). All other terms are nuisance parameters that we wish to
eliminate by differencing or to suppress by correction data. Correction data are provided for ex-
ample by SAPOS1, the IGS, the DGPS System and ASCOS. These services provide correction
parameters which are valid over a local area since ionospheric and tropospheric delays are not sen-
sitive to the variation in geographical position over a few meters. However, ambiguities in carrier
phases are different for each receiver and, thus, cannot be eliminated by using a reference station.
The resolution of integer ambiguities is required and our approach is explained in chapter 5.

3.1 Single difference carrier phase measurements

The single difference between the carrier phase measurement of satellitek observed by receivers
1 and2 is given by

λ

2π
ϕk
12 =

λ

2π
(ϕk

1 − ϕk
2) = (rk1 − rk2)− (Ik1 − Ik2 ) + (T k

1 − T k
2 ) + c(δτ1 − δτ2) (3.1)

+λ(Nk
1 −Nk

2 ) + (mk
ϕ,1 −mk

ϕ,2) + (β1 − β2) + (εk1 − εk2).

Satellite clock offsets as well as satellite phase biases can be considered stable over the time of
the differential receiver clock offset and, therefore, areeliminated by the differencing between two
receivers. We simplify the notation by writing the differencing as(·)12, i.e.

λ

2π
ϕk
12 = rk12 − Ik12 + T k

12 + cδτ12 + λNk
12 +mk

ϕ,12 + β12 + εk12. (3.2)

For attitude determination, the baseline length varies between1 m (car application) and20 m
(ship application) and therefore, ionospheric and tropospheric delays are also cancelled by the
differencing between two receivers. Hence, Eq. (3.2) can befurther simplified to

λ

2π
ϕk
12 = rk12 + cδτ12 + λNk

12 +mk
ϕ,12 + β12 + εk12. (3.3)

3.2 Double difference code and carrier phase measurements

We observe that the single difference model described in theprevious section still contains the
receiver clock offsets and receiver phase biases which can be eliminated in a similar manner by
differencing measurements from two satellites. The doubledifference (DD) measurement between
receiver1 and2 and satellitek andl follows from Eq. (3.3) and is given by

λ

2π
(ϕk

12 − ϕl
12) = (rk12 − rl12)− λ(Nk

12 −N l
12) + (mk

ϕ,12 −ml
ϕ,12) + (εk12 − εl12) (3.4)

= rkl12 − λNkl
12 +mkl

ϕ,12 + εkl12. (3.5)
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3.2 Double difference code and carrier phase measurements 15

Satellitel

Satellitek

~e k
1

~e l
1

~e k
2

~e l
2

Receiver2 Receiver1
~b12 = ~x1 − ~x2

~e k
1 ·~b12 = ρk1 − ρk2

~e l
1 ·~b12 = ρl1 − ρl2

Figure 3.1: Double difference with short baseline

The main objective of this work is to determine the heading ofa car or a ship in harsh envi-
ronments. The heading can be easily obtained from the baseline2 using trigonometric functions.
Therefore, it is practical to introduce the baseline vector~b12 into the double difference equation.
Knowing that~b12 = ~x1 − ~x2, where~xr is the position vector of receiverr in the ECEF frame, and
that for short baselines~e k

1 ≈ ~e k
2 , where~e k

r is the line-of-sight vector directing from satellitek to
receiverr (see Fig. 3.1), we can therefore rewrite Eq. (3.4) as

λ

2π
(ϕk

12 − ϕl
12) =(‖~x1 − ~x k‖ − ‖~x2 − ~x k‖)− (‖~x1 − ~x l‖ − ‖~x2 − ~x l‖) + λNkl

12 +mkl
ϕ,12 + εkl12

=(~e k,T
1 · (~x1 − ~x k)− ~e k,T

2 · (~x2 − ~x k))− (~e l,T
1 · (~x1 − ~x l)− ~e l,T

2 · (~x2 − ~x l))

+ ckl12 + λNkl
12 +mkl

ϕ,12 + εkl12

≈(~e k
1 − ~e l

1)
T ·~b12 + ckl12 + λNkl

12 +mkl
ϕ,12 + εkl12, (3.6)

whereckl12 is a correction for the projectedsatellite movementwithin the time of the differential
receiver clock offset, which was derived by Juan Cardenas inhis master thesis [10] and will be
explained later in this thesis. The same derivation can alsobe applied to the pseudorange, resulting
in the following relationship:

ρk12 − ρl12 =(‖~x1 − ~x k‖ − ‖~x2 − ~x k‖)− (‖~x1 − ~x l‖ − ‖~x2 − ~x l‖) +mkl
ρ,12 + ηkl12

=(~e k,T
1 · (~x1 − ~x k)− ~e k,T

2 · (~x2 − ~x k))− (~e l,T
1 · (~x1 − ~x l)− ~e l,T

2 · (~x2 − ~x l))

+ ckl12 +mkl
ρ,12 + ηkl12

≈(~e k
1 − ~e l

1)
T ·~b12 + ckl12 +mkl

ρ,12 + ηkl12. (3.7)

Assuming thatK satellites are visible at a certain epoch and that satellite1 is chosen as reference
satellite, we can write theK−1 respective double difference carrier phase measurements in matrix-

1Satellite Positioning Service of the German State Survey. It has around 200 stations nationwide and provides
correction up to centimeter precision in real-time [9].

2Baseline is the vector linking the two receivers.
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16 3. Attitude determination: measurement model

vector notation as:





ϕ21
12 − c2112

...
ϕK1
12 − cK1

12




 =






(~e 1
1 − ~e 2

1 )
T

...
(~e 1

1 − ~eK
1 )T





~b12 +






λN21
12

...
λNK1

12




+






ε2112
...
εK1
12




 . (3.8)

Note that in Eq. (3.8), multipath is considered as part of measurement noiseεk112. Besides,
λ/(2π)ϕk1

12 was redefined asϕkl
12 to simplify the notation. Due to the presence of ambiguities,

there are3 + (K − 1) unknowns in the above matrix equation. Teunissen suggestedin [11] to use
phase measurements from multiple epochs to avoid having an under-determined system. However,
Günther pointed out in [9] that these phase measurements have to be sufficiently spaced in time
domain to ensure linear independence as multipath can be highly correlated between consecutive
epochs while the line-of-sight unit vector varies little from one epoch to the other. In order to
reduce the observation time needed to solve for baseline andfix the ambiguities, we use code
measurements in addition to the phase measurements. Code measurements, although noisy, are
useful in our case as they are not affected by ambiguities [9]. Stacking corrected double difference
carrier phase and code measurements taken fromnep epochs, we obtain the following system of
equations:































ϕ21
12(t1)− c2112(t1)

...
ϕK1
12 (t1)− cK1

12 (t1)
...

ϕ21
12(tnep)− c2112(tnep)

...
ϕK1
12 (tnep)− cK1

12 (tnep)
ρ2112(t1)− c2112(t1)

...
ρK1
12 (t1)− cK1

12 (t1)
...

ρ2112(tnep)− c2112(tnep)
...

ρK1
12 (tnep)− cK1

12 (tnep)































︸ ︷︷ ︸

Ψ

=































(~e 1
1 (t1)− ~e 2

1 (t1))
T

...
(~e 1

1 (t1)− ~eK
1 (t1))

T

...
(~e 1

1 (tnep)− ~e 2
1 (tnep))

T

...
(~e 1

1 (tnep)− ~eK
1 (tnep))

T

(~e 1
1 (t1)− ~e 2

1 (t1))
T

...
(~e 1

1 (t1)− ~eK
1 (t1))

T

...
(~e 1

1 (tnep)− ~e 2
1 (tnep))

T

...
(~e 1

1 (tnep)− ~eK
1 (tnep))

T































︸ ︷︷ ︸

Hgeo

~b12+λ































N21
12
...

NK1
12
...

N21
12
...

NK1
12

0
...
0
...
0
...
0































︸ ︷︷ ︸

AN

+































ε2112(t1)
...

εK1
12 (t1)

...
ε2112(tnep)

...
εK1
12 (tnep)
η2112(t1)

...
ηK1
12 (t1)

...
η2112(tnep)

...
ηK1
12 (tnep)































︸ ︷︷ ︸

η

.

(3.9)
By introducing the differential geometry matrixHgeo and the mapping matrixA which maps

the differential ambiguity to its measurement, we can further simplify the notation of Eq. (3.9) to

Ψ = Hgeo
~b12 + AN + η = Hξ + η, (3.10)

where

ξ =

(
~b12
N

)

and H =
(
Hgeo A

)
and A =

(
λ · 1(tnep )×(K−1) 0(tnep)×(K−1)

)T
.
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3.3 Attitude determination 17

3.2.1 Least-squares float solution

Eq. (3.9) is an over-determined system of equations. We determine a weighted least-squares float
solution of~b12 andN (see e.g. [12] and [13]). The positive-definite weighting matrix prioritizes
good and penalizes noisy measurements. The weighting matrix is typically chosen as the inverse
of the measurement covariance matrixΣΨ as described by Misra and Enge in [13].

We analyze two approaches to determine the variances and co-variances ofΣΨ : The first one
is based on the residuals of the polynomial fitting of the double difference measurements. The
number of epochs and the order of the polynomial are chosen insuch a way that

1) the temporal variationsof the double difference measurementsdue toreceiver and satellite
movementscan be described by thepolynomial

2) the number of epochs is sufficiently large to reflect the impact of code multipath even in sta-
tionary conditions

The second approach is based on a model of the code noise standard deviations: It assumes
that the code noise standard deviations are elevation dependant, and that the dependency follows
an exponential function.
The least-squares float solution of Eq. (3.10) is given by

(
~b12
N

)

= (HTWH)−1HTWΨ. (3.11)

3.3 Attitude determination

In this section, we derive the 3D-attitude (heading and pitch) from the relative position between
two GPS receivers. We focus on two receivers mounted on the roof of a car along its longitudinal
axis, and with equal distances to both the left and right sideof the car as shown in Fig. 3.2.

North ψ

Receiver 1

Receiver 2

Figure 3.2: Heading determination of a car with two GNSS receivers

17



18 3. Attitude determination: measurement model

The distance between both receivers is a priori determined by a meter with an accuracy of
approximately1 cm and included in the ambiguity fixing and attitude determination. The height
difference between both receivers is in general negligibleand is constrained to zero in environ-
ments with an insufficient number of visible satellites.

3.3.1 Heading determination

We count the heading clock-wise on the East-North plane with0◦ in Northern direction. The least-
squares float solution of the baseline vector~b12 in Eq. (3.11) is given in the ECEF (Earth-Centered,
Earth-Fixed) frame. For heading determination, it is more practical to express the baseline vector
in the ENU (East, North, Up) coordinate frame centered at thecenter of inertia of the car:

~b12,ENU = RL
~b12 = (bE, bN, bU)

T with RL = R1(π/2− φ)R3(π/2 + λ), (3.12)

whereφ andλ are the latitude and longitude of the center of inertia of thecar at the current epoch;
R1 andR3 are the rotation matrices about thex-axis and respectively thez-axis in the ECEF
coordinate frame. The heading is thus given by:

ψ = arctan(bE/bN). (3.13)

3.3.2 Pitch angle determination

The pitch angle (and thereby the slope of the road) can also beeasily obtained from the baseline
vector:

θ = arctan

(

bU
√

b2E + b2N

)

. (3.14)

18



4. Determination of least-squares float solution

In this chapter, we first review the iterative Gauss-Newton method for estimating the baseline and
double difference ambiguities using the measurement modelof Eq. (3.10). The float solution dis-
regards the integer property of ambiguities and is subsequently fixed to an integer one as described
in Chap. 5.

Besides the traditional float solution, this thesis also includes a new method to efficiently de-
termine a baseline length constrained float solution. So far, an iterativesolution was required for
calculating the derivative of the baseline length constraint function with respect to Lagrange pa-
rameter. In this thesis,a closed-form expressionis derived by exploiting aproperty of the derivative
of matrix inversions, which does no longer require an iterative solution.

4.1 Synchronization of low-cost GPS receivers

Clock offsets of low-cost GPS receivers (e.g. u-blox, Skytraq) typically are in the order of mil-
liseconds to seconds, which is6-9 orders of magnitude larger than of geodetic receivers. The
receiver clock offsets do not directly affect the double difference measurements as they are can-
celled by the double differencing. However, there is an indirect affect: As satellites move with
a speed of approximately 4km/s, the satellite movement within the time of the receiver clock
offset can vary between several metres (for u-blox receivers) up to several kilometres (for Sky-
traq receivers). Thus, there is a need for correcting the satellite movement within the time of the
differential receiver clock offsets, i.e. the difference between the clock offsets of both receivers.

The most accurate model available today for double difference measurements oflow-costGPS
receivers was developed by ANAVS and is described in [8]. It is given by

ρkl1 (t+ δτ1)− ρkl2 (t+ δτ2) ≈ (~e kl(t))T~b12(t) + ckl12(t, δτ1, δτ2) +mkl
12(t) + ηkl12(t), (4.1)

wheremkl
12 is the differential code multipath andckl12(t, δτ1, δτ2) is the correction for the satellite

movement within the time of the differential receiver clockoffsetδτ1 − δτ2, which was derived by
Henkel and Cardenas in [8] and [10] as

ckl12(t+ δτ1, t+ δτ2) = (~e k
1 (t+ δτ1))

T
(
~x1(t+ δτ1)− ~x k(t+ δτ1 −∆τk1 )

)

−(~e l
1(t+ δτ1))

T
(
~x1(t+ δτ1)− ~x l(t+ δτ1 −∆τ l1)

)

−(~e k
1 (t + δτ2))

T
(
~x1(t+ δτ2)− ~x k(t+ δτ2 −∆τk2 )

)

+(~e l
1(t + δτ2))

T
(
~x1(t + δτ2)− ~x l(t + δτ2 −∆τ l2)

)
. (4.2)

It shall be stressed that the correction has millimetre accuracy despite the use of noisy code mea-
surements. This high accuracy is achieved due to the differential nature of the correction, i.e. the
satellite positions~x k(t + δτ1 − ∆τk1 ) and~x k(t + δτ2 − ∆τk2 ) are both derived solely from the
measurements of the first receiver and the clock offsetδτ2 of the second receiver. The noise in the
clock estimate of the second receiver has still only a negligible impact on the correction, as1 m
noise in the clock estimate corresponds to a time of only1/3 · 10−8 s during which the satellite

19



20 4. Determination of least-squares float solution
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Figure 4.1: Double difference phase measurements of zero-baseline stationary receivers subtracted with DD
measurement of the first epoch. The differential DD measurements demonstrate a linear drift.

movement can be neglected. The satellite positions~x k(t+ δτ1−∆τk1 ) are first calculated and then
linear interpolated to~x k(t + δτ2 −∆τk2 ).

A similar model was suggested for the double difference carrier phase measurements, i.e.

λ/2π(ϕkl
1 (t+ δτ1)− ϕkl

2 (t+ δτ2)) ≈ (~e kl(t))T~b12(t) + ckl12(t, δτ1, δτ2) + λNkl
12 + εkl12(t), (4.3)

where the phase multipath has been mapped to the phase noise as it is typically less than2 cm.
Fig. 4.1 shows the temporal change of the double difference synchronization correction relative

to the first epoch for a zero-baseline test. As the baseline was by definition zero, the synchroniza-
tion correction should be constant if the differential receiver clock offset is negligible. However, a
drift is visible which could be derived directly from Eq. (4.2).

The synchronization correction term is quasi linear as one can observe from Fig. 4.1. In order
to keep the computational complexity at a minimum, we determine the synchronization correction
only every50-th epoch (i.e. every10 s), andinterpolateckl12(t) in between. The coefficientŝα0 and
α̂1 of the linear polynomial are found by least-squares estimation as

(
α̂0

α̂1

)

= arg min
α0,α1

t−1∑

t′=t−50

‖ckl12(t′)−
1∑

p=0

αp · tp‖2. (4.4)

Data analysis showed that anextrapolationcan also be performed over50 epochs with an accuracy
of 1 mm to1 cm. Therefore, we determine the correction term every50-th epoch and extrapolate
it based on the last two analytically computed correctionsckl12(t1) andckl12(t2), i.e.

ckl12(t) = ckl12(t1) +
ckl12(t1)− ckl12(t2)

t1 − t2
(t− t1), for t2 < t1 < t. (4.5)
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4.2 Unconstrained least-squares float solution 21

However, clock jumps and changes in the reference satellites require a careful adaption of the
synchronization correction. In detail, the following adaption has been integrated:

• Interpolation of satellite positions~x k and~e k over time of differential receiver clock-offset
– every50 epochs (10 s)
– additionally in case of clock jumps
– additionally in case of change of reference satellite

• Analytical computation of correction
– every 50 epochs (10 s)
– additionally in case of clock jumps
– additionally in case of change of reference satellite
– remarks:

∗ in all cases except of clock jumps: update of slope of correction
∗ in all other cases: interpolation of correction based on most recent analytical correction

and slope
• Change in reference satellite

– transform correction
– additionally interpolate transformed correction in case of loss lock (no signal)

4.2 Unconstrained least-squares float solution

This section briefly reviews the calculation of the float baseline/ ambiguity solution using the it-
erative Gauss-Newton algorithm. The sum of squared residuals is minimized, whereresidualsare
defined as the difference between theobservedand thecalculateddouble difference (DD) mea-
surements. The so-calledcalculateddouble difference measurements are derived directly from the
receiver and satellite positions as described by Borre in [14]. We also include thesynchronisation
correctionalso for thecalculatedDD to be consistent with the synchronized DD measurements.

