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1 Introduction

Differential carrier phase positioning with double difference measurements over short base-

lines strongly suppresses most error contributions, e.g. the ionospheric, tropospheric and

orbital errors, as well as the biases of both receivers and satellites [1] [2] [3]. However,

Zumberge et al. have shown in their paper on Precise Point Positioning [4] that the pre-

cise determination of the orbits and of the satellite clock offsets enabled a few millimeter

daily precision in horizontal direction and a centimeter precision in vertical direction for

the ground stations. Therefore, absolute carrier phase positioning has received a lot of

attraction recently. Reliable integer ambiguity resolution and precise bias estimation are

two challenges that are addressed in this work. These two estimation problems are cou-

pled problems, i.e. the ambiguity resolution helps for the bias estimation and the bias

estimation helps for the ambiguity resolution.

Henkel and Günther [5] proposed linear code carrier combinations that preserve the ge-

ometry, eliminate the ionospheric delays and maximize the ambiguity discrimination. In

the case of Galileo E1, E5, E5a, E5b and E6 code and carrier phase measurements, a

wavelength of 3.9 m and a noise level of a few centimeters for a carrier to noise power

ratio of 45 dB/Hz was achieved. The model used for carrier and code phase measurements

is given by

λmφ
k
m,r = rkr + δrkr + c(δτr − δτk)− q21mI

k
r + T k

r + λmN
k
m,r + bφk

m,r
+ εkm,r,

ρkm,r = rkr + δrkr + c(δτr − δτk) + q21mI
k
r + T k

r + bρkm,r
+ ηkm,r, (1.1)

where λm is the wavelength, rkr denotes the user-satellite range, δrkr denotes the projected

orbital error, cδτr and cδτk are the user and satellite clock offsets, Ikr denotes the iono-

spheric delay on L1, T k
r denotes the tropospheric delay, q1m equals to the frequency ratio

f1/fm, N
k
m,r denotes the integer ambiguity, bφk

m,r
and bρkm,r

represent the phase and code

biases in units of meters, and εkm,r, η
k
m,r denote the phase and code noise for the r-th

receiver, k-th satellite and m-th frequency.
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The multi-frequency code carrier linear combination

λφk
r =

M∑

m=1

(αmλmφ
k
m,r + βmρ

k
m,r), (1.2)

can be chosen such that the geometry is preserved (GP), the ionosphere is eliminated (IF)

and the integer ambiguities are preserved (NP), i.e.

M∑

m=1

(αm + βm) = 1,

M∑

m=1

(αm − βm)q
2
1m = 0,

αm =
jmλ

λm

, with jm ∈ Z, ∀m, (1.3)

which simplifies Eq. (1.2) to

λφk
r = rkr + δrkr + c(δτr − δτk) +

M∑

m=1

αmλmN
k
m,r +

M∑

m=1

(

αmbφk
m,r

+ βmbρkm,r

)

+

+

M∑

m=1

(
αmε

k
m,r + βmη

k
m,r

)
. (1.4)

a fourth constraint is set on the combination to maximize the ambiguity discrimination:

D , max

αm, ∀m
βm, ∀m

λ(α1, . . . , αM , β1, . . . , βM)

2σn(α1, . . . , αM , β1, . . . , βM)
, with σn =

√
√
√
√

M∑

m=1

α2
mσ

2
φm

+

M∑

m=1

β2
mσ

2
ρm .

(1.5)

Thus, the coefficients αm and βm can be determined uniquely for a given set of jm. The

bias in the combination of measurements has an upper bound:

M∑

m=1

(

αmbφk
m,r

+ βmbρkm,r

)

≤
M∑

m=1

(

|αm| · |bφk
m,r

|+ |βm| · |bρkm,r
|
)

. (1.6)

Once the biases bφk
m,r

and bρkm,r
are determined, the worst-case combination biases in the

multi-frequency linear combination Eq. (1.2) can be substantially reduced.

In this work, the receiver and satellite biases on multiple frequencies are estimated with

a Kalman filter. Chapter 2 introduces the general measurement model of the work, and

performs a set of parameter mappings to remove the rank deficiency of the system of

equations. Chapter 3 explains the principles of a Kalman filter, and its application for
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the estimation of the receiver and satellite code and phase biases including the sequential

resolution of the integer ambiguities with integer decorrelation. Some simulation results

for Galileo are also presented in this chapter. Chapter 4 introduces two methods on how

to estimate the grid ionospheric vertical delays and code biases, i.e. the interpolation of

grid points and the least-squares fitting. Chapter 5 focuses on the analysis of the bias

estimates from the GPS measurements. Two sets of real data are used in this work,

the SAPOS data in Germany and the data from CORS in USA. The former is used to

validate the phase bias estimates, while the latter is used to validate the grid ionospheric

vertical delays and satellite code biases. It is noted that the estimation method does not

depend on the data set that has been used, i.e. the data from CORS could also be used

to estimate the phase biases and the SAPOS data for the estimation of the ionospheric

grid and code biases.
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2 Measurement Model and

Parameter Mapping

2.1 Measurement Model

Reliable ambiguity resolution for absolute precise point positioning requires the precise

estimation of phase and code biases on each frequency. These biases could be determined

from measurements on multiple frequencies and a network of distributed reference sta-

tions. The most general model shall be used for measurements of undifferenced code and

carrier phases on frequency m, receiver r, satellite k, and epoch tn (Henkel et al. [6] [7]):

λ1φ
k
1,r(tn) = gkr (tn)− Ik1,r(tn) + λ1N

k
1,r + β1,r + βk

1 + pk1(tn) + εk1,r(tn)

λ2φ
k
2,r(tn) = gkr (tn)− q212I

k
1,r(tn) + λ2N

k
2,r + β2,r + βk

2 + pk2(tn) + εk2,r(tn)

ρk1,r(tn) = gkr (tn) + Ik1,r(tn) + b1,r + bk1 + ηk1,r(tn)

ρk2,r(tn) = gkr (tn) + q212I
k
1,r(tn) + b2,r + bk2 + ηk2,r(tn), (2.1)

where:

λmφ
k
m,r: carrier phase measurement,

ρkm,r: code measurement,

gkr : range including clock errors and tropospheric zenith delays,

Ikm,r: ionospheric slant delay,

Nk
m,r: integer ambiguity,

βm,r: receiver phase bias,

βk
m: satellite phase bias,

bm,r: receiver code bias,

bkm: satellite code bias,

pkm: satellite antenna phase center variation,

εkm,r: phase noise,
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ηkm,r: code noise,

and multipath errors are included in the phase and code noise.

A dynamic model is used for the range term gkr (tn), whose first order derivative over time

has some process noise on top of a constant initial value. gkr (tn) can be further split into

the range rkr , the clock offsets cδτr and cδτk, and the tropospheric delay T k
r (tn), i.e.

gkr (tn) = gkr (tn−1) + ∆t · ġkr (tn−1) + wgkr
(tn)

= rkr (tn) + c · (δτr(tn)− δτk) + T k
r (tn), (2.2)

where wgkr
(tn) denotes the process noise to model accelerations.

The ionospheric slant delay Ik1,r is modeled as

Ik1,r(tn) = mI(E
k
r (tn)) · Ikv,r(tn), (2.3)

where mI(E
k
r (tn)) is the ionospheric mapping function between the slant and vertical

delays. It depends on the elevation angle Ek
r (tn) from receiver r to satellite k at epoch tn:

mI(E
k
r (tn)) =

1
√

1− cos2(Ek
r (tn))

(1+h/Re)2

, (2.4)

with the radius Re of the earth and the height h of the ionospheric shell above the ground.

As shown in Eq. (2.1), the carrier phase measurements are affected by the time-variant

satellite antenna phase center variations (PCVs) pkm(tn), which are caused by phase center

offsets lx,m and ly,m. To well explain the relationships between phase center variations

and phase center offsets, we set up a satellite-fixed coordinate system with the y-axis

corresponding to the rotation axis of the satellite solar panel, the z-axis pointing towards

the center of the earth, and the x-axis completing the right-hand system (Schmid et al.

[8]). Fig. 2.1 shows the three-dimensional coordinate system with the satellite antenna

original phase center being the origin.

The satellite phase center variations consist of two components: azimuth-dependent PCVs

and nadir-dependent PCVs, which are shown in Fig. 2.2.

The horizontal offsets lxy,m, which also show up as azimuth-dependent PCVs, could be

solved according to the right triangle ∆OAB in the left subfigure given the azimuth angle

α of the projected receiver in xy plane and the azimuth angle α∆m
of the shifted phase

center

lxy,m(α) =
√

l2x,m + l2y,m · cos (α∆m
− α), (2.5)



2. Measurement Model and Parameter Mapping 6

Solar panel
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C
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center

center
Original phase

Shifted phase

Satellite

Nadir

Receiver

Fig. 2.1: The satellite-fixed coordinate system for expressing the satellite antenna phase

center variation. For better view of xy plane, the satellite and the earth are not shown in

the same scale.

phase center.

P’

Projected receiver
in xy plane

Original
phase
center

x

y

O

Shifted

A

B

lx,m

ly,m

l x
y
,m

α
α∆m

Original
phase
center

O B

C

Nadir

Receiver

lxy,m
z′

z′

pm = lxy,m(α) · sin z′

Fig. 2.2: Relationship between azimuth-dependent PCVs and nadir-dependent PCVs.

which has a maximum value when the shifted phase center is in the direction of the

projected receiver, i.e. α∆m
= α.

In the right subfigure the nadir-dependent PCVs is determined inside the right triangle

∆OBC, and thus, the combined effect of phase center variations is given as follows:

pkm(z
′(tn), α(tn)) =

√

l2x,m + l2y,m · sin z′(tn) · cos
(

arctan
lx,m
ly,m

− α(tn)

)

, (2.6)
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where the nadir angle z′ and the azimuth α are time-dependent as the geometry between

the satellite and the receiver changes.

In order to get the horizontal offsets errors, Schmid et al. have suggested a fitting of the

azimuth-dependent PCVs pkm(z
′
0, α(tn)) for a fixed nadir angle z′0 to the cosine function,

f(α) = Am · cos(α∆m
− α), (2.7)

with the amplitude Am and the phase shift α∆m
. Thus, the horizontal offsets to be

compensated for with reversed sign are obtained from

lx,m =
Am

sin (z′0)
· sinα∆m

ly,m =
Am

sin (z′0)
· cosα∆m

. (2.8)

The satellite antenna phase center variations are observed to be in a few millimeter level

(see e.g. Schmid et al. [8]), which is ignorable compared to the estimated bias term.

Therefore, the phase center variations are not considered in the measurement model for

estimation of biases in this work.

The phase and code noise is assumed to be zero mean white Gaussian distributed, with

the standard deviation σρkm,r
of the code tracking error has been set to the Cramer Rao

bound which is given by

Γm =
c

√
Es

N0
·
∫

(2πf)2|Sm(f)|2df
∫

|Sm(f)|2df

, (2.9)

with the speed of light c, the signal to noise power ratio Es

N0
, and the power spectral density

Sm(f) that has been derived by Betz [11] for binary offset carrier (BOC) modulated

signals. Table 2.1 shows the Cramer Rao bound for the most important Galileo signals

at a signal to noise power ratio of 45dB (Henkel et al. [12]). The standard deviation of

the phase noise has been assumed to be 1 mm.

