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Abstract

For some applications like guidance of aircrafts, it might be profitable to
combine ranging information provided by GNSS like GPS or Galileo with those
provided by ground emitters, called pseudolites. Pseudolite signals share many
signal characteristics with satellite signals. Because of the Near-Far effect, per-
formance of the tracking of either satellite or pseudolite signals may be highly
degraded if no care is taken. The usual technique to limit the tracking degra-
dation consists of transmitting the pseudolite signals in a pulsed way. Then
satellite signals are degraded only during pulses. Several solutions for the pulse
scheme can be specified: pseudolites can be unsynchronized and transmit ran-
domly or can be synchronized. In the synchronized case, pseudolites can trans-
mit either each at the same time (overlapping pulses) or each at a different time
(non-overlapping pulses).

In this paper, two alternative pulse schemes (overlapping and non-overlapping
pulses) are compared the using the Cramér-Rao Lower Bound (CRLB). The
overlapping pulse scheme has the advantage to leave more time for the recep-
tion of the satellite signals and should therefore be recommended to improve
compatibility between both systems. In the case of overlapping pulses, a pos-
sible architecture implementing the interference cancellation for a participative
receiver will allow to reduce the degradation for the reception of pseudolites
signals. The interference cancellation consists in estimating the characteristics
like the amplitude and the code and phase delays of the interfering (pseudolites)
signals and to subtract them from the received signals before the correlation.
The performances of the interference cancellation will be evaluated theoretically,
with simulations using a Matlab R© software simulator and finally with labora-
tory measurements. It is shown that interference cancellation is a good way to
decrease the error on delay estimation, and to approach to the CRLB.
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Chapter 1

Introduction

1.1 Technical Background
1.1.1 Global Navigation Satellite System
A Global Navigation Satellite System (GNSS) is a system of satellites that
provides autonomous positioning with global coverage. For the time being, only
the United States NAVSTAR Global Positioning System (GPS) and the Russian
GLONASS are fully globally operational GNSSs. The Chinese Compass and the
European Galileo system are under development and scheduled to be fully and
globally operational in 2016 at the earliest.

GNSSs allow small electronic receivers to determine their location within
a few meters using signals transmitted continuously by the satellites of the
constellation. Code Division Multiple Access (CDMA) is used to multiplex
the signals from the different satellites. Each satellite modulates his down-link
message with a specific Pseudo Random Noise (PRN), a repeating predictable
noise-like digital code.

The down-link message provides information on the satellite’s position and
on the satellite’s clock. With these information, the receiver can determine its
position by using a multilateration algorithm. Since three parameters of position
and the receiver’s time have to be determined, at least four satellites must be
visible. But the more satellites are visible, the higher is the accuracy.

1.1.2 Ground Based Augmentation System
In a GNSS-denied area or wherever GNSS visibility is poor, terrestrial ranging
signal transmitters (so called pseudo-satellites, short pseudolites) enhance the
positioning performance of the receiver in two respects: firstly they provide
additional signals such that enough ranging sources are (always) available and
secondly the terrestrial location of these sources improves the spatial geometrical
repartition, leading to a better Dilution Of Precision (DOP). Among possible
applications are airports, tunnels, mines, shopping malls . . .
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1.1.3 Near-Far Effect
Drawback of the pseudolite transmissions is the strong signal power as compared
to the GNSS signals. This leads to a degradation of the satellite signal ranging
precision or even might prevent the receiver from tracking the satellite signals.
This is known as the Near-Far effect. The Near-Far problem can be reduced by
using pulsed pseudolite transmissions like the one proposed for Ground Based
Augmentation System (GBAS) infrastructures (cf. [1] for example). The Near-
Far effect can also appear between the pseudolite signals when the receiver is
much closer to one pseudolite than to another one. Therefore in the past a
high effort was made to find pulsing schemes which reduce or even prevent the
concurrent signal reception from more than one pseudolite transmitter (cf. [1,2]).

1.2 Objectives of the Thesis
A non-participative receiver is a receiver that tracks only satellite navigation
signals while a participative receiver is a receiver that tracks both satellite and
pseudolite navigation signals. The objective of the thesis is to optimize the
pseudolite pulse scheme, and to find a scheme that follows these two conditions:

• satellite signals can be acquired and tracked by both participative and
non-participative receivers,

• pseudolite signals can be acquired and tracked by participative receivers.

For this purpose the maximum admissible duty cycle for pseudolites will be
characterized in chapter 2. Hence, receivers must still be able to track satellite
signals despite of the pseudolite pulses. Therefore, a sufficient part of the inte-
gration time should be free of pulses. In figure 1.1, the part of the integration
time in which pseudolite signals hide satellite signals is too large. Consequently,
receivers will not be able to track satellite signals.

Therefore the overall duty cycle for pseudolites has to be limited. Figures 1.2
and 1.3 show two solutions for which the overall duty cycle is reduced and the
satellites tracking performs better. Note that for both schemes, the pulses are
synchronized. In figure 1.2, the pulses are shorter and are transmitted at differ-
ent times (non-overlapping pulses), while in figure 1.3, all pseudolites transmit
at the same time (overlapping pulses). These two different pulse schemes will
be analyzed and the best expected accuracy for code tracking will be compared
using the Cramér-Rao Lower Bound (CRLB) in chapter 3. Then in chapter 4,
interference cancellation methods are applied to the input signals, in order to
improve the tracking performances, and to get close to the theoretical best pos-
sible performance given by CRLB. Finally experimental results are presented
in chapter 5.

1.3 Simulation Parameters
Throughout the thesis, some simulation results are presented. Except if explic-
itly mentioned, the following parameters are used:
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Pseudolite signals

Satellite signals

d · Ti
Ti

Figure 1.1: Non-overlapping pulses, duty cycle excessive: non-participative re-
ceivers can almost not track satellite signals

Pseudolite signals

Satellite signals

d · Ti
Ti

Figure 1.2: Non-overlapping pulses, duty cycle acceptable: non-participative
receivers can track satellite signals

Pseudolite signals

Satellite signals

d · Ti
Ti

Figure 1.3: Overlapping pulses, duty cycle acceptable: non-participative re-
ceivers can track satellite signals
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Integration time (code period): Ti = 1 ms
Code: GPS L1 C/A
Code length: L = 1023 chips per epoch
Noise power spectral density: N0/2 = −201.5 dBW/Hz
Received power from satellites: P = −158.5 dBW
Sampling frequency: 8.18 MHz

Some other parameters are linked to the previous ones, and can consequently
be expressed.

Sampling interval: ∆ = 12.2µs
Chip duration: Tc = Ti/L = 97.7 µs
Number of samples per chip: Nc = Tc/∆ = 8
Filter cut-off frequency: B = 1/2·∆ = 4.092 MHz
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Chapter 2

SNIR Degradation for
Non-Participative Receivers

The aim of this chapter is to determine the degradation of Signal to Noise
plus Interferences Ratio (SNIR) for non-participative receivers cause by the
presence of pseudolites. Then a maximal acceptable duty cycle will be specified,
considering that non-participative receivers must still be able to track satellite
navigation signals despite the pseudolite pulses.

2.1 Definition of the Receiver
For now, only the spreading codes are considered, therefore the whole front-end
does not have to be taken into account.

Even the simplest receiver must be able to track satellite signals in presence
of pseudolite signals. Therefore a low-cost receiver is considered. The front-end
used to dimension the maximum pseudolite duty cycle, and partially represented
figure 2.1, has no blanker and the quantization is done with only one bit and
therefore an Automatic Gain Control (AGC) is not needed.

In this chapter, satellites tracking is studied. Therefore a non-participative
receiver is considered. In chapters 3 and 4, pseudolites tracking will be studied.
Therefore a participative and highly capable receiver will be considered.

+
+

+

w(t)

LPF ADC Correlator
s(t) r(t) rh(t) x[n] C

Figure 2.1: Front-end block diagram of a non-participative receiver
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2.1.1 Input Signal
The input signal is the sum of all navigation signals from satellites and pseudo-
lites.

s(t) =
∑
k

sk(t)

sk(.) represents the navigation signal in baseband from source k, either a satellite
or a pseudolite. It corresponds to the delayed spreading code signal scaled with
the received amplitude at receiver antenna. The time origin is defined such that
the tracked navigation signal is not delayed. For the tracking of the signal of
the source l, τ l = 0 and sl(t) =

√
P l · cl(t). In the future, l always represents

the index of the tracked pseudolite or satellite, while k represents the index of
other interfering pseudolites or satellites.

• For a satellite:
sk(t) =

√
Pk · ck(t− τk)

• For a pseudolite transmitting in pulses:

sk(t) =
{√
Pk · ck(t− τk) if t ∈ pulsed interval

0 otherwise

ck(.) is the spreading code signal of source k, defined as:

ck(t) =
∞∑

m=−∞
ckm · p(t−mTc)

Notation:
sk(.) Navigation signal received from source k (satellite or pseudolite)
Pk Power of signal from source k at receiver
ck(.) Spreading code signal from source k
τk Delay of the signal from source k, in seconds
ckm Chip bit (index m) of spreading code ck(.) ∈ {−1, 1}
p(.) Chip waveform of spreading code (same for all signals)
Tc Chip duration (same for all signals)

2.1.2 Noise
The noise component encompasses thermal noise and other similar wide-band
interferences. The noise w(.) is assumed to have a Gaussian distribution and to
be white, with a power spectral density N0/2, supposed with an infinite band-
width before filtering.

2.1.3 Signal After Filtering
To avoid aliasing and respect the Nyquist-Shannon condition, the signal is low-
pass filtered at the cut-off frequency B. Thus the signal is band-limited with a
maximum frequency B.

rh(t) = h(t) ∗ (s(t) + w(t))
= h(t) ∗ s(t) + η(t)

9



On the preserved bandwidth, the noise η(.) is white with a variance σ2 = BN0
(the power spectral density is N0/2 on [−B ;B]).

2.1.4 Signal After ADC
The Analogue to Digital Converter (ADC) samples and quantizes the signal.

• Sampling: The continuous signal is sampled at the sampling interval ∆ =
1/2·B, in order to respect the Nyquist-Shannon condition.

• Quantization: The signal is quantized with a one bit quantizer

At the ADC output:

x[n] = sign (rh(n∆))

= sign
(∑

k

sk(n∆) + η(n∆)
)

2.1.5 Signal After Correlation
For the tracking of signal from source l, the correlator multiplies the signal x[.]
with the local replica of the tracked spreading code cl[.] and integrates it over
the integration time Ti, which corresponds to N = 2 · B · Ti samples. Then,
when satellite l is tracked, the correlator output is:

Cl = 1
N
·
N−1∑
n=0

cl[n] · x[n]

2.2 Approximations
In order to make the derivations easier, the following assumptions are supposed
to be fulfilled:

Approx. 2.1. All signals are considered real. The down-conversion of re-
ceived signal into baseband induces actually complex signals, but if the phase
is perfectly known, it may be possible to take only the real part.

Approx. 2.2. The power of satellite signals is supposed to be much smaller
than the power of the pseudolite signals and the power of the noise (after filter-
ing, the power of the noise is BN0).

Approx. 2.3. Only noise and navigation signals are considered. Other received
signals are not taken into account.

Approx. 2.4. The modulation is Binary Phase Shifting Kay (BPSK) for all
navigation signals.

Approx. 2.5. The cut-off frequency of the low-pass filter is considered large.
Then the effect of the low-pass filter on the navigation signal is negligible. Con-
sequently h(t) ∗ s(t) ≈ s(t).

Approx. 2.6. The spreading codes are supposed to be random and balanced.
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Approx. 2.7. The interferences between two navigation signals are maximal
when the relative propagation delay is a multiple of the chip duration Tc (cf.
equation A.3 in annexe A for justification). Since the worst case is considered, in
this chapter, it will be supposed that the chips edges are synchronized (∀k, τk =
iTc, i ∈ Z).

2.3 Interval Without Pulses
In this section, the expectation and the variance of the correlator output will
be computed for the interval without pulses. The input signal is only composed
of satellite signals and noise, and is quantized with one bit. The approach is
inspired by the one presented in [3].

2.3.1 Expectation of the Correlator Output
The expectation of the correlator output:

E
[
Cloff

]
= E

[
1
N
·
N−1∑
n=0

cl(n∆) · x[n]
]

= 1
N
·
N−1∑
n=0
E
[
cl(n∆) · x[n]

]
The expectation can be rewritten as:

E
[
cl(n∆) · x[n]

]
= E

[
cl(n∆) · x[n] | x[n] = 1

]
· p (x[n] = 1)

+ E
[
cl(n∆) · x[n] | x[n] = −1

]
· p (x[n] = −1)

Considering that the spreading code is known:

E
[
cl(n∆) · x[n] | x[n] = 1

]
= cl(n∆)

E
[
cl(n∆) · x[n] | x[n] = −1

]
= −cl(n∆)

It follows:

E
[
cl(n∆) · x[n]

]
= cl(n∆) · (p (x[n] = 1)− p (x[n] = −1))

The probabilities can be expressed as:

p (x[n] = 1) = p
(∑

k

sk(n∆) + η[n] > 0
)

= Q
(
−
∑
k s

k(n∆)
σ

)
And:

p (x[n] = −1) = p
(∑

k

sk(n∆) + η[n] < 0
)

= Q
(∑

k s
k(n∆)
σ

)
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Where Q(.) is the Q-function defined as:

Q(x) = 1√
2π
·
∫ ∞
x

exp
(
−u

2

2

)
du

Consequently:

E
[
cl(n∆) · x[n]

]
= cl(n∆) ·

(
Q
(
−
∑
k s

k(n∆)
σ

)
−Q

(∑
k s

k(n∆)
σ

))
(2.1)

σ �
∑
sk[n] because the pseudolites are not transmitting. Since the function

Q(.) is differentiable in zero, the previous expression can be approximated by
its first order Taylor development:

Q(x) ≈ Q(0) + x · Q′(0)

= 1
2 −

x√
2π

Consequently:

E
[
cl(n∆) · x[n]

]
=
√

2
π
·
cl(n∆) ·

∑
k s

k(n∆)
σ

=
√

2
π
·
P l + cl(n∆) ·

∑
k 6=l s

k(n∆)
σ

Then expectation of the correlator output is:

E
[
Cloff

]
= 1
N · σ

·
√

2
π
·
N−1∑
n=0

P l + cl(n∆) ·
∑
k 6=l

sk(n∆)


Finally, since the spreading sequences are independent and balanced:

E
[
Cloff

]
≈
√

2
π
·
√
P l
σ

2.3.2 Variance of the Correlator Output
The variance at the correlator output:

var
[
Cloff

]
= var

[
1
N
·
N−1∑
n=0

cl(n∆)] · x[n]
]

= 1
N2 · var

[
N−1∑
n=0

cl(n∆) · x[n]
]

The power of satellites signals is negligible compared to the power of noise,
then if n1 6= n2, x[n1] is independent from x[n2]. Consequently the term

12



∑N−1
n=0 c

l(n∆) · x[n] can be considered as a sum of independent random vari-
ables. It follows:

var
[
Cloff

]
= 1
N2 ·

N−1∑
n=0

var
[
cl(n∆) · x[n]

]
= 1
N2 ·

N−1∑
n=0

(
E
[
cl(n∆)2 · x[n]2

]
− E

[
cl(n∆) · x[n]

]2)
= 1
N2 ·

N−1∑
n=0

(
1 + 2

π
· P

l

σ2

)
Since P l � σ2, finally:

var
[
Cloff

]
≈ 1
N

2.4 Interval With Pulses
In this section, the expectation and the variance of the correlator output will
be computed for an interval with pulses. Therefore satellite signals, pseudolite
signals and noise are considered. The satellite l is tracked.