4.2.1 Unconstrained least-squares float solution

We subtract the synchronisation correction directly from the double difference measurements of
Eq. (3.9). We now model the corrected double difference measurements as

Ψ = Hξ +

(
mϕ

mρ

)

+

(
ε
η

)

, (4.6)

where

H =

(
H̃geo A

H̃geo 0(K−1)·tnep×(K−1)

)

and ξ =

(
b
N

)

,

with the pure geometry matrix̃Hgeo including the normalized line-of-sight vectors, the mapping
matrix A = λ · 1(K−1)·tnep×(K−1) dependent only on the wavelengthλ, the baseline vectorb in
ECEF coordinates, the ambiguitiesN , the code and phase multipathmϕ andmρ, and the phase
and code noisesε andη.

Note that theH matrix does not need to be updated during the iterations. Theone obtained from
the initial absolute position determination can be re-usedas its accuracy is sufficient for relative
positioning over short baselines. This is very beneficial from a computational point of view as the
H matrix typically includestnep = 800 epochs to achieve a sufficiently accurate convergence of
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22 4. Determination of least-squares float solution

the float ambiguity solution. Measurement analysis has shown that there is no need to update the
3 ·K · 800 = 2400 ·K parameters of theH matrix at each iteration, which is a substantial benefit
for real-time implementations on a microprocessor.

The calculation of the synchronization correction also depends on theH-matrix. However, the
H matrix of the absolute position determination has a sufficient accuracy such that there is also
no need to update the synchronization correction after determining the float (or fixed) solution.
AlthoughH is already pre-determined, aniterative solution is still required for estimating the
baseline and float ambiguities: The benefit of the iterationsarises from thecalculateddouble
difference measurements, which are updated after updatingthe position estimate of the second
receiver.

Our algorithm for calculating the weighted least-squares float solution with the synchroniza-
tion correction is shown in diagram 2. The first receiver is chosen as reference receiver. Its position
estimate is averaged while the receiver is stationary. The algorithm then uses the iterative Gauss-
Newton method which requires an initialization of the unknown parameters. We initialize both
baseline and ambiguities with zero (seeline 3 and4). This implies that the absolute position of
receiver2 is initialized with the position estimate of receiver1 (line 2). In lines 8and9, receiver-
satellite ranges are calculated based on the estimated receiver and satellite positions. The latter
ones were obtained with the ephemeris data of the navigationmessage. Subsequently,calculated
double differences (DD) are obtained using solely these calculated ranges (line 14) and the syn-
chronization corrections. The calculated DD are then stacked in a vector (line 17).
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Figure 4.2: a) Convergence of baseline correction term; b) Convergence of float ambiguities correction term

In line 18, double difference residuals are determined. They are defined as the difference
between thecalculatedandmeasureddouble differences. The residuals will then be used to de-
termine the least-squares baseline and ambiguity corrections (line 19). The baseline and float
ambiguity estimates are subsequently updated by adding (subtracting) the corrections to the esti-
mates of the previous iteration (lines 20and21). Figure 4.2 shows the convergence of the float
solution. Each of the first two iterations reduces the uncertainty of the float estimation by4 orders
of magnitude. At the third iteration, the correction terms are smaller than10−5 m. Given the speed
of convergence, a maximum of5 iteration is definitely sufficient for our algorithm 2.
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4.2 Unconstrained least-squares float solution 23

Algorithm 2 Iterative least-squares float solution with synchronization correction

Input: ~x1(t), ~x
k
1 (t), W, H,∆ϕk1

12(t), Ψ, ∀k, ∀t
Output: ~x2,ave,N

1: ~x1,ave = E {~x1(t)} ⊲ Averaging receiver 1 absolute positions
2: ~x

(0)
2,ave = ~x1,ave ⊲ Initialization of relative position and correction terms

3: bcorr = 03×1

4: Ncorr = 0(K−1)×1

5: for i = 1 → 5 do ⊲ Newton iterations

6: for t = 1 → tmax do
7: for k = 1 → K do
8: rk1,cal(t) = ‖~xk(t)− ~x1,ave‖ ⊲ Calculation of receiver-satellite ranges

9: r
k,(i)
2,cal(t) = ‖~xk(t)− ~x

(i)
2,ave‖

10: end for
11: end for

12: for t = 1 → tmax do ⊲ Calculation of double difference ranges
13: for k = 2 → K do
14: r

k1,(i)
12,cal(t) = (rk1,cal(t)− r11,cal(t))− (r

k,(i)
2,cal(t)− r

1,(i)
2,cal(t))− ck112(t)

15: end for
16: end for

17: r
(i)
dd,cal =

(

r
21,(i)
12,cal(1) . . . r

K1,(i)
12,cal (1) . . . . . . r

21,(i)
12,cal(tmax) . . . r

K1,(i)
12,cal (tmax)

)T

18:

(

r
(i)
dd,ϕ

r
(i)
dd,ρ

)

= Ψ − 12×1 ⊗ r
(i)
dd,cal ⊲ Calculation of phase and code residuals

19:

(

b
(i)
corr

N
(i)
corr

)

= (HTWH)−1HTW

(

r
(i)
dd,ϕ

r
(i)
dd,ρ

)

⊲ Determination of correction terms

20: x
(i)
2,ave = x

(i−1)
2,ave − b

(i)
corr ⊲ Update receiver 2 position and float ambiguities

21: N (i) = N (i−1) +N
(i)
corr

22: end for
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24 4. Determination of least-squares float solution

4.3 Covariance matrix

This section focuses on two methods to determine the covariance matrix of the tracked phase
and code measurements. The first one is particular suitable if double difference measurements
of two static receivers are available for a few hundred epochs. The second one is based on a
stochastic model, which assumes that the standard deviations are elevation-dependent and that this
dependency follows an exponential function. The inverse ofthe covariance matrix provides the
weighting matrixW that we used in our weighted least-squares float solution (see line 19).

4.3.1 Estimation of noise statistics

We estimate the statistics of the double differences from a large number of measurements. Let us
first take a closer look at Eq. (3.6) and its dependency on timefor staticreceivers:

ϕkl
12(t) ≈ (~e k

1 (t)− ~e l
2(t))

T ·~b12 + λNkl
12 + ε1212(t), (4.7)

where the multipath has been included in the noise.
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Figure 4.3: Carrier phase double difference measurement ofa static receivers. The red curve represents
the interpolated measurements using a second degree polynomial. Deviation of the measurements from the
interpolation is considered as measurement noise and multipath.

The ambiguity is constant if no cycle slips occur. With static receivers, the baseline vector is
constant but the satellite-receiver line of sight vectors still change over time. We use a polynomial
to describe this time dependency. Measurement analysis hasshown that a second order polynomial
is sufficient to describe the dynamics of the projected satellite positions over up to2000 epochs
(see Fig. 4.3).
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The coefficients of the second order polynomial are obtainedby minimizing the squared dif-
ference between the double difference carrier phases and the polynomial, i.e.





α̂k1
0

α̂k1
1

α̂k1
2



 = arg min
αk1
0 ,αk1

1 ,αk1
2

tmax∑

t=1

(

ϕk1
12(t)−

2∑

p=0

α1k
p · tp

)2

. (4.8)

An estimate of the variance ofϕk1
12 then follows from

σ2(ϕk1
12) ≈ 1/tmax

tmax∑

t=1

(

ϕk1
12(t)−

2∑

p=0

α̂1k
p · tp

)2

. (4.9)

Similarly, the covariance between the double differencesϕk1
12 andϕl1

12 follows from

σ(ϕk1
12, ϕ

l1
12) ≈ 1/tmax

tmax∑

t=1

(

ϕk1
12(t)−

2∑

p=0

α̂1k
p · tp

)(

ϕl1
12(t)−

2∑

p=0

α̂1l
p · tp

)

. (4.10)

It shall be stressed that the estimation of the noise statistics from the residuals of a least-squares
polynomial fitting can only be performed for static receivers.

4.3.2 Estimation of noise/ multipath statistics with an exponential delay model

Signals from satellites of lower elevation are typically affected more by multipath than signals
from satellites of higher elevation. McGraw et al. [15] carefully analyzed the noise statistics for
Local Area Augmentation Systems (LAAS). They showed that the dependency of the noise stan-
dard deviations on the elevation angle can be well describedby an exponential function. Henkel
and Günther used this model to analyze the impact of code multipath on ambiguity fixing and de-
rived a partial integer decorrelation for the optimum trade-off between variance reduction and bias
amplification in [16].
The exponential multipath delay model can be expressed as follows:

σk
ρ(E

k) = σρ,0 · e−Ek/Eρ and σk
ϕ(E

k) = σϕ,0˙e
−Ek/Eϕ ,

whereσk
ρ andσk

ϕ are the code and phase standard deviations respectively of satellitek with a certain
elevation angleEk; Eρ andEϕ are the decay constants whileσρ,0 andσϕ,0 denote the upper bounds
of the exponential function since both the decay constant and the elevation are strictly positive.

By modeling the noise standard deviations at two elevation angles {Elow, Eup} as
{σρ,low, σρ,up}, we can derive the decay constant. We first take the ratio between both standard
deviations

σρ,low
σρ,up

= e
Eup−Elow

Eρ , (4.11)

and then take the logarithm and solve forEρ:

Eρ =
Eup −Elow

ln (σρ,low/σρ,up)
. (4.12)

Similarly, we derive the decay constant for the model of the phase noise standard deviation:

Eϕ =
Eup −Elow

ln (σϕ,low/σϕ,up)
. (4.13)
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26 4. Determination of least-squares float solution

Once the decay constants are determined, we can easily derive the upper boundsσρ,0 andσϕ,0 by
evaluating Eq. (4.3.2) atElow:

σρ,0 =
σρ,low

e(−Elow/Eρ)
and σϕ,0 =

σϕ,low
e(−Elow/Eϕ)

. (4.14)

Note that the standard deviations determined here are for absolute (i.e. undifferenced) measure-
ments. To obtain the standard deviations of double difference measurements, the individual stan-
dard deviations have to be added.

4.3.3 Elimination of epochs with high multipath

Temporally correlated code multipath typically requires along observation period (we choose800
epochs which corresponds to2 min. 40 s) to obtain a sufficiently accurate float solution. In this
long time period, temporal variations might take place in the environment even if both receivers
are static. We can perform a selection of ‘good’ measurementepochs based on theWeighted Sum
of Squared Errors (WSSE)of the code measurements (see appendix A1.2) after completing the
baseline estimation of Algorithm 2:

WSSErdd,ρ(t) = ‖rdd,ρ(t)‖2Wρ
(4.15)

with rdd,ρ(t) being the residual of the least-squares float solution.
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Figure 4.4: Normalized WSSE of phase and code residuals after unconstrained float solution

We use only code measurements fromthe epochswhere the weighted sum of code residuals
(of the float ambiguity/ baseline solution) is below a predefined threshold. As the WSSE also
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Selection strategy Heading Heading error
Integer estimates

N4,1
1,2 N13,1

1,2 N20,1
1,2

all epochs −73.7 +1.7◦ 647 335 399
constrained WSSE of
code residuals
(689 out of 800 epochs) −73.3 +1.7◦ 647 335 399
constrained WSSE of
code residuals
(689 out of 800 epochs)
and phase residuals
(738 out of 800 epochs) −75.4 −0.4◦ 647 335 398

Table 4.1: Heading estimate and its error after ambiguity fixing with different selection strategies

increases with the number of visible satellites, we additionally normalize it by the number of
satellites excluding the reference satellite. The epoch selection is thus based on

1

K(t)− 1
WSSErdd,ρ(t) <WSSEth. (4.16)

Figure 4.4 shows the square root of the normalized WSSE of phase residuals after solving for
unconstrained float solution. Between epoch 380 and 450, thecar trunk was left open and hence,
introduced more noise in the receive signals is caused by reflection on the hard metal surface. This
short-term disruption is reflected by the sudden jump in WSSE. The sudden increase in WSSE
does not only occur to code measurements but also to phase measurements although carrier phase
measurements are less sensitive to multipaths. Such phenomenon is predictable since weights
attributed to phase measurements are larger than weights given to code measurements by two
order of magnitude. Therefore, a selection of ‘good’ phase measurements shall also be performed:

1

K(t)− 1
WSSErdd,ϕ(t) <WSSEth. (4.17)

Table 4.1 groups results obtained after resolving for the integer ambiguities with only the
selected measurements. Complete methodology to arrive to the results shown is described in
section 7.2.1. Elimination of only code measurements with considerable residuals (larger than
WSSEth = 4) does not affect the fixing decision. This is due to the comparably low weights given
to code measurements (see section 4.3.1). An additional elimination of phase measurements with
substantial noise is hence performed.

We observe that elimination of both noisy code and phase measurements improve the phase
residuals after the fixing (see Fig 4.5).

4.4 Constrained float solution

The least-squares solution described previously solves Eq. (3.10) by estimating the baseline as well
as the ambiguities which together, minimizes the squared noise. However, the solution might not
be precise when the actual noise contained in the measurements is big or when the noise statistics
are not correctly estimated. Error can be shifted from the ambiguities to the baseline or vice versa
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28 4. Determination of least-squares float solution

−0.2

−0.15

−0.1

−0.05

0.05

0.1

0.15

 

 

R
es

id
ua

ls
of

ph
as

e
do

ub
le

di
ffe

re
nc

e
[m

]

0

0 100 200 300 400 500 600 700 800

PRN 4
PRN 13
PRN 20

Time [epochs]

(a)

−0.2

−0.15

−0.1

−0.05

0.05

0.1

0.15

 

 

R
es

id
ua

ls
of

ph
as

e
do

ub
le

di
ffe

re
nc

e
[m

]

0

0 100 200 300 400 500 600 700 800

PRN 4
PRN 13
PRN 20

Time [epochs]

(b)

−0.2

−0.15

−0.1

−0.05

0.05

0.1

 

 

R
es

id
ua

ls
of

ph
as

e
do

ub
le

di
ffe

re
nc

e
[m

]

0

0 100 200 300 400 500 600 700 800

PRN 4
PRN 13
PRN 20

Time [epochs]

(c)

Figure 4.5: Phase residuals with different selection strategy: a) Phase residuals after ambiguities fixing with
constrained tree search. No epoch selection is performed; b) Phase residuals after ambiguities fixing with
constrained tree search. Only code measurements with low WSSE are selected to perform the search. No
selection on phase measurements; c) Phase residuals after ambiguities fixing with constrained tree search.
Only code and phase measurements with low WSSE are selected to perform the search.

to minimize the noise during the estimation. However, giventhe configuration of our setting with
a fix baseline, we can use the fix baseline length as a constraint to solve Eq. (3.10):

Ψ = H

(
b
N

)

︸ ︷︷ ︸

ξ

+ ε, with ‖b‖ = lap. (4.18)

We use Lagrange multiplier to express the optimization (minimization) problem with a known
constraint [8]. The problem can be formulated as below:

Λ(b, N, µ) =

∥
∥
∥
∥
Ψ −H

(
b
N

)∥
∥
∥
∥

2

Σ−1
Ψ

+ µ(‖b‖2 − l2ap). (4.19)
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4.4 Constrained float solution 29

By introducing a selection matrixS =
(
I3×3, 03×(K−1)

)T
, we can reformulate the optimization

problem above as follows:

Λ(ξ, µ) = ‖Ψ −Hξ‖2
Σ−1

Ψ

+ µ(‖Sξ‖2 − l2ap)

= (Ψ −Hξ)TΣ−1
Ψ (Ψ −Hξ) + µ(‖Sξ‖2 − l2ap). (4.20)

The optimization problem is solved by finding staple points which correspond to when the
partial derivative of the cost functionΛ is zero. IfΣ−1

Ψ is symmetric, we obtain:

∂Λ(ξ, µ)

∂ξ
= 0 ⇔ (Ψ −Hξ)T · 2Σ−1

Ψ ·H = 2µξTSTS

⇔ (HTΣ−1
Ψ H + µSTS)ξ = HTΣ−1

Ψ Ψ

⇔ ξ = (HTΣ−1
Ψ H + µSTS)−1HTΣ−1

Ψ Ψ. (4.21)

Note that forx a vector andA a matrix independent ofx, the derivative ofxTAx with respect
to x is xT(A+ AT).