Table 2.1: Cramer Rao Bounds for Es/N0 = 45dB

Signal BW [MHz] Γ [cm]

E1 MBOC 20 11.14

E5 AltBOC(15,10) 51 1.95

E5a BPSK(10) 20 7.83

E5b BPSK(10) 20 7.83



2. Measurement Model and Parameter Mapping 8

2.2 Estimation of Single Difference Phase Biases with

Melbourne-Wübbena Combination

Ge et al. [9], and Gabor and Nerem [10] have proposed a method to estimate L1 and L2

satellite-satellite single difference (SD) phase biases. Two kinds of linear combinations of

measurements have been used, and the derivation is briefly explained here. This approach

has the disadvantage that the obtained bias estimates are only applicable to narrowlane

ionosphere-free linear combination with a wavelength of at most 10.7 cm.

First, the geometry-free, ionosphere-free Melbourne-Wübbena combination [13] is intro-

duced as
(

f1
f1 − f2

λ1∆φkl
1,r −

f2
f1 − f2

λ2∆φkl
2,r

)

−
(

f1
f1 + f2

∆ρkl1,r +
f2

f1 + f2
∆ρkl2,r

)

= λw∆bklw,r+∆εklw,r,

(2.10)

with

λw =
1

1
λ1

− 1
λ2

=
f1 · λ1

f1 − f2
, (2.11)

where λm∆φkl
m,r and ∆ρklm,r are the SD carrier phase and code measurements on frequency

fm, m = {1, 2}, λw is the widelane wavelength, ∆εklw,r denotes the combined phase and

code noise. The combined integer ambiguity/bias term ∆bklw,ris obtained from (2.10) as

∆bklw,r = ∆Nkl
1,r −∆Nkl

2,r +∆βkl
1 −∆βkl

2 − f1 − f2
f1 + f2

· ∆bkl1
λ1

− f1 − f2
f1 + f2

· ∆bkl2
λ2

. (2.12)

In the next step, the geometry-preserving, ionosphere-free phase only combination is

introduced as

f 2
1

f 2
1 − f 2

2

λ1∆φkl
1,r −

f 2
2

f 2
1 − f 2

2

λ2∆φkl
2,r = ∆gklr +∆bklc,r +∆εklc,r, (2.13)

with the combined ambiguity/bias term

∆bklc,r =
f 2
1

f 2
1 − f 2

2

· λ1(∆Nkl
1,r +∆βkl

1 )− f 2
2

f 2
1 − f 2

2

· λ2(∆Nkl
2,r +∆βkl

2 ). (2.14)

In order to get the ambiguities and phase biases on a single frequency, the above two

combinations are combined with certain pre-factors, i.e.

f1 + f2
c

·∆bklc,r −
f2

f1 − f2
·∆bklw,r = ∆Nkl

1,r +∆β̃kl
1 ,

f1 + f2
c

·∆bklc,r −
f1

f1 − f2
·∆bklw,r = ∆Nkl

2,r +∆β̃kl
2 , (2.15)
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with

∆β̃kl
1 = ∆βkl

1 +
f2

f1 + f2
· ∆bkl1

λ1
+

f2
f1 + f2

· ∆bkl2
λ2

,

∆β̃kl
2 = ∆βkl

2 +
f1

f1 + f2
· ∆bkl1

λ1
+

f1
f1 + f2

· ∆bkl2
λ2

. (2.16)

The transmission of the estimated combined phase and code biases ∆β̃kl
1 and ∆β̃kl

2 enables

unbiased SD integer ambiguity resolution. However, these biases can only be applied to

linear combination of the form

α1·
(

λ1∆φkl
1 +

f2
f1 + f2

∆ρkl1 +
f2λ1

f1 + f2

∆ρkl2
λ2

)

+α2·
(

λ2∆φkl
2 +

f1λ2

f1 + f2

∆ρkl1
λ1

+
f1

f1 + f2
∆ρkl2

)

,

which is ionosphere-free no matter which value α1 and α2 have. Typically, geometry-

preserving and integer-preserving constraints are imposed for positioning, i.e.

α1
f1 + f2

f1
+ α2

f1 + f2
f2

= 1, (2.17)

α1 =
j1λ

λ1

and α2 =
j2λ

λ2

with {j1, j2}
!∈ Z. (2.18)

Therefore, the wavelength of this linear combination follows as

λ =
1

j1 + j2

c

f1 + f2
≤ f1

f1 + f2
λ1, (2.19)

which means the bias terms of (2.16) and (2.16) are only applicable to a certain form of

linear combination, i.e. combinations with a narrowlane wavelength of at most 10.7 cm.

The next subsection will focus on how to map some parameters together, in order to solve

the system of equations (2.1) so that the previous shortcomings can be overcome and

undifferenced phase and code biases can be estimated.

2.3 Parameter Mapping

The estimation of ambiguities and all biases in Eq. (2.1) is not feasible but also not

required as some biases can not be separated from the remaining parameters. Therefore,

some biases are absorbed by other parameters, which are then estimated jointly. Addi-

tionally, the parameter mapping provides also a large benefit for the integer ambiguity

resolution.
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In a first step, the receiver and satellite code biases on two frequencies are mapped to the

ranges and ionospheric delays as follows:

ρk1,r(tn) = gkr (tn) + q211I
k
r (tn) + b1,r + bk1 + ηk1,r(tn)

=
(
gkr (tn) + bgr + bgk

)

︸ ︷︷ ︸

g̃kr (tn)

+q211
(
Ikr (tn) + bIr + bIk

)

︸ ︷︷ ︸

Ĩkr (tn)

+ηk1,r(tn), (2.20)

and

ρk2,r(tn) = gkr (tn) + q212I
k
r (tn) + b2,r + bk2 + ηk2,r(tn)

=
(
gkr (tn) + bgr + bgk

)

︸ ︷︷ ︸

g̃kr (tn)

+q212
(
Ikr (tn) + bIr + bIk

)

︸ ︷︷ ︸

Ĩkr (tn)

+ηk2,r(tn), (2.21)

with q211 = 1.

If measurements on an additional third frequency are included, the biases of the code

measurements have to be estimated as the ranges and ionospheric delays already absorbed

the code biases on the first two frequencies. The biases bgr and bIr are the receiver code

biases which are, respectively, mapped to ranges and ionospheric delays. Similarly, the

satellite code biases are split into bgk and bIk .

bgr + q211bIr = b1,r

bgr + q212bIr = b2,r

bgk + q211bIk = b1,k

bgk + q212bIk = b2,k, (2.22)

which could be solved for the combined biases, i.e.

bgr = −b2,r − q212b1,r
q212 − 1

, bIr = −b1,r − b2,r
q212 − 1

bgk = −bk2 − q212b
k
1

q212 − 1
, bIk = −bk1 − bk2

q212 − 1
. (2.23)

The mapping of code biases also affects the carrier phase measurements, so the phase bi-

ases are changed correspondingly in order to compensate for the additional term combined

in ranges and ionospheric delays, i.e.

λ1φ
k
1,r(tn) = g̃kr (tn)− q211Ĩ

k
1,r(tn) + λ1N

k
1,r + β̃1,r + β̃k

1 + εk1,r(tn)

λ2φ
k
2,r(tn) = g̃kr (tn)− q212Ĩ

k
1,r(tn) + λ2N

k
2,r + β̃2,r + β̃k

2 + εk2,r(tn),

(2.24)
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with

β̃1,r = β1,r − bgr + q211bIr , β̃k
1 = βk

1 − bgk + q211bIk

β̃2,r = β2,r − bgr + q212bIr , β̃k
2 = βk

2 − bgk + q212bIk . (2.25)

Secondly, the satellite phase biases of one satellite can be absorbed by the receiver phase

biases. Assume that the phase biases of the first satellite are mapped to the receiver

biases, one obtains

˜̃β1,r = β̃1,r + β̃1
1 ,

˜̃βk
1 = β̃k

1 − β̃1
1

˜̃
β2,r = β̃2,r + β̃1

2 ,
˜̃
βk
2 = β̃k

2 − β̃1
2 , (2.26)

which results in R+K − 1 remaining phase biases on each frequency. These phase biases

are estimated from a global network of reference stations, e.g. the 37 GSS Sensor Stations

and the two control centers at Oberpfaffenhofen and Fucino which are shown in Fig. 2.3.
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Fig. 2.3: Bias estimation with global network of 37 Galileo Sensor Stations, and the two

control centers at Oberpfaffenhofen and Fucino.

Last but not least, the phase biases of (2.26) can not be separated from the integer

ambiguities, and thus, R +K − 1 ambiguities on each frequency are mapped into phase

biases. Fig. 2.4 shows the set of Kr visible satellites for the 39 stations, where each

point in the figure denotes an integer ambiguity for the link between a reference station

and a visible satellite. As the number of ambiguities s =
∑R

r=1Kr exceeds the number
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of remaining phase biases, the ambiguities are subdivided into two subsets: One subset

which includes float valued ambiguities being mapped to phase biases, and another subset

including integer valued ambiguities. Later the simulation results will show that, after

resolving a large amount of integer ambiguities, the bias estimation can become much more

accurate. It is noted that finding a subset of R + K − 1 ambiguities on each frequency

offers some additional degrees of freedom. In this thesis, the choice of the subset of integer

ambiguities comes from Gaussian Elimination, which is shortly explained in the following

context.

5
10

15
20

25
30

35
40

1
5

10
15

20
25

30

1

1

2

In
de

x 
of

 fr
eq

ue
nc

ie
s

Index of reference stationsIndex of satellites

Fig. 2.4: Integer ambiguities for the network of 37 Galileo Sensor Stations and the two

control centers for a snapshot 27 Galileo satellites: The blue dots refer to ambiguities

that have to be estimated while the red ones are absorbed in the biases. The set of

red dots are determined by Gaussian Elimination. The red dots include the ambiguities

with the largest satellite index for each reference station as well as the largest reference

station index for each visible satellite. As 5 ambiguities fulfill both criteria, four additional

ambiguities have to be removed for a full rank measurement generation matrix.

Equation (2.27) generalizes the measurement model for illustrating the integer ambiguity

mapping:

y = Ax1 +Bx2 + ν, (2.27)

where y denotes the measurement vector, x1 is the state vector for biases and integer

ambiguities, x2 is the state vector for the left unknown parameters, A represents the
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generation matrix of x1, which is a rank-deficient matrix, B denotes the generation

matrix of x2, and ν is the noise vector.

The process of Gaussian elimination has two parts [14]. The first part reduces the given

matrix A to row echelon form. This step is accomplished through the use of elementary

row operations, and gives the result of a matrix in row echelon form, which has the

following properties: All non-zero rows (rows with at least one non-zero element) are

above any rows of all zero rows, and the leading coefficient (the first non-zero element

from the left, also called pivot) of a non-zero row is always strictly to the right of the

leading coefficient of the row above it. The second part reduces it further into reduced

row echelon form, which has the property besides what a normal row echelon form has:

Every leading coefficient is 1 and is the only non-zero element in its column. The process

is shown in Tab. (2.2), while A[i, j] represents the element in row i, column j in the given

m× n matrix A.