2.4.1 Expectation of the Correlator Output
The expectation of the correlator output is:

E
[
Clon

]
= E

[
1
N
·
N−1∑
n=0

cl(n∆) · x[n]
]

= 1
N
·
N−1∑
n=0
E
[
cl(n∆) · x[n]

]
Pseudolites are transmitting, then σ �

∑
sk[n]. Then using equation (2.1):

E
[
cl(n∆) · x[n]

]
≈ 0

Consequently:
E
[
Clon

]
≈ 0

2.4.2 Variance of the Correlator Output
The variance at the correlator output is:

var
[
Clon

]
= var

[
1
N
·
N−1∑
n=0

cl(n∆) · x[n]
]

= 1
N2 · var

[
N−1∑
n=0

cl(n∆) · x[n]
]
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L is the code length, Nc the number of samples per chip and Tc the chip duration.
Note that: L = N/Nc and Tc = ∆ ·Nc. Then:

var
[
Clon

]
= 1
N2 · var

[
L−1∑
k=0

Nc−1∑
i=0

cl (i∆ + kTc) · x [i+ kNc]
]

On a given chip, cl(.) is constant. Since the worst case is considered, the in-
terferences are supposed to be maximal (cf. Approx 2.7). Since the power of
the noise is negligible compared to the power of the pseudolites signals, x[.] is
constant and consequently:

var
[
Clon

]
= N2

c

N2 · var
[
L−1∑
k=0

cl (kTc) · x [kNc]
]

Since the values are taken on different chip intervals, the sum can be considered
as a sum of independent random variables having zero mean and 1 as variance.
Consequently:

var
[
L−1∑
k=0

cl (kTc) · x [kNc]
]

= L

Finally:

var
[
Clon

]
≈ 1
L

Note that the variance of the correlator output does not depend on the pseudolite
power. In the case of a one bit quantizer, if the pseudolite power increase, it does
not effect the variance. On the contrary, without quantization, if the pseudolite
power increase, the variance will also increase and the SNIR can be degraded.

2.5 Global SNIR for a Non-Participative Re-
ceiver

The pseudolites transmit during the duty cycle d (and no pseudolites transmit
during the duty cycle 1− d), then it follows:

E
[
Cl
]

= d · E
[
Clon

]
+ (1− d) · E

[
Cloff

]
= (1− d) ·

√
2
π
·
√
P l
σ

var
[
Cl
]

= d · var
[
Clon

]
+ (1− d) · var

[
Cloff

]
= 1− d

N
+ d

L

SNIRl =
E
[
Cl
]2

var [Cl]

= 2 ·N · (1− d)2 · P l

π · σ2 · (1 + d · (N/L− 1))
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Finally, since σ2 = BN0, it follows:

SNIRl = 2 · (1− d)2 · P l

π · N0 ·B · (1/N + d · (1/L− 1/N))

Since a simple receiver have been analyzed, the SNIR obtained can be used
to dimension the pseudolite duty cycle. Therefore, depending on the tracking
algorithm, the lock on satellite signals is maintained if the SNIR is large enough.
With this minimal admissible value for the SNIR, the maximal duty cycle d can
be obtained. The next objective is to determine which pulse scheme (overlapping
or non-overlapping) has to be used, in order to make the most profit of the
available duty cycle for the pseudolite pulses.

2.6 Validation of the Theoretical Model
Figure 2.2 shows the mean, the variance and the SNIR at the correlator out-
put in function of the duty cycle for the pseudolite pulses and shows that the
simulation and theory curves correspond well. The computation is done using
the parameters defined in section 1.3 and 100 Monte-Carlo simulations, with
different real GPS PRN codes and different propagation delays. For a duty
cycle of 20%, the corresponding SNIR equals to 10 dB (cf. figure 2.2), which is
an acceptable value. For the following and without contrary mention, this duty
cycle will be used for the numerical simulations.

The SNIR for an infinite-bit quantizer is also plotted. The receiver has no
blanker and no AGC. One pseudolite is transmitting and the received power is -
120 dBW. Note that the SNIR for this receiver can be worse than for the low-cost
receiver. Indeed, depending on the strength of pseudolite signals, quantization
leads to a saturation and prevents the correlation results from growing without
limit. Therefore a fast AGC or a blanker should be used in receivers with many
bits quantizer.
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Chapter 3

Comparison Between
Overlapping and
Non-Overlapping Pulses

It is considered that pseudolites share a common time reference and have the
possibility to transmit the pulses a dedicated instant in time, according to two
different schemes:

• Overlapping pulse scheme: All pseudolites transmit at the same time. The
drawback is that pseudolites interfere with each other, but the number
of pseudolites is not limited, insofar as the interferences do not prevent
tracking the navigation signals. Defining d as the overall duty cycle, P l
the received power from pseudolite l and Ti the integration time, then each
pseudolite transmits at the duty cycle d, and the received power from the
pseudolite l during one integration time become d · Ti · P l.

• Non-overlapping pulse scheme: It is based on a Time Division Multiple
Access (TDMA) principe. Each pseudolite transmits at a different time.
In this case, pseudolites do not interfere with each other. However the
overall duty cycle d is shared between theK pseudolites and only a reduced
number of pseudolites can transmit, for a fixed (limited) pulse duty cycle,
if one need to limit the effects on the reception of the satellite navigation
signals. Then each pseudolite transmits only at the duty cycle d/K and
the received energy from pseudolite l becomes d · Ti · P l/K, that is to
say K times smaller than in the overlapping scheme. The transmitted
power could be increased to compensate the factor K, but the solution is
not realistic since it would request higher classes of power amplifiers and
might also not be accepted at ITU level when considering the maximal
authorised power flux density.

In this chapter, the objective is to determine which of these two schemes per-
forms the best. It is proposed to determine the bound for the variance of the
estimated propagation delays for the two alternative pulse schemes. For that
purpose, the Cramér-Rao Lower Bound (CRLB) will be used. Indeed the CRLB
describes a fundamental limitation of parameter estimation.
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3.1 Definition of the Signals
Since received signal power from the satellites is very weak compared to the
one from pseudolites or compared to the noise power, the satellite signals are
neglected in this derivation. Then, the received signal r(t) can be described as:

r(t) =
K−1∑
k=0

√
Pk · ck(t− τk) + η(t)

Where:

• η(t) is a Gaussian white noise process with power spectral density N0/2

•
∑
k

√
Pk · ck(t − τk) is the sum of the navigation signals transmitted by

the K pseudolites.

The received signal is sampled at a sampling time ∆. To avoid aliasing and
respect the Shannon condition, the signal is low-pass filtered at the cut-off
frequency B = 1/2·∆. Thus the signal is band-limited with a maximum fre-
quency B. The number of available samples is called N . N can be expressed as
N = d·Ti/∆, where Ti is the integration time (the signal is correlated with the
local replica over a period Ti) and d is the duty cycle allowed for the pseudolites
(pulses are allowed only during d percent of the integration time Ti). The vector
r = [r0; r1; · · · rN−1] contains the N samples ri taken at the times ti = i · ∆.
The ith element of r is:

ri =
K−1∑
k=0

√
Pk · ck(i∆− τk) + η(i∆)

Furthermore, the noise is band-limited with a maximum frequency B equals
to the Shannon frequency, therefore the noise after filtering is white on the
preserved bandwidth (between −B and B) and the noise variance is σ2 = BN0.
Its probability density function is Gaussian and can be expressed as:

fη(x) = 1
σ
√

2π
· exp

(
− x2

2σ2

)

3.2 Approximations
In order to make the derivations easier, the following assumptions are supposed
fulfilled:

Approx. 3.1. All signals are considered real. The down-conversion of re-
ceived signal into baseband induces actually complex signals, but if the phase
is perfectly known, it may be possible to take the real part only.

Approx. 3.2. Only Gaussian noise and pseudolite navigation signals are con-
sidered. Other received signals are not taken into account and satellites signals
are neglected, since the satellite signals power is much smaller than the pseudo-
lite signals power and the noise power.

Approx. 3.3. The chip waveform and the chip time are supposed to be the
same for all sources.
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Approx. 3.4. It is considered that the only unknown parameters are the
propagation delays τk and the received powers Pk. The phase is considered
known. Moreover, it is supposed that the estimators of the delay and of the
received power are unbiased estimators.

3.3 Cramér-Rao Lower Bound in the Non Quan-
tized Case

In this section, in a first approach, the quantization losses will not be taken into
account.

3.3.1 General Application

The vector θ =
[
τ1, τ2, · · · , τK ,

√
P1,
√
P2, . . . ,

√
PK
]
represents the unknown

set of parameters and the vector θ̂ contains unbiased estimators of the elements
of the vector for θ. Then the CRLB for the covariance matrix of θ̂ is:

cov
[
θ̂
]
≥ I(θ)−1

Where I(θ) represents the 2K × 2K Fisher information matrix. Let p and q
be integers indexing the pseudolites, and u and v indexing either the delays if
equal to one (θ1p = τp), or the amplitudes if equals to two (θ2p =

√
Pp). Then

the element of the upth row, vqth column is:

I(θup, θvq) = −E
[
∂2log (p (r | θ))

∂θup∂θvq

]
Note that according to Schwarz’s theorem:

∂2log (p (r | θ))
∂θup∂θvq

= ∂2log (p (r | θ))
∂θvq∂θup

Consequently the Fisher Matrix is symmetric. Then the join probability to
receive the signal r given the set of parameters θ:

p (r | θ) =
N−1∏
i=0

p (ri | θ)

=
N−1∏
i=0

1
σ
√

2π
· exp

− 1
2σ2 ·

(
ri −

K−1∑
k=0

√
Pk · ck(i∆− τk)

)2
The log-likelihood function is:

log (p (r | θ)) = −N · log
(
σ
√

2π
)
− 1

2σ2 ·
N−1∑
i=0

(
ri −

K−1∑
k=0

√
Pk · ck(i∆− τk)

)2
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By taking the derivative:

∂2log (p (r | θ))
∂θup∂θvq

= 1
σ2

N−1∑
i=0

((
ri −

K−1∑
k=0

√
Pkck(i∆− τk)

)
· ∂

2
√
Ppcp(i∆− τp)
∂θup∂θvq

− ∂
√
Ppcp(i∆− τp)

∂θup
· ∂
√
Pqcq(i∆− τ q)

∂θvq

)

= 1
σ2

N−1∑
i=0

(
ηi
∂2
√
Ppcp(i∆− τp)
∂θup∂θvp

− ∂
√
Ppcp(i∆− τp)

∂θup
· ∂
√
Pqcq(i∆− τ q)

∂θvp

)

Since E [ηi] = 0 it follows that the term (up, vq) of the Fisher information matrix
can be expressed as:

I(θup, θvq) = −E
[
∂2log (p (r | θ))

∂θup∂θvp

]
= 1
σ2 ·

N−1∑
i=0

∂
√
Ppcp(i∆− τp)

∂θup
· ∂
√
Ppcq(i∆− τ q)

∂θvq
(3.1)

Because the sampling frequency is equal to the Nyquist frequency, the sum can
be equally expressed as an integral:

I(θup, θvq) = 1
∆ · σ2 ·

∫ d·Ti

0

∂
√
Ppcp(t− τp)
∂θup

· ∂
√
Ppcq(t− τ q)
∂θvq

dt

Then by separating the four cases:

• If θup =
√
Pp and θvq =

√
Pq, then:

I(
√
Pp,
√
Pq) = 1

∆ · σ2 ·
∫ d·Ti

0
cp(t− τp) · cq(t− τ q) dt

Then using equation A.1, it follows:

I(
√
Pp,
√
Pq) = 1

∆ · σ2 · X
p,q
d·Ti

= 1
∆ · σ2

Ld−1∑
n=0

∞∑
m=−∞

cpn · cqm

·
∫ B

−B
|P (f)|2 · cos (2πf((n−m)Tc + τ q − τp)) df

Because of filtering, f /∈ [−B ;B] =⇒ P (f) = 0 . Consequently integrat-
ing on ]−∞ ;∞[ is the same than integrating on [−B ;B].

• If θup = τp and θvq =
√
Pq, then:

I(τp,
√
Pq) =

√
Pp

∆ · σ2 ·
∫ d·Ti

0

∂cp(t− τp)
∂τp

· cq(t− τ q) dt
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Then using equation A.4, it follows:

I(τp,
√
Pq) =

√
Pp

∆ · σ2 · Y
q,p
d·Ti

=
√
Pp

∆ · σ2 ·
Ld−1∑
n=0

∞∑
m=−∞

cpn · cqm·∫ B

−B
(2πf) · |P (f)|2 · sin (2πf((n−m)Tc + τ q − τp)) df

• If θup =
√
Pp and θvq = τ q, then:

I(
√
Pq, τp) =

√
Pq

∆ · σ2 ·
∫ d·Ti

0

∂cp(t− τp)
∂τp

· cq(t− τ q) dt

= I(τp,
√
Pq)

• If θup = τp and θvq = τ q, then:

I(τp, τ q) =
√
PpPq

∆ · σ2 ·
∫ d·Ti

0

∂cp(t− τp)
∂τp

· ∂c
q(t− τ q)
∂τ q

dt

Then using equation A.7, it follows:

I(τp, τ q) =
√
PpPq

∆ · σ2 · Z
p,q
d·Ti

=
√
PpPq

∆ · σ2 ·
Ld−1∑
n=0

∞∑
m=−∞

cpn · cqm·∫ B

−B
(2πf)2 · |P (f)|2 · cos (2πf((n−m)Tc + τ q − τp)) df

Finally, the Fisher information matrix is:

I(θ) =
(
Iτ Iτ,√P
IT
τ,
√
P I√P

)
And the CRLB matrix is:

cov
[
θ̂
]
≥ I(θ)−1

With:

Iτ =


I(τ1, τ1) I(τ1, τ2) . . . I(τ1, τK)
I(τ2, τ1) I(τ2, τ2) . . . I(τ2, τK)

. . . . . . . . . . . .
I(τK , τ1) I(τK , τ2) . . . I(τK , τK)



I√P =


I(
√
P1,
√
P1) I(

√
P1,
√
P2) . . . I(

√
P1,
√
PK)

I(
√
P2,
√
P1) I(

√
P2,
√
P2) . . . I(

√
P2,
√
PK)

. . . . . . . . . . . .