Eq. (4.21) is then injected into the original equation of theconstraint and we obtain

(HTΣ−1
Ψ H + µSTS)−1HTΣ−1

Ψ ΨTSTS(HTΣ−1
Ψ H + µSTS)−1HTΣ−1

Ψ Ψ )− l2ap = 0. (4.22)

Let f(µ) denote the entire left term. We observe thatf(µ) can be rewritten as follows:

f(µ) = ‖S(HTΣ−1
Ψ H + µSTS)−1HTΣ−1

Ψ Ψ )‖2 − l2ap (4.23)

= ‖Sξ(µ)‖2 − l2ap (4.24)

= (Sξ(µ))T(Sξ(µ))− l2ap. (4.25)

The above equation has unfortunately no close form solution; therefore, secant method is used
to find the root withµ initialized to 0, which corresponds to the case of an unconstrained float
solution. The(n + 1)-th iteration is given by:

µ(n+1) = µ(n) − f(µ)

f ′(µ)

∣
∣
∣
∣
µ=µ(n)

, (4.26)

where

∂

∂µ
f(µ) = 2(Sξ)TS

∂

∂µ
(ξ(µ))

= 2ξTSTS
∂

∂µ
(ξ(µ)). (4.27)

Let Λ̃(µ) = HTΣ−1
Ψ H + µSTS, we can thus expressξ(µ) as follows:

ξ(µ) = Λ̃−1(µ)HTΣ−1
Ψ Ψ, (4.28)
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30 4. Determination of least-squares float solution

and the partial derivative ofξ(µ) is given by

∂

∂µ
(ξ(µ)) =

∂

∂µ
(Λ̃−1(µ)) ·HTΣ−1

Ψ Ψ (4.29)

= −Λ̃−1(µ)STSΛ̃−1(µ)HTΣ−1
Ψ Ψ. (4.30)

Eq. 4.30 is obtained with the following:

I = Λ̃−1(µ) · Λ̃(µ) ⇔ 0 =
∂

∂µ
(Λ̃−1(µ)) · Λ̃(µ) + Λ̃−1(µ) · ∂

∂µ
(Λ̃(µ)) (4.31)

⇔ ∂

∂µ
(Λ̃−1(µ)) = −Λ̃−1(µ)

∂

∂µ
(Λ̃(µ))

︸ ︷︷ ︸

=STS

Λ̃−1(µ). (4.32)

The algorithm below describes step-by-step the secant method used to solve Eq. 4.23:

Algorithm 3 Secant method

1: µnew = 0
2: while |µnew − µ| < ∆µth do
3: µ = µnew

4: f(µ) = ‖S(HTΣ−1
Ψ H + µSTS)−1HTΣ−1

Ψ Ψ )‖2 − l2ap
5: Λ̃(µ) = HTΣ−1

Ψ H + µSTS
6: ∂

∂µ
(ξ(µ)) = −Λ̃−1(µ)STSΛ̃−1(µ)HTΣ−1

Ψ Ψ

7: f ′(µ) = 2 · ξ T(µ)STS ∂
∂µ
(ξ(µ))

8: µnew = µ(n) − f(µ)
f ′(µ)

∣
∣
∣
µ=µ(n)

9: end while

4.4.1 Two dimensional baseline estimation

Fig. 4.6 shows the length convergence of baseline estimatedwith algorithm 3 performed using
different measurement sets. ESA AZO is to simulate an urban environment as the measurements
are taken in front of office buildings with concrete walls while Starnberger See is to simulate a
suburban environment as the measurements are taken on a roadwhich crosses a field. In both
cases, measurements from 800 epochs were used to constructΨ in Eq. 4.18 and the car remained
stationary during the acquisition.

We observe that the length difference between the estimatedbaseline and thea priori baseline
converges to less than10−5 m after five iteration.

For on-road automobile use, the fixed baseline on the car roof(see Fig. 3.2) has a length of
less than 2 m. Therefore, the relative height between both receivers in the local ENU frame can
be neglected or assumed zero. With the assumption that the height component is known, we
need fewer satellites to estimate the baseline, which is interesting in urban environment as visible
satellites are rare. Fig. 4.7 illustrates length convergence of estimated baseline with algorithm 3
performed using the same measurement sets taken at ESA AZO aswell as Starnberger See.

Similarly, after five iterations, the length difference between estimated baseline and thea priori
baseline is less than10−5.
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5. Determination of fixed solution

This chapter focuses on the integer least-squares estimation of the baseline vectorb and the double
difference carrier phase integer ambiguities, i.e.

min
b∈R2×1,N∈ZK−1×1

‖Ψ −Hgeob+ AN‖2
Σ−1

Ψ

. (5.1)

As we would like to reuse the float MAP estimate of the previouschapter, we have to perform
a mapping from float to integer numbers. Blewitt [17] alreadyproposed in 1989 a bootstrapping
method, which performs conditional least-squares adjustment. However, bootstrapping is depend-
ing on the order of fixings and is not fully exploiting the complete correlation.

Today, Teunissen’s Least-squares AMBiguity Decorrelation Adjustment (LAMBDA) method
[3] is widely used. This chapter first reviews Teunissen’s LAMBDA method as well as Henkel’s
MAP estimator. The latter one clearly outperforms both the unconstrained and constrained
LAMBDA methods. The latter one uses an unconstrained searchand then selects the integer
candidates that comply with the baseline constraints. Thisimplies the unnecessary calculation of
numerous integer candidate vectors. We directly include baseline a priori information in the tree
search, which leads to a shrinking of the search intervals.

We analyze the performance of the constrained search and compare it to the performance of
the traditional LAMBDA search. Additionally, we also studythe benefit of the use of an integer
decorrelation with aZ-transformation for both the LAMBDA search and the constrained integer
tree search.

5.1 LAMBDA method for integer ambiguity estimation

LAMBDA method implies four major steps. Sections 5.1.1 to 5.1.4 review these steps. A more
detailed explanation can also be found in [18] and [9].

5.1.1 Float solution

The first step is performed by estimatingb andN in R. There are many ways to obtain a float so-
lution for the underlined problem. In [18], Teunissen and Jonge suggested to use normal equations
and Cholesky factorization. The Cholesky factor will also provide us a variance-covariance matrix
of N which is required later in the fixed solution.

However, in our solution, we use iterative approaches described in the previous chapter (see
Algo. 1 and 3) to obtain the float estimates of the baseline andthe ambiguities. The estimates are
noted as

[
b̂

N̂

]

and

[
Σb̂ Σb̂N̂

ΣN̂ b̂ ΣN̂

]

, (5.2)

where the latter one denotes the variance-covariance matrix of the float ambiguities.
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5.1 LAMBDA method for integer ambiguity estimation 33

5.1.2 Decorrelation

[11] shows that the correlation between ambiguities renders the integer search extremely ineffi-
cient. Teunissen observed a discontinuity in the spectrum of conditional standard deviations: the
first ambiguity searches have much larger standard deviations followed by a sudden drop for the
subsequent searches. This discontinuity is even more severe in the case of GPS double-difference
ambiguities.

By decorrelating the float ambiguities, we can flatten the spectrum of conditional standard
deviations. In other words, we eliminate the discontinuityby a decorrelation. Teunissen proposed
in [11] to use the Z-transformation for decorrelation as notonly it preserves the search space, it
accepts integer entries. However, Z-transformation is notfully decorrelating the ambiguities but
only reducing the correlation. Such trade-off is to ensure the integerness of the transformation
[19].

The decorrelated ambiguities are obtained as,

N̂z = ZN̂, (5.3)

which could also be interpreted as a set of multi-satellite linear combinations. The variance-
covariance matrix becomes an almost diagonal matrix and canbe written with the triangularLDLT

decomposition as:

Σ−1
Ψ,z = ZTΣ−1

Ψ Z

= ZT(LDLT)−1Z

= ZTLT,−1D−1L−1Z (5.4)

In the following sections, ambiguities are always decorrelated. After fixing is accomplished,
the decorrelation is reversed:

Ň = Z−1Ňz. (5.5)

To increase readability, we omit the subscript “z" for decorrelated variables. Bear in mind that
the ambiguities are always decorrelated during the integersearch.

5.1.3 Discrete search

5.1.3.1 Problem separation

Since the ambiguities have to be solved in the integer space,a direct application of least-squares
solution to obtain simultaneously the baseline and the ambiguities cannot be used. Teunissen [19]
decomposed the error norm of Eq. 5.1 in order to separate the integer discrete search and the float
baseline least-squares problem:

‖Ψ −Hgeob−AN‖2
Σ−1

Ψ

= ‖b̌(N)− b‖2
Σ−1

b̌(N)

+ ‖N̂ −N‖2
Σ−1

N̂

+ ‖P⊥
Ā P

⊥
Hgeo

Ψ‖2
Σ−1

Ψ

, (5.6)

whereb̌(N) is the baseline estimated with fixed integer ambiguities,P⊥
Hgeo

is the orthogonal
projector on the spaceHgeo andĀ = P⊥

Hgeo
A.

Günther derived the decomposition in [9]. The least-squares solution of the baseline is given
by
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34 5. Determination of fixed solution

b̌(N) = (HT
geoΣ

−1
Ψ Hgeo)

−1HT
geoΣ

−1
Ψ (Ψ −AN). (5.7)

We can define a projection operator which projects into the hyperplane spanned byHgeo:

PHgeo = Hgeo(H
T
geoΣ

−1
Ψ Hgeo)

−1HT
geoΣ

−1
Ψ . (5.8)

With the above projector, we can also define its orthogonal projector with respect to the metric
Σ−1

Ψ :

P⊥
Hgeo

= I − PHgeo , (5.9)

such thatP⊥
Hgeo

Σ−1
Ψ PHgeo = 0 and thatP⊥

Hgeo
Hgeo = 0.

With these two projectors, we can express an arbitrary vector as a sum of two orthogonal
vectors. Applying this concept to the error norm of Eq. 5.1, we obtain:

‖Ψ −Hgeob−AN‖2
Σ−1

Ψ

= ‖PHgeo(Ψ −Hgeob− AN)‖2
Σ−1

Ψ

+ ‖P⊥
Hgeo

(Ψ −Hgeob− AN)‖2
Σ−1

Ψ

= ‖PHgeo(Ψ − AN)−Hgeob‖2Σ−1
Ψ

+ ‖P⊥
Hgeo

(Ψ − AN)‖2
Σ−1

Ψ

(5.10)

The second term of the above equation can be solved using a least-squares estimation, i.e.

N̂ = arg min
N∈ZK−1

‖P⊥
Hgeo

(Ψ −AN)‖2
Σ−1

Ψ

= arg min
N∈ZK−1

‖P⊥
Hgeo

Ψ − ĀN‖2
Σ−1

Ψ

= (ĀTΣ−1
Ψ Ā)−1ĀTΣ−1

Ψ (P⊥
Hgeo

Ψ ), (5.11)

with Ā = P⊥
Hgeo

A to simplify the notation. However, to further simplify the above equation,
we will have to develop all variables with only geometry matrices and covariance matrix.

Let’s first only developĀTΣ−1
Ψ P⊥

HL
in the above least-squares solution:

ĀTΣ−1
Ψ P⊥

Hgeo
= ATP⊥,T

Hgeo
Σ−1

Ψ P⊥
Hgeo

= AT(I −Hgeo(H
T
geoΣ

−1
Ψ Hgeo)

−1HT
geoΣ

−1
Ψ )TΣ−1

Ψ

(I −Hgeo(H
T
geoΣ

−1
Ψ Hgeo)

−1HT
geoΣ

−1
Ψ )

= AT(I −Σ−1
Ψ Hgeo(H

T
geoΣ

−1
Ψ Hgeo)

−1HT
geo)Σ

−1
Ψ

(I −Hgeo(H
T
geoΣ

−1
Ψ Hgeo)

−1HT
geoΣ

−1
Ψ )

= AT(Σ−1
Ψ −Σ−1

Ψ Hgeo(H
T
geoΣ

−1
Ψ Hgeo)

−1HT
geoΣ

−1
Ψ

−Σ−1
Ψ Hgeo(H

T
geoΣ

−1
Ψ Hgeo)

−1HT
geoΣ

−1
Ψ

+Σ−1
Ψ Hgeo(H

T
geoΣ

−1
Ψ Hgeo)

−1HT
geoΣ

−1
Ψ )

= ATΣ−1
Ψ (I −Hgeo(H

T
geoΣ

−1
Ψ Hgeo)

−1HT
geoΣ

−1
Ψ )

= ATΣ−1
Ψ PT

Hgeo

= ATPT
Hgeo

Σ−1
Ψ
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5.1 LAMBDA method for integer ambiguity estimation 35

= ĀTΣ−1
Ψ . (5.12)

The second last line is obtained using a general property of any arbitrary projection matrixP
with the associated metricQ: PTQ = QP .

With the above simplification, we can therefore expressN̂ as follows:

N̂ = (ĀTΣ−1
Ψ Ā)−1ĀTΣ−1

Ψ Ψ. (5.13)

Similar to the first decomposition step we made to obtain Eq 5.10, we define a projection
operator which projects into the hyperplane spanned byĀ:

PĀ = (ĀTΣ−1
Ψ Ā)−1ĀTΣ−1

Ψ , (5.14)

and by using the orthogonal projectorP⊥
Ā

as well, we can decompose the second term of Eq.
5.10, i.e.

‖P⊥
Hgeo

(Ψ − AN)‖2
Σ−1

Ψ

= ‖PĀP
⊥
Hgeo

(Ψ − AN)‖2
Σ−1

Ψ

+ ‖PT
ĀP

⊥
Hgeo

Ψ‖2
Σ−1

Ψ

. (5.15)

If we try to solveN in the real-number space, the first term of the above equationcan be
made zero becauseΨ is projected into the hyperplane spanned byĀ. We can thus expressΨ =
Hgeob + AN̂ , whereN̂ is determined with Eq. 5.13. This expression ofΨ allows the first term to
be zero ifN ∈ R

K−1.
We can thus rewrite

‖P⊥
Hgeo

(Ψ −AN)‖2
Σ−1

Ψ

= ‖PĀP
⊥
Hgeo

(Hgeob+ AN̂ − AN)‖2
Σ−1

Ψ

+ ‖PT
ĀP

⊥
Hgeo

Ψ‖2
Σ−1

Ψ

= ‖ĀN̂ − ĀN‖2
Σ−1

Ψ

+ ‖PT
ĀP

⊥
Hgeo

Ψ‖2
Σ−1

Ψ

= ‖N̂ −N‖2
Σ−1

N

+ ‖PT
ĀP

⊥
Hgeo

Ψ‖2
Σ−1

Ψ

, (5.16)

whereΣ−1

N̂
= ĀTΣ−1

Ψ Ā.
Eq. 5.16 provides us a decomposition of the second term of Eq.5.10. The first term of Eq. 5.10

can also be simplified by using the fact that‖PT
Ā
P⊥
Hgeo

Ψ‖2
Σ−1

Ψ

of Eq. 5.16 is an irreducible error

independent fromN . Therefore, we can first seek to minimize the second term of Eq. 5.10 by only
looking at the error norm‖N̂ − N‖2

Σ−1
N

. Then, we inject the resolved integer ambiguitiesŇ into

the first term of Eq. 5.10. The decomposition into three errornorms becomes

‖Ψ −Hgeob− AN‖2
Σ−1

Ψ

= ‖PHgeo(Ψ − AN)−Hgeob‖2Σ−1
Ψ

+ ‖N̂ −N‖2
Σ−1

N̂

+ ‖P⊥
Ā P

⊥
Hgeo

Ψ‖2
Σ−1

Ψ

= ‖b̌(N)− b‖2
Σ−1

b̌(N)

+ ‖N̂ −N‖2
Σ−1

N̂

+ ‖P⊥
Ā P

⊥
Hgeo

Ψ‖2
Σ−1

Ψ

, (5.17)

with Σ−1
b̌(N)

= HT
geoΣ

−1
Ψ Hgeo.

The above decomposition allows us to separate real-valued and integer-valued minimization.
With the decomposition, we can :

• First, determine the ambiguities in its integer space with respect to the metricΣ−1

N̂
.

• Then, by using the fixed ambiguities, we determine the associated baseline in its real-number
space with respect to the metricΣ−1

b̌(N)
using a least-squares estimator.
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36 5. Determination of fixed solution

5.1.3.2 Sequential conditional least-squares estimation

As mentioned above, we first try to minimize the following:

min
N

‖N − N̂‖2Σ
N̂
, with N ∈ Z

K−1. (5.18)

If N is a real-number integer, taking the float solutionN̂ minimizes automatically the above.
SinceN is an integer vector, we have to perform a discrete search within an ellipsoid regionχ2.
How χ2 is defined for LAMBDA method can be found in [18].

The mathematical formulation of the integer search inχ2 to minimize 5.18 is written as:

(N − N̂)TΣ−1

N̂
(N − N̂) ≤ χ2. (5.19)

SinceΣ−1

N̂
is positive-definite, we can decomposeΣ−1

N̂
into a product of diagonal matrix and

triangular matrices [18]:

Σ−1

N̂
= LDLT (5.20)

whereL =








l11
l21 l22
...

...
. . .

l(K−1)1 l(K−1)2 · · · l(K−1)(K−1)








andD =








d1
d2

. . .
dK−1








.

Note that theΣ−1

N̂
can also be partitioned intoLTDL.

On the one hand, the algebraic expansion of Eq. (5.19) with elements ofL andD yields

K−1∑

i=1

di[(Ni − N̂i) +

i−1∑

j=1

lij(Nj − N̂j)]
2 ≤ χ2. (5.21)

On the other hand, we can also interpret the discrete search of Eq. 5.19 inχ2 statistically:

K−1∑

i=1

(Ni − N̂i|1,...,i−1)
2

σ2
N̂i|1,...,i−1

≤ χ2. (5.22)

Ambiguities are often correlated to each other. Therefore,in the sequential search, we have to
take into account the conditional adjustment on ambiguity parametersσ2

N̂i|1,...,i−1
which are already

fixed.
The comparison of the algebraic expansion and the statistical formulation yields:

d−1
i = σ2

N̂i|1,...,i−1
and N̂i|1,...,i−1 = N̂i −

i−1∑

j=1

lij(Nj − N̂j). (5.23)

Notice that if there is no correlation between different ambiguities,L is a diagonal, or more
precisely, an identity matrix. Thus, in the absence of correlation,N̂i|1,...,i−1 = N̂i.

The sequential conditional adjustment can be done recursively by fixing first of all the first
ambiguity and subsequently the following ambiguities by adjusting the search region. IfNi to
Ni − 1 are already conditioned, the bound for the search ofNi is determined as follows:
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((Ni − N̂i) +
i−1∑

j=1

lij(Nj − N̂j))
2 ≤ χ2

di
− 1

di

i−1∑

l=1

dl((Nl − N̂l) +
i−1∑

j=1

llj(Nj − N̂j))
2

︸ ︷︷ ︸

boundi

. (5.24)

Hence,Ni is bounded by:

−
√

boundi + N̂i −
i−1∑

j=1

lij(Nj − N̂j) ≤ Ni ≤
√

boundi + N̂i −
n∑

j=1

lij(Nj − N̂j). (5.25)

All candidates ofNi within the search region is considered andNi is subsequently fixed to the
one which minimizes Eq. 5.18. The fixedNi is denotedŇi.