Table 2.2: Algorithm for Gaussian elimination

Initialize: i ⇐ 1, j ⇐ 1

while i ≤ m && j ≤ n do

Find pivot in column j from row i to row m, whose row index is saved as imax.

if A[imax, j] 6= 0 then

Swap row i and row imax: A[i, :] ⇆ A[imax, :]

A[i, :] ⇐ A[i, j] ∗A[i, :]

for u = i+ 1, . . . , m do

A[u, :] ⇐ A[u, :]−A[u, j] ∗A[i, :]

end for

i ⇐ i+ 1

end if

j ⇐ j + 1

end while

The algorithm for Gaussian elimination can be also described as a set of matrix multipli-

cations on the original generation matrix, i.e.

(
N∏

i=1

P i

)

Ax1 =

(
N∏

i=1

P i

)
[

H ˜̃βR
H ˜̃βS

HN

]







˜̃
βR

˜̃
βS

N






, C







˜̃
βR

˜̃
βS

N






, (2.28)
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where each P i represents a step of the Gaussian elimination, N denotes the total number

of steps, and C is the coefficient matrix in reduced row echelon form.

Example: An example below with R = 3 receiver stations, K = 3 satellites and s =
∑R

r=1Kr = 9 integer ambiguities shows the Gaussian elimination and ambiguity mapping.

The subset of state vector writes






˜̃
βR

˜̃
βS

N






=
[
˜̃
βm,1,

˜̃
βm,2,

˜̃
βm,3,

˜̃
β2
m,

˜̃
β3
m, N

1
m,1, N

2
m,1, N

3
m,1, . . . , N

3
m,3

]T

, (2.29)

while the corresponding generation matrix writes

[

H ˜̃
βR

H ˜̃
βS

HN

]

=






















1 0 0 0 0 λm 0 0 0 0 0 0 0 0

1 0 0 1 0 0 λm 0 0 0 0 0 0 0

1 0 0 0 1 0 0 λm 0 0 0 0 0 0

0 1 0 0 0 0 0 0 λm 0 0 0 0 0

0 1 0 1 0 0 0 0 0 λm 0 0 0 0

0 1 0 0 1 0 0 0 0 0 λm 0 0 0

0 0 1 0 0 0 0 0 0 0 0 λm 0 0

0 0 1 1 0 0 0 0 0 0 0 0 λm 0

0 0 1 0 1 0 0 0 0 0 0 0 0 λm






















.

(2.30)

After the Gaussian elimination, the coefficient matrix C in reduced row echelon form

C =






















1 0 0 0 0 0 0 * 0 0 * * * *

0 1 0 0 0 0 0 * 0 0 * * * *

0 0 1 0 0 0 0 * 0 0 * * * *

0 0 0 1 0 0 0 * 0 0 * * * *

0 0 0 0 1 0 0 * 0 0 * * * *

0 0 0 0 0 1 0 * 0 0 * * * *

0 0 0 0 0 0 1 * 0 0 * * * *

0 0 0 0 0 0 0 0 1 0 * * * *

0 0 0 0 0 0 0 0 0 1 * * * *






















, (2.31)

where the columns with elements ∗, which could be any real value, are linear dependent

on the columns before them. Thus, the mapping of ambiguities to receiver and satellite

biases is given by

˜̃̃
βm,r =

˜̃
βm,r +

R∑

r′=1

Kr′∑

k=1

C
r,R+K−1+

∑r′−1
r′′=1

Kr′′+k
·Nk

m,r, ∀r ∈ {1, . . . , R}, (2.32)
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˜̃̃
βk
m = ˜̃βk

m +
R∑

r=1

Kr∑

k′=1

CR+k,R+K−1+
∑r−1

r′=1
Kr′+k′ ·Nk′

m,r, ∀k ∈ {1, . . . , K − 1}, (2.33)

and the mapping of ambiguities to ambiguities is given by

Ñ
kµ(l)
m,rµ(l)

= N
kµ(l)
m,rµ(l)

+

R∑

r=rµ(l)

Kr∑

k=kµ(l)

CR+k−1+l,R+K−1+
∑r−1

r′=1
Kr′+k ·Nk

m,r, (2.34)

where N
kµ(l)
m,rµ(l)

denotes the ambiguity of the rµ(l)-th receiver and the kµ(l)-th satellite.

The pivot elements for ambiguities, which are marked in red, are in the (R+K−1+ l)-th

row of matrix C, with l ∈ {1, . . . , s− (R +K − 1)}.

Therefore, the Gaussian Elimination method helps to transfer the problem of determining

which ambiguities should be mapped away into the problem of which columns in the

generation matrix can be written as the linear combinations of other columns. The

columns that do not have a leading coefficient 1 for one particular row, corresponds

to the ambiguities that have to be mapped into the phase biases and other ambiguities.

2.4 Conclusion: Measurement Model after Mapping

After a few steps of parameter mapping, the system of equations (2.1) turns into the

following equation and also becomes solvable, i.e.

λ1φ
k
1,r(tn) = g̃kr (tn)− q211Ĩ

k
1,r(tn) + λ1Ñ

k
1,r +

˜̃̃
β1,r +

˜̃̃
βk
1 + εk1,r(tn)

λ2φ
k
2,r(tn) = g̃kr (tn)− q212Ĩ

k
1,r(tn) + λ2Ñ

k
2,r +

˜̃̃
β2,r +

˜̃̃
βk
2 + εk2,r(tn)

λ3φ
k
3,r(tn) = g̃kr (tn)− q213Ĩ

k
1,r(tn) + λ3Ñ

k
3,r +

˜̃̃
β3,r +

˜̃̃
βk
3 + εk3,r(tn)

ρk1,r(tn) = g̃kr (tn) + q211Ĩ
k
1,r(tn) + ηk1,r(tn)

ρk2,r(tn) = g̃kr (tn) + q212Ĩ
k
1,r(tn) + ηk2,r(tn)

ρk3,r(tn) = g̃kr (tn) + q213Ĩ
k
1,r(tn) + b̃3,r + b̃k3 + ηk3,r(tn), (2.35)

with g̃kr , Ĩ
k
1,r,

˜̃̃
β1,r,

˜̃̃
βk
1 ,

˜̃̃
β2,r and

˜̃̃
βk
2 described in Eq.(2.20), (2.21), (2.25), (2.26), (2.32)

and (2.33), and Ñk
1,r, Ñ

k
2,r from Eq. (2.34) shown in Fig. 2.4. The phase biases and

ambiguities on the third frequency can be obtained similarly with the ones on the other

two frequencies, while the code biases on the third frequency can not be mapped to ranges

and ionospheric delays, and the first satellite code bias is mapped to receiver code biases.
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3 Estimation of Code and Carrier

Phase Biases

3.1 Fundamentals of Kalman Filtering

The precise estimation of receiver and satellite biases requires a global network and a few

hundred epochs which motivate a recursive state estimation, e.g. a Kalman filter (Brown

and Hwang [15]). This section focuses on the principles of a Kalman filter, including the

predict and update equations of state vectors.

A Kalman filter is based on a linear discrete-time dynamical system. At each discrete

time increment, a linear operator is applied to the state to generate the new state, with

some noise mixed in. The knowledge of the system dynamics is used to generate a linear

discrete-time state space model, which contains a random process. The state space model

of the linear system can be written as

xn = Φn−1xn−1 +wn, (3.1)

where xn denotes the true state vector, Φn indicates the state transition matrix, and wn

is the process noise vector at epoch n. The process noise vector follows a zero mean white

Gaussian distribution with a noise covariance matrix ΣQ, i.e. w ∼ N (0,ΣQ).

At epoch n, measurement vector zn of the true state vector xn is produced according to

zn = Hnxn + vn, (3.2)

where vn is the measurement noise which is assumed to be zero mean white Gaussian

noise with covariance ΣR.

The estimation of state vector xn based on a Kalman filter includes two distinct phases:

prediction and update. The a priori state estimate x̂−
n+1 at epoch n+ 1 is obtained from

the n-th epoch a posteriori state estimate x̂+
n , i.e.

x̂−
n+1 = Φx̂+

n . (3.3)
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The covariance matrix of the predicted state estimate follows as

P
x̂
−
n+1

= ΦP
x̂
+
n
ΦT +ΣQ. (3.4)

According to the measurements of the next epoch, the predicted state is then updated,

i.e. the a posteriori state estimate is obtained from

x̂+
n = x̂−

n +Kn(zn −Hnx̂
−
n ), (3.5)

where zn−Hnx̂
−
n indicates the measurement residual and Kn is the Kalman gain, which

is chosen such that

min
Kn

E{‖x̂+
n − xn‖2} = min

Kn

tr(P
x̂
+
n
), (3.6)

where P
x̂
+
n
denotes the a posteriori state covariance matrix that is obtained from Eq.

(3.5):

P
x̂
+
n

= E{(x̂+
n − xn)(x̂

+
n − xn)

T}
= E{(x̂−

n +Kn(zn −Hnx̂
−
n )− xn)(x̂

−
n +Kn(zn −Hnx̂

−
n )− xn)

T}
= E{(x̂−

n +Kn(Hnxn + vn −Hnx̂
−
n )− xn)(x̂

−
n +Kn(Hnxn + vn −Hnx̂

−
n )− xn)

T}
= E{((1−KnHn)(x̂

−
n − xn) +Knvn)((1−KnHn)(x̂

−
n − xn) +Knvn)

T}. (3.7)

Since the measurement noise vector vn is uncorrelated with other terms, P
x̂
+
n
can be

further derived as

P
x̂
+
n

= (1−KnHn)E{(x̂−
n − xn)(x̂

−
n − xn)

T}(1−KnHn)
T +KnE{vnv

T
n}KT

n

= (1−KnHn)P x̂
−
n
(1−KnHn)

T +KnΣRK
T
n

= P
x̂
−
n
−P

x̂
−
n
HT

nK
T
n −KnHnP x̂

−
n
+Kn(HnP x̂

−
n
HT

n +ΣR)K
T
n . (3.8)

Setting the matrix derivation ∂tr(P
x̂
+
n
)/∂Kn = 0 and solving for Kn yields the optimal

Kalman gain

Kn = P
x̂
−
n
Hn(HnP x̂

−
n
HT

n +ΣR)
−1, (3.9)

which is used in Eq. (3.5) to obtain an a posteriori MMSE estimator. Equation (3.8) can

be simplified by replacing the optimal Kalman gain by Eq. (3.9), i.e.

P
x̂
+
n
= (1−KnHn)P x̂

−
n
. (3.10)

Moreover, the a posteriori state estimate x̂+
n can be computed in an iterative way from

the measurement vector zn based on Eq. (3.3) and (3.5), i.e.

x̂+
n = x̂−

n +Kn(zn −Hnx̂
−
n )

= (1−KnHn)x̂
−
n +Knzn

= (1−KnHn)Φx̂+
n−1 +Knzn. (3.11)
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Thus, the above iterative equation is equivalent to the non-recursive form

x̂+
n =

[
n∏

l=1

(1−Kn−l+1Hn−l+1)Φ

]

Φ−1x̂−
0 +

n∑

l=1

(
n−l−1∏

m=0

(1−Kn−mHn−m)Φ

)

K lzl,

(3.12)

where the first term represents the impact of the state initialization x̂−
1 and the second

term describes the impact of the measurement vector zn.