I(
√
PK ,
√
P1) I(

√
PK ,
√
P2) . . . I(

√
PK ,
√
PK)



Iτ,√P =


I(τ1,

√
P1) I(τ1,

√
P2) . . . I(τ1,

√
PK)

I(τ2,
√
P1) I(τ2,

√
P2) . . . I(τ2,

√
PK)

. . . . . . . . . . . .

I(τK ,
√
P1) I(τK ,

√
P2) . . . I(τK ,

√
PK)


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3.3.2 One Pseudolite Signal
In order to make the computations easier, it will be assumed for the both cases
"One pseudolite signal" and "Two pseudolite signals" that received power of
the navigation signals can be estimated with a much better accuracy than the
delays. Consequently the reduced set of parameters θ =

[
τ1, τ2, · · · , τk

]
will be

considered and therefore cov
[
θ̂
]
≥ Iτ−1.

General Chip Modulation Waveform

First, only one pseudolite signal is considered:

r(t) =
√
P1 · c1(t− τ1) + η(t)

Since the received signal power is supposed to be known, only the parameter
θ = τ1 has to be estimated. Then the CRLB for the estimator τ̂1 is var

[
τ̂1] ≥

I(τ1)−1, with:

I(τ1) = P1

∆ · σ2 ·
Ld−1∑
n=0

∞∑
m=−∞

c1n · c1m·

·
∫ B

−B
(2πf)2 · |P (f)|2 · cos (2πfTc(m− n)) df

(3.2)

If c1 is considered balanced, then:

I(τ1) = P1

∆ · σ2 ·
Ld−1∑
n=0

∫ B

−B
(2πf)2 · |P (f)|2 df

= L · d · P1

∆ · σ2 ·
∫ B

−B
(2πf)2 · |P (f)|2 df

The energy of the received signal during one code period is:

E1 = L · d · P1 ·
∫ B

−B
|P (f)|2 df

It follows:

I(τ1) = E1

∆ · σ2 ·
∫ B
−B(2πf)2 · |P (f)|2 df∫ B

−B |P (f)|2 df

The mean square bandwidth (or Gabor bandwidth) is defined as:

∆ω2 =
∫ B
−B(2πf)2 · |P (f)|2 df∫ B

−B |P (f)|2 df

Consequently, with σ2 = BN0, it follows:

I(τ1) = E1
N0/2

·∆ω2

And finally, the CRLB is:

var
[
τ̂1] ≥ 1

E1
N0/2
·∆ω2
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BPSK Modulation

The case of a BPSK modulation will now be analyzed: the waveform is a low-
pass filtered rectangular window. Using equation (A.8), with L = Ti/Tc the code
length, it leads to:

I(τ1) = P1

∆ · σ2 · Z
1,1
d·Ti

= P1

∆ · σ2 ·
Ld−1∑
n=0

+∞∑
m=−∞

c1n · c1m·

(4B · sinc (2πBTc(m− n))− 2B · sinc (2πBTc(n−m− 1))
−2B · sinc (2πBTc(n−m+ 1)))

= 4 · P1

∆ · N0
·
Ld−1∑
n=0

+∞∑
m=−∞

c1n · c1m·(
sinc (2πBTc(m− n))− 1

2 · sinc (2πBTc(n−m− 1))

−1
2 · sinc (2πBTc(n−m+ 1))

)
The function I(.) is defined as:

I(m− n) = sinc (2πBTc(m− n))− 1
2 · sinc (2πBTc(m− n+ 1))

− 1
2 · sinc (2πBTc(m− n− 1))

If the lobes of power spectral density are not partially cut (which is the case for
usual receivers), then BTc(m − n) is an integer, and consequently the sinc (.)
functions take a non-null value only in zero, and so can be replaced by Dirac
functions (cf. figure 3.1):

I(m− n) = δ(m− n)− 1
2 · δ(m− n+ 1)− 1

2 · δ(m− n+ 1)

Then it follows:

I(τ1) = 4 · P1

∆ · N0
·
Ld−1∑
n=0

+∞∑
m=−∞

c1n · c1m

·
(
δ(m− n)− 1

2 · δ(m− n+ 1)− 1
2 · δ(m− n+ 1)

)
= 4 · P1

∆ · N0
·
Ld−1∑
n=0

(
1− 1

2 · c
1
n · (c1n+1 + c1n−1)

)
(3.3)

Figure 3.2 represents the CRLB for randomly chosen and randomly shifted GPS
C/A codes, with 1023 code length. This figure justifies that:

Ld−1∑
n=0

(
1− 1

2 · c
1
n · (c1n+1 + c1n−1)

)
≈ L · d
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Figure 3.1: I(m− n) with B = 4/Tc

Then the Fisher information can be approximated by its mean value over the
chips:

I(τ1) ≈ 4 · P1 · L · d
∆ · N0

(3.4)

Consequently the CRLB for the estimator of τ1 is can be approximate by its
average over all codes:

var
[
τ̂1] ≥ ∆ · N0

4 · P1 · L · d
(3.5)

However, in order to dimension the system, the mean value of the CRLB is
not adapted. Instead, a work rate can be set to size the system. If x is the work
rate, then in x percent of the cases, the real CRLB will be better (lower) and
in 100− x percent of cases, the real CRLB will be worse (higher).

For instance the work rate can be set to 90%. Since the CRLB is inversely
proportional to the Fisher information, it corresponds to the 10th percentile of
the Fisher information. Then, using figure 3.2, in 90% of the cases, the variance
of the propagation delay error can be bounded by:

var
[
τ̂1] ≥ ∆ · N0

4 · 0.9 · P1 · L · d

It can be noticed that the CRLB grows with the sampling time and the noise
power density, and decreases with the power of the signal, the code length and
the duty cycle.
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Figure 3.2: CRLB, ∞-bit quantizer, P1 = −120 dBW

3.3.3 Two Pseudolite Signals
General Chip Modulation Waveform

Two pseudolite signals are considered. The received signal is:

ri =
√
Pp · cp(i∆− τp) +

√
Pq · cq(i∆− τ q) + η(i∆)

Again it is considered that the received power of the navigation signals is already
known. Consequently the vector of unknown parameters become θ = [τp, τ q].
The CRLB for the estimators θ̂ of θ is cov

[
θ̂
]
≥ I(θ)−1, with I(θ) the Fisher

information Matrix defined as:

I(τ p) =
(
I(τp, τp) I(τp, τ q)
I(τ q, τp) I(τ q, τ q)

)
Then by inverting the Fisher Matrix, and since I(τ q, τp) = I(τp, τ q):

cov [θ] ≥ 1
I(τp, τp) · I(τ q, τ q)− I(τp, τ q)2 ·

(
I(τ q, τ q) −I(τp, τ q)
−I(τ q, τp) I(τp, τp)

)
Then CRLB for the estimator of the delay τp is:

var [τ̂p] ≥ 1
I(τp, τp) ·

1
1− I(τp,τq)2

I(τp,τp)·I(τq,τq)
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Without consideration of exact shape of the chip waveform:

I(τp, τp) = L · d · Pp

∆ · σ2 ·
∫ B

−B
(2πf)2 · |P (f)|2 df

= Ep
N0/2

·∆ω2

I(τ q, τ q) = Eq
N0/2

·∆ω2

I(τp, τ q) =
√
Pp · Pq
∆ · σ2 ·

Ld−1∑
n=0

+∞∑
m=−∞

cpn · cqm

·
∫ B

−B
(2πf)2 · |P (f)|2 · cos (2πf((m− n)Tc + τp − τ q)) df

And consequently the CRLB is:

var [τ̂p] ≥ 1
Ep
N0/2
·∆ω2

· 1

1−
(∑Ld−1

n=0

∑+∞
m=−∞

cpnc
q
m

∫ B
−B

(2πf)2|P (f)|2cos(2πf((m−m)Tc+τp−τq)) df

L·d·
∫ B
−B

(2πf)2|P (f)|2 df

)2 (3.6)

It can be noticed that the CRLB does not depend on the power of the interfering
navigation signal, but only on the correlation between the spreading code of
the useful navigation signal and the one of the interfering signal. It shows
that, without quantization, an unbiased estimator of the propagation delay error
exists, such that the power of the interfering signal has no effect. Therefore if the
spreading codes are perfectly orthogonal and in the case of a perfect estimator,
then the interfering pseudolites have no effect on the delay error of the tracked
signal.

BPSK Modulation

In the case of a BPSK modulation, using equations (3.4) and (3.3), it follows:

I(τp, τp) ≈ 4 · Pp · L · d
∆ · N0

I(τ q, τ q) ≈ 4 · Pq · L · d
∆ · N0
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Using the knowledge of P (f), the terms I(τp, τ q) = I(τ q, τp) have been further
evaluated in annexe A. Using equation (A.8):

I(τp, τ q) =
√
Pp · Pq
∆ · σ2 · Zp,qd·Ti

= 4 ·
√
Pp · Pq

∆ · N0
·
Ld−1∑
n=0

+∞∑
m=−∞

cpn · cqm

· (sinc (2πB(τp − τ q + Tc(n−m))

− 1
2 · sinc (2πB(τp − τ q + Tc(n−m− 1)))

−1
2 · sinc (2πB(τp − τ q + Tc(n−m+ 1)))

)
Note that the Fisher information is proportional to (4·

√
Pp·Pq)/(∆·N0). Figure 3.3

represents the Fisher information I(τp, τ q) as function of (τq−τp)/Tc, the delay
in chips between the two signals. It can be noticed that the Fisher informa-
tion is maximal when τ q − τp = 0 mod Tc. When I(τp, τ q) is maximal,
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Figure 3.3: Fisher information I(τp, τ q) with Pp = Pq = −120 dBW and two
real GPS codes (PRN 1 and PRN 2)

1 − I(τp,τq)2

I(τq,τq)·I(τp,τp) is minimal and finally CRLB is maximal. Consequently it
corresponds to the worst case situation. Since the aim is to find a lower bound,
the worst case situation has to be considered. Consequently it will be considered
that τp − τ q is a multiple of Tc. Then the sinc (.) functions are null except in
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zero, and so can be replaced by Kronecker delta functions. It follows:

I(τp, τ q) = 4 ·
√
Pp · Pq

∆ · N0
·
Ld−1∑
n=0

+∞∑
m=−∞

cpn · cqm · (δ(τp − τ q + Tc(n−m))

− 1
2 · δ(τ

p − τ q + Tc(n−m− 1))

−1
2 · δ(τ

p − τ q + Tc(n−m+ 1))
)

Let a = (τp−τq)/Tc represents the delay, expressed in chip between the two
signals. Then it follows:

I(τp, τ q) = 4 ·
√
Pp · Pq

∆ · N0
·
Ld−1∑
n=0

+∞∑
m=−∞

cpn · cqm ·
(
δ(m− n− a)

− 1
2 · δ(m− n− 1− a)− 1

2 · δ(m− n+ 1− a)
)

= 4 ·
√
Pp · Pq

∆ · N0
·
Ld−1∑
n=0

cpn

(
cqa+n −

1
2 · c

q
a+n−1 −

1
2 · c

q
a+n+1

)
Figure 3.4 shows the cumulative distribution function of the squared Fisher in-
formation between the codes from pseudolite p and pseudolite q. The Fisher
information, and consequently the CRLB, depends on the codes and their rela-
tive delay a. A work rate can be used to size the system, corresponding to an
interference term I(τp, τ q), and consequently to a CRLB. If x is the work rate,
then in x percent of cases, the real CRLB will be better and in 100− x percent
of cases, the real CRLB will be worse. Figure 3.5 shows that the interference
term I(τp,τq)2

I(τp,τp)·I(τq,τq) can be approximated by k ·L ·d, where k is almost constant
depending on the tolerance x. The CRLB of the propagation delay estimator,
for a specified percent of the cases (depending on the code and the position of
the receiver) will be lower than:

var [τ̂p] ≥ ∆ · N0

4 · Pp · L · d ·
1

1− k/L·d
(3.7)

Where k depends on the considered percentile, or the error margin. For instance
if the tolerance is set to 1% (cf. 99th percentile on figure 3.5), I(τp,τq)2

I(τp,τp)·I(τq,τq)
can be approximated by 10/L·d, then the CRLB becomes:

var [τ̂p] ≥ ∆ · N0

4 · Pp · L · d ·
1

1− 10/L·d
(3.8)

3.3.4 Comparisons Between the Two Pulse Schemes
As reminder, in case of non-overlapping pulses, when the duty cycle is shared
between the pseudolites, the transmitted Pulse Peak Power (PPP) power stays
the same, and consequently the receiver energy is lower. d represents the ag-
gregated duty cycle, and dPL represents the duty cycle for each pseudolite. In
the case of overlapping pulses, d = dPL. In the case of non-overlapping pulses,
d = K · dPL.

28



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
·1014

0.5

0.6

0.7

0.8

0.9

1

I[s−2]

p[
I(
τ
p
,τ
q
)2
≤
I
]

d = 10%
d = 25%
d = 41%
d = 56%
d = 71%

Figure 3.4: Cumulative distribution function of I(τp, τ q)2 for randomly chosen
and randomly shifted GPS codes with 1023 chip length, Pp = Pq = −120 dBW

0 10 20 30 40 50 60 70 80 90 1002

4

6

8

10

12

14

Duty cycle (d) [%]

k
=
L
d
·

I
(τ
p
,τ
q
)2

I
(τ
p
,τ
p
)·
I

(τ
q
,τ
q
)2

90th percentile
95th percentile
99th percentile

Figure 3.5: Coefficient k that corresponds to a specified percentile

29



Two pseudolites are Transmitting

The purpose of this section is to compare the two different pulsing schemes. For
reasons of simplicity only two pseudolites will be considered firstly. The overall
duty cycle d is reserved for pseudolite pulses. Pseudolites transmit successively
(non-overlapping pulses) or all at the same time (overlapping pulses). The duty
cycle 1− d is reserved for tracking the satellite signals.