5.1.4 Fixed baseline solution

After fixing the ambiguities, the baseline solution can be obtained directly using a linear minimum
mean square error estimator [18]:

b̌(Ň) = b̂−Σb̂N̂Σ
−1

N̂
(N̂ − Ň), (5.26)

where variables with an inverse hat are determined after fixing.
The fixed baseline solution can also be determined using least-squares solution after fixing

the double difference measurements, i.e. subtracting ambiguities from the measurementΨfixed =
Ψ − AŇ :

b̌(Ň) = (HT
geoΣ

−1
Ψ Hgeo)

−1HT
geoΣ

−1
Ψ Ψfixed. (5.27)

5.2 Constrained integer tree search

LAMBDA method offers an efficient search which uses least-squares estimator to solve the ambi-
guities of a carrier-phase measurement. LAMBDA method sorts the ambiguity candidates based on
the distance (in a metric sense governed by the measurement covariance matrix) to the ambiguity
candidate determined in the float solution.

In the case where the distribution of the baseline vector is known, thisa priori information on
the baseline can be used with aMaximum A Posteriori Probability (MAP)estimator to estimate the
ambiguities and determine the baseline. The fixing is improved as the determined integer ambigu-
ities fulfill the baseline constraint. When only knowledge on the baseline length is available, a soft
constraint can be imposed in the search [8].

5.2.1 Hard-constrained minimizer

We intend to solve Eq. (4.6). We assume in this subsection that a priori knowledge on the distri-
bution of the baseline vector in the local ENU coordinates isavailable:bL ∼ N (bL,ap, Σb). The
determination ofbL,ap must be as less dependent as possible on the measurement and preferably
obtained from another source rather than measurements usedin Ψ . bL,ap can be obtained either
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38 5. Determination of fixed solution

by using the Doppler shift or from two carrier smoothed absolute position estimates when the
receivers are moving.

Since thea priori knowledge is known in the local ENU coordinates, it is thus more practical
to rewrite Eq. (4.6) as

Ψ = HLξL + η (5.28)

where

HL =
(
Hgeo,L A

)
with Hgeo,L = HgeoR

−1
L , (5.29)

and

ξL =

(
bL
N

)

with bL = RLb. (5.30)

In this section, we work with a baseline vector in the local ENU coordinate system as it is
more practical to determine the heading. Note however that the concept still works with a baseline
vector in the ECEF coordinate system.

The MAP estimator can be defined as follows [8] [20]:

(

b̂L
Ň

)

= arg max
bL ∈ R

3×1

N ∈ Z
K−1

P (ξL|Ψ ) (5.31)

We can assume that we havea priori knowledge over the distribution ofξL by simply setting
the mean of the ambiguities and the variance as infinity. Thisassumption is as good as having noa
priori knowledge. Therefore, Eq. 5.28 can be reformulated and simplified using a monotonously
decreasing logarithmic function:

(
b̂L
Ň

)

= arg max
bL ∈ R

3×1

N ∈ Z
K−1

P (bL, N |Ψ ) (5.32)

= arg max
bL ∈ R

3×1

N ∈ Z
K−1

P (Ψ |bL, N)P (bL)P (N)

P (Ψ )
(5.33)

= arg min
bL ∈ R

3×1

N ∈ Z
K−1

− log

(
P (Ψ |bL, N)P (bL)P (N)

P (Ψ )

)

(5.34)

= arg min
bL ∈ R

3×1

N ∈ Z
K−1

− log (P (Ψ |bL, N)P (bL)P (N)) (5.35)

= arg min
bL ∈ R

3×1

N ∈ Z
K−1

‖Ψ −HLξ‖2Σ−1
Ψ

+ ‖bL − bL,ap‖2Σ−1
bL

(5.36)
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Searching for an argument to maximize the probability is thesame as searching for an argu-
ment to maximize the logarithm of the probability due to the monotony of the logarithmic func-
tion. Taking the negative of the function inverses then the maximization to a minimization (see
Eq. 5.34). Given the ambiguities and the baseline vector, carrier-phase measurement is assumed to
be Gaussian distributed as the measurement follows a Gaussian distribution. The baseline vector
is assumed to follow a Gaussian distribution. Therefore, minimizing the logarithm of the joint
Gaussian probabilities is the same as minimizing the sum of the the squared norms because the
density function of a normally distributed random vector with k elementsx ∼ N (µx, Σx) is given
by:

fx(x1, · · · , xk) =
1

√

(2π)k|Σx|
exp

(

−1

2
(x− µx)

TΣ−1
x (x− µx)

)

. (5.37)

However,P (Ψ ) no longer plays a role in the minimization as the probabilityis independent of
ξL (see Eq. 5.35). This independency can be explained by

P (Ψ ) =

∫

R3

∑

N∈ZN−1

P (Ψ, bL, N)N dbL. (5.38)

Without anya priori knowledge on the ambiguities, the search can be extended to the whole
natural number space,ZN−1, which is extremely inefficient and even infeasible. We can then limit
the search within a defined volume like in LAMBDA method and the minimizer becomes

min
bL

(

‖Ψ −HLbL − AN‖2
Σ−1

Ψ

+ ‖bL − bL,ap‖2Σ−1
bL

)

≤ χ2. (5.39)

How χ2 is determined will be explained in 5.2.4.
In this work, we do not use the hard-constrained minimizer asthea priori baseline vector is

not available since the ambiguities have to be fixed while thecar is stationary and the Doppler
shift of u-blox LEA 6T is too noisy to be exploited for determining thebL. The search using
a hard-constrained minimizer is however similar to the treesearch explained below for the soft-
constrained minimizer.

5.2.2 Soft-constrained minimizer

In the case where noa priori knowledge on the baseline vector is available but only on thebaseline
length is known, we can modify the minimizer using aSoft Length Constraint (SLC)instead of a
hard constraint on the complete vector:

min
bL

(

‖Ψ −HLbL − AN‖2
Σ−1

Ψ

+
(‖bL‖ − lap)

2

σ2
lap

)

≤ χ2, (5.40)

wherelap is the known baseline length andσ2
lap

is the variance of the baseline length.
LAMBDA integer search for ambiguities have a final goal to minimize Eq. 5.17. The third

term of the error sum depends solely on the measurement. Therefore, it can be considered as
irreducible noise. As mentioned earlier in section 5.1.3.1, the search consists of in the first place
finding integer ambiguities which minimize the ambiguity error. The search for integer ambiguities
is said to be performed partially as it uses a sequential conditional adjustment to take into account
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Figure 5.1: Search tree for MAP/ SLC ambiguity resolution: Each row refers to the integer candidates of one
double difference ambiguity. For each candidate, a lower and un upper bound are derived for the subsequent
double difference integer ambiguity. If there is no integerambiguity in the interval between the lower and
upper bound, then this path is no longer considered. Otherwise, for each candidate inside the set, a lower
and an upper bound are determined for the subsequent ambiguity.

the correlation between ambiguities. With the found ambiguities, we then solve the least-squares
problem posed by the first quadratic error norm to determine the associated fixed baseline vector.

With a soft-constrained minimizer, the search will be slightly different. We still use the se-
quential conditional fixing. Therefore the search resembles a tree search but each layer of the tree
search is conditioned by Eq. 5.40. With the latter, a lower and an upper bound are derived and
only candidates within the bounds are considered. If at one layer no integer ambiguity is available
between the bounds, the path is no longer considered. This method which aims to achieve a higher
efficiency in the integer search was developed by Henkel et al. [8] [20].

If the sequential conditional adjustment is done fork ambiguities, the ambiguities can be sub-
divided into a set of integer valued and a set of real-valued ambiguities with the real-valued ambi-
guities grouped together with the baseline coordinates:

Ñ =






N1

...
Nk




 ∈ Z

k×1, ξ̃L =








bL
Nk+1

...
NK−1








∈ R
(3+K−1−k)×1

The error decomposition becomes

‖Ψ −HLξL −AN‖2
Σ−1

Ψ

= ‖ ˆ̃N − ˇ̃N‖2
Σ−1

ˆ̃
N

+ ‖ ˇ̃ξ(Ñ)− ˆ̃
ξ‖2

Σ−1
ˇ̃
ξ(Ñ)

+ ‖P⊥
Ā P

⊥
HL
Ψ̃‖2

Σ−1
Ψ

, (5.41)
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whereˇ̃ξ(Ñ) is the baseline found by using the ambiguities








ˇ̃N

N̂k+1
...

N̂K−1








(5.42)

concatenated with the real-valued ambiguities.
We can perform anLDLT on the ambiguity error norm like in Eq. 5.20:

‖ ˆ̃N − ˇ̃N‖2
Σ−1

ˆ̃
N

=
k∑

i=1

(Ňi − N̂i|1,...,i−1)
2

σ2
N̂i|1,...,i−1

, (5.43)

with σ2
N̂i|1,...,i−1

= d−1
i the conditional float ambiguity variance (see Eq. 5.23).

We now intend to fix the next ambiguityNk+1. In other words, we are at(k + 1)-th layer of
the tree search (see Fig. 5.1). In order for an integer to be accepted asNk+1, it has to fulfill the
inequality below obtained by combining Eq. 5.43 and 5.40:

(Nk+1 − N̂k+1|1,...,k)
2

σ2
N̂k+1|1,...,k

≤ χ2 − ‖P⊥
Ā P

⊥
HL
Ψ‖2

Σ−1
Ψ

−
k∑

i=1

(Ňi − N̂i|1,...,i−1)
2

σ2
N̂i|1,...,i−1

−min
ξ̃

(

‖ ˇ̃ξ(Ñ)− ˆ̃ξ‖2
Σ−1

ˇ̃
ξ(Ñ)

+
(‖S ˇ̃ξ(Ñ)‖ − lap)

2

σ2
lap

)

, (5.44)

whereS = (13×3, 03×(K−1−k)).
The minimization of the last term can be done by using the floatbaseline vector hard-

constrained float solution described in section 4.4. This length-constrained baseline concatenated

with the real-valued ambiguities is denoted byˇ̃
ξopt(Ñ) and

min
ξ̃

(

‖ ˇ̃ξ(Ñ)− ˆ̃
ξ‖2

Σ−1
ˇ̃
ξ(Ñ)

+
(‖S ˇ̃ξ(Ñ)‖ − lap)

2

σ2
lap

)

= ‖ ˇ̃ξopt(Ñ)− ˆ̃
ξ‖2

Σ−1
ˇ̃
ξ(Ñ)

. (5.45)

Solving the inequality 5.44 gives us a lower and upper bound forNk+1 which respectively are
expressed as:

lN̂k+1
=

⌊

N̂k+1|1,...,k − σN̂k+1|1,...,k

√

Ak+1(Ñ)

⌋

uN̂k+1
=

⌈

N̂k+1|1,...,k + σN̂k+1|1,...,k

√

Ak+1(Ñ)

⌉

, (5.46)

with

Ak+1(Ñ) = χ2 − ‖P⊥
Ā P

⊥
H Ψ̃‖2Σ−1

Ψ

−
k−1∑

l=1

(Nl − N̂l|1,...,l−1)
2

σ2
N̂l|1,...,l−1
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−
(

‖ ˇ̃ξopt(Ñ)− ˆ̃
ξ‖2

Σ−1
ˇ̃
ξ(Ñ)

+
(‖S ˇ̃ξopt(Ñ)‖ − lap)

2

σ2
lap

)

. (5.47)

These upper and lower bound can be used to limit the search space forNk+1. Integers within
the bounds can be the candidates of(k + 1)-th layer in the tree search.

We repeat the process and search for the next candidate. The overall search resembles a tree-
search whereby only branches which survive at the most bottom layer are eligible candidates for
integer ambiguities.

Finally, among all candidates, we select one which minimizes Eq. 5.40.

5.2.3 Evaluation of soft-constrained tree search
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Figure 5.2: Comparison of constrained (constr.), unconstrained (unconstr.) integer tree search either with
(w.) or without (w.o.) decorrelation (dec.)

By subtracting the last two terms fromχ2 in Eq. 5.47, the search space is substantially reduced
at each layer compared to the unconstrained integer search tree.

Figure 5.2 compares the soft-constrained and the unconstrained integer ambiguity search using
three different sets of data. ESA-AZO simulates an urban environment as the data was collected
right in front of a building (see Fig. 2.2). Starnberger See simulates a suburban environment while
Nymphenburg Palace simulates a relatively calm urban environment.

Note that all integer ambiguity resolutions are correct except for the ESA-AZO data set where
decorrelation was not used. Whether the ambiguities are decorrelated or not, results show that
the unconstrained integer search is less efficient in the sense that it finds more candidates given a
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5.2 Constrained integer tree search 43

search spaceχ2. The search tree is thus more elaborated and more irrelevantbranches are produced
at each layer which can be eliminated by using a constrained integer search.

Besides, without decorrelating the ambiguities, the resolution of integer ambiguities also be-
comes less reliable as one can conclude from the wrong heading determination with the test drive
at ESA-AZO.
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Figure 5.3: The flattening of standard deviation spectrum isreflected in the number of nodes at each layer
of the soft-constrained integer tree search. The discontinuity is reduced with Z-transformation.

Figure 5.3 shows number of nodes found at each layer of the soft-constrained integer tree
search. The sudden increase of the number of nodes can be observed in the case where no decor-
relation was done while the number of nodes increases gradually in the case where ambiguities
are decorrelated. The results conforms with Teunissen’s observation in [11]: Without decorrela-
tion with Z-transformation, the spectrum of conditional standard deviations is discontinued and is
reflected by a sudden increase of nodes at the last few tree search layers.

Fig. 5.4 shows the double difference phase residuals duringthe initial160 s after integer ambi-
guities are fixed. The car was standing during the measurement acquisition. The phase residuals of
all four double differences are less than two centimeters over the complete period, which indicates
a correct integer ambiguity resolution.

5.2.4 Search volume

The discrete integer search of ambiguities is conditioned by Eq. 5.39. The search space volume
can be adjusted as wished upon condition that at least one integer candidate is contained within
the search volume. Teunissen [18] had proposed various methods to define an appropriate search
space, for instance by defining the number of candidates one wishes to obtain.
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Figure 5.4: Phase residuals during initial integer ambiguity resolution.

Since the constrained integer tree search is to optimize theefficiency of the search, instead
of defining the number of candidates that we wish to evaluate,we define the search spaceχ2 in
such a way that it containsat leastone candidate and evaluates all ambiguity candidates found
within the search space. Since the unconstrained tree search is less efficient compared with the
constrained tree search (see Fig. 5.2), the search space defined using one of the candidates given
by the unconstrained integer search ensures that at least one candidate will be found with the
constrained integer search.

We take for instance the best candidate (i.e. the candidate nearest to the float ambiguities in
a metric sense) given by the unconstrained integer searchŇunconstr to define the search space for
constrained tree searchχ2

constr:

χ2
constr = ‖Ψ −HLb̌L(Ňunconstr)− AŇunconstr‖2Σ−1

Ψ

+
(‖b̌L(Ňunconstr)‖ − lap)

2

σ2
lap

(5.48)

We know that we will obtain by the end of the constrained tree search at least one ambiguity
candidate set, which išNunconstr itself. The above equation can be further simplified to only one
term instead of a sum of two weighted quadratic residuals by determining thehard-constrained
float baseline solutioňbL,opt(Ňunconstr). With the hard-constrained baseline, the second term which
indicates the baselinea priori residuals becomes negligible and therefore, we can define the search
volume with the following

χ2
constr = ‖Ψ −HLb̌L,opt(Ňunconstr)−AŇunconstr‖2Σ−1

Ψ

. (5.49)
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6. Cascaded cycle slip correction

This chapter provides acascadedcycle slip detection and correction method forlow costGPS
receivers. The cycle slip correction is a crucial point as

• λ/2 cycle slips occur due to undetected changes of the navigation bit;
• receivers occasionally track a reflection rather than the direct signal;
• multiple satellites might be affected simultaneously;
• phase changes due to high receiver dynamics have to be separated from cycle slips.

Challenging environments include narrow street canyons and alleys, where the direct signals
might be shadowed. We strengthen the cycle slip detection and correction by taking the following
information into account:

• fixed phase residuals of all double differences and their history;
• heading of previous epochs and its prediction to the currentepoch;
• length of the baseline between both receivers;
• code-based absolute velocity of the vehicle.

Time [epochs]

D
D

p
h

as
e

m
ea

su
re

m
en

t[
m

]

0 20 40 60 80 100 120 140 160

-6198.96

-6199

-6199.04

-6199.08

-6199.12

-6199.16

λ/2

Figure 6.1: Phase double difference measurement of one satellite when the vehicle is stationary. At epoch
122, cycle slip happens and causes a jump in the measurement.
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Fig. 6.1 shows the temporal evolution of the double carrier phase measurement forstationary
receivers. Under normal conditions, the double differencephase measurements of stationary re-
ceivers only slightly drift due to the satellite movement. However, when cycle slips happen, sudden
jumps can be observed in the phase measurement like in Fig. 6.1.

A cycle slip means a jump of a wavelengthλ in the phase measurement scaled to length unit.
For geodetic receivers, cycle slips are always an integer multiple of a wavelength. Unfortunately,
with low-cost receivers, cycle slips can be also a multiple of λ/2, as shown in Fig. 6.1. The half
cycle slip originates from an undetected bit transition in the navigation message, which leads to a
jump byπ/2.
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Figure 6.2: Phase double difference of visible satellites subtracted with the measurement of the first epoch.
Measurements were acquired when the vehicle was moving.