To conclude, Kalman filter benefits from the prior knowledge of the dynamical process

model, and minimizes the mean square error between the a posteriori state estimate and

the true state. During the estimation process, the predicted state of the next epoch is

generated based on the a posteriori state of the last epoch, while the covariance of the

predicted state is generated similarly based on the covariance of the a posteriori state. The

state is then updated according to the state prediction and the measurement residual with

a certain weighting, which is obtained from finding the optimum criterion to minimize

the mean square error of the a posteriori state estimate.

3.2 Estimation of Receiver and Satellite Phase Biases

3.2.1 System Description

Estimating receiver and satellite phase biases in Eq. (2.35) with a Kalman filter, the

state vector includes the ranges, range rates, ionospheric delays, receiver and satellite

phase biases and ambiguities, i.e.

xn =

[

g̃T(tn), ˙̃gT(tn), Ĩ
T
(tn),

˜̃̃
βT

R,
˜̃̃
βT

S , Ñ

]T

, (3.13)

with

g̃(tn) =
[
g̃11(tn), . . . , g̃

K1
1 (tn), . . . , g̃

1
R(tn), . . . , g̃

KR

R (tn)
]T

˙̃g(tn) =
[
˙̃g11(tn), . . . , ˙̃g

K1
1 (tn), . . . , ˙̃g

1
R(tn), . . . , ˙̃g

KR

R (tn)
]T

Ĩ(tn) =
[

Ĩ11 (tn), . . . , Ĩ
K1
1 (tn), . . . , Ĩ

1
R(tn), . . . , Ĩ

KR

R (tn)
]T

˜̃̃
βR =

[
˜̃̃
β1,1, . . . ,

˜̃̃
β1,R,

˜̃̃
β2,1, . . . ,

˜̃̃
β2,R

]T

˜̃̃
βS =

[
˜̃̃
β2
1 , . . . ,

˜̃̃
βK
1 ,

˜̃̃
β2
2 , . . . ,

˜̃̃
βK
2

]T

, (3.14)
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and the subset of integer valued ambiguities Ñ .

The vector zn describes the phase and code measurements of Eq. (2.35), i.e.

zn =
[
λ1φ

1
1,1(tn), . . . , λ1φ

KR

1,R(tn), . . . , λ2φ
KR

2,R(tn), ρ11,1(tn), . . . , ρ
KR

1,R(tn), . . . , ρ
KR

2,R(tn)
]T

.

(3.15)

The generation matrix in Eq. (3.2) consists of the following components

H =
[

H g̃ H ˙̃g H Ĩ H ˜̃̃
βR

H ˜̃̃
βS

HÑ

]

, (3.16)

with

H g̃ = 14×1 ⊗ 1s×s, H ˙̃g = 04s×s,

H Ĩ = [−q211 − q212 q211 q212]
T ⊗ 1s×s,

H ˜̃̃
βR

=

[

12×2

02×2

]

⊗










1K1×1

1K2×1

. . .

1KR×1










, (3.17)

where operator ⊗ denotes the tensor product, H ˜̃̃
βS

has the dimension of 4s × 2(K − 1)

and mapping satellite biases to measurements, and H Ñ represents the integer ambiguity

mapping matrix of dimension 4s× (2s− 2(R +K − 1)), which comes from the following

matrix HN by reducing 2(R + K − 1) columns with Gaussian Elimination method to

avoid H getting rank deficient, i.e.

HN =

[

1

0

]

⊗
[

λ1 0

0 λ2

]

⊗ 1s×s, (3.18)

where λ1 and λ2 are the wavelengths, and s denotes the number of available carrier phase

measurements on one frequency, i.e.

s =
R∑

r=1

Kr. (3.19)

The measurement noise in Eq. (3.2) is assumed to be uncorrelated between satellites and

follows a zero mean white Gaussian distribution with the variances σ2
φk
m,r

and σ2
ρkm,r

.

A linear dynamic model is used for the range term g̃kr (tn), i.e.

g̃kr (tn) = g̃kr (tn−1) + ∆t · ˙̃gkr (tn−1) + wg̃kr
(tn). (3.20)
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The state transition matrix in Eq. (3.1) is then obtained as

Φ =







1s×s ∆t · 1s×s 0

0 1s×s 0

0 0 13s×3s






, (3.21)

where ∆t represents the interval between two measurement epochs. The noise covariance

matrix ΣQ in Eq. (3.1) was derived by Brown and Hwang [15] using the model in Fig.

3.1

velocity positionwhite noise

n(t) x(∆t)ẋ(∆t)
G(s)G(s)

Fig. 3.1: Random walk model on range rate.

The transfer functions describe the integration, i.e.

G1(s) = G(s) =
1

s
L
−1

−−→ g1(t) = u(t)

G2(s) = G(s)2 =
1

s2
L
−1

−−→ g2(t) = t · u(t). (3.22)

It is assumed that the white noise n(t) is uncorrelated between different epochs. Thus,

the noise variances and covariances on range and range rate can be calculated as

E{ẋ(∆t)ẋ(∆t)} = E{(n(t) ∗ g1(t)) · (n(t) ∗ g1(t))}

= E

{∫ ∆t

0

n(w)dw ·
∫ ∆t

0

n(v)dv

}

= E

{∫ ∆t

0

∫ ∆t

0

n(w)n(v) · δ(w − v)dwdv

}

=

∫ ∆t

0

∫ ∆t

0

E{n2(w)} · δ(w − v)dwdv

=

∫ ∆t

0

∫ ∆t

0

Sp · δ(w − v)dwdv = Sp ·∆t, (3.23)

E{x(∆t)ẋ(∆t)} = E{(n(t) ∗ g2(t)) · (n(t) ∗ g1(t))}

= E

{∫ ∆t

0

n(t− w)wdw ·
∫ ∆t

0

n(τ)dτ

}

= E

{∫ ∆t

0

∫ ∆t

0

n(t− w)n(τ) · w · δ(t− w − τ)dwdτ

}

=

∫ ∆t

0

∫ ∆t

0

E{n2(w)} · w · δ(t− w − τ)dwdτ

=

∫ ∆t

0

∫ ∆t

0

Sp · w · δ(w − v)dwdv = Sp ·
∆t2

2
, (3.24)
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E{x(∆t)x(∆t)} = E{(n(t) ∗ g2(t)) · (n(t) ∗ g2(t))}

= E

{∫ ∆t

0

n(t− w) · wdw ·
∫ ∆t

0

n(t− v) · vdv
}

= E

{∫ ∆t

0

∫ ∆t

0

n(t− w)n(t− v) · w · v · δ((t− w)− (t− v))dwdv

}

=

∫ ∆t

0

∫ ∆t

0

E{n2(t− w)} · w · v · δ(v − w)dwdv

=

∫ ∆t

0

∫ ∆t

0

Sp · w · v · δ(w − v)dwdv = Sp ·
∆t3

3
, (3.25)

where ∗ denotes the convolution calculator. Thus, the state covariance matrix of range

and range-rate related errors is given by

ΣQ,g̃ ˙̃g = Sp ·∆t ·
[

∆t2

3
∆t
2

∆t
2

1

]

⊗ 1s×s. (3.26)

The calculation of noise variances and covariances on a more accurate model, including

the range accelerations, is similar with (3.23)-(3.25) and derived in Appendix 7.1, which

gives the results as

E{ẍ(∆t)ẍ(∆t)} =

∫ ∆t

0

∫ ∆t

0

Sp · 1 · 1 · δ(w − v)dwdv = Sp ·∆t

E{ẋ(∆t)ẍ(∆t)} =

∫ ∆t

0

∫ ∆t

0

Sp · w · 1 · δ(w − v)dwdv =
1

2
Sp ·∆t2

E{x(∆t)ẍ(∆t)} =

∫ ∆t

0

∫ ∆t

0

Sp ·
1

2
w2 · 1 · δ(w − v)dwdv =

1

6
Sp ·∆t3

E{ẋ(∆t)ẋ(∆t)} =

∫ ∆t

0

∫ ∆t

0

Sp · w · v · δ(w − v)dwdv =
1

3
Sp ·∆t3

E{x(∆t)ẋ(∆t)} =

∫ ∆t

0

∫ ∆t

0

Sp ·
1

2
w2 · v · δ(w − v)dwdv =

1

8
Sp ·∆t4

E{x(∆t)x(∆t)} =

∫ ∆t

0

∫ ∆t

0

Sp ·
1

2
w2 · 1

2
v2 · δ(w − v)dwdv =

1

20
Sp ·∆t5, (3.27)

and forms the covariance matrix for range, range rate, and the range accelerations, i.e.

ΣQ,g̃ ˙̃g ¨̃g = Sp ·∆t ·







1
20
∆t4 1

8
∆t3 1

6
∆t2

1
8
∆t3 1

3
∆t2 1

2
∆t

1
6
∆t2 1

2
∆t 1






⊗ 1s×s. (3.28)

The whole noise covariance matrix ΣQ is given by

ΣQ =







ΣQ,g̃ ˙̃g 0 0

0 ΣQ,Ĩ 0

0 0 Σ
Q,

˜̃
β,Ñ






, (3.29)
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with

ΣQ,Ĩ = σ2
I · 1s×s and Σ

Q,
˜̃
β,Ñ

= 02s×2s, (3.30)

which means no process noise is assumed for the biases and integer ambiguities.

3.2.2 Least-squares Initialization

Up to now, the Kalman filter predict and update estimations have been set up. The initial

estimate of the state vector and its covariance matrix for initializing the Kalman filter are

determined by a simple least-squares estimation. Measurements of first two epochs are

required as both the range and the range rate are estimated. The measurements for two

epochs are modeled as

[

z(tn)

z(tn+1)

]

= Hcomb ·
[

x(tn)

x(tn+1)

]

+

[

v(tn)

v(tn+1)

]

, (3.31)

with

Hcomb =




H g̃ 0 H Ĩ 0 H ˜̃̃

βR

H ˜̃̃
βS

H Ñ

0 H g̃ 0 H Ĩ H ˜̃̃
βR

H ˜̃̃
βS

H Ñ



 . (3.32)

Thus, the least-squares estimation for x(tn), x(tn+1) is given by

[

x̂(tn)

x̂(tn+1)

]

= (HT
combΣ

−1
combHcomb)

−1HT
combΣ

−1
comb ·

[

z(tn)

z(tn+1)

]

, (3.33)

with

Σcomb = 12×2 ⊗ΣR, (3.34)

and x(tn) is the state vector of (3.13) excluding the range rate ˙̃g, which will be estimated

by differencing the state estimates x̂g̃(tn+1) and x̂g̃(tn), i.e.