• In case of non-overlapping pulses, each of the two pseudolites transmits
half of the duty cycle d. The pseudolite l, that transmits with an in-
stantaneous power P l at the duty cycle dPL = d/2 is tracked. Let τ̂ ld/2
be the estimator of the propagation delay of pseudolite one, measured
during d·Ti/2 of each coherent integration interval, and without interfering
pseudolites. Consequently using equation (3.5):

var
[
τ̂ ld/2

]
≥ ∆ · N0

2 · P l · L · d

• In the case of overlapping pulses, the both pseudolites transmit at the same
duty cycle d = dPL. Pseudolite l transmits with the same instantaneous
power P l as before. Using equation (3.7), the CRLB for the propagation
delay of pseudolite l is:

var
[
τ̂ l
]
≥ ∆ · N0

4 · P l · L · d ·
1

1− k/L·d

Figure 3.6 shows the evolution of the CRLB for overlapping and non-overlapping
pulses, when two pseudolites transmit and when only one pseudolite transmits.
It can be noticed that the best CRLB is achieved when only one pseudolite
transmits, which is not surprising. However the losses due to the second pseu-
dolite are very low in the case of overlapping pulses.

K Pseudolites are Transmitting

The vector of parameters θ =
[
τ1, τ2, · · · , τK ,

√
P1,
√
P2, . . . ,

√
PK
]
is consid-

ered, with K the number of pseudolites. Note that now the received powers are
also considered as unknown parameters.

• In the case of non-overlapping pulses, the K pseudolites share the duty
cycle d. Each pseudolite transmits at the duty cycle dPL = d/K and
the duty cycle d is occupied by the different pseudolite pulses. τ̂ ld/K is the
estimator of the propagation delay of pseudolite l, measured during d·Ti/K,
and without interfering signal. Consequently using equation (3.5):

var
[
τ̂ ld/K

]
≥ K ·∆ · N0

4 · P l · L · d
Note that in this case, the CRLB grows proportionally with the number
of pseudolites.
On the contrary, if the energy transmitted is supposed constant, then the
instantaneous received power is K · P l, and the CRLB will be:

var
[
τ̂ ld/K

]
≥ ∆ · N0

4 · P l · L · d
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Figure 3.6: CRLB for both cases of overlapping and non-overlapping pulses for
a constant received power from all pseudolites

In this case, the CRLB does not depend on the number of pseudolites
K anymore, and provides better results than in the case of overlapping
pulses. However, as it has been previously explained, this case is not
realistic.

• In the case of overlapping pulses, the K pseudolites transmit at the same
duty cycle d = dPL, but interfere. The Fisher matrix can be determined
using equation (3.1), then inverted to obtain the CRLB. Note that in this
case the impact of the estimation of the pseudolite received power is taken
into account and the full Fisher information matrix is considered.

The matrix I(θ) can be numerically inverted. The evolution of the CRLB is
plotted in figure 3.7, with d = 20%. The curves show that the CRLB grows
very slowly in the case of overlapping pulses, which is therefore a better pulse
scheme.

3.4 Cramér-Rao Lower Bound in the Quantized
Case

In this section, the CRLB will be refined by taking quantization steps into
account. The general approach presented in [4] will be applied to the pseudolite
case.
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3.4.1 Model of the Quantization
The N received samples are:

ri = Qb

(∑
k

sk(i∆− τk) + ηi

)
, i ∈ {0, 1, . . . , N − 1}

Where sk(i∆ − τk) =
√
Pk · ck(i∆ − τk) is the received signal from pseudolite

k and Qb (.) is the quantization function of the b-bit quantizer defined as:

Qb (x) = ri if rlow
i ≤ x < rup

i

In the case of a uniform symmetric mid-riser type quantizer (cf. figure 3.8), the
lower and upper quantization thresholds are:

rlow
i =

{
ri − δ

2 if ri ≥ − δ2 · (2
b − 1)

−∞ else

rup
i =

{
ri + δ

2 if ri ≤ δ
2 · (2

b − 1)
+∞ else

And the quantized receive alphabet is given by:

ri ∈
{(
−2b

2 −
1
2 + k

)
· δ; k = 1, 2, . . . , 2b

}
Where δ is the quantizer step-size and b is the number of quantizer bits.
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3.4.2 Derivation of the Cramér-Rao Lower Bound
The joint probability density to receive the vector of quantized samples r given
the set of parameters θ = [τ1, τ2, . . . , τk] is:

p (r | θ) =
N−1∏
i=0

p (ri | θ)

=
N−1∏
i=0

p
(
rlow
i ≤

∑
k

sk(i∆− τk) + ηi < rup
i | θ

)

=
N−1∏
i=0

p
(
rlow
i −

∑
k

sk(i∆− τk) ≤ ηi < rup
i −

∑
k

sk(i∆− τk) | θ
)

Since ηi is independent on θ:

p (r | θ) =
N−1∏
i=0

p
(
rlow
i −

∑
k

sk(i∆− τk) ≤ ηi < rup
i −

∑
k

sk(i∆− τk)
)

=
N−1∏
i=0

∫ rup
i
−
∑

k
sk(i∆−τk)

rlow
i
−
∑

k
sk(i∆−τk)

1
σ
√

2π
· exp

(
− x2

2σ2

)
dx

=
N−1∏
i=0

Q
(
rlow
i −

∑
k s

k(i∆− τk)
σ

)
−Q

(
rup
i −

∑
k s

k(i∆− τk)
σ

)
Where Q(.) is the Q-function defined as:

Q(x) = 1√
2π
·
∫ +∞

x

exp
(
−t2

2

)
dt

By taking the logarithm:

log (p (r | θ))

=
N−1∑
i=0

log
(
Q
(
rlow
i −

∑
k s

k(i∆− τk)
σ

)
−Q

(
rup
i −

∑
k s

k(i∆− τk)
σ

))
By taking the derivative:

∂log (p (r | θ))
∂τp

= 1
σ
√

2π
·
N−1∑
i=0

f(i, ri, p)

With:

f(i, ri, p) = ∂sp(i∆− τp)
∂τp

· e−
(rup
i
−
∑

k
sk(i∆−τk))2

2σ2 − e−
(rlow
i
−
∑

k
sk(i∆−τk))2

2σ2

Q
(
rlow
i
−
∑

k
sk(i∆−τk)
σ

)
−Q

(
rup
i
−
∑

k
sk(i∆−τk)
σ

)
Then the entries of the Fisher information matrix are given by:

I(τp, τ q) = E
[
∂log (p (r | θ))

∂τp
· ∂log (p (r | θ))

∂τ q

]

= 1
2πσ2 · E

N−1∑
i=0

N−1∑
j=0

f(i, ri, p) · f(j, rj , q)


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When i 6= j, f(i, ri, p) is independent from f(j, rj , q), and the corresponding
terms vanish. It follows:

I(τp, τ q) = 1
2πσ2 · E

[
N−1∑
i=0

f(i, ri, p) · f(i, ri, q)
]

= 1
2πσ2 ·

N−1∑
i=0
·
∑
ri

p (ri | θ) · f(i, ri, p) · f(i, ri, q)

= 1
σ2 ·

N−1∑
i=0

∂sp(i∆− τp)
∂τp

· ∂s
q(i∆− τ q)
∂τ q

· ρQb

Where the factor ρQb is defined as:

ρQb = 1
2π ·

∑
ri

(
e−

(rup
i
−
∑

k
sk(i∆−τk))2

2σ2 − e−
(rlow
i
−
∑

k
sk(i∆−τk))2

2σ2

)2

Q
(
rlow
i
−
∑

k
sk(i∆−τk)
σ

)
−Q

(
rup
i
−
∑

k
sk(i∆−τk)
σ

)
ρQb represents the information loss compared to the unquantified case. Note
that in the unquantified case, ρQ∞ = 1 and equation (3.1) is obtained. In order
to optimize the Fisher information, ρQb has to be optimized with respects to
the quantizer step size. In the case of a one bit quantizer, the doublet (rlow

i , rup
i )

takes two values (−∞, 0) and (0,+∞). Then the information loss becomes:

ρQ1 = 1
2π

 e−

∑
k
sk(i∆−τk)

σ2

1−Q
(
−
∑

k
sk(i∆−τk)
σ

) + e−

∑
k
sk(i∆−τk)

σ2

Q
(
−
∑

k
sk(i∆−τk)
σ

)


= e
−
∑

k
sk(i∆−τk)

σ2

2π ·

 1

Q
(∑

k
sk(i∆−τk)
σ

) + 1

Q
(
−
∑

k
sk(i∆−τk)
σ

)


=
exp

(
−
∑

k
sk(i∆−τk)
σ2

)
2π · 1

Q
(
−
∑

k
sk(i∆−τk)
σ

)
· Q
(∑

k
sk(i∆−τk)
σ

)
It can be noticed that at low SNR regime, when σ �

∑
k s

k(i∆ − τk)), then
information loss tends toward to 2/π, which corresponds to the information loss
for a one bit quantizer (cf. chapter 2).

3.4.3 Results
Back to the general case (b-bit quantizer), the quantization losses have to be
minimized with respect to the number of pseudolites and received power from
these pseudolites. Figure 3.9 represents the quantization losses as function of the
quantizer step size for different numbers of pseudolites when a 2-bit quantizer
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Figure 3.9: Quantization loss for different quantizer step sizes, pseudolites power
P = −140dB (the same for all pseudolites), 1023 chips per epoch, duty cycle
d = 20%, 2-bit quantizer

is used. Therefore in order to get the minimal quantization losses, and so the
minimal CRLB, the quantizer step size has to be optimized.

Then using the optimal quantization step previously determined, the quanti-
zation losses as function of the pseudolite number can be plotted (cf. figure 3.10).
Finally the CRLB can be determined. Figure 3.11 represents the evolution of
the 90th percentile CRLB and figure 3.12 compares the CRLB when the relative
power between two pseudolites is varying.

The CRLB in case of non-overlapping pulses grows with the square root
of the number of pseudolites. In case of overlapping pulses, the CRLB grows
slower than the square root of the number of pseudolites. Then overlapping
pulses provide a better CRLB than non-overlapping pulses, and is consequently
a better pulse scheme.

3.5 Conclusion
The transmit power is constant whatever the transmitting duration and a max-
imal overall duty cycle is reserved for the pseudolite pulses. Then using the
CRLB, it has been shown in this chapter that overlapping pulses perform bet-
ter than non-overlapping pulses when pseudolite signals are tracked.

Consequently, in the next chapter, overlapping pulses will be considered.
However, pulses have to be synchronized, and it is not sure that the CRLB can
be effectively reached. In the next chapter, interference cancellation methods
are studied, in order improve the tracking results and to approach the CRLB.
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Chapter 4

Participative Receivers

In order to solve the Near-Far problem, different methods have been proposed:

• Frequency offset schemes involve transmitting pseudolite signals on a car-
rier frequency offset from the GPS L1 carrier (cf. [5]).

• PRN codes modification: use of longer codes, modified signal polarization,
some chipped at higher rate, as proposed in [6].

• Interference cancellation that reduces the effect of inteferences from other
navigation signals. Interference cancellation has been firstly proposed for
mitigation for the Near-Far problem in cellular systems (cf. [7, 8]).

The first and the second solutions involve modification to the transmitters.
Interference cancellation only needs modification in the receiver. Therefore this
solution is adopted for the following.

In the previous chapter, it has been shown that at constant PPP and con-
stant aggregated duty cycle, for pseudolite tracking, overlapping pulses provide
better results compared to non-overlapping pulses. Consequently from now on,
it will be considered that all pseudolites emit simultaneously during a specified
duty cycle. The aim of this chapter is to present a possible architecture for a
participative receiver that would reduce the effects of the pseudolite signals, to
be considered as interfering ones.

4.1 Description of the Receiver Implementing
the Interference Cancellation

In this chapter, in the contrary to the chapter 2, a highly capable front-end is
considered, in order to track pseudolite signal. A possible structure is presented
figure 4.1. Ti is the correlation time and d is the duty cycle.

• The switch directs the signal either to the pseudolite branch if pseudolites
are transmitting or to the satellite branch if pseudolites are not transmit-
ting. It is considered that pseudolites transmit during the first part of the
integration time (t ∈ [0; d · Ti]) and that the second part the integration
time is left free to track the satellites (t ∈ [d · Ti, Ti]).
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Figure 4.1: Diagram of a participative receiver

• The two AGCs normalize the signal.

• The two ADCs quantize and sample the signals.

• Interference cancellation is used to reduce the Near-Far effect between
pseudolites. Note that on the two followings figures (cf. figures 4.2
and 4.3), the upper index refer to the pseudolite numbers and thr lower
index refer to the stage numbers. The interference cancellation can be
realized in a parallel way (Parallel Interference Cancellation (PIC)) or in
a sequential way (Sequential Interference Cancellation (SIC)):

– SIC: A description and analysis of this method is proposed in [9]
and an application for pseudolites is proposed in [10]. In figure 4.2, a
diagram of a SIC is presented. At each stage, one pseudolite naviga-
tion signal is reconstructed and subtracted to the input signal. The
interferences are successively canceled. Consequently at stage k, only
the k − 1 previously estimated signals have been cancelled.

x(t) Estimate
τ1
1 and P1

1

+
+

−
Estimate
τ2
2 and P2

2

ŝ1(t)

+
+

−
Estimate
τ3
3 and P3

3
ŝ3(t)

ŝ2(t)

Stage 1

Stage 2

Stage 3

Figure 4.2: Diagram of the first three stages of the sequential interference can-
cellation

– PIC consists of a variant of the SIC scheme (cf. [11]). In figure 4.3 a
diagram of the PIC method is presented. At each stage, all signals are
estimated and all signals other than the tracked one are subtracted
from the received signal. k represents the pseudolite index and K
the number of pseudolites.
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Figure 4.3: Diagram of the first two stages of the parallel interference cancella-
tion
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It is the intention of this paper to show that PIC provides better tracking per-
formances than SIC even if the required hardware complexity is greater. It will
also be shown that PIC generally provides better performance when all of the
strong signals have similar power levels and SIC when they are different (this
consolidates assessments proposed in [11] which applies for ICT for communi-
cation).