Cycle slips cannot be detected in a single phase measurementdue to satellite movement. How-
ever, it is possible to detect cycle slips in double difference measurements which are important in
our case as heading is derived from double difference measurements. Fig. 6.1 shows a situation
where cycle slips can be easily recognized and solved formally by taking the difference of two con-
secutive measurements. We however do not always have such easily identifiable jumps especially
when the receivers are moving. Fig. 6.2 shows the double difference phase measurements of a car
moving in an urban environment. The double differences varysubstantially during the movement
and make cycle slips harder to recognize with naked eyes and even more complicated to identify
formally. Furthermore, cycle slips can affect simultaneously multiple satellites. Therefore, cross
checking double difference phase measurements can also nothelp.

In the case of L1 band being used, a cycle slip of half a cycle can account for at least 9 cm
of error in the measurement and therefore introduce an errorof ≈ 0.1˚ in the heading if we have
a baseline of 1 m. The error can be increased in the case where cycle slips affect simultaneously
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6.1 Phase measurement model with cycle slip considered 47

several satellites. If left uncorrected, this error can be accumulative: When cycle slip happens at
one epoch, measurements of the subsequent epochs will also be affected (see Fig. 6.1).

6.1 Phase measurement model with cycle slip considered

To adapt to the use oflow costGPS receiver, the double difference measurement model described
in Eq. 3.6 will be refined in this chapter to take into accountλ/2 cycle slips:

ϕk
12 − ϕl

12 ≈ (~e k
1 − ~e l

1)
T ·~b12 + ckl12 + λNkl

12 +
λ

2
∆Nkl

12 +mkl
ϕ,12 + εkl12. (6.1)

We define here the term “fixed double difference phase measurement", which is simply cal-
culated by subtracting the resolved double difference ambiguitiesŇ from the double difference
phase measurement:

ϕkl
12,fixed =ϕkl

12 − λŇkl
12 (6.2)

In the case where cycle slip happens, we have to take the number of cycle slips∆N into
account in the fixed double difference measurement. By mapping multipath to noise, the above
equation becomes:

ϕkl
12,fixed ≈(~e k

2 − ~e l
2)

T ·~b12 +
λ

2
∆Nkl

12 + εkl12. (6.3)

By grouping double difference measurements obtained from different satellites with respect
to the reference satellite (PRN = 1), the above equation can then be written in matrix-vector
representation:

ϕdd,fixed =








ϕ21
12,fixed

ϕ31
12,fixed

...
ϕK1
12,fixed








=H̃geob12 + Acs∆N + εkl12 (6.4)

=HLbL + Acs∆N + εkl12, (6.5)

whereAcs is the mapping matrix to map the number of cycle slips to the phase measurement. Note
that Eq. 6.5 only considers carrier phase measurement of visible satellites of the epoch in question.
The last line is obtained by performing a ECEF to ENU frame transformation with the help ofRL

given by Eq. 3.12:

H̃geob12 = H̃geoR
−1
L RLb12

= HLbL. (6.6)

Working in the local ENU frame has its advantage: the Up-component can be constrained
to zero in the case where movement is limited to a flat surface,which is often an acceptable
assumption with on-road automotive. By doing so, we need fewer satellites to determine the
baseline which is especially critical in urban environment. In the following, we will reason in the
local ENU frame and eventually reduce the problem totwo dimensionsby assuming nullity for the
Up-component (bL ∈ R

2×1).
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48 6. Cascaded cycle slip correction

6.2 Cycle slip correction with MAP

Blewitt proposed in [21] an approach using triple difference phase measurements to correct for
cycle slips of a stationary receivers. The method becomes very soon insufficient when the re-
ceivers are moving at high dynamics. A quick turn of a vehiclecan lead to a change in the double
differences of±λ/2 or even of±λ, which might be misinterpreted as a cycle slip [8].

Lipp and Gu proposed in [22] a cycle slip detection and correction method using accelera-
tion and angular rate measurements provided by inertial sensors. However, when inertial sensors
are not available, reliable cycle slip correction can stillbe implemented using more sophisticated
estimators.

6.2.1 MAP estimator with a priori baseline and ambiguity information

Instead of correcting for cycle slips satellite by satellite, we detect cycle slip by processing all
visible satellites jointly and by analyzing the error norm derived with a Maximum A Posteriori
Probability (MAP) estimator. Furthermore, since we are in aGNSS compass model configuration,
we can also combine the length residual together with the MAP-based error norm to correct for
cycle slips.

We intend to solve for the baseline vector in local ENU framebL in Eq. 6.5. The solution
requires however phase measurements corrected with a knownnumber of cycle slips∆N . Subse-
quently, we can use a least-squares estimator to solve simultaneously∆N andbL:

min
bL ∈ R

2×1

∆N ∈ Z
K−1

‖ϕdd,fixed − (HLbL + Acs∆N)‖2
Σ−1

ϕdd,fixed

. (6.7)

[23] used a MAP estimator with ana priori knowledge on the baseline length to resolve for
ambiguities. Section 5.2.2 also demonstrated the benefit ofusing constraint derived from ana
priori knowledge on the baseline while performing an integer search (see Fig. 5.2). Embracing the
same concept as Eq. 5.32, we can try toresolve for∆N with a MAP estimator which exploits a
priori information on the probability distribution of the baseline and the number of cycle slips:

(

b̂L
∆Ň

)

= arg max
bL ∈ R

2×1

∆N ∈ Z
K−1

P (bL, ∆N |ϕdd,fixed). (6.8)

With the same reasoning (Eq. 5.32 to 5.35), Bayes’ rule infers that the MAP estimator can be
expressed as a product of a likelihood term and a prior term. Together with the assumption that
measurement noise is Gaussian distributed and that thea priori information is independent from
the measurement and also follows a Gaussian distribution, we can express the MAP estimator as a
sum of two least-squares estimators:

(
b̂L
∆Ň

)

= arg max
bL ∈ R

2×1

∆N ∈ Z
K−1

P (ϕdd,fixed|bL, ∆N)P (bL, ∆N)

P (ϕdd,fixed)

= arg max
bL ∈ R

2×1

∆N ∈ Z
K−1

P (ϕdd,fixed|bL, ∆N)P (bL, ∆N)
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= arg min
bL ∈ R

2×1

∆N ∈ Z
K−1

‖ϕdd,fixed −HLbL −Acs∆N‖2Σ−1
ϕdd,fixed

+

∥
∥
∥
∥

(
bL
∆N

)

−
(

bL,ap
∆Nap

)∥
∥
∥
∥

2

Σ−1
bL,∆N

. (6.9)

The baselinea priori information can be derived using either an interpolation ofthe previously
determined headings or a smoothed code based velocity. However, we do not have anya priori
knowledge on the number of cycle slip. Furthermore, Eq. 6.9 involves an integer least-squares
estimator as∆N is an integer, which can lead to a complicated discrete search. Data analysis
shows that the number of cycle slips are normally small integers. Therefore, the search can be
limited to {−2,−1, 0,+1,+2} from the predicted number of cycle slips which can be obtained by
differencing the measured phase double difference and a polynomial fitted phase double difference.
The next section proposes a cascaded cycle slip correction (cascaded CSC) which consists of first
a dynamic-based CSCusing a predicted number of cycle slips and a MAP estimator with only a
priori information on the probability distribution of the baseline. Subsequently, with the estimated
baseline, the cascaded CSC corrects for remaining cycle slips of the low-weighted measurements
with ana posteriori CSCusing the remaining phase residuals.

6.2.2 Dynamic-based cycle slip correction

Henkel and Kiam proposed a method to fully benefit from the MAPestimator by using a “pre-
corrected" phase double difference and ana priori baseline information [20] when it is available:

b̂L = arg max
bL∈R2×1

P (bL|ϕ̃dd,fixed(∆Ncand)), (6.10)

whereϕ̃dd,fixed(∆Ncand) is the fixed phase double difference measurement corrected with a
candidate of number of cycle slip∆Ncand from a defined search space:

ϕ̃dd,fixed(∆Ncand) = ϕdd,fixed − Acs∆Ncand. (6.11)

How ∆Ncand is determined will be described thoroughly later. The general idea is to first
calculate the difference between the measured phase doubledifference and the polynomial fitted
phase double difference to determine the possible number ofcycle slips. Other candidates are
obtained in the neighborhood of {−2,−1, 0,+1,+2} around the predicted number of cycle slips.

With Bayes’ rule and Gaussian assumption, we rewrite the MAPestimator as follows:

b̂L(∆Ncand) =arg max
bL ∈ R

2×1

P (ϕ̃dd,fixed(∆Ncand)|bL)P (bL)
P (ϕ̃dd,fixed)

=arg max
bL ∈ R

2×1
P (ϕ̃dd,fixed(∆Ncand)|bL)P (bL)

=arg min
bL ∈ R

2×1
‖ϕ̃dd,fixed(∆Ncand)−HLbL‖2Σ−1

ϕ̃dd,fixed

+ ‖bL,ap − bL‖2Σ−1
bL

. (6.12)
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50 6. Cascaded cycle slip correction

We further develop the above equation by assuming that thea priori baseline information and
the phase measurements are uncorrelated. We obtain then:

b̂L(∆Ncand) =arg min
bL ∈ R

2×1
(ϕ̃dd,fixed(∆Ncand)−HLbL)

TΣ−1
ϕ̃dd,fixed

(ϕ̃dd,fixed(∆Ncand)−HLbL)

+ (bL,ap − bL)
TΣ−1

bL
(bL,ap − bL)

(6.13)

and by introducing the following notations

zMAP =

(
ϕ̃dd,fixed(∆Ncand)

bL,ap

)

and HL,MAP =

(
HL

I2

)

, (6.14)

we can rewrite the minimization as

b̂L(∆Ncand) =arg min
bL ∈ R

2×1

(
ϕ̃dd,fixed(∆Ncand)−HLbL

bL,ap − bL

)T(
Σ−1

ϕ̃dd,fixed
0

0 Σ−1
bL

)

︸ ︷︷ ︸

Σ−1
zMAP

(
ϕ̃dd,fixed(∆Ncand)−HLbL

bL,ap − bL

)

=arg min
bL ∈ R

2×1
‖zMAP −HL,MAPbL‖Σ−1

zMAP
. (6.15)

With the found baselines and their associated number of cycle slip candidates, we select the
best pair {̂bL(∆N), ∆Ň } by using error norms derived from a MAP estimator 6.12:

(
b̂L(∆N)
∆Ň

)

=arg min




b̌L(∆Ncand)
∆Ncand





∥
∥
∥ϕ̃dd,fixed(∆Ncand)−HLb̂L(∆Ncand)

∥
∥
∥

2

Σ−1
ϕ̃dd,fixed

+
∥
∥
∥bL,ap − b̂L(∆Ncand)

∥
∥
∥

2

Σ−1
bL

. (6.16)

Nevertheless, we have preferred to use only thea priori baseline length information as the
orientation of thea priori baseline is not reliable in our case. Hence, we choose the best candidate
by minimizing the following:

(
b̂L(∆N)
∆Ň

)

=arg min




b̌L(∆Ncand)
∆Ncand





∥
∥
∥ϕ̃dd,fixed(∆Ncand)−HLb̂L(∆Ncand)

∥
∥
∥

2

Σ−1
ϕ̃dd,fixed

+
(‖b̂L(∆Ncand)‖ − lap)

2

σ2
lap

. (6.17)
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MAP estimator is extremely useful for determining cycle slips when thea priori baseline in-
formation is available so that the measurement is checked with an external reference. However,
this is not always the case especially whenonlyGNSS-based measurements are available.

We developed adynamic-basedCSC which adapts the determination ofa priori baseline in-
formation according to the dynamics of the receivers so thatEq. 6.17 can be used for detecting and
correcting cycle slips. Three main modes of correction weredeveloped according to the dynamics
of the receiver:

• High dynamicsin the sense that receiver speed is high enough;
• Low dynamicsin the sense that previous headings are almost constant;
• All other cases which are not qualified for the two dynamics above are classified asmedium

dynamics.

The following sections explain step by step how dynamic-based CSC is performed according
to the dynamics of the vehicle.

6.2.2.1 Cycle slip correction at high dynamics

N1
cs,predN1

cs,pred − 1 N1
cs,pred + 1

∆ϕ2
dd,fixed > ∆th

N2
cs,pred − 1 N2

cs,pred N2
cs,pred + 1

N3
cs,pred = 0N3

cs,pred = 0N3
cs,pred = 0

∆ϕ3
dd,fixed < ∆th

Figure 6.3: Combination of all possible cycle slips: A branch which survives until the end layer are consid-
ered as a candidate of∆Ncs,cand.

Line 2predicts the heading of the current epoch by extrapolating linearly.
Line 4determines an a priori baseline information. When the vehicle is moving, the baseline

fixed on the vehicle is parallel to the velocity. Therefore, the smoothed-code based velocity vector
v can be exploited to find thea priori baseline in local ENU coordinate frame:

bL,ap =
vE,N,U

‖vE,N,U‖ lap, (6.18)

However, this approach to set the baseline is only legitimate when the speed is high enough
due to the norm in the denominator. Note that in the algorithm, we limit ourselves to only the East
and the North components since heading determination is themain goal in this work.
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52 6. Cascaded cycle slip correction

Algorithm 4 Cycle slip correction at high dynamics

Input: φ, lap, v̄
E,N, Σ−1

x̄ , RL, ϕ
T
dd,fixed, HL, σlap

Output: ∆Nacc, ∆Ncs,sel

1: (α0, α1) = argminα0,α1

∑−1
n=−5 ‖φ(t− nT )−∑1

p=0 αp · (t− nT )p‖2
2: φpred = α0 + α1(5T ) ⊲ extrapolate to predict current heading
3: while t do
4: bL,ap = vE,N

‖vE,N‖
lap ⊲ a priori baseline vector

5: ΣbL,ap
= RLΣ

−1
x̄ RT

L
l2ap

‖~vE,N‖2
⊲ a priori baseline covariance matrix

6: zMAP =

(
ϕdd,fixed

bL,ap

)

;

7: Σ−1
zMAP

=

(
Σ−1

ϕdd,fixed
0

0 Σ−1
bL,ap

)

⊲ set up variables for MAP estimation

8: HL,MAP =

(
HL

I2

)

9: AMAP =

(
λ
2
IK−1

02×(K−1)

)

10: PHT
L,MAP

= HL,MAP(H
T
L,MAPΣ

−1
zMAP

HL,MAP)
−1HT

L,MAPΣ
−1
zMAP

⊲ projection matrix

11: P⊥
HT

L,MAP
= IK+2 − PHT

L,MAP
;

12: bL,MAP = (HT
L,MAPΣ

−1
zMAP

HL,MAP)
−1HT

L,MAPΣ
−1
zMAP

zMAP

13: φMAP = arctan(
bEMAP

bNMAP
) ⊲ predicted heading in degree without CSC

14: if φpred − φMAP > 2 then
15: rMAP = P⊥

HT
L,MAP

zMAP ⊲ MAP estimation phase residuals before CSC

16: WSSEMAP = rTMAPΣ
−1
zMAP

rMAP +
(‖bL,MAP‖−lap)2

σ2
lap

⊲ WSSE of phase residuals before CSC

17: WSSEMAP,th = 22((K − 1) + 2) + 2;
18: if WSSEMAP >WSSEMAP,th then

19: ∆Npred =
[
ϕdd,fixed−HLbL,ap

λ/2

]

⊲ predict number of cycle slips jointly for all satellites

20: for k = 2 → K do ⊲ we assume satellite 1 is the reference satellite
21: (β0, β1) = argminβ0,β1

∑−1
n=−5 ‖ϕk

dd,fixed(t− nT )−∑1
p=0 βp · (t− nT )p‖2
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22: ∆ϕk
dd,fixed = |ϕk

dd,fixed(t)− (β0 + β1t)|
23: if ∆ϕk

dd,fixed > ∆th then
24: ∆Nk

cand = {∆Nk1
pred − 1, ∆Nk1

pred, ∆N
k1
pred + 1} ⊲ a search in {−1, 0,+1}

25: else
26: ∆Nk

cs,cand = {0};
27: end if
28: end for
29: Determine all combinations of∆Nk

cand and group in∆Ncs,cand

30: Determine number of candidatesncand

31: for c = 1 → ncand do
32: rMAP,cand(c) = P⊥

HT
L,MAP

(zMAP − λ
2
∆Ncs,cand(c))

33: bL,cand(c) = (HT
L,MAPΣ

−1
zMAP

HL,MAP)
−1HT

L,MAPΣ
−1
zMAP

(zMAP − λ
2
∆Ncs,cand(c));

34: WSSEMAP,cand(c) = rMAP,cand(c)
TΣ−1

zMAP
rMAP,cand(c) +

(‖bL,cand(c)‖−lap)2

σ2
lap

35: end for
36: end if
37: if min(WSSEMAP,cand) >WSSEMAP,th ORNcand = 1 then
38: for k = 1 → K do ⊲ extended search
39: (β0, β1) = argminβ0,β1

∑−1
n=−5 ‖ϕk

dd,fixed(t− nT )−∑1
p=0 βp · (t− nT )p‖2

40: ∆ϕk
dd,fixed = ϕk

dd,fixed(t)− (α0 + α1t)

41: if ∆ϕk
dd,fixed > ∆th then ⊲ exclude trustable satellites

42: ∆Nk
cand = {∆Nk1

pred − 2, ∆Nk1
pred − 1, ∆Nk1

pred, ∆N
k1
pred +1, ∆Nk1

pred +2} ⊲ search
43: else
44: ∆Nk

cs,cand = 0;
45: end if
46: end for
47: Determine all combinations of∆Nk

cand and group in∆Ncs,cand

48: Determine number of candidatesncand

49: for c = 1 → ncand do
50: rMAP,cand(c) = P⊥

HT
L,MAP

(zMAP − λ
2
∆Ncs,cand(c))

51: bL,cand(c) = (HT
L,MAPΣ

−1
zMAP

HL,MAP)
−1HT

L,MAPΣ
−1
zMAP

(zMAP − λ
2
∆Ncs,cand(c))

52: WSSEMAP,cand(c) = rMAP,cand(c)
TΣ−1

zMAP
rMAP,cand(c) +

(‖bL,cand(c)‖−lap)2

σ2
lap

53: end for
54: end if
55: Select cycle slip candidate∆Ncs,sel which minimizes the WSSE
56: Determine index of the best candidateind_sel among all candidates
57: if WSSEMAP,cand(ind_sel) <WSSEMAP <WSSEMAP,th then
58: ϕdd,fixed = ϕdd,fixed − λ

2
∆Ncs,sel

59: ∆Nacc := ∆Nacc +∆Ncs,sel ⊲ Increment accumulated cycle slips
60: else
61: Try cycle slip correction at medium dynamics
62: end if
63: end if
64: end while
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Line 6 to 9prepare variables needed for MAP estimation described in section 6.2.2.
Line 10 to 11determine the projection matrixPHT

L,MAP
as well as the orthogonal projection

matrixP⊥
HT

L,MAP
of the least-squares problem in Eq. 6.17.