ˆ̃̇
g(tn) =

1

∆t
· (x̂g̃(tn+1)− x̂g̃(tn)). (3.35)

The estimated noise variances and covariances of range and range rate can be derived

from the covariances of the least-squares estimates as

Σ′
ˆ̃gn ˆ̃gn

= Σˆ̃gn ˆ̃gn

Σ′
ˆ̃gn

ˆ̃̇gn
=

1

∆t
· (Σˆ̃gn ˆ̃gn+1

−Σˆ̃gn ˆ̃gn
)

Σ′
ˆ̃̇gn

ˆ̃̇gn
=

1

∆t2
· (Σˆ̃gn+1

ˆ̃gn+1
− 2Σˆ̃gn ˆ̃gn+1

+Σˆ̃gn ˆ̃gn
) (3.36)
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A more accurate state space model includes the second derivative ¨̃g of the range, of which

an initial estimate can be obtained with three epochs. The relationship between the range,

range rate and the second derivative of the range is shown as

ˆ̃̇
g(tn) =

1

2∆t
· (ˆ̃g(tn+1)− ˆ̃g(tn−1)) (3.37)

ˆ̃̈
g(tn) =

1

∆t
· (
ˆ̃g(tn+1)− ˆ̃g(tn)

∆t
−

ˆ̃g(tn)− ˆ̃g(tn−1)

∆t
)

=
1

∆t2
· (ˆ̃g(tn+1)− 2ˆ̃g(tn) + ˆ̃g(tn−1)), (3.38)

with the variances and covariances

Σ′
ˆ̃gn ˆ̃gn

= Σˆ̃gn ˆ̃gn

Σ′
ˆ̃gn

ˆ̃̇gn
=

1

2∆t
· (Σˆ̃gn ˆ̃gn+1

−Σˆ̃gn ˆ̃gn−1
)

Σ′
ˆ̃gn

ˆ̃̈gn
=

1

∆t2
· (Σˆ̃gn ˆ̃gn+1

− 2Σˆ̃gn ˆ̃gn
+Σˆ̃gn ˆ̃gn−1

)

Σ′
ˆ̃̇gn

ˆ̃̇gn
=

1

4∆t2
· (Σˆ̃gn+1

ˆ̃gn+1
− 2Σˆ̃gn+1

ˆ̃gn−1
+Σˆ̃gn−1

ˆ̃gn−1
)

Σ′
ˆ̃̇gn

ˆ̃̈gn
=

1

2∆t3
· (Σˆ̃gn+1

ˆ̃gn+1
− 2Σˆ̃gn+1

ˆ̃gn
+ 2Σˆ̃gn−1

ˆ̃gn
−Σˆ̃gn−1

ˆ̃gn−1
)

Σ′
ˆ̃̈gn

ˆ̃̈gn
=

1

∆t4
· (Σˆ̃gn+1

ˆ̃gn+1
− 4Σˆ̃gn+1

ˆ̃gn
+ 2Σˆ̃gn+1

ˆ̃gn−1
+ 4Σˆ̃gn ˆ̃gn

− 4Σˆ̃gn ˆ̃gn−1
+Σˆ̃gn−1

ˆ̃gn−1
),

(3.39)

which are used as a priori covariance matrices for the Kalman filter based state estimates.

3.2.3 Integer Ambiguity Resolution

While the state vector is updated in the Kalman filter epoch by epoch, the state estimate

also includes an integer ambiguity resolution, which is done by first decorrelating the float

ambiguity estimates, i.e.

N̂
′+

= ZN̂
+
, (3.40)

and then sequentially fixing (bootstrapping) the decorrelated ones (see Henkel [1]). The

integer ambiguity transformationZ of Teunissen [16] improves the reliability of bootstrap-

ping. It is shown in a later section that the accuracy of phase bias estimation benefits a

lot from having fixed the integer ambiguities.

The sequential ambiguity fixing was suggested by Blewitt in [17]. This conditional fixing

takes the prior knowledge of the fixed ambiguities into account for the fixing of the re-

maining ambiguities, which are correlated for the difference between the fixed and float
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estimates, i.e.

N̂2|1 = N̂2 − γ ·
(

N̂1 − [N̂1]
)

, (3.41)

where [·] denotes the rounding, and γ is chosen such that (see e.g. Teunissen [18])

min
γ

σ2
N̂2|1

. (3.42)

By solving ∂σ2
N̂2|1

/∂γ = 0, the optimal value of γ is given by

γopt =
σN̂1N̂2

− σ[N̂1]N̂2

σ2
N̂1

− 2σN̂1[N̂1]
+ σ2

[N̂1]

, (3.43)

where the pseudo-covariances of the three discontinuous functions are traditionally ap-

proximated by zero, i.e. the terms σN̂1[N̂1]
, σ2

[N̂1]
and σ[N̂1]N̂2

are neglected, which will give

the following equation:

γ = σN̂2N̂1
σ−2

N̂1
. (3.44)

Replacing γ in (3.41) by (3.44) yields in accordance with Teunissen [20]

N̂2|1 = N̂2 − σN̂2N̂1
σ−2

N̂1
·
(

N̂1 − [N̂1]
)

, (3.45)

which is uncorrelated to N̂1, i.e.

σN̂1N̂2|1
= 0. (3.46)

The variance of N̂2|1 is obtained from (3.45):

σ2
N̂2|1

= σ2
N̂2

− σ2
N̂2N̂1

σ−2

N̂1
. (3.47)

Once the second ambiguity is conditionally fixed based on (3.45), the third one can be

fixed similarly, i.e.

N̂3|1,2 = N̂3 − σN̂3N̂1
σ−2

N̂1
·
(

N̂1 − [N̂1]
)

− σN̂3N̂2|1
σ−2

N̂2|1
·
(

N̂2|1 − [N̂2|1]
)

, (3.48)

with the variance

σ2
N̂3|1,2

= σ2
N̂3

− σ2
N̂3N̂1

σ−2

N̂1
− σ2

N̂3N̂2|1
σ−2

N̂2|1
, (3.49)

and the covariance between N̂3 and N̂2|1 being

σN̂3N̂2|1
= σN̂3N̂2

− σN̂2N̂1
σ−2

N̂1
σN̂3N̂1

. (3.50)

Similarly, the covariances between the fourth ambiguity N̂4 and the previous conditional

ones are calculated as

σN̂4N̂2|1
= σN̂4N̂2

− σN̂2N̂1
σ−2

N̂1
σN̂4N̂1

, (3.51)



3. Estimation of Code and Carrier Phase Biases 25

and

σN̂4N̂3|1,2
= σN̂4N̂3

− σN̂3N̂1
σ−2

N̂1
σN̂4N̂1

− σN̂3N̂2|1
σ−2

N̂2|1
σN̂4N̂2|1

. (3.52)

In general, the k-th conditional ambiguity is given by

N̂k|1,...,k−1 = N̂k −
k−1∑

j=1

σN̂kN̂j|1,...,j−1
σ−2

N̂j|1,...,j−1

(

N̂j|1,...,j−1 − [N̂j|1,...,j−1]
)

, (3.53)

with the conditional variance

σ2
N̂k|1,...,k−1

= σ2
N̂k

−
k−1∑

j=1

σ2
N̂kN̂j|1,...,j−1

σ−2

N̂j|1,...,j−1
, (3.54)

and the covariance between itself and the previous conditional ones

σN̂kN̂j|1,...,j−1
= σN̂kN̂j

−
j−1
∑

i=1

σN̂jN̂i|1,...,i−1
σ−2

N̂i|1,...,i−1
σN̂kN̂i|1,...,i−1

, (3.55)

with j ∈ {1, . . . , k− 1}. Moreover, it can be shown from (3.54) that the cross-correlation

between the conditional ambiguity estimates is zero, i.e.

σN̂k|1,...,k−1N̂j|1,...,j−1
= 0 ∀k 6= l (3.56)

For simplicity, the k-th fixed conditional ambiguity is denoted by

N̆Bk
=
[

N̂k|1,...,k−1

]

. (3.57)

Thus, Eq. (3.54) can be rewritten in matrix-vector form as










N̂1 − N̆B1

N̂2 − N̆B2

...

N̂K − N̆BK










=










1 0 . . . 0

σN̂2N̂1
σ−2

N̂1
1 . . . 0

...
. . .

...

σN̂KN̂1
σ−2

N̂1
σN̂KN̂2|1

σ−2

N̂2|1
. . . 1










·










N̂1 − N̆B1

N̂2|1 − N̆B2

...

N̂K|1,...,K−1 − N̆BK










. (3.58)

Assuming deterministic N̆Bk
, the covariance matrix ΣN̂ can be decomposed as

ΣN̂ = LDLT, (3.59)

with

L =










1 0 . . . 0

σN̂2N̂1
σ−2

N̂1
1 . . . 0

...
. . .

...

σN̂KN̂1
σ−2

N̂1
σN̂KN̂2|1

σ−2

N̂2|1
. . . 1










, (3.60)
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and the diagonal matrix

D =










σ2
N̂1

σ2
N̂2|1

. . .

σ2
N̂K|1,...,K−1










. (3.61)

For correct N̆Bk
, Teunissen computed the biases in the conditional ambiguities from the

the biases in the float ambiguities [19], i.e.










bN̂1

bN̂2|1

...

bN̂K|1,...,K−1










= L−1 ·










bN̂1

bN̂2

...

bN̂K










. (3.62)

The conditional variances and biases are used to compute the success rate of the sequential

ambiguity resolution, i.e.

Ps =
K∏

k=1

∫ +0.5

−0.5

1
√

2πσ2
N̂k|1,...,k−1

· exp
(

−
(N̂k|1,...,k−1 − bN̂k|1,...,k−1

)2

2σ2
N̂k|1,...,k−1

)

dN̂k|1,...,k−1 (3.63)

However, the exact evaluation of N̂2|1 in (3.41) requires the terms σN̂1[N̂1]
, σ2

[N̂1]
and σ[N̂1]N̂2

to be considered in γopt in (3.43). The derivation of the three terms is shown as follows.

First, the errors in the float ambiguity estimates are introduced as

εN̂1
= N̂1 −N1, εN̂2

= N̂2 −N2, (3.64)

which are zero mean Gaussian distributed with the probability density functions f(εN̂1
)

and f(εN̂2
), and the joint probability density function f(εN̂1

, εN̂2
) being

f(εN̂1
, εN̂2

) =
1

2π
√

|Σ|
e

− 1
2









εN̂1

εN̂2









T

Σ−1









εN̂1

εN̂2









, (3.65)

with

Σ =

[

σ2
N̂1

σN̂1N̂2

σN̂1N̂2
σ2
N̂2

]

. (3.66)
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The three pseudo-covariances are calculated as

σN̂1[N̂1]
=

∫ +∞

−∞
εN̂1

[εN̂1
]f(εN̂1

)dεN̂1

=

+∞∑

k=−∞
k

∫ k+0.5

k−0.5

εN̂1
f(εN̂1

)dεN̂1

=
1√
2π

·
+∞∑

k=−∞
k

(

e
− (k−0.5)2

2σ2
N̂1 − e

− (k+0.5)2

2σ2
N̂1

)

(3.67)

σ2
[N̂1]

=

∫ +∞

−∞

(
[εN̂1

]
)2

f(εN̂1
)dεN̂1

=
+∞∑

k=−∞
k2 ·

∫ k+0.5

k−0.5

f(εN̂1
)dεN̂1

=

+∞∑

k=−∞
k2 · (Φ(k + 0.5

σN̂1

)− Φ(
k − 0.5

σN̂1

)) (3.68)

σ[N̂1]N̂2
=

∫ +∞

−∞

∫ +∞

−∞
[εN̂1

]εN̂2
f(εN̂1

, εN̂2
)dεN̂1

=
+∞∑

k=−∞
k ·
∫ k+0.5

k−0.5

∫ +∞

−∞
εN̂2

f(εN̂1
, εN̂2

)dεN̂2
dεN̂1

. (3.69)

Applying Eq.(3.65) in (3.69) yields

σ[N̂1]N̂2
=

+∞∑

k=−∞
k ·
∫ k+0.5

k−0.5

∫ +∞

−∞
εN̂2

· 1

2π
√

|Σ|
e
− 1

2|Σ|

(

σ2
N̂1

ε2
N̂2

−2σ
N̂1N̂2

ε
N̂1

ε
N̂2

+σ2
N̂2

ε2
N̂1

)

dεN̂2
dεN̂1

=
+∞∑

k=−∞
k ·
∫ k+0.5

k−0.5

∫ +∞

−∞
εN̂2

· 1

2π
√

|Σ|
e
−

σ2
N̂1

2|Σ|

(

ε
N̂2

−
σ
N̂1N̂2
σ2
N̂1

ε
N̂1

)2

+
σ2
N̂1N̂2

−σ2
N̂1

σ2
N̂2

2
√

|Σ|·σ2
N̂1 dεN̂2

dεN̂1

=
1

2π
√

|Σ|

+∞∑

k=−∞
k ·
∫ k+0.5

k−0.5

e
−

ε2
N̂1

2σ2
N̂1

∫ +∞

−∞
εN̂2

e
−

σ2
N̂1

2|Σ|

(

ε
N̂2

−
σ
N̂1N̂2
σ2
N̂1

ε
N̂1

)2

dεN̂2
dεN̂1

.