The satellite branch has already been analyzed in chapter 2. Since the
satellite tracking is possible for a low-cost receiver (1-bit quantizer, without
switch), then the highly capable receiver proposed here (b-bit quantizer, with a
switch) is also able to track satellites. Consequently in this chapter the focus will
be put on the pseudolites branch. The theoretical analysis is inspired by [12].

4.2 Approximations
Approx. 4.1. All signals are considered real. The down-conversion of the
received signal into baseband induces actually complex signals, but if the phase
is perfectly known, it may be possible to take only the real part.

Approx. 4.2. Only white Gaussian noise and pseudolite navigation signals
are considered. Other interfering signals are not taken into account and satel-
lites interferences are neglected, since the power of the satellite signals is much
smaller than the power of the pseudolite signals and the power of the noise in
the receiver front-end.

Approx. 4.3. The chip waveform is supposed to be the same for all navigation
signals.

Approx. 4.4. The quantization is supposed to be done with enough bits such
that the quantization losses can be neglected.

Approx. 4.5. The effect of the low-pass filter on the navigation signals is
neglected.

Approx. 4.6. The pulses are supposed to be perfectly synchronized. This can
not be the case in reality. Indeed even if the pulses are perfectly synchronized
at emission, since distance from each pseudolite to the receiver will be different,
the delays will be different, and the pulses will only partially overlap, or even
not overlap at all.

Approx. 4.7. The input signals are already acquired. Consequently the rel-
ative delay between the tracked signal and the local replica is supposed to be
small:

∣∣τ l − τ̂ l0∣∣ ≤ Tc/4

With these approximations, the received signal is:

s(t) =
K∑
k=1

sk(t) + w(t)

Where K is the number of pseudolites. Since quantization and sampling losses
are neglected, the effect of the ADC are ignored. Moreover, the effect of filtering
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on the navigation signals is neglected. Consequently, the signal at the ADC
output is:

x(t) ≈
K∑
k=1

sk(t) + η(t)

The received signal is correlated with the local replica of the code. The local
replica is shifted by the estimated delay τ̂ l0, which fulfils the following constraint
at the end of acquisition phase:

∣∣τ l − τ̂ l0∣∣ ≤ Tc/4 and τ̂ l0 is the first delay estimate
used as input for the first stage of the ICT. Only time intervals containing
pulsed signals ([0 ; d · Ti]) are taken into account in the correlation function
whose expression becomes:

Cl = 1
d · Ti

·
∫ d·Ti

0
cl(t− τ̂ l0) · x(t) dt

The aim is to compare the variance of the propagation delay estimators at the
correlator output, with and without the application of the interference can-
cellation, in order to characterize the benefit. Hence the variance of the delay
estimation error will be computed without interference cancellation, then after a
given number of interference cancellation stages. In order to obtain the variance
of the delay error, the SNIR has to be firstly determined. Then a relationship
between the SNIR and variance of the delay error is used. This relation will
depend on the discriminator which is used to estimate the delay error.

4.3 First Stage of the Interference Cancellation
At the first stage of the interference cancellation no signal is subtracted. There-
fore the SNIR that will be computed corresponds to the case without inference
cancellation (for both parallel and sequential methods). At the end of this stage,
it will be possible to estimate the amplitude and the delay of the navigation sig-
nals, and then from stage 2, the reconstructed signals can be subtracted from
the received signal. At the first stage, the correlator output for the lth pseudolite
is:

Cl1 = Al1 +W l
1 +

K∑
k=1
k 6=l

Ik1

Where:

• Al1 represents the contribution of the useful signal. It is considered that
τ̂ l0 ≈ τ l, then:

Al1 =
√
P l

d · Ti

∫ d·Ti

0
cl(t− τ̂ l0) · cl(t− τ l) dt

≈
√
P l

43



Consequently:

E
[
Al1
]
≈
√
P l

var
[
Al1
]
≈ 0

• W l
1 represents the correlation with the Additive White Gaussian Noise

(AWGN) process which fulfills the following properties:

W l
1 = 1

d · Ti
·
∫ d·Ti

0
cl(t− τ̂ l0) · η(t) dt

Then:

E
[
W l

1
]

= 0

var
[
W l

1
]

=
N0/2

d · Ti
Note that var

[
W l

1
]
does not depends neither on the considered pseudolite

nor on the considered stage of interference cancellation.

• Ik1 represents the Multiple Access Interference (MAI) from the kth naviga-
tion signal before interference cancellation. It is considered that τ̂ l0 ≈ τ l,
then:

Ik1 =
√
Pk

d · Ti
·
∫ d·Ti

0
ck(t− τk) · cl(t− τ̂ l0) dt

≈
√
Pk

d · Ti
·
∫ d·Ti

0
ck(t− τk) · cl(t− τ l) dt

The chip values of the underlying spreading sequences cl(.) and ck(.) are
independent and it is assumed that the spreading sequences are well bal-
anced, then:

E
[
Ik1
]

= 0

Then the variance:

var
[
Ik1
]
≈ Pk · var

[
1

d · Ti
·
∫ d·Ti

0
ck(t− τk) · cl(t− τ l) dt

]
The second multiplicand above is called Waveform Convolution Coefficient
(WCC) and is further developed in annexe A. It can be computed using
equation A.2 in the general case or using equation A.3 for a BPSK signal
if the effect of the low-pass filter is neglected. Consequently, the variance
of the MAI can be expressed as:

var
[
Ik1
]
≈ Pk ·WCCd·Ti(τ l − τk) (4.1)

Finally:

E
[
Cl1
]
≈
√
P l (4.2)

var
[
Cl1
]
≈
N0/2

d · Ti
+

K∑
k=1
k 6=l

Pk ·WCCd·Ti(τ l − τk) (4.3)
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Then the SNIR of the correlator output of the pseudolite l at the first stage
(before interference cancellation) is:

SNIRl
1 ≈

P l
N0/2
d·Ti +

∑K
k=1
k 6=l

WCCd·Ti(τ l − τk) · Pk
(4.4)

A Non-coherent Early minus Late Power discriminator in open loop is used to
track the delay error (cf. annexe B). Consequently, the variance of the delay
error can be express as a function of the SNIR:

var
[
τ l1 − τ̂ l1

]
≈ dEL · T 2

c

4 · SNIRl
1

(
1 + 2

(2− dEL) · SNIRl
1

)
(4.5)

Where the early late spacing is dEL · Tc.

4.4 Parallel Interference Cancellation
4.4.1 Signal to Noise plus Interferences Ratio
The received signal power for pseudolite k can be estimated by the square of
the correlator output at the previous stage.

P̂ks =
∣∣Cks ∣∣2

=
(
Cks
)2 since the signal is real

A reconstructed navigation signal from pseudolite k is sks(.) can be obtained by:

ŝks(t) =
√
P̂ks · ck(t− τ̂ks )

Then the received signal can be improved by subtracting the reconstructed
navigation signals corresponding to interfering pseudolites.

rls+1(t) =
√
P lcl(t− τ l) + η(t) +

K∑
k=1
k 6=l

(√
Pk · ck(t− τk)−

√
P̂ks · ck(t− τ̂ks )

)

Then the correlator output is:

Cls+1 = 1
d · Ti

·
∫ d·Ti

0
rls+1(t) · cl(t− τ̂ ls) dt

= Als+1 +W l
s+1 +

K∑
k=1
k 6=l

Iks+1

The three terms will be computed separately:
• Als+1 represents the useful part of the signal. It is considered that τ̂ ls ≈ τ l,

then:

Als+1 =
√
P l

d · Ti

∫ d·Ti

0
cl(t− τ l) · cl(t− τ̂ ls) dt

≈
√
P l
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Then:

E
[
Als+1

]
≈
√
P l

var
[
Als+1

]
= 0

• W l
s+1 represents the AWGN process.

W l
s+1 = 1

d · Ti
·
∫ d·Ti

0
η(t) · cl(t− τ̂ ls) dt

Then:

E
[
W l
s+1
]

= 0

var
[
W l
s+1
]

=
N0/2

d · Ti

• Iks+1 represents the residual MAI from the kth pseudolite at stage s+ 1:

Iks+1 = 1
d · Ti

·
∫ d·Ti

0

(√
Pk · ck(t− τk)−

√
P̂ks · ck(t− τ̂ks )

)
· cl(t− τ̂ ls) dt

The chip values of the spreading sequences cl(.) and ck(.) are independent
and the spreading sequences are balanced, then:

E
[
Iks+1

]
= 0

In order to derive the variance, Iks can be rewritten as:

Iks+1 = γks+1 + λks+1

Where:

γks+1 =

√
Pk −

√
P̂ks

d · Ti
·
∫ d·Ti

0
cl(t− τ̂ ls) · ck(t− τk) dt

λks+1 =

√
P̂ks

d · Ti
·
∫ d·Ti

0
cl(t− τ̂ ls) ·

(
ck(t− τk)− ck(t− τ̂ks )

)
dt

Note that γks+1 represents the residual due to the error on the amplitude

estimation
√
P̂ks and λks+1 the one due to the error of delay estimation τ̂ ls.

Considering that τ̂ ls+1 ≈ τ l, it follows:

γks+1 ≈

√
Pk −

√
P̂ks

d · Ti
·
∫ d·Ti

0
cl(t− τ ls) · ck(t− τk) dt

Since τ̂ks ≈ τk, then using Taylor development around τk, the estimated
spreading code can be approximated by:

ck(t− τ̂ks ) ≈ ck(t− τks ) + (τk − τ̂ks ) · dck(t− τ̂k)
dt
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Then the error between the real spreading code and the estimated spread-
ing code becomes:

ck(t− τk)− ck(t− τ̂ks ) ≈ (τk − τ̂ks ) · dck(t− τk)
dt

Consequently λks+1 can be approximated by:

λks+1 ≈

√
P̂ks

d · Ti
· (τk − τ̂ks ) ·

∫ d·Ti

0
cl(t− τ ls) ·

dck(t− τk)
dt dt

The variance of the residual MAI can be rewritten as:

var
[
Iks+1

]
= var

[
γks+1

]
+ 2 · cov

[
γks+1, λ

k
s+1
]

+ var
[
λks+1

]
The three terms will be derived separately:

– Derivation of var
[
γks+1

]
var
[
γks+1

]
≈ var

√Pk −
√
P̂ks

d · Ti
·
∫ d·Ti

0
cl(t− τ ls) · ck(t− τk) dt


Since the power estimation error does not depends on the correlation
between the chip sequences:

var
[
γks+1

]
≈ var

[√
Pk −

√
P̂ks
]
· var

[
1

d · Ti

∫ d·Ti

0
cl(t− τ ls) · ck(t− τk) dt

]

= var
[√
P̂ks
]
·WCCd·Ti(τ l − τk)

= var
[
Cks
]
·WCCd·Ti(τ l − τk)

– Derivation of cov
[
γks+1, λ

k
s+1
]

cov
[
γks+1, λ

k
s+1
]

= E
[
γks+1λ

k
s+1
]
− E

[
γks+1

]
· E
[
λks+1

]

E
[
γks+1λ

k
s+1
]
≈ E

[
1

(d · Ti)2 ·
√
P̂ks ·

(√
Pk −

√
P̂ks
)

·
∫ d·Ti

0
ck(t− τk) · cl(t− τ ls) dt

·
(
τk − τ̂ks

)
·
∫ d·Ti

0
cl(t− τ ls) ·

dck(t− τk)
dt dt

]

Since the estimated propagation delay error does not depends on
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power estimation error and on the chip sequences:

E
[
γks+1λ

k
s+1
]
≈ E

[(
τk − τ̂ks

)]
· E
[

1
(d · Ti)2 ·

√
P̂ks ·

(√
Pk −

√
P̂ks
)

·
∫ d·Ti

0
ck(t− τk) · cl(t− τ ls) dt

·
∫ d·Ti

0
cl(t− τ ls) ·

dck(t− τk)
dt dt

]
= 0

Since τ̂ks is an unbiased estimator of τk. Moreover:

E
[
γks+1

]
= 1
d · Ti

· E

[(√
Pk −

√
P̂ks
)
·
∫ d·Ti

0
ck(t− τk) · cl(t− τ̂ ls) dt

]

= 1
d · Ti

· E
[√
Pk −

√
P̂ks
]
· E

[∫ d·Ti

0
ck(t− τk) · cl(t− τ̂ ls)

]
= 0

Then:

cov
[
γks+1, λ

k
s+1
]

= 0

– Derivation of var
[
λks+1

]
var
[
λks+1

]
≈ var

[√
P̂ks ·

τk − τ̂ks
d · Ti

·
∫ d·Ti

0
cl(t− τ ls) ·

dck(t− τk)
dt dt

]

= var
[√
P̂ks
]

· var
[
τk − τ̂ks
d · Ti

·
∫ d·Ti

0
cl(t− τ ls) ·

dck(t− τk)
dt dt

]
Estimated power, propagation delay error and chip sequences are
independent, therefore:

var
[
λks+1

]
≈ var

[√
P̂ks
]
· var

[
τ̂ks − τk

]
· var

[
1

d · Ti
·
∫ d·Ti

0
cl(t− τ ls) ·

dck(t− τk)
dt dt

]

= var
[√
P̂ks
]
· var

[
τ̂ks − τk

]
·DWCCd·Ti(τ l − τk)

= var
[
Cks
]
· var

[
τ̂ks − τk

]
·DWCCd·Ti(τ l − τk)

Where DWCCd·Ti(τ l − τk) is called the Differential Waveform Con-
volution Coefficient (DWCC) (cf. annexe A). This coefficient can be
computed using equation A.5 in the general case or with equation A.6
for a BPSK signal and if the effect of the low-pass filter are neglected.
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Then the variance of the interference contribution from pseudolite k at
stage s+ 1 is:

var
[
Iks+1

]
≈ var

[
Cks
]

·
(
WCCd·Ti(τ l − τk) + var

[
τ̂ks − τk

]
·DWCCd·Ti(τ l − τk)

)
Since SNIRk

s = Pk/var[Cks ], it follows:

var
[
Iks+1

]
= Pk

SNIRk
s

·
(
WCCd·Ti(τ l − τk)

+var
[
τ̂ks − τk

]
·DWCCd·Ti(τ l − τk)

) (4.6)

Then the variance of the correlator output for pseudolite l, at stage s+ 1 is:

var
[
Cls+1

]
=
N0/2

d · Ti

+
K∑
k=1
k 6=l

Pk

SNIRk
s

·
(
WCCd·Ti(τ l − τk) + var

[
τ̂ks − τk

]
·DWCCd·Ti(τ l − τk)