Line 12 is determined here by assuming that there is no cycle slip. The calculated baseline
vector is then used to determine the MAP headingφMAP. If the MAP heading is different from the
extrapolated headingφpred determined inLine 2by 2˚, a search for cycle slips is thus necessary.
However, if the MAP heading is comparable to the extrapolated heading, no search for cycle
slips is required. By introducing this condition, we can reduce the probability of false alarm, i.e.
correcting for cycle slip while in reality, no cycle slip occurs.

Line 18checks again if a search for cycle slip is really necessary. The search will only be
performed if the MAP error normWSSEMAP (see Eq. 6.17) is greater than a predefined threshold
WSSEMAP,th.

Line 19is performed to predict jointly for all satellites the number of cycle slips by using the
phase residuals after fixing the baseline to the a priori baseline. By refering to Eq. 6.5, we know
that if the residuals are too big, the phase double difference measurements contain probably cycle
slips. The number of probable cycle slips is calculated by dividing the residuals withλ/2.

Line 23 is again to avoid false alarm in the correction. It is performed individually for each
satellite. If the difference between the extrapolated phase double difference and the measured
phase double difference is small, no cycle slip search is required.

Line 24 to 30and42 to 48search for candidates of number of cycle slips. The first search
is limited to a smaller neighborhood around the predicted number of cycle slip∆Nk1

pred and sub-
sequently extended to a bigger neighborhood if the first search fails to provide a good cycle slip
candidate. The search is performed as illustrated by Fig. 6.3.

Take the first search for example, each node at each layer of the search produces three new
branches. All branches will survive if the condition atLine 23is fulfilled at the next layer. Or else,
each node only produces one branch which is linked to a node that represents zero cycle slip.

Line 49 to 53select the best candidate by using the sum of error norms in Eq. 6.17 derived with
a MAP estimator. If no candidate at the first search producesWSSEMAP,cand which is smaller
than a desired threshold, an extended search will subsequently be performed. If the extended
search fails again to find the right candidate, we will then use another cycle slip correction mode.

This approach however only works for movements like in our case where the direction of
displacement is aligned with the baseline. In maritime cases, the orientation of the baseline is
often affected by the water flow, which renders Eq. 6.18 invalid [8].

6.2.2.2 Cycle slip correction at medium dynamics

Although smoothed with carrier phase measurement, code measurement remains noisy to a certain
extend that the error in the velocity calculation is comparable to the true velocity when the dynam-
ics are low. Therefore, when the dynamics are not high enough, velocity is no longer usable to
derive thea priori baseline vector.

Since we have relatively low dynamics, the yaw and pitch of the vehicle do not vary much: a
linear fitting of the previous yaw and pitch angles can hence be used to predict the angles of the
current epoch. Subsequently, with the predicted attitude of the current epoch, the baseline vector
can be calculated with trivial trigonometric operations asbelow:
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Algorithm 5 Cycle slip correction at medium dynamics

Input: φ, lap, RL, ϕ
T
dd,fixed, HL, σlap

Output: ∆Nacc, ∆Ncs,sel

1: while t do
2:

(
α0 α1

)
= argminα0,α1

∑−1
n=−5 ‖φ(t− nT )−∑1

p=0 αp · (t− nT )p‖2
3: φpred = α0 + α1(5T ) ⊲ extrapolate to predict current heading

4: bL,ap = lap

(
sin(φpred)
cos(φpred)

)

⊲ determine a priori baseline

5: if φ(t− 1)− φ(t− 5) > 5 then
6: Σ−1

bL,ap
= (l2ap(φ(t− 1)− φ(t− 5))2, I2)

−1;
7: else
8: Σ−1

bL,ap
= (l2ap(

5π
180
I2)

−1;
9: end if ⊲ determine baseline covariance matrix

10: perform line 6 to 11 of algorithm 4
11: bMAP = (HT

L,MAPΣ
−1
zMAP

HL,MAP)
−1HT

L,MAPΣ
−1
zMAP

zMAP

12: φMAP = arctan(
bEMAP

bNMAP
)

13: if φpred − φMAP > 2 then ⊲ determine WSSE of MAP estimation
14: perform line 15 to 17 of algorithm 4
15: end if
16: if WSSEMAP >WSSEMAP,th then

17: ∆N12,cs =
[
ϕdd,fixed−HLbL,ap

λ/2

]

⊲ predict number of cycle slips jointly for all satellites

18: perform line 37 to 54 to search for cycle slip candidates and to select subsequently the
best candidate

19: if WSSEMAP,cand(ind_sel) < WSSEMAP AND WSSEMAP,cand(ind_sel) <
WSSEMAP,th then

20: ϕdd,fixed = ϕdd,fixed − λ
2
∆Ncs,sel;

21: else
22: cycle slip correction fails
23: end if
24: end if
25: end while
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bL,ap =





sin(φpred) cos(θpred)
cos(φpred) cos(θpred)

sin(θpred)



 · lap, (6.19)

with φpred andθpred obtained by extrapolating from the previous five epochs for the current
epoch.

Besides the baseline vector, the rest of the algorithm resembles algorithm 4.

6.2.2.3 Cycle slip correction at stationary

For the case of a stationary vehicle, carrier phase measurement remains stable and only a drift
due to satellite movement is observable over a long period. Hence, as described in [17], a triple
difference approach can be used to detect cycle slips.

ϕk1
td (t) = ϕk1

dd(t)− ϕk1
dd(t− 1) (6.20)

denotes the triple difference operation using the double difference phase measurement of the
current epoch and from the previous epoch.

The number of cycle slips to be corrected is the rounded quotient of the triple difference and
[
(ϕk,1

td

λ/2
)
]

. This approach is simple but very efficient when it comes to a cycle slip correction for

cases like in figure 6.1.

6.2.2.4 Cycle slip correction at low dynamics

When the vehicle is coasting at very low dynamics, the phase measurements do not vary much and
therefore we can adopt a triple difference method as in the case of stationary vehicle:

ϕk,1
td = ϕk,1

dd (t)− ϕk,1
dd (t− 1). (6.21)

However, an approach which depends entirely on triple difference is not reliable. As the system
has to work in a real-time manner, we predict the dynamic level by looking at the previous epochs.
If the previous epochs have phase measurements which are stable, it is then very likely that the
current epoch does not vary much. Such reasoning does not work in all cases. The low dynamics
here are defined as such by looking only at the vehicle previous headings. If the vehicle coasts
in a line at a high speed, a turn can cause a big change in heading and in phase measurements
instantaneously. A naive approach which depends only on thetriple difference will treat the turn
as a cycle slip and lead to a wrong correction, causing the change in motion to happen later.
Therefore, when the previous epochs reveal that the vehiclehave very low dynamics, we use the
baseline of the previous epoch as ana priori baseline but in order to not take the low dynamics
(only in heading sense) for granted, we also take the velocity derived from the smoothed code
measurement into account (seeLine 15to Line 21).

Unlike in algorithm 4 and 5, the region of integer search is determined first. Since this cycle
slip correction method depends on the triple difference if all triple differences are small, no further
correction is necessary. Nevertheless, unlike in the case of a stationary vehicle, a simple rounding
is not appropriate since the phase measurements can be slightly less stable when there is some

dynamics. Therefore, we need to define a "gray zone" when0.25 < |ϕk
td

λ/2
−⌊ϕk

td

λ/2
⌋| < 0.75 (seeLine

4 to 9).
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Algorithm 6 Cycle slip correction at low dynamics

Input: φ, lap, RL, ϕ
T
dd,fixed, HL, σlap , bL,fixed(1 : 2, t− 1), Σx̄(t− 1))

Output: ∆Nacc, ∆Ncs,sel

1: while t do
2: ϕtd,fixed(t) = ϕdd,fixed(t)− ϕdd,fixed(t); ⊲ triple difference between two consecutive epochs
3: for k = 2 → K do
4: if |ϕ

k
td

λ/2
− ⌊ϕk

td

λ/2
⌋| > 0.75 then

5: ∆Nk
cs,cand = ⌈ϕk

td

λ/2
⌉ ⊲ determine individually cycle slip candidates for each satellite

6: else if|ϕk
td

λ/2
− ⌊ϕk

td

λ/2
⌋| < 0.25 then

7: ∆Nk
cs,cand = ⌊ϕk

td

λ/2
⌋

8: else
9: ∆Nk

cs,cand = {⌊ϕk
td

λ/2
⌋, 0, ⌈ϕk

td

λ/2
⌉}

10: end if
11: end for
12: determine allNcand combinations of candidates∆Ncs

13: if Ncand > 0 then
14: eb,head =

bL,fixed(1:2,t−1)

‖bL,fixed(1:2,t−1)‖
⊲ predict directive vector by using previous fixed baseline

15: if ‖v̄L(1 : 2, t)‖ > 10 then
16: eb,vel =

v̄L(1:2,t)∗T
‖v̄L(1:2,t)∗T‖

17: eb,ap = eb,head + eb,vel ⊲ predict directive vector by using previous fixed baseline and
current velocity vector

18: bL,ap =
eb,ap

‖eb,ap‖
lap ⊲ determine a priori baseline

19: else
20: bL,ap =

eb,head
‖eb,head‖

lap ⊲ determine a priori baseline
21: end if
22: if ‖v̄L(1 : 2, t)‖ > 10 then ⊲ determine covariance matrix ofbap
23: Σbap = ΣbL,fixed

(t− 1) +RL(Σx̄(t) +Σx̄(t− 1))R−1
L

24: else
25: Σbap = ΣbL,fixed

(t− 1)
26: end if
27: perform line 6 to 11 of algorithm 4 to prepare variables for MAP;
28: perform line 49 to 53 of algorithm 4 to determine the WSSE of each candidate
29: select cycle slip candidate∆Ncs,sel which minimizes the WSSE
30: determine index of the best candidateind_sel among all candidates
31: ϕdd,fixed = ϕdd,fixed − λ

2
∆Ncs,sel;

32: end if
33: end while

57



58 6. Cascaded cycle slip correction

 

 
P

h
as

e
re

si
d

u
al

s
af

te
r

C
S

C
d

u
ri

n
g

co
as

tin
g

[m
]

Time [s]

2

1

0

-1

-2

-3

-4

-5
0 40 80 120 160 200

PRN 02 - PRN 25
PRN 12 - PRN 25
PRN 27 - PRN 25
PRN 29 - PRN 25
PRN 31 - PRN 25

Figure 6.4: Test drive at at ESA-AZO: Corresponding phase residuals in the case where no cycle slip
correction was used.

6.2.3 Validation of dynamic-based cascaded cycle slip correction

We carried out extensive tests on the algorithm. First, the ANAVS attitude determination system
was performed without any cycle slip correction. Fig. 6.4 illustrates the phase residuals after fixing
baseline. Without any cycle slip correction, the residualsranges from10 cm to5 m, indicating that
the least-squares estimation of the baseline does not fit well with the fixed phase DD measurements.

With the use of dynamic-based CSC, the residuals are substantially reduced as seen in Fig. 6.5.
However, we still observe with some satellites (PRN 02 and PRN 29) phase residuals of meter
level. These are indeed satellites of the lowest elevation angle among all visible satellites. PRN 02
has an elevation angle of28˚ while PRN 27 has an elevation angle of26˚. Therefore, a selection
based on the a weighted squared error (see Eq. 6.17) is penalizing for low elevated satellites as
they have low weighting, which can be 100 times lower than thesatellite with the highest ele-
vation. Consequently, satellites with low weighting can either be neglected in the correction and
be corrected wrongly. While a missed correction or a wrong correction does not affect much the
instantaneous heading determination given the low weighting, the error continues to propagate and
can even be accumulative since we often use information fromthe previous epochs to derive a
priori information for the current epoch.

A missed or wrong correction of a low-weighted satellite canbe corrected using the following
equation:

ϕdd,fixed − Acs∆N = Hbfixed + Acs∆Ñ + ε, (6.22)

wherebfixed is the baseline calculated right after phase double difference is corrected with
dynamic-based cycle slip correction, andÑ is the remaining cycle slips.
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Figure 6.5: Test drive at at ESA-AZO: Corresponding phase residuals where dynamic-based cascaded cycle
slip correction was in use.

Acs∆Ñ + ε represents the residuals that we observe in Fig. 6.5. In the case where no cycle slip
remains, the residuals must be small since they only represent the noise level in phase measure-
ments. When the residuals become substantial,Ñ contains remaining cycle slips that have to be
corrected.

The final corrected phase double difference is hence:

ϕ̃dd,fixed = ϕdd,fixed −Acs(∆N +∆Ñ), (6.23)

where∆N is derived from thedynamic-based CSCand∆Ñ from thea posteriori CSC.
Cascaded cycle slip correction is more robust than only dynamic-based cycle slip correction

as it does not only correct for satellites with high weighting with a WSSE derived with a MAP
estimator but also performs a posterior correction for low-weighted satellites once the baseline is
fixed to avoid propagative errors.

Fig. 6.6 shows the phase residuals of the same data set with the phase double differences
corrected with cascaded CSC (first with the dynamic-based cycle slip correction and subsequently
with a posterior correction). The residuals are below 5 cm, which shows that cycle slips are reliably
corrected.

Fig. 6.8 shows heading obtained from sole dynamic-based CSC(blue curve) and cascaded CSC
with a posteriori CSC in use after dynamic-based CSC (orangecurve). Different correction modes
of the dynamic-based cycle slip correction were use intermittently. Red markers indicate epochs
where very low dynamics cycle slip correction mode was in use; green markers indicate epochs
where medium dynamics cycle slip correction mode was in use;magenta markers indicate epochs
where very high dynamics cycle slip correction mode was in use. The last section of the curves
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Figure 6.6: Test drive at at ESA-AZO: Corresponding phase residuals where dynamic-based cascaded cycle
slip correction was coupled with a fixing posterior correction.

differ substantially; this difference is also easily observable from the residuals (see Fig. 6.5 and
6.6). Comparing the heading curve to the plotted route of thecar (see Fig. 6.8), we notice that the
heading estimated using only dynamic-based CSC is wrong while cascaded CSC is more reliable.

Another test drive was conducted in front of Volkswagen headquarter in Wolfsburg, Germany.
Fig. 6.9 shows the track taken during the test and Fig. 6.10 shows the corresponding headings.

Fig. 6.11 illustrates the phase residuals of fixed solution during coasting obtained with only a
dynamic-based cascaded cycle slip correction while Fig. 6.12 shows the phase residuals obtained
using additionally a posterior cycle slip correction.

With the dynamic-based cycle slip correction, we observe that satellite PRN 32 is constantly
bearing big residuals. It is indeed low-elevated. The substantial residual of this satellite persists
or even worsen when left uncorrected. With a posterior cycleslip correction, satellite PRN 32 is
corrected accordingly and the overall residuals are improved by at least a factor of 2.
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Figure 6.7: Heading determination of a test drive at ESA-AZO, Oberpfaffenhofen. Headings were obtained
using the dynamic-based and subsequently a posteriori CSC.Different colors show that different cycle slip
correction modes were used.
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Figure 6.8: Heading at 189 s during the test at ESA-AZO, Oberpfaffenhofen
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Figure 6.9: Test drive conducted at VW, Wolfsburg. After initialization, the car moved round the open area.
At 60− 80 s120− 220 s, the car was stationary.
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Figure 6.10: Headings obtained from the test drive at VW, Wolfsburg.
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cycle slip correction.
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Figure 6.12: Test drive at VW, Wolfsburg: Corresponding phase residuals where dynamic-based cascaded
cycle slip correction was coupled with a fixing posterior correction.
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7. ANAVS PAD: Position and Attitude Determination research
platform

Advanced Navigation Solutions (ANAVS)1 is actively involved in absolute and relative position
determination as well as attitude determination. This master thesis consists mainly of the attitude
determination part or more precisely, heading determination. Algorithms and methods explained
before are put into practice in thePosition and Attitude Determination, (PAD)system. The system
is tested extensively to provide precise headings in terrestrial navigation. However, the system can
be further developed for maritime and aeronautical use.

The following sections will give a description of how the system is configured hardware-wise
and how the different methods are structured in modules. Thehardware part of the system is mainly
conceived by Philipp Berthold and carefully developed by Philipp Berthold and Naoya Oku.