(3.70)

By using the expansion

εN̂2
=

(

εN̂2
− σN̂1N̂2

σ2
N̂1

εN̂1

)

+
σN̂1N̂2

σ2
N̂1

εN̂1
, (3.71)

and simplifying the integral parameter by the substitution

x , εN̂2
− σN̂1N̂2

σ2
N̂1

εN̂1
, (3.72)
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the inner integral can be calculated as

∫ +∞

−∞
εN̂2

e
−

σ2
N̂1

2|Σ|

(

ε
N̂2

−
σ
N̂1N̂2
σ2
N̂1

ε
N̂1

)2

dεN̂2
=

∫ +∞

−∞
xe−

σ2
N̂1

2|Σ|
x2

dx+

∫ +∞

−∞

σN̂1N̂2

σ2
N̂1

εN̂1
e−

σ2
N̂1

2|Σ|
x2

dx

= 0 +

∫ +∞

−∞

σN̂1N̂2

σ2
N̂1

εN̂1

√

2π
|Σ|
σ2
N̂1

1
√

2π |Σ|
σ2
N̂1

e

− x2

2|Σ|

σ2
N̂1 dx

=
σN̂1N̂2

σ2
N̂1

√

2π
|Σ|
σ2
N̂1

· εN̂1
. (3.73)

Thus, (3.70) can be further developed as

σ[N̂1]N̂2
=

1

2π
√

|Σ|

+∞∑

k=−∞
k ·
∫ k+0.5

k−0.5

σN̂1N̂2

σ2
N̂1

√

2π
|Σ|
σ2
N̂1

· εN̂1
e
−

ε2
N̂1

2σ2
N̂1 dεN̂1

=
1

2π
√

|Σ|
σN̂1N̂2

σ2
N̂1

√

2π
|Σ|
σ2
N̂1

+∞∑

k=−∞
k ·
∫ k+0.5

k−0.5

εN̂1
e
−

ε2
N̂1

2σ2
N̂1 dεN̂1

=
1

2π
√

|Σ|
σN̂1N̂2

σ2
N̂1

√

2π
|Σ|
σ2
N̂1

+∞∑

k=−∞
k · (−σ2

N̂1
) ·
(

e
− (k+0.5)2

2σ2
N̂1 − e

− (k−0.5)2

2σ2
N̂1

)

= − σN̂1N̂2

2πσ2
N̂1

+∞∑

k=−∞
k

(

e
− (k+0.5)2

2σ2
N̂1 − e

− (k−0.5)2

2σ2
N̂1

)

, (3.74)

where the infinite sum can be well approximated by a finite sum over |k| < 10. It is noted

from the results that, the pseudo-covariance term σ[N̂1]N̂2
is independent from the noise

variance σ2
N̂2

of the second ambiguity.

Fig. 3.2 shows the optimal weighting γopt of (3.43) for bootstrapping. The additional

consideration of the fixing errors in [N̂1] results in a smaller weight than the traditional

γ = σN̂2N̂1
σ−2

N̂1
, which equals the cross-correlation coefficient ρ if the variances for N̂1 and

N̂2 are assumed to be the same. If the fixing error in the first ambiguity is larger, a lower

weight of γ is necessary, which results in a lower probability of wrong fixing.

After the fixing of the second ambiguity, the exact calculation for the third conditional

one can be derived by finding the optimal γ1 and γ2 in the following equation

N̂3|1,2 = N̂3 − γ1 ·
(

N̂1 − [N̂1]
)

− γ2 ·
(

N̂2|1 − [N̂2|1]
)

, (3.75)

such that

min
γ1, γ2

σN̂3|1,2
. (3.76)
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Fig. 3.2: Optimal weighting γopt for bootstrapping with respect to the cross-correlation

coefficient ρ = σN̂1N̂2
/(σN̂1

σN̂2
): The additional consideration of the fixing errors in [N̂1]

results in a smaller weight than the traditional γ = σN̂2N̂1
σ−2

N̂1
, which corresponds to the

cross-correlation coefficient between N̂1 and N̂2 for equal variances.

Since N̂1 and N̂2|1 are uncorrelated, the solution to (3.76) is given by

γ1 =
σN̂3N̂1

− σN̂3[N̂1]

σ2
N̂1

− 2σN̂1[N̂1]
+ σ2

[N̂1]

,

γ2 =
σN̂3N̂2|1

− σN̂3[N̂2|1]

σ2
N̂2|1

− 2σN̂2|1[N̂2|1]
+ σ2

[N̂2|1]

. (3.77)

which solves Eq. (3.75), i.e.

N̂3|1,2 = N̂3−
σN̂3N̂1

− σN̂3[N̂1]

σ2
N̂1

− 2σN̂1[N̂1]
+ σ2

[N̂1]

·
(

N̂1 − [N̂1]
)

−
σN̂3N̂2|1

− σN̂3[N̂2|1]

σ2
N̂2|1

− 2σN̂2|1[N̂2|1]
+ σ2

[N̂2|1]

·
(

N̂2|1 − [N̂2|1]
)

.

(3.78)

The exact expression for the k-th conditional ambiguity is given by

N̂k|1,...,k−1 = N̂k −
k−1∑

j=1

γj

(

N̂j|1,...,j−1 − [N̂j|1,...,j−1]
)

, (3.79)
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with

γj =
σN̂kN̂j|1,...,j−1

− σN̂k[N̂j|1,...,j−1]

σ2
N̂j|1,...,j−1

− 2σN̂j|1,...,j−1[N̂j|1,...,j−1]
+ σ2

[N̂j|1,...,j−1]

.

Eq. (3.79) simplifies to Eq. (3.53) if the pseudo-covariance terms σN̂k [N̂j|1,...,j−1]
,

σN̂j|1,...,j−1[N̂j|1,...,j−1]
and σ2

[N̂j|1,...,j−1]
are approved by 0.

Integer bootstrapping can be visualized graphically by introducing the concept of pull-in

regions. Let the map S represent the mapping from n-dimensional float ambiguities to

n-dimensional integer ambiguities, i.e. R
n 7→ Z

n, and therefore the map S is a ”many-

to-one” map instead of ”one-to-one” map. The following subset S
Ňk

defines a subset of

float ambiguities N̂ that could be mapped to the integer ambiguity Ň k, and the subset

is referred to as the pull-in region of Ň k [20].

S
Ňk

=
{

N̂ ∈ R
n
∣
∣
∣ Ň k = S(N̂)

}

, Ň k ∈ Z
n, (3.80)

where Ň k denotes the integer estimator, i.e. Ň k = S(N̂ k).

The integer estimator is said to be admissible [20] when the pull-in regions S
Ňk

satisfy

(1) ∪ S
Ňk

= R
n, ∀Ň k ∈ Z

n

(2) S
Ňk1

∩ S
Ňk2

= ∅, ∀Ň k1 , Ň k2 ∈ Z
n, Ň k1 6= Ň k2

(3) S
Ňk

= S0 + Ň k, (3.81)

where the first constraint ensures that the subset S
Ňk

cover the whole real-valued region,

and the second constraint ensures no overlapping of the pull-in regions, i.e. combining

the first two constraints ensures that every float vector is mapped to one and only one

integer vector. The third constraint is referred to the shifting property i.e. it is sufficient

to consider only the fractional part of the float ambiguity estimates.

The simplest integer estimator is instantaneous rounding, which can be used to describe

the pull-in regions

SR,Ňk
=

{

N̂ ∈ R
n

∣
∣
∣
∣

∣
∣
∣N̂ − Ň k

∣
∣
∣ ≤ 1

2

}

, Ň k ∈ Z
n. (3.82)

The pull-in regions of the bootstrapped ambiguity estimator are given by

SB,Ňk
=

{

N̂ ∈ R
n

∣
∣
∣
∣

∣
∣
∣c

T
i L

−1(N̂ − Ň k)
∣
∣
∣ ≤ 1

2
, i = 1, . . . , n

}

, Ň k ∈ Z
n, (3.83)

where ci = [0, . . . , 0, 1, 0, . . . , 0]T having a 1 at its i-th entry, and L is given by (3.60).
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The first two constraints of (3.81) can be easily verified using the definition of the boot-

strapped estimator. To verify the third constraint, Eq. (3.83) can be derived as

SB,Ňk
=

{

N̂ ∈ R
n

∣
∣
∣
∣

∣
∣
∣c

T
i L

−1(N̂ − Ň k)
∣
∣
∣ ≤ 1

2
, i = 1, . . . , n

}

=

{

N̂ ∈ R
n

∣
∣
∣
∣

∣
∣
∣c

T
i L

−1 ˆ̃N
∣
∣
∣ ≤ 1

2
, ˆ̃
N = N̂ − Ň k, i = 1, . . . , n

}

= SB,0 + Ň k, (3.84)

which indicates that all pull-in regions are shifted copies of SB,0 and all of them have

the same shape and volume. The volume of the pull-in regions can be shown to be 1.

Consider the linear transformation ˆ̃
N − Ñ = L−1(N̂ − N), which provides the set of

conditional ambiguity

SB,Ñ =

{

N̂ ∈ R
n

∣
∣
∣
∣

∣
∣
∣c

T
i L

−1(N̂ −N)
∣
∣
∣ ≤ 1

2
, i = 1, . . . , n

}

=

{

ˆ̃
N ∈ R

n

∣
∣
∣
∣

∣
∣
∣c

T
i

(
ˆ̃
N − Ñ

)∣
∣
∣ ≤ 1

2
, ˆ̃
N − Ñ = L−1(N̂ −N), i = 1, . . . , n

}

,

(3.85)

which represents an n-dimensional unit cube centered at the origin. Since the volume of

the unit cube is 1, and the determinant of the unit lower triangular matrix L is 1, thus

the volume of SB,0 must also equal 1.

To better understand the shape of the pull-in regions, the two-dimensional case is first

considered. The matrix L is simplified to

L =

[

1 0

l1 1

]

, (3.86)

with l1 = σN̂2N̂1
σ−2

N̂1
.

Then, only the subset SB,0 which is centered at the origin is considered according to the

shift property in (3.81), i.e.