)
And consequently the SNIR of the correlator output for pseudolite l, at stage
s+ 1 can be expressed indirectly as a function of the SNIR at stage s:

SNIRl
s+1 =

P l
N0/2
d·Ti +

∑K
k=1
k 6=l

Pk
SNIRks

·
(

WCCd·Ti(τ l − τk) + var [τ̂ks − τk] DWCCd·Ti(τ l − τk)
)

(4.7)

Using annexe B, the variance of the propagation delay error can be expressed
as a function of the SNIR:

var
[
τ̂ks − τks

]
≈ dEL · T 2

c

4 · SNIRk
s

(
1 + 2

(2− dEL) · SNIRk
s

)
(4.8)

Finally using equations (4.4) , (4.7) and (4.8), the value of the SNIRl and
consequently of the variance delay error can be determined recursively at each
stage.
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4.4.2 Limit and Convergence Properties (BPSK)
The sequence composed of the var

[
Cls+1

]
will be now studied at the different

stages.

var
[
Cl1
]

=
N0/2

d · Ti
+

K∑
k=1
k 6=l

WCCd·Ti(τ l − τk) · Pk

var
[
Cls+1

]
=
N0/2

d · Ti
+

K∑
k=1
k 6=l

var
[
Cks
]

(
WCCd·Ti(τ l − τk) + var

[
τ̂ks − τk

]
·DWCCd·Ti(τ l − τk)

)
Note that at the first stage, the interferences are proportional to the power of
the interfering signals Pk. At the next stages, the interferences are proportional
to the error on the power estimations var

[
Cks
]
. Using results in the case of a

BPSK signal from annexe A:

Tc
2 · d · Ti

< WCCd·Ti(τ l − τk)

DWCCd·Ti(τ l − τk) = 2
d · Ti · Tc

∀k,
∣∣τ̂ks − τk∣∣ < Tc/4 (cf. Approx. 4.7), then the variance can be bounded:

var
[
τ̂ks − τk

]
≤
(
Tc
4

)2

Consequently:

var
[
τ̂ks − τk

]
DWCCd·Ti(τ l − τk) < Tc

32 · d · Ti
� Tc

2 · d · Ti
< WCCd·Ti(τ l − τk)

Therefore the term var
[
τ̂ks − τk

]
·DWCCd·Ti(τ l − τk) can be neglected in com-

parison to WCCd·Ti(τ l − τk).
Moreover, in order to simplify the computation, the worst case is considered,

which consists in setting the relative delay between all signals as a multiple of
Tc (∀(l, k) τ l − τk = 0 mod Tc). Consequently the WCC can be factorized,
leading to:

var
[
Cl1
]
≈
N0/2

d · Ti
+ WCCd·Ti ·

K∑
k=1
k 6=l

Pk

var
[
Cls+1

]
≈
N0/2

d · Ti
+ WCCd·Ti ·

K∑
k=1
k 6=l

var
[
Cks
]

Where:

WCCd·Ti = max
τ l−τk

WCCd·Ti(τ l − τk)
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For a BPSK signal, using equation (A.3), WCCd·Ti = Tc
d·Ti . At the second stage,

the variance of the correlator output is:

var
[
Cl2
]

=
N0/2

d · Ti
+ WCCd·Ti ·

K∑
k=1
k 6=l

var
[
Ck1
]

= (1 + (K − 1) ·WCCd·Ti) ·
N0/2

d · Ti
+ WCC2

d·Ti ·
K∑
k=1
k 6=l

K∑
q=1
q 6=k

Pq

=
1∑
k=0

((K − 1) ·WCCd·Ti)k ·
N0/2

d · Ti

+ WCC2
d·Ti ·

(
(K − 2) ·

K∑
k=1
Pk + P l

)

The term (K − 2) can be rewritten as:

K − 2 = (K − 1)2 − 1
K

And consequently:

var
[
Cl2
]

=
1∑
k=0

((K − 1) ·WCCd·Ti)
k ·
N0/2

d · Ti

+ WCC2
d·Ti ·

(
(K − 1)2 − 1

K
·
K∑
k=1
Pk + P l

)
At the third stage, the variance of the correlator output is:

var
[
Cl3
]

=
N0/2

d · Ti
+ WCCd·Ti ·

K∑
k=1
k 6=l

var
[
Ck2
]

=
2∑
k=0

((K − 1) ·WCCd·Ti)
k ·
N0/2

d · Ti

+ WCC3
d·Ti ·

K∑
k=1
k 6=l

(
(K − 2) ·

K∑
q=1
Pq + Pk

)

=
2∑
k=0

((K − 1) ·WCCd·Ti)
k ·
N0/2

d · Ti

+ WCC3
d·Ti ·

(
((K − 2) · (K − 1) + 1) ·

K∑
q=1
Pq − P l

)

The term ((K − 2) · (K − 1) + 1) can be rewritten as:

(K − 2) · (K − 1) + 1 = (K − 1)3 + 1
K
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Consequently:

var
[
Cl3
]

=
2∑
k=0

((K − 1) ·WCCd·Ti)
k ·
N0/2

d · Ti

+ WCC3
d·Ti ·

(
(K − 1)3 + 1

K
·
K∑
q=1
Pq − P l

)

Then at stage s, it can be conjectured that the variance is:

var
[
Cls
]

=
s−1∑
k=0

((K − 1) ·WCCd·Ti)
k ·
N0/2

d · Ti

+ WCCsd·Ti ·
(

(K − 1)s − (−1)s

K
·
K∑
q=1
Pq + (−1)s · P l

)

= 1− ((K − 1) ·WCCd·Ti)
s

1− (K − 1) ·WCCd·Ti
·
N0/2

d · Ti

+ WCCsd·Ti ·
(

(K − 1)s − (−1)s

K
·
K∑
q=1
Pq + (−1)s · P l

)

This relationship can be proved by induction: at stage 1 the relation is true.
Let assume the relation true at stage s. Then at stage s+ 1:

var
[
Cls+1

]
=
N0/2

d · Ti
+ WCCd·Ti ·

K∑
k=1
k 6=l

var
[
Cks
]

=
(

1 + (K − 1)WCCd·Ti ·
s−1∑
k=0

(K − 1) ·WCCkd·Ti

)
·
N0/2

d · Ti

+ WCCs+1
d·Ti ·

K∑
k=1
k 6=l

(
(K − 1)s − (−1)s

K
·
K∑
q=1
Pq + (−1)s · Pk

)

=
s∑

k=0
((K − 1) ·WCCd·Ti)k ·

N0/2

d · Ti

+ WCCs+1
d·Ti ·

(
(K − 1)s+1 − (−1)s+1

K
·
K∑
q=1
Pq + (−1)s+1 · P l

)

Consequently, by mathematical induction, the relationship is true at all stages.
Finally the SNIR of pseudolite l at stage s is:

SNIRl
s =

[
1− ((K − 1) ·WCCd·Ti)s

1− (K − 1) ·WCCd·Ti
·

N0/2

P l · d · Ti

+WCCs+1
d·Ti ·

(
(K − 1)s+1 + (−1)s+1

K
·
∑K
q=1 Pq

P l
+ (−1)s+1

)]−1

(4.9)
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The sequence of the SNIRl
s converges and admits a limit SNIRl

∞ if:

(K − 1) ·WCCd·Ti < 1

⇐⇒ K <
1

WCCd·Ti
+ 1

⇐⇒ K ≤ 1
WCCd·Ti

For a BPSK signal, WCCd·Ti = Tc/d·Ti and consequently K < d·Ti/Tc. Therefore
convergence is achieved if the number of satellites is smaller than the number
of chips per integration time. Assuming this condition fulfilled, the limit of the
sequence becomes:

SNIRl
∞ = (1− (K − 1) ·WCCd·Ti)) ·

P l · d · Ti
N0/2

(4.10)

Note that this limit is independent on the power of the interfering signals. In
chapter 3 as well, in case of unquantized signals, the CRLB does not depends
on the power of the interfering signals (cf. equation (3.6)). The two results are
consequently coherent. The PIC provides improvement of the SNIR if SNIRl

∞ >
SNIRl

0. This condition yields to:

SNIRl
∞ > SNIRl

0

⇐⇒ (1− ((K − 1) ·WCCd·Ti) ·
d · Ti
N0/2

>
1

N0/2
d·Ti + WCCd·Ti ·

∑K
k=1
k 6=l
Pk

⇐⇒

∑K
k=1
k 6=l
Pk

N0/2
>

K − 1
d · Ti · (1− (K − 1) ·WCCd·Ti)

Consequently if the received power of the interfering signals is too low compared
to the noise power, the PIC degrades the SNIR and should not be applied.

4.4.3 Simulation Results
Figure 4.4 represents theoretical results using equation (4.7), simulation results
and the CRLB using results from chapter 3, when the received power from each
pseudolite is the same (here -130 dBW. It can be noticed that the results, both
theoretical and simulated, tends to the CRLB. Consequently PIC is a good way
to approach the CRLB. Figures 4.5 compares simulation, theoretical results
and CRLB when the received power from each pseudolite is different. Again
parallel interference cancellation provides a great improvement of the standard
deviation. But it also shows that the CRLB is not reached for the smallest
received powers

4.5 Sequential Interference Cancellation
In this section, a SIC will be analyzed. At stage s+ 1, s navigation signals have
been cancelled. It is considered that pseudolite one is tracked and estimated at
stage one and cancelled at stage two, pseudolite two tracked and estimated at
stage two and cancelled at stage three and so on, as depicted on figure 4.2
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Figure 4.5: PIC, 20% duty cycle and different powers
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4.5.1 Signal to Noise plus Interferences Ratio
Pseudolite l is tracked at stage l = s+ 1. Then pseudolites from 1 to s = l − 1
have been canceled. To improve the readability, when the lower index equals
the upper ones (estimation is done at the stage corresponding to the pseudolite
number), the lower index is not written. Consequently the correlator output is:

rl(t) = η(t) +
√
P l · cl(t− τ l) +

l−1∑
k=1

(√
Pk · ck(t− τk)−

√
P̂k · ck(t− τ̂k)

)
+

K∑
k=l+1

√
Pk · ck(t− τk)

Then the correlator output for pseudolite l, at stage l is:

Cl = 1
d · Ti

·
∫ d·Ti

0
rl(t) · cl(t− τ̂ l) dt

= Al +W l +
K∑

k=l+1
Ik1 +

l−1∑
k=1

Jk

• Al represents the useful part of the signal. It is considered that τ̂ l ≈ τ l,
then:

Al =
√
P l

d · Ti
·
∫ d·Ti

0
cl(t− τ l) · cl(t− τ̂ l) dt

≈
√
P l

Then:

E
[
Al
]
≈
√
P l

var
[
Al
]
≈ 0

• W l
l represents the AWGN process:

W l =
√
P l

d · Ti
·
∫ d·Ti

0
η(t) · cl(t− τ̂ l) dt

Then:

E
[
W l
]

= 0

var
[
W l
]

=
N0/2

d · Ti

• Ik1 represents the MAI from the kth navigation signal before interference
cancellation (pseudolite navigation signals that have not been cancelled
yet)

Ik1 =
√
Pk

d · Ti
·
∫ d·Ti

0
ck(t− τk) · cl(t− τ̂ l0) dt
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Then:

E
[
Ik1
]

= 0

Because τ̂ l0 ≈ τ l, using equation (4.1)

var
[
Ik1
]
≈WCCd·Ti(τ l − τk) · Pk

• Jk represents the residual MAI from the kth pseudolite from stage k (pseu-
dolite signals that have been cancelled):

Jk =
√
P l

d · Ti
·
∫ d·Ti

0

(√
Pk · ck(t− τk)−

√
P̂k · ck(t− τ̂k)

)
· cl(t− τ̂ l) dt

Then:

E
[
Jk
]

= 0

Using equation (4.6):

var
[
Jk
]
≈ Pk

SNIRk
· (WCCd·Ti(τ l − τk) + var

[
τ̂k − τk

]
·DWCCd·Ti(τ l − τk))

Then the expectation and the variance of the correlator output are:

E
[
Cl
]
≈
√
P l

var
[
Cl
]
≈
N0/2

d · Ti

+
l−1∑
k=1

Pk

SNIRk
·
(
WCCd·Ti(τ l − τk)

+
(
var
[
τ̂k − τk

]
·DWCCd·Ti(τ l − τk)

)
+

K∑
k=l+1

WCCd·Ti(τ l − τk) · Pk

Then the SNIR can be determined recursively using:

SNIRl =
E
[
Cl
]2

var [Cl]

4.5.2 Simulation Results
Figure 4.6 compares simulation results, theoretical results and the CRLB using
chapter 3 when the received power from each peudolite is the same. Figure 4.7
provides the same comparison when pseudolites are at different distances from
the receiver.

At stage one, no signals is canceled, therefore it corresponds to the case
without interference cancellation. At stage two, signal 1 is canceled. Then the
standard deviation of signals 2 and 3 is improved. Finally, at stage three, signal
2 is canceled. Then the standard deviation of signal 3 is improved.
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Figure 4.6: Sequential Interference Cancellation with 20 % duty cycle and same
powers
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Figure 4.7: Sequential Interference Cancellation with 20 % duty cycle and dif-
ferent powers
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4.6 Conclusion
PIC provides the best results: it reaches the lowest standard deviation and
converges more rapidly. However, PIC is more complex to implement than SIC
and needs more computation time. Moreover, PIC provides better performance
compared to SIC when all the strong signals have similar power levels.