7.1 Hardware configuration

Figure 7.1 outlines the basic setup of the heading determination platform. An i7 processing unit
and two u-blox LEA-6T receivers are integrated in a casing. Two receivers are needed because we
are performing relative positioning. Two jacks on the rear-side of the casing are used to connect
the GPS antennas to the receivers. The box can be powered witha variable voltage between6 and
30 Volts. The high voltage input range is to ensure that the operation remains reliable when the
power supply is connected to a running car battery. Such security measure also enables the box to
be connected to high voltage board supply on a ship or a truck.

The box uses an Intel i7-CPU as in the research phase, the algorithms are implemented in
MATLAB which requires high computing resources for a real-time system2. The box is passively
cooled with heatpipes integrated in the aluminium casing.

The box can output results from the code to other electronic devices with a graphical display
via a wireless local area network (WLAN) connection. However, MATLAB only allows a single-
user connection. Philipp Berthold developed a network interface (Fig. 7.2) which acts as a router
and outputs the results to up to12 users.

1Located in Munich, Germany, ANAVS is created in October 2011by Dr. Patrick Henkel, Prof. Christoph Günther,
Sabine Schmitz, Peter Schmitz and Juan Cardenas.

2Since we are using5Hz receivers, realtime requirements are met if each epoch isprocessed in less than0.2 second.

64



7.1 Hardware configuration 65
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Figure 7.1: Network interface of ANAVS PAD system
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Figure 7.2: Network interface of ANAVS PAD system
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66 7. ANAVS PAD: Position and Attitude Determination research platform

7.2 Software architecture

The code is structured with modules. Each module contains analgorithm aiming to solve the same
problem. Figure 7.3 depicts the general overview of the modular architecture.

First the signal received from satellites is processed in the u-blox receivers to output .ubx
files (containing navigation and observation messages) which are later parsed to provide time
(week_1,week_2, tow_1, tow_2), orbit data (Orbit) as well as code and phase measure-
ments (rho_1, rho_2, phi_1, phi_2). These data are obtained for every epoch and are tem-
porarily stored in two First In First Out (FIFO) buffers:sampleFifo1 andsampleFifo2. The
buffers then feed data epoch by epoch to the main body of the code.

Before using the phase measurements, we have to resolve the integer ambiguities (see eq.
2.2). In the case where cycle slip is absent and the satellites are continuously visible, the integer
ambiguities are invariant. With this concept in mind, we separate the code into two main parts:
Initialization andCoasting. The former intends to solve the ambiguities which can then be used
in the latter to determine the baseline vector. Since the ambiguities are constant once they are
resolved, no ambiguity resolution is required in the coasting phase. However, in the coasting phase,
cycle slips can happen and have to be corrected to ensure the integrity of the phase measurements.

Due to the fact that we have two major modules which do not run simultaneously, it is practical
to set different timelines for each module and a timeline forthe whole process.ep denotes the
epochs of the whole process whilet_ep andt_ep_meas denote the independent timelines of
the initialization and the coasting phase respectively (see Figure 7.4).t_ep counts from1 to
N_ep_init which indicates the number of epochs needed for initialization whilet_ep_meas
has no upper bound. Bear in mind thatt_ep_meas = 1 whenep = N_ep_init+ 1.

7.2.1 Initialization

This section explains what each module incorporated in the main Initialization module is perform-
ing. Figure 7.4-7.7 illustrate in the middle different modules with blue indicating that the module
is a separated module from theInitialization.m while white indicates that the module is
written in Initialization.m. On the left are all variables needed in the module and on the
right are variables which are created or modified in the module. The list of output variables exclude
intermediate variables which are used only within the module.

In the initialization phase, the receivers have to be stationary in order to eliminate any eventual
cycle slips with a simple and reliable triple difference method described in section 6.2.2.3. With
the cycle slips eliminated, we can assume that integer ambiguities are constant and proceed with a
solution exploiting redundancy of measurements from different epochs.

7.2.1.1 Absolute Position Determination - Initialization

As described in Chapter 4, float ambiguities have to be determined before the search of an integer
solution. Due to the noise level in the received signal caused by either the noisy environment or
the low-cost receiver, we use a system of equation which exploits the redundancy (see eq. 3.9).
Using more measurements can improve the efficiency of integer search [24]. A total number
of N_ep_init epochs (in our case,800 epochs) are collected and storedcolumn-wisein vari-
ables bearing the same name ending with*_mepoch (eg. rho_1_mepoch(1:32,t_ep) =
rho_1).
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Figure 7.3: General architecture of modules
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ep

t_ep t_ep_meas

N_ep_init epochs

Figure 7.4: Timelines in the code

During the collection ofN_ep_init epochs, the code-based absolute position of each re-
ceiver is determined with an iterative least-squares method like in algorithm 1. Nevertheless, the
main goal here is to obtain the receiver clock offsets and thegeometry matrices from the least-
squares solution. A more precise code-based absolute positioning using carrier smoothing will be
performed again at a later stage. Other data such as satellite position is also calculated using the
orbit data.

Variables required for receiver clocks synchronization such as the geometry matrices, eleva-
tion angles and the satellite positions are storedrow-wisein matrices which begin withE_32_*.
Receiver clock offset for each receiver is also stored inRX_CLK_1 andRX_CLK_2.

With the absolute positions determined, latitudes and longitudes of each epoch are also stored
column-wisein lat_*_mepoch andlon_*_mepoch.

t_ep is incremented by 1 after each epoch untilN_ep_init.

7.2.1.2 Determination of available satellites and reference satellites

This module is not a separate module but incorporated in theInitialization given its relatively
simple task. It searches for satellites which provide code and phase measurements through-
out the wholeN_ep_init epochs. The PRN identifiers of these satellites are stored under
AvailPRN_init.

An elevation maskele_mask is also applied to all satellites ofAvailPRN_init. Satellites
with an elevation lower thanele_mask will be excluded fromAvailPRN_init. Finally,N_S
number of satellites are available and the entireInitialization module will only be working with
these satellites.

Satellite with the highes elevation angle normally suffer the least from multipaths. Therefore,
we select the most elevated satellitePRN_ref to be the reference sastellite.PRN_ref_index
denotes the reference satellite index inAvailPRN_init. AvailPRN_DD_init contains all
satellites fromAvailPRN_init excluding the reference satellite.

Single differences are determined with eq. 3.1 and storedrow-wise in
D_SD_PHI_m_s_srefR* or D_SD_RHO_s_srefR*. With eq. 3.4, double differences
are determined and storedrow-wisein D_DD_PHI_m andD_DD_RHO.

7.2.1.3 Synchronization Correction - Initialization

The problem that be intend to solve involve two receivers which are not synchronized. Each
receiver has its own clock; in other words, the measurementsof the same epoch are taken at
different time instants. The offset between both receiver clocks is although only at millisecond
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level, however as satellites are moving at4km/s, such an offset can cause an error of1m in range
measurements. Henkel et al. [8][10] developed a synchronization method which takes the clock
of one of the two receivers as the reference clock and interpolate measurements from the other
receiver accordingly.

However, the synchronization is not done for each epoch but interpolated linearly instead. The
double difference correctionD_PSEUDO_DD to eliminate the differential clock offset is calculated
using eq. 4.2. Phase and code double difference for each epoch are corrected with eq. 4.3 and
storedcolumn-wisein phi_dd andrho_dd.

7.2.1.4 Remove the first1 + max_int_degree epochs

Due to the interpolations for synchronizing the receiver clocks,D_PSEUDO_DD is not calculated
for the first1 + max_int_degree epochs. Measurements for these epochs are hence not cor-
rectable. We have to neglect these epochs in variables with*_mepoch for the subsequent opera-
tions and start only with epocht_start_afix = 2 + max_int_degree.

At the same time, to keep homogeneity, we transpose the satellite position matrices, double
difference correction as well as the geometry matrix for receiver one so that each epoch is stored
column-wisein x_s_ECEF_Rx1, x_s_ECEF_Rx2, pseudo_dd_init andH_1.

In all following modules, we only use geometry matrix from receiver 1 as the normalized
elements in the matrix do not vary much with a short baseline.

7.2.1.5 Cycle Slip Detection and Correction - Initialization

After synchronizing the receiver clocks, double difference cycle slips are corrected using a triple
difference approach (see section 6.2.2.3).csc_accumulated is incremented with the detected
cycle slips (already multiplied withλ/2. Since cycle slip affects all subsequent epochs as well
(see figure 6.1, the accumulated cycle slips will be used to correct subsequent double difference
measurements acquired.

7.2.1.6 Noise Statistics - Initialization

Before proceeding with baseline determination or ambiguity resolution, we have to define the sta-
tistical model of the system due to the random noise in eq. 3.9. We assume that the measurement
noise is Gaussian distributed with zero-mean. The standarddeviation is determined statistically
using a polynomial fitting over double difference measurements of theN_ep_init epochs (see
section 4.3.1. A statistical approach is preferred to a model as the receivers are stationary and
therefore a second degree polynomial fitting is sufficient tomatch the satellite movement to the
measurements (see figure 4.3). The standard deviations determined for each double difference
measurement are used to fill the diagonal positions of the code and phase measurement covariance
matrices (Sigma_rho andSigma_phi respectively). The off-diagonal elements are theoreti-
cally difficult to determine. For practical use, we take1/2 ∗ min(σk). Sigma take the code and
phase covariance matrices as diagonal blocks to form the covariance matrix for measurementΨ in
eq. 3.9.

However, the noise statistics above are only determined fordouble difference measure-
ments. We need section 4.3.2 to calculate standard deviations for code and phase measurements
(sigma_rho andsigma_phi). These variables will be used in the next module.
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7.2.1.7 Carrier Smoothing - Initialization

Although the absolute positions are already determined at an earlier stage when data from each
epoch is collected, we perform again here an absolute position determination. This time however,
is no longer using the pure code measurement but the smoothedcode measurement. As explained
before in section 2.1, the geometry change of the code and phase measurement should be identical.
Therefore, smoothing the code measurement using a Hatch filter (see Fig. 2.1) can help to improve
the precision of absolute positions.

sigma_rho andsigma_phi are used to determine the covariance matrix of the Hatch fil-
ter according to eq. 2.8. Absolute positions are calculatedfor each epoch (x_1_smoothed
andx_2_smoothed). The middle of both receivers is taken as the absolute position of the
vehicle x_smoothed. Its latitude and longitude are also calculated (lat_smoothed and
lon_smoothed). The averaged absolute position of receiver 1 is also determined by taking
the average over all epochsx_Rx1_ave.

This module also provides the continuity of the satellitesflag_cont.

7.2.1.8 Stack double difference measurements in vectors

This module is incorporated inInitialization module itself. It stacks measurements from different
epochs into vectorsphi_dd_multi_epoch andrho_dd_multi_epoch.

7.2.1.9 Unconstrained Iterative Least Squares Float Solution

The final goal of the initialization phase is to determine thedouble difference integer ambiguities
of the measurements. We use here the LAMBDA method (see section 5.1) which requires first the
ambiguities to be solved in float form. As the PAD system is supposed to work under all possible
circumstances including noisy urban environment, we exploit the redundancy by taking a system
of eq. 3.9. By the end the this module, we will be able to determine a float solution for the baseline
vector as well as the double difference ambiguities. However, this is not our goal here. Instead, the
residualsomc_phi_dd andomc_rho_dd of code and phase measurement respectively are out
main interest.

7.2.1.10 Selection Epochs Small Code Multipath

Since we have to wait forN_ep_init epochs before we can determine the ambiguities,
during the waiting period, some irregularities can happen and result in a substantial multi-
path at certain epochs. The results can be distorted and redundancy will do us more harm
than good. Therefore, by studying the residuals obtained from the float solution previ-
ously determined, we can eliminate irregular epochs in the code measurements as well as in
the phase measurements. (see eq. 4.16 and 4.16). In the end, the "good" code measure-
ments from epochsless_code_multipath_epochs and phase measurements from epochs
less_phase_multipath_epochswill be used in the next step which consists of determin-
ing the final float solution.

length_less_code_multipath and length_less_phase_multipath are the
number epochs from code and respectively phase measurements which survive the selection.
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7.2.1.11 Unconstrained Iterative Least Squares Float Solution - Less Multipath

Likewise, the float solution is determined with algorithm 2 but using only selected measure-
ments. The least-squares solution gives us an estimated position vector of the second receiver
x_Rx2_ave with respect to the first receiverx_Rx1_ave as well as the float double difference
integer ambiguitiesN_acc. The least-squares solution also provides us an important sub-product:
the double difference ambiguity covariance matrixSigma_N_hat which is used to define the
metric of the search space in LAMBDA method.

The geometry matrixH provided by the iterative least-squares will also be used subsequently
in other modules.

7.2.1.12 Intermediate absolute and relative positions

This module is incorporated inInitialization module itself. Latitude and longitude of the sta-
tionary vehicle are determined here. Using these latitude and longitude, we can established
the transformation matrixR_L which transforms a position vector in the ECEF frame to a lo-
cal ENU frame. The unconstrained baseline vectorb_hat_float and its vector in the local
ENU frame are calculated by subtracting the absolute positions. The float ambiguitiesN_hat
is assigned withN_acc found in the above unconstrained least-squares method. Theheading
head_float_unconstrained is calculated with eq. 3.13.

The statisticsSigma_b_N_hat,Sigma_N_hat andSigma_b_hat of unconstrained float
solution are also calculated.

Code and phase measurements are eventually stacked in a column vectorPsi as in eq. 3.9.

7.2.1.13 Constrained Float Solution with Tight Length Constrained

Float solution determined above does not exploit ana priori knowledge: the fix base-
line length b_length_apriori. This module uses Lagrange optimization and
Newton method (see section 4.4) to determine the baseline vector in local ENU-
frame b_hat_local_float_constrained and the constrained float ambiguities
N_hat_constrained. Eventually if the secant method in Lagrange optimization con-
verges, the constrained float solution for ambiguitiesN_hat will be used rather than the
unconstrained float solution. However, the unconstrained float solution cannot be skipped because
we need the ambiguities covariance matrixSigma_N_hat later in the integer search.

The geometry matrixH is transformed to be used with a baseline in the local ENU frame (i.e.
HL = H ∗R−1

L ). Its height component is truncated here as we only work withtwo dimensions.

7.2.1.14 Fixing LAMBDA Decorrelation and Search

We start the search with first of all LAMBDA method usingSigma_N_hat andN_hat. The
search first executes a decorrelation for the above variables with aZ-transformation. We ob-
tain theZ matrix and its inverseZ_inv, as well as the decorrelated covariance matrixQ and the
float ambiguitiesN_dec. A search space volume is defined according to how many candidates
we want the search to output. The search is then performed within the defined space volume
and the candidates found are stored inN_fixed which is sorted according the squared norms
sqnorm_unconstrained (see eq. 5.18 of section 5.1).
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7.2.1.15 Fixing Constrained Search Tree Tight Length Constraint

LAMBDA method is efficient as a discrete integer search but however does not integrate thea
priori knowledge (see section 5.2.2). Our configuration with a fix baseline length gives us an
advantage which can be used to eliminate candidates which donot fulfill the baseline length con-
straint as in eq. 5.39. The sequential conditional least-squares principle can be considered as a
tree search (see Fig. 5.1). Using a tight length constraint can help the search be more efficient as
we eliminate invalid branches while going down the tree according to the inequality in 5.44 and
candidates which survive through the whole search are stored in N_fixed.

ncands register the number of candidates found with a search space volume
Chi2_constrained defined as described in section 5.2.4 using the residual of the best can-
didate found with LAMBDA method.

A back-transformation is performed onN_fixed usingZ_inv to undo the decorrelation.

7.2.1.16 Constrained Fixed Solution For All Candidates

With integer ambiguities candidates found, we determine the baseline vector
b_check_unverified with a tight length constraint as described in section 4.4. How-
ever, is the tight length constraint is not fulfilled (i.e‖bL‖ − lap >= 0.001), the associated
ambiguity candidate will be discarded.b_check_fixed_constrained takes in only those
which fulfilled the length constraint andind_cand_rel registers the indices of the candidates
in the original list of candidates determined in the previous module. The WSSE of the phase
residualsWSSE_meas are then calculated to sort the candidates.

With the verified baseline vector, the corresponding heading head is calculated with eq. 3.13.

7.2.1.17 Select the best candidate

The best integer ambiguities candidate is selectedN_fixed_selected together with its asso-
ciated baseline vector and the heading is calculated with eq. 3.13.
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Figure 7.5: Initialization part-1
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Figure 7.8: Initialization part-4

7.2.2 Coasting

Once the receivers are initialized, any movement of the vehicle is allowed. With the determined
ambiguitiesN_fixed_selected, we can now use the phase measurements. In thecoasting
phase, measurements are processed epoch by epoch in a real-time manner.
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7.2.2.1 Absolute Position Determination

This module is incorporated in thecoastingmodule itself. Similar to the first module inInitial-
ization, the code measurement of the current epoch is used to determine the absolute positions
(x_Rx1 andx_Rx2), the receiver clock offsets (dt_Rx1 anddt_Rx2), the geometry matrix for
receiver 1H_1 and the elevation angle for available satelliteselev_1.

Satelite positions are determined first with the orbit data and later corrected with the earth
rotation:xSat_Rx1_rot andxSat_Rx2_rot. An elevation mask is applied to the satellites
andN_S registers the number of available satellitesAvailPRNwhich are elevated higher than the
elevation mask.

7.2.2.2 Parameter Initialization-Coasting

This module is destined to structure the variables. TheCoastingphase can be running continu-
ously and therefore storing all data is not an option due to memory limitation. However, previous
information is necessary for operations such as interpolation. We need at mostmax_epochs
previous epochs to process the current epoch in theCoastingmodule (see interpolation in receiver
clock synchronization). Therefore, we store the previousmax_epochs epochs’ measurements in
the firstmax_epochs columns as well as the current epoch measurement in the last column of
variables ending with*_meas. Older epochs are discarded from the system.