SB,N =

{

N̂ ∈ R
2

∣
∣
∣
∣

∣
∣
∣c

T
i L

−1(N̂ −N)
∣
∣
∣ ≤ 1

2
, i = 1, 2

}

=

{

N̂ ∈ R
2

∣
∣
∣
∣

∣
∣
∣(N̂1 −N1)

∣
∣
∣ ≤ 1

2
, and

∣
∣
∣(N̂2 −N2)− l1(N̂1 −N1)

∣
∣
∣ ≤ 1

2

}

,

(3.87)

which shows the pull-in region is bounded by four lines N̂1 − N1 = 1
2
, N̂1 − N1 = −1

2
,

N̂2 − N2 = l1(N̂1 − N1) +
1
2
, and (N̂2 − N2) = l1(N̂1 − N1) − 1

2
. Thus the shape of the
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two-dimensional pull-in region is a parallelogram, and its slope is governed by σN̂2N̂1
σ−2

N̂1
.

If the two ambiguities are uncorrelated, i.e. σN̂2N̂1
= 0, the parallelogram turns into a unit

square, and the bootstrapped estimator becomes simply instantaneous rounding. Fig. 3.3

shows an example of the ambiguity error ellipse and the two-dimensional pull-in regions

of instantaneous rounding and integer bootstrapping, the areas of which are both equal

to 1.
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Fig. 3.3: The ambiguity error ellipse and the two-dimensional pull-in regions of instanta-

neous rounding (on the left) and integer bootstrapping (on the right).

For the three-dimensional case,

L =







1 0 0

l1 1 0

l2 l3 1






, (3.88)

with

l1 = σN̂2N̂1
σ−2

N̂1
, l2 = σN̂3N̂1

σ−2

N̂1
, l3 = σN̂3N̂2|1

. (3.89)
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The subset SB,N can be developed as

SB,N =

{

N̂ ∈ R
3

∣
∣
∣
∣

∣
∣
∣c

T
i L

−1
(

N̂ −N
)∣
∣
∣ ≤ 1

2
, i = 1, 2, 3

}

=







N̂ ∈ R
3

∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣

cTi







1 0 0

−l1 1 0

l1l3 − l2 −l3 1







(

N̂ −N
)

∣
∣
∣
∣
∣
∣
∣
∣

≤ 1

2
, i = 1, 2, 3







=

{

N̂ ∈ R
3

∣
∣
∣
∣

∣
∣
∣(N̂1 −N1)

∣
∣
∣ ≤ 1

2
, and

∣
∣
∣(N̂2 −N2)− l1(N̂1 −N1)

∣
∣
∣ ≤ 1

2
, and

∣
∣
∣(l1l3 − l2)(N̂1 −N1)− l3(N̂2 −N2) + (N̂3 −N3)

∣
∣
∣ ≤ 1

2

}

, (3.90)

which shows that the intersection of the three dimensional pull-in region with the (N̂1 −
N1)(N̂2−N2)-plane remains a parallelogram, while the constraint on the third axis shows

the region is bounded by parallel planes, and thus the region becomes a parallelepiped.

Fig. 3.4 shows two examples of the three dimensional pull-in regions and the ambiguity

ellipsoid. The shape is determined by the covariance matrix ΣN̂ and the volume is 1.

Moreover, the ambiguities are fixed in different orders in the two subfigures. The optimum

ambiguity fixing order shall start from the most accurate estimate of ambiguities.
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Fig. 3.4: Examples of the ambiguity ellipsoid and the parallelepiped shape of the three-

dimensional pull-in regions of integer bootstrapping, which is bounded by six faces of

parallelograms. The volumes of the pull-in regions are 1. The optimum ambiguity fixing

order shall start from the most accurate estimate of ambiguities.
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3.3 Simulation Results

3.3.1 Benefit of Ambiguity resolution

Fig. 3.5 shows the temporal evolution of the probability of wrong fixing and the achiev-

able accuracies of receiver and satellite phase bias estimates, with simulated E1 and E5

measurements from a network of R = 20 reference stations and Kr = 10 (r ∈ {1, . . . , R})
visible satellites for each station. The state vector containing ranges, range rates, iono-

spheric delays, integer ambiguities, receiver and satellite phase biases, is estimated in two

steps with Kalman filtering. It is initialized by a least-squares estimation from measure-

ments of two epochs (Henkel et al. [6]). The float ambiguities can be decorrelated and

sequentially fixed after 200 epochs, with an error rate of less than 10−9. The later process

of Kalman filtering benefits much from the ambiguity fixing, thus leads to 5 mm accuracy

after 1000 epochs, i.e. less than 2 minutes for a 10 Hz receiver. The amplitude of the

process noise has been characterized by Sp = 1((m/s)2)/s for ranges and range rates, and

σI = 1cm for ionospheric delays, i.e. no process noise is assumed for the biases. It is

noted that the achievable accuracy does not depend on satellite geometry, since the bias

estimation is performed on range domain.

Fig. 3.6 shows the benefit of a large network of reference stations for bias estimation.

The impact of the network size R on the achievable accuracies becomes visible as soon as

the integer ambiguities are fixed after 200 epochs. Obviously, the gain in the bias estima-

tion due to fixing depends on R and increases for larger networks due to the additional

redundancy. The estimation of E5 satellite biases with 1cm standard deviation requires

325 epochs for 20 reference stations, 750 epochs for 16 stations, and several thousands of

epochs for 2 stations.

3.3.2 Benefit of a Third Frequency

Fig. 3.7 shows the benefit of measurements on a third frequency for bias estimation. Dual

frequency E1-E5a and triple frequency E1-E5a-E5b code and carrier phase measurements

of R = 20 reference stations and Kr = 10 satellites are simulated for the estimation

of the ranges, range rates, ionospheric delays, integer ambiguities, receiver and satellite

phase biases. If no ambiguities are fixed, the impact of the third frequency for bias

estimation remains negligible. However, the redundancy given by the third frequency

enables an almost three times earlier ambiguity fixing, and thus, a higher accuracy of
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Fig. 3.5: Achievable accuracies of receiver and satellite phase bias estimation with a

Kalman filter: A network of R = 20 reference stations with Kr = 10 satellites has been

simulated: The float ambiguities are decorrelated and sequentially fixed after 200 epochs

with a probability of wrong fixing of less than 10−9, which is shown in gray dashed line.

The fixing reduces the standard deviations of the bias estimates by a factor between 3

and 4.

the bias estimates. The code biases on the third frequency are estimated with a high

accuracy as the code biases on the first two frequencies have been absorbed by the ranges

and ionospheric delays.

Fig. 3.8 shows the achievable accuracies for the satellite phase and code bias estimates for

the same scenario. The satellite biases can be estimated with a slightly higher accuracy

than the receiver biases after the ambiguity fixing due to R > K. If no ambiguities are

fixed, the receiver bias estimation benefits from the absorption of one satellite bias by the

receiver biases.
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Fig. 3.6: Benefit of large network of reference stations for bias estimation: The fixing of

ambiguities enables an improvement of bias estimation by a factor of 4 for R = 20. The

same scenario has been assumed for Fig. 3.5, i.e. simulated measurements on E1 and E5

from a network of R reference stations and Kr satellites.

3.4 Estimation of Satellite Positions and Satellite Clock

Offsets

Integer ambiguity resolution for absolute positioning requires not only the estimation of

the phase biases
˜̃̃
βm,r,

˜̃̃
βk
m, but also of the combined code biases bgr and bkg , since they are

absorbed in the range term in (2.20) and (2.21). The range term g̃kr (tn), obtained from

the estimate of the first Kalman filter, is rewritten as

g̃kr (tn) = (ek
r(tn))

T · (rr − rk(tn)) + c · (δτ̃r(tn)− δτ̃k(tn)) +mw(E
k
r (tn)) · T k

z,r(tn) + η̃kr (tn),

(3.91)

where the code biases can not be separated from the clock offsets, i.e.

cδτ̃r(tn) = cδτr(tn) + bgr

cδτ̃k(tn) = cδτk(tn)− bkg . (3.92)

A second Kalman filter is used to estimate the satellite positions rk, the satellite velocities

ṙk, as well as the tropospheric zenith delays Tz,r and the combined clock/bias terms cδτ̃r,
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Fig. 3.7: Bias estimation with dual frequency E1-E5a and triple frequency E1-E5a-E5b

measurements: The redundancy given by the third frequency enables an almost three

times earlier ambiguity fixing, and thus, a higher accuracy of the receiver phase bias

estimates. The achievable accuracies are also shown for the code biases on the third

frequency which have to be estimated as the ranges and ionospheric delays can absorb

the code biases on only two frequencies.

i.e. the state vector becomes

xn =
[
r1,T(tn), . . . , r

K,T(tn), ṙ
1,T(tn), . . . , ṙ

K,T(tn), TZ1(tn), . . . , TZR
(tn), cδτ̃1(tn), . . . ,

cδτ̃R(tn), cδτ̃
1(tn), . . . , cδτ̃

K(tn)
]T

. (3.93)

The model for the measurements is given by


















g̃11(tn)− (e1
1)

T(tn) · r1

...

g̃K1
1 (tn)− (eK1

1 )T(tn) · r1

...

g̃1R(tn)− (e1
R)

T(tn) · rR

...

g̃KR

R (tn)− (eKR

R (tn))
T · rR


















= −


















(e1
1(tn))

T · r1(tn)
...

(eK1
1 (tn))

T · rK1(tn)
...

(e1
R(tn))

T · rR(tn)
...

(eKR

R (tn))
T · rKR(tn)


















+
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Fig. 3.8: Benefit of measurements on a third frequency for satellite bias estimation. The

same scenario as in Fig. 3.7 has been assumed. The redundancy given by the third

frequency results in an almost three times earlier ambiguity fixing with Pw = 10−9.

+[HT Hbr Hbk ] ·


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
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

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





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
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

TZ1
(tn)
...

TZR
(tn)

cδτ̃1(tn)
...

cδτ̃R(tn)

cδτ̃ 1(tn)
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cδτ̃K(tn)
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





, (3.94)

with the unit vectors ek
r pointing from the satellites to the reference stations, and the

tropospheric mapping matrix HT for transforming the tropospheric zenith delays into

slant delays, i.e.

HT =










mT,1

mT,2

. . .

mT,R










,with mT,r =










mT(E
1
r (tn))

mT(E
2
r (tn))
...

mT(E
Kr
r (tn))










, (3.95)
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where the tropospheric mapping function mT(E
k
r (tn)) was introduced by Niell [22] in Eq.

(3.96) and only depends on the latitude, height and day of the year. His functions are

accurate to 1 mm for elevations larger than 3◦ (Niell [22]).

mT(E
k
r (tn)) =

1 +
a

1 +
b

1 + c

sinEk
r (tn) +

a

sinEk
r (tn) +

b

sinEk
r (tn) + c

, (3.96)

with the parameters a, b, and c being determined differently for dry and wet components.

The receiver clock/bias generation matrix is given by

Hbr =







1K1×1

. . .

1KR×1






. (3.97)

Assume that the set Sr, for r = {1, . . . , R}, contains all satellites that are visible from at

least one reference station, i.e.

S1 , {k1
S1
, . . . , kK1

S1
},

...