Both methods of interference cancellation improve the SNIR, and conse-
quently the tracking results. Consequently the Near-Far problem between the
pseudolites can be reduced. In the next chapter, experimental measurements
are presented and interference cancellation is applied to real pseudolite signals.
Only PIC is implemented, since it leads to the best tracking performance.
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Chapter 5

Experimental
Measurements

5.1 Presentation of the Experimentation
Experimental tests have been executed at the Astrium laboratory. Three pseu-
dolite signals are considered, generated by three Navigation Signal Genera-
tors (NSGs). Figure 5.1 shows the experimental set-up and figure 5.2 a photo
of the experimentation. The objectives are:

• To verify that application of interference cancellation improves perfor-
mance of pseudolite acquisition and tracking for overlapping/synchronised
pulses

• To verify that tracking of GPS signals is improved for overlapping and
synchronised pulses

5.1.1 Pseudolites Pulses
The pseudolite signal properties are defined in the Radio Technical Commis-
sion for Maritime Services (RTCM) SC-104 specification (cf. [13]). A pseudo-
lite employs one of the 51 non-GPS, 1023 chips, Gold codes. The signal is
transmitted by pulses of 90.91 µs (or 93 chips, one-eleventh of a code). There
are 11 pulses per 10 ms interval. In case of synchronized overlapping pulses,
the pseudolite signals will interfere with the GPS signals during an average
of 11·90.91µs/10ms = 10% of the time. In case of synchronized non overlapping
pulses, the pseudolite signals will interfere during k · 10% of the time, where k
is the number of pseudolites. Moreover the pulse position is changed from mil-
lisecond to millisecond, both to randomize the spectrum and to assure that one
complete code sequence is transmitted every 10 ms. All pulses change from one
interval of 10 ms to the next, over a 200 ms interval, so that all pulse positions
have been transmitted after 200 ms. In case of non-overlapping pulses, a shifted
RTCM pattern will be used (each pseudolite has a different RTCM pattern).
On the contrary, in case of overlapping pulses, the same RTCM pattern will
be used for all pseudolites. In both cases, the NSGs have to be synchronized.
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Figure 5.1: Schema of the experimentation
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Figure 5.2: Photo of the experimentation. The BaySEF is on the right, the
three NSGs are in the bottom left corner.

However the pulses will never be perfectly synchronized, firstly because of errors
in the hardware synchronization, secondly because the pseudolites will not be
at the same distance from the receiver. If the distance between two pseudolites
is d = 2 m, then the synchronization error is:

d

c
= 2

3 · 108 ≈ 6.6 ns ≈ 1
150 chips

Consequently in our experiment, the pulses overlap well and the synchroniza-
tion error is negligible. But it will not be the case in reality, since the distance
between the pseudolites can be several kilometers. Note that the PPP repre-
sents the instantaneous transmitted power by the pseudolite during the pulse.
Consequently, since the duty cycle is 10%, a PPP of -110 dBm corresponds to
an average power of -120 dBm for a continuous signal.

5.1.2 Acquisition and Tracking
The input signal is acquired by the BaySEF. At the BaySEF output, the signal
has been down-converted, low-pass filtered, normalised, sampled and quantized.
The sampling frequency is 57.2 MHz and the signal is quantized with 8 bits. A
slow AGC is used to normalize the signal.

Then the signal is post-processed by software receiver, written in Matlab,
based on [14]).

Both satellite and pseudolite signals are tracked. But because of the pseudo-
lite pulses, if nothing is done, the acquisition and tracking of the satellite signals
is degraded, or even impossible for large PPPs. The main problem is that the
pseudolite pulses can be much stronger than the noise and the satellite signals.
Then the correlation peak between the received signal and the satellite code
replica is "hidden" by interfering peaks. Fortunately different solutions exist
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to reduce these interferences and enable a better tracking of the GPS signals
(cf. [15]):

• Clear the pseudolite pulses by using either a blanker or interference can-
cellation. These two solutions are adapted when a slow AGC is used. If
the AGC is fast, the pulses are at the same level than the noise, and are
consequently difficult to blank or to cancel. Interference cancellation is
probably not a good solution since the remaining part of the pseudolite
signals after interference cancellation can still interfere too much with the
satellite signals.

• Put the pseudolite pulses at the same level than the rest of the signal by
using either a fast AGC or a 1-bit quantizer (case of the low-cost receivers,
cf. chapter 2).

In case of non-participative receivers, complexity and cost have to be re-
duced, and the second solution might be preferred (fast AGC or 1-bit quantizer).
In case of participative receivers, higher complexity and cost can be afforded,
and the first solution might be preferred (interference cancellation, blanker).

The BaySEF includes a slow AGC. In the Matlab tool, a blanker is used.
Then when a GPS signal is tracked, the pseudolite pulses are cleared by the
blanker.

Moreover pseudolite signals acquisition and tracking can also be degraded
by the noise. Consequently, when a pseudolite signal is tracked, a blanker is
also used to clear intervals without pulses.

Different scenarios have been tested, in order to see the effects of the interfer-
ence cancellation and of the pulse scheme synchronisation. The NSGs use PRNs
which are not used by visible satellites. In the experiment, NSG 1 corresponds
to PRN1, NSG 2 to PRN 2 and NSG 3 to PRN 3.

5.2 Interference Cancellation
Parallel Interference Cancellation between the pseudolites is used to improve
acquisition and tracking of the navigation signals:

• Acquisition Phase:

– Step 1: Try to acquire the pseudolite navigation signals
– Step 2: For all acquired signals, estimate the phase, delay and re-

ceived power
– Step 3: Reconstruct and subtract pseudolite signals to the input

signal
– Step 4: Go back to step 1 or stop if the loop has been iterated a

sufficient number of times.

• Tracking Phase

– At each integration time, estimate the phase, delay and received
power of each pseudolite signal

– Apply interference cancellation to the same signal a specified number
of times (can be zero).
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– Go to next integration time, and apply interference cancellation.

Two different scenarios have been tested, where the received power from one
pseudolite is varying.

The Received PPP from each NSG is the Same (-52 dBm):

Figures 5.3 and 5.4 compare the acquisition results without and with PIC. The
acquisition metric is the ratio of the two biggest correlation peaks between
input signal and local replica. Navigation signals are considered acquired if the
acquisition metric exceeds a threshold. The acquisition metrics is higher when
using PIC, consequently PIC improves acquisition performances.
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Figure 5.3: Acquisition results without PIC, same received PPP, overlapping
pulses

Figures 5.5 and 5.6 compare the tracking results without and with PIC. The
Real part of prompt correlation is the result of the correlation between prompt
replica and in-phase signal, normalized by the number of samples contained in
one integration time. Since the signal is quantized, the result of the prompt
correlation is also quantized. A pseudolite transmits 11 times per interval of
10 ms. Therefore 10% of the integration time holds two pulses. The remaining
90% holds only one pulse and the correlation result is consequently twice lower.
This is why there are peaks on the curves. By comparing the two figures, it is
noticeable that using PIC, the frequency error and position error have a lower
variance and that the the real part of prompt correlation is bigger. Consequently
the tracking performance is improved by PIC.
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Figure 5.4: Acquisition results with PIC, same received PPP, overlapping pulses

The Received PPP from NSGs 2 and 3 Stays the Same (-52 dBm),
and the Received PPP from NSG 1 is 10 dB Lower (-62 dBm):

Acquisition results without PIC are plotted in figure 5.7 and with PIC in fig-
ure 5.8. Tracking results without PIC are plotted in figure 5.9 and with PIC in
figure 5.10. It can be noticed that again PIC improves acquisition and tracking
performance and provides an even better improvement than in the previous case
(same received powers).

5.3 Comparison Between Overlapping and Non-
Overlapping Pulses

In both cases, the NSG are synchronized. In case of overlapping pulses, the
same RTCM pulse scheme is used. On the contrary, in case of non-overlapping
pulses, shifted RTCM pulse schemes are used. The aim is to compare tracking
performance of GPS signals between the two pulse schemes. In both experi-
ments, the received PPP is the same for all pseudolites (-52 dBm). A satellite
signal is tracked (PRN 4). Tracking results in case of overlapping pulses are
plotted in figure 5.11 and in case of non-overlapping pulses in figure 5.12.

By comparing the two figures, it is noticeable that overlapping pulses provide
better performance than non-overlapping pulses. Indeed frequency error and
position error have a lower variance and the average power is bigger. This is not
surprising, since the available duty cycle in case of overlapping pulses is 90%,
whereas only 70% is available in case of non overlapping pulses.
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Figure 5.5: Tracking results for NSG 1, without PIC , same received PPP,
overlapping pulses
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Figure 5.6: Tracking results for NSG 1, with PIC, same received PPP, overlap-
ping pulses
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Figure 5.7: Acquisition results without PIC, received PPP from NSG 1 is 10
dB lower, overlapping pulses
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Figure 5.8: Acquisition results with PIC, received PPP from NSG 1 is 10 dB
lower, overlapping pulses
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Figure 5.9: Tracking results for NSG 1, without PIC, received PPP from NSG
1 is 10 dB lower, overlapping pulses
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Figure 5.10: Tracking results for NSG 1, with PIC, received PPP from NSG 1
is 10 dB lower, overlapping pulses
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Figure 5.11: Tracking results for a GPS signal (PRN 4), same received PPP,
overlapping pulses
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Figure 5.12: Tracking results for a GPS signal (PRN 4), same received PPP,
non overlapping pulses
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Chapter 6

Conclusion and Future
Work

6.1 Conclusion
Throughout this thesis, it has been shown theoretically, by simulation and by
experimental measurements that it is possible for non-participative receivers
to track the satellite signals (if a sufficient part of the duty cycle is left free of
pulses) while a participative receiver can track the pseudolite signals. Indeed, in
chapter 2, it has been shown that if a sufficient part of the duty cycle is left free of
pseudolite pulses, low-cost non-participative receivers can track satellite without
technological modifications. Then it has been shown in chapter 3 that in terms
of CRLB, overlapping pulses provide a lower propagation delay error than non-
overlapping pulses. Finally, in chapter 4, a real architecture of the participative
receiver is presented, and it has been shown that interference cancellation can
be used to reduce interferences between the pseudolites and to approach the
CRLB. Finally in chapter 5, experimental measurements are presented, and it
is shown that interference cancellation improves tracking performance.

6.2 Future Work
6.2.1 Modulation Waveform
In some derivations in chapter 3, in annexe A and for all simulations, only the
BPSK modulation has been considered. It could be interesting to extend the
derivations and the simulations to others waveforms (i.e Binary Offset Carrier
(BOC)).

6.2.2 Quantization
The derivations and the simulations concerning interference cancellation (cf.
chapter 4) do not take into account the quantization losses. It is probably not
possible to extend the derivations, but simulations could be done in order to
analyze the effect of quantization on the interference cancellation.

69



6.2.3 Phase Estimation
In the proposed work, the phase estimation has been considered perfect. This
is not the case in reality. Then the computations and simulations could be
extended by considering it.

6.2.4 Locked Loop
The tracking simulations from chapter 4 are done in open loop and could also
be extended to the locked loop case.

6.2.5 Sequential Interference Cancellation
Only PIC has been tested experimentally. Sequential Interference Cancellation
could also be tested implemented, in order to compare the tracking performance
and computation time.
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Appendix A

Waveform Convolution
Coefficients And Multiple
Access Interference

The aim of this chapter is to derive different coefficients that are used in chap-
ters 3 and 4.

A.1 Waveform Convolution Coefficient and Mul-
tiple Access Interference

The Waveform Convolution Coefficient (WCC) is defined as:

WCCT (τ l − τk) = var
[

1
T
·
∫ T

0
ck(t− τk) · cl(t− τ l) dt

]

The term X l,kT represents the Multiple Access Interference (MAI):

X l,kT =
∫ T

0
ck(t− τk) · cl(t− τ l) dt

The sequences ck(.) and cl(.) are independent. Then by taking the expectation
with respect to the chip sequences:

E
[
X l,kT

]
= 0

A.1.1 General Case
X l,kT can be developed by using definition of the spreading code signals:

cl(t) =
+∞∑

n=−∞
cln · p(t− nTc)

ck(t) =
+∞∑

m=−∞
ckm · p(t−mTc)
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Then it follows:

X l,kT =
+∞∑

n=−∞

+∞∑
m=−∞

cln · ckm ·
∫ T

0
p(t− nTc − τ l) · p(t−mTc − τk) dt

Integrating the product of the two waveforms over [0 ;T ] is the same as integrat-
ing the waveforms over ]−∞ ; +∞[ when one is null outside the interval [0 ;T ]
(cf. figure A.1). Let consider that p(t − nTc − τ l) is null outside [0 ;T ]. Then
n ∈

[
−τ l/Tc ; T−τ l/Tc − 1

]
. If τ l = 0 mod Tc, the result is exact. If not, this is

an approximation. But since there is a large number of chips per integration
interval, the error is small. Let τ̃ l = round(τ l/Tc). Then:
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Figure A.1: Interval where the waveform is non-null

X l,kT ≈
T/Tc−τ̃ l−1∑
n=−τ̃ l

+∞∑
m=−∞

cln · ckm ·
∫ +∞

−∞
p(t− nTc − τ l) · p(t−mTc − τk) dt

≈
T/Tc−1∑
n=0

+∞∑
m=−∞

cln+τ̃ l · c
k
m+τ̃ l ·

∫ +∞

−∞
p(t− nTc − τ l) · p(t−mTc − τk) dt

Finally, since the codes are random:

X l,kT ≈
T/Tc−1∑
n=0

+∞∑
m=−∞

cln · ckm ·
∫ +∞

−∞
p(t− nTc − τ l) · p(t−mTc − τk) dt

Using the Parseval identity, the MAI becomes:

X l,kT ≈
T/Tc−1∑
n=0

+∞∑
m=−∞

cln · ckm ·
∫ +∞

−∞
|P (f)|2 · ej2πf(τ l−τk+Tc·(n−m)) df

Since the waveform p(.) is real, the module of its Fourier transform P (.) is even.
Consequently:

X l,kT ≈
T/Tc−1∑
n=0

+∞∑
m=−∞

cln · ckm

·
∫ +∞

−∞
|P (f)|2 · cos

(
2πf(τ l − τk + Tc · (n−m))

)
df (A.1)
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When variance and expectation are taken with respect to to the random spread-
ing sequences, the variance is:

var
[
X l,kT

]
= E

[
X l,kT

2]
− E

[
X l,kT

]2
= E

[
X l,kT

2]
=

T/Tc−1∑
n=0

+∞∑
m=−∞

T/Tc−1∑
ñ=0

+∞∑
m̃=−∞

E
[
clnc

k
mc

l
ñc
k
m̃

]
·
∫ +∞

−∞
|P (f)|2 · cos

(
2πf(τ l − τk + Tc · (n−m))

)
df

·
∫ +∞

−∞
|P (f)|2 · cos

(
2πf(τ l − τk + Tc · (ñ− m̃))

)
df

Since E
[
clnc

k
mc

l
ñc
k
m̃

]
= 0 if n 6= ñ or m 6= m̃ and E

[
clnc

k
mc

l
ñc
k
m̃

]
= 1 if n = ñ and

m = m̃, finally:

WCCT (τ l − τk) = 1
T 2 ·

T/Tc−1∑
n=0

+∞∑
m=−∞(∫ +∞

−∞
|P (f)|2 · cos

(
2πf(τ l − τk + Tc · (n−m))

)
df
)2

(A.2)