Satellite positions of the current epoch are also saved inx_s_ECEF_Rx1_epoch and
x_s_ECEF_Rx2_epoch so that it is easier to mobilize the satellite position vectors later.

7.2.2.3 Reference Satellite-Coasting

While only satellites which are visible throughoutN_ep_init epochs are used in the initial-
ization phase, in the coasting phase, we use all visible satellite of the current epoch which are
higher than the elevation maskele_mask. Since the vehicle is moving and in an urban environ-
ment, the visible satellites become more variant. Therefore, the coasting phase must be designed
to cope with such versatile use. The reference satellitePRN_refhas to be determined for each
epoch individually. We use preferably the reference satellite from the previous epoch to avoid
complex computation as long as the elevation of the old reference satellite does not fall below
ele_ref_sat_min. Or else, we use a satellite with the highest elevation angleamong all visi-
ble satellitesAvailPRN as the reference. The reference satellitePRN_ref must also have been
continuously visible formax_epochs so that it does not affect the linear interpolation used in the
snychronization [10]. Its index in the available satellitevectorAvailPRN is PRN_ref_index.

7.2.2.4 Determine double difference measurements

Double difference phase and code measurements (phi_dd_meas andrho_dd_meas) are de-
termined with eq. 3.7 and 3.6 and are stored in the last column(max_epochs+1)-th column of
phi_dd_meas andrho_dd_meas.

Accumulated cycle slipscsc_accumulated are subtracted subtracted from the current
phase double difference measurementphi_dd_meas(:,max_epochs+1).

7.2.2.5 Synchronization Correction - Coasting

Similar to the beginning of the initialization phase, the receiver clocks are not synchronized which
causes the measurements to be taken at slightly different time. Again, the clock of receiver1 is
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used as the reference clock and measurements from receiver2 are interpolated [10]. The correction
terms are stored in the last column ofpseudo_dd_meas; measurements from the last column of
phi_dd_meas andrho_dd_meas (i.e the current phase and code measurements) are corrected
with eq. 4.3.

7.2.2.6 Identification of new and old satellites

We first perform a check if all available measurements are still valid after the previous synchro-
nization module. The fact that synchronization requires previous epochs to interpolate, satellites
which are visible and higher than the elevation mask for the first time will not be properly correctly
with the synchronization. Therefore, these satellites will also be excluded from the list of available
satellitesAvailPRN. After modifying the latter, we have to redefineN_S the number of available
satellites andPRN_ref_index, index of the reference satellite in the list of available satellites.

Note that in the end, satellites which are in theAvailPRN are not only visible, but also
elevated higher than the elevation mask and with correctable differential receiver clocks. With
AvailPRN, we set up another list of satellites used in double differenceAvailPRN_DD, which
technically is a copy list ofAvailPRN excluding the reference satellite.

Unlike Initialization, we do not always use the same satellites. InCoasting, we consider all
visible satellites with a high enough elevation of the current epoch. Therefore at each epoch, we
can have new satellites and lost satellites, which have to betreated differently when we correct
the cycle slips.PRN_lost andPRN_new store lists of lost and new satellites respectively of
the current epoch, withPRN_lost_ind the indices of the lost satellites in the list of available
satellites of the previous epochAvailPRN_DD_last_epoch, andPRN_new_ind indices of
the new satellites in the list of available satellites of thecurrent epochAvailPRN_DD.

In this module, we also set up another listAvailPRN_DD_intermediate, which
technically is the list of satellites used in double difference of the previous epoch
AvailPRN_DD_last_epoch, with the lost satellites omitted (i.e. indicesPRN_lost_ind
are omitted). This list is for cycle slip correction as we canonly correct for satellites available at
the current epoch as well as in the previous epoch. A new satellite cannot be corrected as its integer
ambiguity is not yet fixed. Therefore, if there are cycle slips in the measurement provided by the
new satellite, it shall be considered as part of the ambiguity. Notice however that half a cycle slip
in the new satellite will therefore not be taken into accountas ambiguity fixing for the new satellite
is only a multiple of a whole wavelengthλ.

We reset the accumulated cycle slipscsc_accumulated for lost and new satellites to zero.

7.2.2.7 Noise estimation

Unlike in the initialization phase, we do not estimate the measurement noise statistically as the
satellites visibility is not continuous. A statistical approach will make noise estimation of newly
tracked satellites impossible. One compromise is to take a noise model like explained in sec-
tion 4.3.2 and [16] which determines the standard deviations (sigma_rho andsigma_phi) of
each measurement base on the elevation angleselev_1.

Standard deviations for code measurementssigma_rho is used later in carrier smoothing.
Since we intend to solve the baseline vector based solely on phase measurements, we determine
here the double difference measurement covariance matrixSigma_phiwith only the phase mea-
surement standard deviations.sigma_phi only provides standard deviation of phase measure-
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ment whileSigma_phi is the double difference measurement covariance matrix. Weuse hence
a combination of standard deviation to form the variances and covariances:

σk,2
dd = 2σk,2 + 2σref,2 (7.1)

σkl
dd = 2σref,2. (7.2)

The weighting matrix of the double difference measurementSigma_phi_inv is also deter-
mined to save computational effort later in the code.

7.2.2.8 Carrier Smoothing - Coasting

The receivers used in PAD system focus more on pseudorange measurements. When a clock jump
is detected, which is always a1ms jump, the receivers correct the jump for code measurements
but not for phase measurements. We detect the jump by subtracting the current code measurement
and the previous code measurementrho_1_prev. These jumps once detected, will be used
to calculate the equivalent jumps for the case of phase measurements (phi_1_corr_acc and
phi_2_corr_acc). The current phase measurementsphi_1 andphi_2 are corrected. These
jumps do not have to corrected for double difference measurements since the cancel off each other.

The next step consists of using carrier smoothing techniquedescribed in section 2.1 to deter-
mine the absolute position of the vehicle based on smoothed code measurements at the current
epochx_smoothed. The covariance matrixSigma_x_smoothedof the absolute position is
calculated with covariance matrices of both receivers absolute positions given while solving the
least-squares problem.

res_1_smoothed is the residuals of each satellite code measurement after performing an
iterative least-squares estimation of the absolution position of receiver 1.

7.2.2.9 Intermediate absolute positions and velocity determination

This module is incorporated inCoasting module itself. Using x_smoothed and
x_smoothed_previous_epoch, we can calculate the speed of the vehicle
v_meas(max_epochs+1. Note however that the calculate speed does not represent the
current speed but can be approximated as the current speed when the time interval between two
epochs is short.

Latitudelat_smoothed, longitudelon_smoothed are determined; together with these
geodetic coordinates, we determine the transformation matrix R_L and its inverseR_L_inv. And
with the transformation matrix, we can calculate the velocity v_meas_local_smoothed in
the local ENU frame, and the heading of the vehicle based on the the direction of movement
head_abs_pos. The rate of turnrate_of_turn_abs_pos is also calculated from the pre-
vious and current movement-based headings.

We determine here a threshold for the residuals of code-based absolute position
res_1_smoothed_th and its associated WSSE.

The next steps consist of estimating the baseline. Therefore, by the end of this module, we pre-
pare variables which we will need later in the iterative least-squares solution, namely the geometry
matrixH and receiver 2 absolute positionx_Rx2_meas(max_epochs+1) which is initialized
with receiver 1 positionx_Rx1_meas(max_epochs+1).
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7.2.2.10 Cycle Slip Detection and Correction - Coasting

In order to use phase measurements for relative positioning, we have to first eliminate abnormal
jumps in the measurements caused by cycle slips. While cycleslip correction is done relatively
early in the initialization phase in order to have correctedphase measurements for statistical noise
estimation, cycle slip correction is performed quite late in the coasting phase. The main reason
is that while the vehicle is moving, the measurements are even noisier and cycle slips happen
more often. As the satellite movement is no longer the sole movement concerned, a naive triple
difference approach cannot be used here to detect and correct cycle slips. We need othera priori
information as explained in chapter 6 in order to be able to use a MAP estimator to estimate the
number of cycle slips. The complete cycle slip detection andcorrection is divided into several
submodules as illustrated in figure 7.12. The different modes are detailed in chapter 6.

Before deciding which cycle slip mode to use, the module firstprepares in-
termediate variables (i.e. H_intermediate, Sigma_phi_intermediate,
Sigma_phi_intermediate_inv, phi_dd_fixed_intermediate) which take
into account all visible satellites of current epoch used for double difference measurement
AvailPRN_DD, while excluding new satellitesPRN_new_ind in the list.

CSC_mode_1Cycle slip correction at very low dynamics (see section 6.2.2.4). Mode 1 cycle slip
correction will be selected (flag_try_CSC_mode = 1) when the phase-based heading
head_meas of the previous 5 epochs do not vary much. By summing up the change in
heading determined by phase measurements of the previous epochs is not enough as it does not
take the current epoch into account. If the current epoch experiences a sudden turn, mode 1
cycle slip should also be excluded. Therefore, a linear fitting is done on code-based headings
head_abs_pos from the previous 4 epochs as well as the current epoch. Comparing the
gradients of the linear polynomialhead_abs_pos_fitted_complete of the previous
epoch and the current epoch will tell us if there is a sudden turn at the current epoch. Cycle slip
detection and correction is performed as described in algorithm 6. Cycle slip candidate which,
after determining the baseline with the corrected phase double difference measurements, bears
the lowest residual WSSEWSSE_CSC_td_cand is the number of cycle slip detected and will
be used to updatecsc_accumulated.

CSC_mode_2Cycle slip correction at low dynamics. This mode is used whenmode 3 fails to
correct cycle slip or when conditions to use mode 1 or mode 3 are not fulfilled. The correction
mode is performed according to algorithm 6.2.2.2.

CSC_mode_3Cycle slip correction at high dynamics is performed when thevehicle is coast-
ing at high speedv_meas. The code-based speed should also not be too noisy and
WSSE_res_1_smoothed should be kept low. The first condition is necessary since the
correction is dividing vectors with the speed. The last two conditions are to ensure that the
code-based velocity is not too noisy as thea priori baseline knowledgeb_apriori is de-
rived usingv_meas_local_smoothed.

7.2.2.11 Determine baseline and fix ambiguities of new satellites

With the corrected phase measurements, we determine the baseline vectorb_fixed_meas and
b_loc_fixed_measwith an iterative least-squares approach. With that, we also find an integer
ambiguity candidate for the new satellites by minimizing the noise. However, we do not completely
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trust the candidate. We search around it and the candidate which has the smallest WSSE is the
ambiguity to obtain the finally chosen ambiguity for new satellite N_fixed_selected.

81



82 7. ANAVS PAD: Position and Attitude Determination research platform

Absolute Position
Determination

week_1, week_2,
time_1, time_2,

AvailPRN,
rho_1, rho_2

AvailPRN, N_S,
xSat_Rx1, xSat_Rx2,
elev_1, time_Rx1,
time_Rx2, dt_Rx1,
dt_Rx2, x_Rx1,
x_Rx2, H_1,

xSat_Rx1_rot,
xSat_Rx2_rot

Parameter
Initialization-Coasting

time_Rx1, time_Rx2,
dt_Rx1, dt_Rx2,
x_Rx1, x_Rx2, H_1,
xSat_Rx1_rot,
xSat_Rx2_rot,
PRN_ref_meas,
pseudo_dd_meas,

rx_clk_corr_meas,
v_meas,

phi_dd_meas,
rho_dd_meas,

time_Rx1_meas,
time_Rx2_meas,
rx_clk_1_meas,
rx_clk_2_meas,
x_Rx1_meas,
x_Rx2_meas,

E_32_H_1_meas,
E_32_SAT_POS_1_meas,
E_32_SAT_POS_2_meas,
D_PSEUDO_DD_meas,

E_32_H_1...,
..._interpol_meas,
E_32_SAT_POS_1...,
..._interpol_meas

PRN_ref_meas,
pseudo_dd_meas,

rx_clk_corr_meas,
v_meas,

phi_dd_meas,
rho_dd_meas,

time_Rx1_meas,
time_Rx2_meas,
rx_clk_1_meas,
rx_clk_2_meas,
x_Rx1_meas,
x_Rx2_meas,

E_32_H_1_meas,
E_32_SAT_POS_1_meas,
E_32_SAT_POS_2_meas,
D_PSEUDO_DD_meas,

E_32_H_1...,
..._interpol_meas,
E_32_SAT_POS_1...,
.._interpol_meas,
x_s_ECEF_Rx1_epoch,
x_s_ECEF_Rx2_epoch

Reference Satel-
lite - Coasting

PRN_ref_meas,
pseudo_dd_meas,
phi_dd_meas,
AvailPRN

PRN_ref,
PRN_ref_meas,
PRN_ref_index

Figure 7.9: Coasting - Part 1
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Figure 7.10: Coasting - Part 2
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Figure 7.11: Coasting - Part 3
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Figure 7.12: Cycle slip correction during coasting

7.3 Verification of ANAVS PAD system in heading determination

The ANAVS PAD system was verified in several test drives, where two low-cost receivers (u-blox
LEA-6T) together with two single frequency low-cost patch antennas were in use. The patch
antennas were mounted1− 1.5 m apart on the roof of the car as shown in Fig. 3.2. Both antennas
were aligned to the longitudinal axis of the car and had a negligible height difference.

7.3.1 Test Drive 1: Nymphenburg Palace in Munich

Figure 7.13 shows the track of the test drive conducted at Nymphenburg Palace in Munich. The
integer ambiguities were resolved in the beginning with algorithm described in section 7.2.1 while
the car was stationary. The orientation of the car was found without any movement. The track
shown is subdivided into sections of20 s.

Fig. 7.14 shows the course of the heading during the test drive at Nymphenburg Palace. The
enlarged regions show that the noise of the heading estimateis in the order of only0.1˚. The abrupt
heading changes at70 s,110 s and140 s indicate u-turns or turns from one road into another road.

Fig. 7.15 shows the phase residuals of our MAP estimator for while the car is coasting along
the track at Nymphenburg Palace. The phase residuals of the two satellites of highest elevation
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Figure 7.13: Track of car drive at Nymphenburg Palace. The integer ambiguities are resolved in the begin-
ning with the car standing still. The subsequent track is subdivided into sections of20 s.
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Figure 7.14: Heading of track at Nymphenburg Palace. The noise of the heading estimate is in the order of
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86



7.3 Verification of ANAVS PAD system in heading determination 87

 

 

Time [s]

P
h

as
e

re
si

d
u

al
s

[m
]

PRN 16
PRN 25
PRN 29
PRN 30
PRN 31

20 40 60 80 100

0.05

0.04

0.03

0.02

0.01

0

0

-0.01

-0.02

-0.03

-0.04

Figure 7.15: Phase residuals of fixed baseline solution for track at Nymphenburg: The phase residuals of all
satellites are far below one wavelength. For the two satellites of highest elevation, the residuals are only a
few millimeters.

(PRN 29, 30) are only of a few millimeters while the phase residuals of the other satellites are
more affected by multipath but still remain unbiased and drift-free.

7.3.2 Test Drive 2: ESA AZO in Oberpfaffenhofen

We conducted another test drive in front of ESA/ AZO buildingin Oberpfaffenhofen. The track
is shown in Fig. 2.2. The ambiguities were resolved resolvedin the beginning while the car was
standing in front of the building (see0 s). Due to reflections from the concrete walls, the code
measurements were affected by substantial multipath. Nevertheless, we still managed to resolve
the integer ambiguities and determine the heading of the stationary car.

Fig. 7.16 shows the double difference phase residuals of thefixed MAP solution during the
initial 160 s. The car was standing. The phase residuals of all four double differences are less than
two centimeters over the complete period. This indicates a correct integer ambiguity resolution.

Fig. 7.17 shows the course of the heading as obtained by out MAP estimator. The estimated
heading is varying only by a few degrees during the drive fromone end to the other end of the
road between5 s and35 s. The figure also shows three reversing sections in good agreement with
Fig. 2.2.
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Appendix

A1. Weighted Sum of Squared Errors

A1.1 Cost function

One useful indication to know how precise if the estimated value without knowing the true value
is by checking the measurement residuals. Residuals are very widely used, to test the deviation of
the estimated and the measured values, for example in KalmanFilter. In the case where we have a
linear relation betweenY the measurement vector andX the parameter of interest that we wish to
determine.

Y = AX +B, (A1)

whereA is the design matrix of the linear equation.A is deterministic butB is Gaussian
distributedB ∼ N (0, Σ).

We can determineX with an estimator and̂X denotes the estimated value. The residual or
rather the cost function can be calculated by taking the difference between the measurement and
the estimated value:

r = Y − AX̂. (A2)

Some measurement is better than others. Therefore, it is reasonable to incorporate a weighting
matrixW in the problem. In the case of a least-squares estimator being used, the estimate takes
the following expression [13]

X̂ = (ATWA)−1ATWY, (A3)

and the residual can be deduced as follows:

r = Y − AX̂

= Y − A(ATWA)−1ATWY

= Y − PY

= (I − P )Y, (A4)

whereP = A(ATWA)−1ATW is a projector.

A1.2 WSSE, Weighted Sum Square Error

An approach to quantify how much the estimates deviate from the measurements is by weight-
ing the residuals against the quality of each measurement. In order to ensure that any deviation,
whether negative or positive value, is accumulated but not canceling each other, we can use the
Weighted sum squared error (WSSE) to translate this deviation mathematically:
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WSSE = rTWr (A5)

As the noise vector in satellite navigation is always assumed to be normally distributed with
zero mean, the WSSE follows a central chi-square distribution [25].
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