A.1.2 BPSK Case
The case of a BPSK signal will be now analysed. The effect of the low-pass
filter will be neglected. The chip modulation waveform is:

p(t) =
{

1 if − Tc
2 < t < Tc

2
0 otherwise

Then the Fourier transform is:

P (f) = Tc · sinc (πfTc)

With the function sinc (.) defined as:

sinc (x) = sin (x)
x
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Let δ = τ l − τk + Tc · (n−m). Then it follows:∫ +∞

−∞
|P (f)|2 · cos (2πfδ) df

= 1
π2 ·

∫ +∞

−∞

1
f2 · sin

2(πfTc) · cos (2πfδ) df

= 1
2π2 ·

∫ +∞

−∞

1
f2 · (1− cos (2πfTc)) · cos (2πfδ) df

= 1
2π2 ·

∫ +∞

−∞

cos (2πfδ)
f2 df − 1

4π2 ·
∫ +∞

−∞

cos (2πf(δ − Tc))
f2 df

− 1
4π2 ·

∫ +∞

−∞

cos (2πf(δ + Tc))
f2 df

Then by variable substitution:∫ +∞

−∞

cos (2πfδ)
f2 df = 2π · |δ| ·

∫ +∞

−∞

cos (x)
x2 dx, x = 2πfδ∫ +∞

−∞

cos (2πf(δ − Tc))
f2 df = 2π · |δ − Tc| ·

∫ +∞

−∞

cos (x)
x2 dx, x = 2πf(δ − Tc)∫ +∞

−∞

cos (2πf(δ + Tc))
f2 df = 2π · |δ + Tc| ·

∫ +∞

−∞

cos (x)
x2 dx, x = 2πf(δ + Tc)

Then:∫ +∞

−∞
|P (f)|2 · ej2πfδ df =

(
|δ|
π
− |δ − Tc|2π − |δ + Tc|

2π

)
·
∫ +∞

−∞

cos (x)
x2 dx

∫ +∞
−∞

cos(x)
x2 dx can be further developed by partial integration:∫ +∞

−∞

cos (x)
x2 dx =

[
−cos (x)

x

]∞
−∞
−
∫ ∞
−∞

sin (x)
x

dx

[
− cos(x)

x

]∞
−∞

= 0 and
∫∞
−∞

sin(x)
x dx is called the Dirichlet integral and is equal

to π. Then: ∫ +∞

−∞

cos (x)
x2 dx = −π

And consequently:∫ +∞

−∞
|P (f)|2 · ej2πfδ df =1

2 · (|δ + Tc|+ |δ − Tc| − 2 |δ|)

Then four cases can be distinguished:

• If δ ≤ −Tc, then: ∫ +∞

−∞
|P (f)|2 · ej2πfδ df = 0
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• If −Tc < δ ≤ 0, then:∫ +∞

−∞
|P (f)|2 · ej2πfδ df = Tc + δ

• If 0 < δ < Tc, then: ∫ +∞

−∞
|P (f)|2 · ej2πfδ df = Tc − δ

• If δ ≥ Tc, then: ∫ +∞

−∞
|P (f)|2 · ej2πfδ df = 0

Note that for a given n, only one value of m results a δ in that Tc < δ ≤ 0 and
one other such as 0 < δ < Tc. Then it follows:

WCCT (τ l − τk) = 1
T 2 ·

T/Tc−1∑
n=0

(Tc + δa)2 + (Tc − δb)2

Where:

δb = ∆l,k

δa = ∆l,k − Tc

With ∆l,k = τ l − τk mod Tc such that ∆l,k ∈ [0 ;Tc[. Consequently:

WCCT (τ l − τk) =
∆2
l,k + (∆l,k − Tc)2

T · Tc
(A.3)

Note that the WCC is maximal (which corresponds to the biggest interfer-
ence contribution) when the relative propagation delay between the two emit-
ters is proportional to the chip duration (τ l − τk = 0 mod Tc). In this case,
WCCT (0) = Tc/T . On the contrary, the WCC is minimal (which corresponds
to the loweest interference contribution) when the relative delay between the
two emitters is proportional to the half of the chip duration (τ l − τk = Tc/2
mod Tc). In this case, WCCT (Tc/2) = Tc/2·T . In average, the WCC is equals to
2·Tc/3·T

A.2 Differential Waveform Convolution Coeffi-
cient and Differential Multiple Access In-
terference

The Differential Waveform Convolution Coefficient (DWCC) is defined as:

DWCCT (τ l − τk) = var
[

1
T
·
∫ T

0

∂ck(t− τk)
∂t

· cl(t− τ l) dt
]

= var
[

1
T
·
∫ T

0

∂ck(t− τk)
∂τk

· cl(t− τ l) dt
]
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The term Y l,kT represents the Differential Multiple Access Interference (DMAI):

Y l,kT =
∫ T

0

∂ck(t− τk)
∂τk

· cl(t− τ l) dt

= −
∫ T

0

∂ck(t− τk)
∂t

· cl(t− τ l) dt

The sequences ck(.) and cl(.) are independent, then:

E
[
Y l,kT

]
= 0

A.2.1 General Case
The term Y l,kT can be developed by using the spreading code signals: Then it
follows:

Y l,kT = −
+∞∑

n=−∞

+∞∑
m=−∞

cln · ckm ·
∫ T

0
p(t− nTc − τ l) ·

∂p(t−mTc − τk)
∂t

dt

≈ −
T/Tc−1∑
n=0

+∞∑
m=−∞

cln · ckm ·
∫ +∞

−∞
p(t− nTc − τ l) ·

∂p(t−mTc − τk)
∂t

dt

For the same reasons as in the derivation of the WCC. Then using the Parseval
identity, the DMAI can be rewritten as:

Y l,kT = −
T/Tc−1∑
n=0

+∞∑
m=−∞

cln · ckm ·
∫ +∞

−∞
(j2πf) · |P (f)|2 · ej2πf(τ l−τk+Tc·(n−m)) df

Since the waveform p(.) is real, the module of its Fourier transform P (.) is even.
Consequently:

Y l,kT =
T/Tc−1∑
n=0

+∞∑
m=−∞

cln · ckm·∫ +∞

−∞
(2πf) · |P (f)|2 · sin

(
2πf(τ l − τk + Tc · (n−m))

)
df (A.4)

Then the variance:

var
[
Y l,kT

]
= E

[(
Y l,kT

)2
]
− E

[
Y l,kT

]2
= E

[(
Y l,kT

)2
]

=
T/Tc−1∑
n=0

+∞∑
m=−∞

T/Tc−1∑
ñ=0

+∞∑
m̃=−∞

E
[
clnc

k
mc

l
ñc
k
m̃

]
·
∫ +∞

−∞
(2πf) · |P (f)|2 · sin

(
2πf(τ l − τk + Tc · (n−m))

)
df

·
∫ +∞

−∞
(2πf) · |P (f)|2 · sin

(
2πf(τ l − τk + Tc · (ñ− m̃))

)
df
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Since E
[
clnc

k
mc

l
ñc
k
m̃

]
= 0 if n 6= ñ or m 6= m̃ and E

[
clnc

k
mc

l
ñc
k
m̃

]
= 1 if n = ñ and

m = m̃, finally:

DWCCT (τ l − τk) = 1
T 2 ·

T/Tc−1∑
n=0

+∞∑
m=−∞(∫ +∞

−∞
(2πf) · |P (f)|2 · sin

(
2πf(τ l − τk + Tc(n−m))

)
df
)2

(A.5)

A.2.2 BPSK Case
The case of a BPSK signal will be now analysed. The effect of the low-pass
filter will be neglected.

Let δ = τ l − τk + Tc · (n−m) as before. Then it follows:∫ +∞

−∞
(j2πf) · |P (f)|2 · ej2πfδ df

= 2j
π
·
∫ +∞

−∞

1
f
· sin2(πfTc) · ej2πfδ df

= − 2
π
·
∫ +∞

−∞

1
f
· sin2(πfTc) · sin (2πfδ) df

= − 1
π
·
∫ +∞

−∞

1
f
· (1− cos (2πfTc)) · sin (2πfδ) df

= − 1
π
·
∫ +∞

−∞

sin (2πfδ)
f

df + 1
2π ·

∫ +∞

−∞

sin (2πf(δ − Tc))
f

df

+ 1
2π ·

∫ +∞

−∞

sin (2πf(δ + Tc))
f

df

Since: ∫ +∞

−∞

sin (kx)
x

dx = π · sign (k)

Then: ∫ +∞

−∞
(j2πf) · |P (f)|2 · ej2πfδ df

= 1
2 ·
(

sign (δ + Tc) + sign (δ − Tc)− 2 · sign (δ)
)

Then four cases can be distinguished:

• If δ ≤ −Tc, then: ∫ +∞

−∞
|P (f)|2 · ej2πfδ df = 0

• If −Tc < δ ≤ 0, then: ∫ +∞

−∞
|P (f)|2 · ej2πfδ df = 1
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• If 0 < δ < Tc, then: ∫ +∞

−∞
|P (f)|2 · ej2πfδ df = −1

• If δ ≥ Tc, then: ∫ +∞

−∞
|P (f)|2 · ej2πfδ df = 0

Note that for a given n, only one value of m results a δ in such that Tc < δ ≤ 0
and one other such that 0 < δ < Tc. Then it follows:

DWCCT (τ l − τk) = 1
T 2 ·

T/Tc∑
n=0

(1)2 + (−1)2

Consequently:

DWCCT (τ l − τk) = 2
T · Tc

(A.6)

A.3 Double Differential Multiple Access Inter-
ference

The Z l,kT represents the Double Differential Multiple Access Interference (D2MAI)
and is defined as:

Z l,kT =
∫ T

0

∂ck(t− τk)
∂τk

· ∂c
l(t− τ l)
∂τ l

dt

Since the sequences ck(.) and cl(.) are independent:

E
[
Z l,kT

]
= 0

A.3.1 General Case
This term Z l,kT can be developed by using the spreading code signals. Then it
follows:

Z l,kT =
+∞∑

n=−∞

+∞∑
m=−∞

cln · ckm ·
∫ T

0

∂p(t− nTc − τ l)
∂τ l

· ∂p(t−mTc − τ
k)

∂τk
dt

≈
T/Tc−1∑
n=0

+∞∑
m=−∞

cln · ckm ·
∫ +∞

−∞

∂p(t− nTc − τ l)
∂τ l

· ∂p(t−mTc − τ
k)

∂τk
dt

Then by using the Parseval identity:

Z l,kT =
T/Tc−1∑
n=0

+∞∑
m=−∞

cln · ckm ·
∫ +∞

−∞
(2πf)2 · |P (f)|2 · ej2πf(τ l−τk+Tc·(n−m)) df
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The waveform p(.) is real, then:

Z l,kT =
T/Tc−1∑
n=0

+∞∑
m=−∞

cln · ckm

·
∫ +∞

−∞
(2πf)2 · |P (f)|2 · cos

(
2πf(τ l − τk + Tc · (n−m))

)
df (A.7)

The variance is not computed because it is required neither in chapter 3 nor in
chapter 4.

A.3.2 BPSK Case
The case of a BPSK signal will be now analysed. Note that here the effect
of the filter can not be neglected (otherwise the signal would have an infinite
spectrum). Before filtering, the chip modulation waveform is:

p(t) =
{

1 if − Tc
2 < t < Tc

2
0 else

The filtered chip waveform is pF (t) = p(t) ∗ h(t), where h(t) is the impulse
response of the low-pass filter with cut-off frequency B. Then in the case of a
brick-wall filter, the Fourier transform of pF (t) is:

P (f) =
{
Tc · sinc (πfTc) if f ∈ [−B;B]
0 otherwise

Let δ = τ l − τk + Tc · (n−m) as before. Then it follows:∫ +∞

−∞
(2πf)2 · |P (f)|2 · ej2πfδ df

= 4 ·
∫ +B

−B
sin (πfTc)2 · cos (2πfδ) df

= 4 ·
∫ B

0
(1− cos (2πfTc)) · cos (2πfδ) df

= 4 ·
∫ B

0
cos (2πfδ) df − 2 ·

∫ B

0
cos (2πf(δ − Tc)) df

− 2 ·
∫ B

0
cos (2πf(δ + Tc)) df

= 4 ·B · sinc (2πBTc)− 2 ·B · sinc (2πB(δ − Tc))− 2 ·B · sinc (2πB(δ + Tc))

Finally:

Z l,kT = 2 ·B ·
T/Tc−1∑
n=0

+∞∑
m=−∞

cln · ckm

·
(
2 · sinc

(
2πB(τ l − τk + Tc · (n−m)

)
−sinc

(
2πB(τ l − τk + Tc · (n−m− 1))

)
−sinc

(
2πB(τ l − τk + Tc · (n−m+ 1))

)) (A.8)

79



Appendix B

Early Minus Late
Discriminator

The Delay Locked Loop (DLL) tracks and estimates the misalignment between
the locally generated PRN code replica and the incoming signal, within the
tracking loops. For that purpose, the DLL uses a discriminator.

The DLL actually uses two additional correlators: one of them correlates
the input signal with an advance replica of the prompt code, the other one with
a late replica. The difference between the Early and Late correlators produces
the so called S-curve. The DLL actually tracks the zero-crossing of this S-curve,
in order to estimate the current error, which is then fed back to the local code
generation block to correct the previous estimation of the incoming code delay.

An Early minus Late power discriminator is considered. The discriminator
is in open loop, in order to make the computations easier. If the signal from
pseudolite l is tracked, then the discriminator is:

D(∆τ l) = CE(∆τ l)2 − CL(∆τ l)2

Where CE(.) (respectively CL(.)) represents the correlation of the received signal
and the early (respectively late) local replica of the tracked code signal:

CE(∆τ l) = 1
T
·
∫ T

0
r(t) · cl

(
t+ dEL · Tc

2

)
dt

CL(∆τ l) = 1
T
·
∫ T

0
r(t) · cl

(
t− dEL · Tc

2

)
dt

It is shown in [16] that the expectation of the correlator discriminator output
is:

E
[
D(∆τ l)

]
=
{

2 · P l(2− dEL) · ∆τ l
Tc

if
∣∣∆τ l∣∣ < d·Tc

2
0 otherwise

Then an estimator of the delay ∆τ l is:

∆τ̂ l = D(∆τ l)
2 · (2− dEL) · Tc · P l
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The efficiency of this estimator can be characterized by its variance. It is also
shown in [16] that the variance of this estimator can be expressed as:

var
[
τ l − τ̂ l

]
≈ dEL · T 2

c

4 · SNIRl
·
(

1 + 2
(2− dEL) · SNIRl

)
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