SR , {k1
SR
, . . . , kKR

SR
},

(3.98)

and the union set S is given by

S = {S1 ∪ S2 ∪ . . . ∪ SR}, (3.99)

Let µ(k,Sr) describe the position of the k-th satellite of subset Sr, the coefficient matrix

for satellite clock/bias is obtained as

Hbk
I

[
r−1∑

r′=1

Kr′ + k, j

]

=

{

1, if j = µ(k,Sr).

0, elsewhere.
, (3.100)

The iterative Newton algorithm is integrated into the Kalman filter initialization, to

estimate the unknown satellite positions, so as to determine the ek
r vector. The obtained

satellite position estimates r̂k can be used to verify the satellite ephemeris data from the

navigation message.

It is recommended that the estimated biases
ˆ̃̃
β̃k
m, b̂

k
3 and b̂gk for all m and k are transmit-

ted by a satellite based augmentation system to enable integer ambiguity resolution for

absolute positioning of a multi-frequency user.
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4 Estimation of Code Biases and

Ionospheric Grid

The Wide Area Augmentation System (WAAS) Minimum Operation Performance Stan-

dard (MOPS) defines a grid on the ionosphere layer for modeling the vertical ionospheric

delay (Chao et al. [23]). WAAS provides the vertical ionospheric delays at the grid points

as corrections to the users. Once the users receive the corrections for the ionospheric

delays, they will apply the correction values to determine their slant delays, by interpo-

lating the corrections from the four nearest surrounding grid points to the pierce points,

as shown in Fig. 4.1.

(Iv1 ,GIVD1)

(Iv2 ,GIVD2)

(Iv3 ,GIVD3)
(Iv4 ,GIVD4)

IPPk
r

Fig. 4.1: WAAS ionosphere grid model correction for the single-frequency users (Chao et

al. [23]).

The code biases and grid ionospheric vertical delays (GIVD) can be estimated also without

integer ambiguity resolution. Eq. (2.20) and (2.21) are reconstructed here:

ρk1,r(tn) = g̃kr (tn) + Ĩk1,r(tn) + ηk1,r(tn)

ρk2,r(tn) = g̃kr (tn) + q212Ĩ
k
1,r(tn) + ηk2,r(tn), (4.1)

where the ionospheric slant delays can be further modeled as

Ĩk1,r(tn) = mI(E
k
r (tn)) · Ĩk1,v,r(tn) + bIr + bIk + η̃kI,r(tn), (4.2)
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with the mapping function for the vertical ionospheric delays, i.e.

mI(E
k
r (tn)) =

1
√

1− cos2(Ek
r (tn))

(1+h/Re)2

, (4.3)

and Ek
r denoting the elevation angle as seen from the r-th receiver to the k-th satellite.

By forming a geometry-free, ionosphere-preserving combination of code measurements,

the ionospheric slant delays Ĩkr (tn) including the receiver and satellite biases are then

given by

Ĩkr (tn) = α1ρ
k
1,r(tn) + α2ρ

k
2,r(tn), (4.4)

with

α1 =
−f 2

2

f 2
1 − f 2

2

, and α2 =
f 2
2

f 2
1 − f 2

2

. (4.5)

Moreover, a geometry-free ionosphere-preserving time-differenced combination of carrier

phase measurements is introduced to make the ionospheric rates observable, i.e.

˙̃Ikr (tn) =
M∑

m=1

γmλm(φm(tn+1)− φm(tn)), (4.6)

where γm denotes the weighting coefficients of the geometry-free, ionosphere-preserving

combination.

In the next few sections, two models for estimating code biases and GIVDs will be pre-

sented: The first one is based on the use of a background model. The second model

performs a least-squares fitting of a plane through the measurements of the pierce points

in a surrounding region. Some simulation results are shown under the estimation of a grid

over Europe with the EGNOS network.

4.1 Interpolation of Grid Points Delays

The vertical ionospheric delays Ikv,r at the pierce points can be calculated by interpolation

of the vertical delays at the surrounding grid points which are weighted differently based

on some distance law, i.e.

Ĩkr (tn) = mI(E
k
r (tn)) ·

(
L∑

l=1

Λk,(l)
r il(tn) + τkr + ηkI,r(tn)

)

+ bIr + bIk + η̃kI,r(tn), (4.7)

where L denotes the number of grid points, τkr has the values either 0 or E [Ikv,r] depending
on the background model, and the coefficients Λ

k,(l)
r is a function of the distance between
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pierce points and grid points, i.e.

Λk,(l)
r =

(
1

ǫ
k,(l)
r

)2

∑L
l=1

(
1

ǫ
k,(l)
r

)2 . (4.8)

The weights ǫ
k,(l)
r are typically assumed to be in the form

ǫk,(l)r = σk
r f(‖xIPPk

r
− xIGP(l)‖), (4.9)

where f denotes the ionospheric delay distance correlation functions. One model is de-

scribed in Chao et al. [23], with the experimentally-determined function f1 derived from

the National Satellite Test Bed (NSTB) data, and f2 being an empirical function used for

the weighted least-squares estimator, i.e.

f1(‖xIPPk
r
− xIGP(l)‖) = 0.2 + 0.6 · e−0.4‖x

IPPk
r
−x

IGP(l)‖/D

f2(‖xIPPk
r
− xIGP(l)‖) = 0.8 · e(

‖x
IPPk

r
−x

IGP(l)‖

2D
)2 , (4.10)

where D equals to 556 km for a 5-degree grid spacing.

Another model for weights ǫ
k,(l)
r is described in Conker et al. [24], i.e.

1

(ǫ
k,(l)
r )2

=
sinEk

r

‖xIPPk
r
− xIGP(l)‖ , (4.11)

which indicates that a high elevation and a small distance lead to large weights.

Fig. 4.2 shows the geometry for computing the positions of ionosphere pierce points.

Applying the cosine law in the triangle (C,r,IPP) yields

cos
(π

2
+ Ek

r

)

=
R2

e + (dkr)
2 − (Re + h)2

2Redkr
, (4.12)

where dkr denotes the distance between the receiver and the pierce point, i.e.

dkr = −Re sinE
k
r +

√

R2
e sin

2Ek
r − (R2

e − (Re + h)2). (4.13)

Thus, based on the knowledge of the e-vector from the satellite, the position of the pierce

points is obtained by

~xIPP = ~xr − dkr · ~ekr . (4.14)
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Fig. 4.2: Geometry for ionosphere pierce point.

4.2 Least-squares Fitting

Another method for determining the vertical delays at the grid points is to perform a

weighted least-squares fitting of the vertical delays from a set of nearby pierce points, i.e.

min
i
(l)
n ,b

∥
∥
∥Ĩn −M ·HIİi

(l)
n −Hbb

∥
∥
∥

2

Σ
−1

, (4.15)

where

Ĩn =
[

Ĩ11 (tn), Ĩ
2
1 (tn), . . . , Ĩ

K1
1 (tn), . . . , Ĩ

KR

R (tn),
˙̃I11 (tn), . . . ,

˙̃IKR

R (tn)
]T

,

i(l)n =
[

i
(l)
0 (tn), i

(l)
φ (tn), i

(l)
λ (tn), i̇

(l)
0 (tn), i̇

(l)
φ (tn), i̇

(l)
λ (tn)

]T

,

b = [bI1 , . . . , bIR , bI2 , . . . , bIK ]
T , (4.16)

with i
(l)
0 ,i

(l)
φ ,i

(l)
λ denoting correspondingly the vertical ionospheric delay, the latitudinal

gradient and the longitudinal gradient at the ionospheric grid point (IGP) (φ(l), λ(l)),

and i̇
(l)
0 ,i̇

(l)
φ ,i̇

(l)
λ denoting the first order derivative over time. The Ĩkr represents the slant

ionospheric delays at the ionospheric pierce point (IPP) (φk
r , λ

k
r).
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The mapping function of the vertical delays is given by

M =







mI(E
1
1)

. . .

mI(E
KR

R )






. (4.17)

The coefficient matrix of the least-squares fitting is given by

HIİ = 12×2 ⊗







1 φ1
1 − φ(l) λ1

1 − λ(l)

...
...

...

1 φKR

R − φ(l) λKR

R − λ(l)






. (4.18)

The bias coefficient matrix Hb is constructed as

Hb = [HbIr
Hb

Ik
], (4.19)

with the receiver code bias coefficient matrix

HbIr
=










1K1×1

1K2×1

. . .

1KR×1










, (4.20)

and the satellite code bias coefficient matrix

Hbk
I

[
r−1∑

r′=1

Kr′ + k, j

]

=

{

1, if j = µ(k,Sr).

0, elsewhere.
, (4.21)

where µ(k,Sr) describes the position of the k-th satellite of subset

Sr , {k1
Sr
, . . . , kKr

Sr
} (4.22)

within the union set

S = {S1 ∪ S2 ∪ . . . ∪ SR}, (4.23)

which contains all satellites that are visible from at least one reference station.

A weighting matrix is introduced into the system to take the elevation angles and distances

between the IPPs and the IGP into account, i.e.large contribution is given to the slant

delays observed at high elevations and close to the IGP (see Henkel [1]), i.e.

Σ =









sin(E1
1)

‖x
IPP1

1
−x

IGP(l)‖
. . .

sin(E
KR
R

)

‖x
IPP

KR
R

−x
IGP(l)‖









, (4.24)
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where xIPPk
r
is the position of ionospheric pierce point IPPk

r and xIGP(l) is the position of

ionospheric grid point IGP(l).

It is noted that not all of the measurements from the pierce points should be included into

the fitting plane due to the irregularity of the ionosphere. Therefore, a boundary circle

around each grid point to include only nearby pierce points for the least-squares fitting.

In this section, the radius of the boundary circle is set to a typical value of 2000 km (see

e.g. Chao et al. [23]).

Now, simulated measurements from a network of EGNOS RIMS stations in Europe, as

shown in Tab. 4.1, shall be considered.

Table 4.1: Approximate locations of the EGNOS RIMS stations in Europe (Arbesser-

Rastburg [25]).

Station Latitude Longitude Station Latitude Longitude

Alberg 56.8◦ N 10.0◦ E Mersa Matrouh 33.1◦ N 27.1◦ E

Azores Islands 38.3◦ N 28.0◦ W Mourmansk 68.5◦ N 33.0◦ E

Berlin 52.3◦ N 13.2◦ E Palma de Mallorca 40.0◦ N 4.0◦ E

Canary Islands 28.3◦ N 14.1◦ W Paris 48.5◦ N 2.2◦ E

Catania 37.0◦ N 15.0◦ E Reykjavik 64.1◦ N 21.6◦ W

Cork 52.0◦ N 8.0◦ W Roma - Fucino 42.0◦ N 14.0◦ E

Cracovie 50.0◦ N 20.0◦ E Saint Petersburg 60.0◦ N 30.0◦ E

Djerba 34.0◦ N 11.0◦ E Santiago de Compostella 42.9◦ N 8.3◦ W

Feroe Islands 62.0◦ N 6.7◦ W Sofia 43.0◦ N 23.0◦ E

Glasgow 55.7◦ N 4.1◦ W Stockholm 59.0◦ N 18.0◦ E

Konya 37.6◦ N 32.6◦ E Tel Aviv 31.8◦ N 34.8◦ E

Lisboa 38.5◦ N 9.0◦ W Toulouse 43.4◦ N 1.3◦ E

London 52.0◦ N 0.0◦ Trondheim 63.3◦ N 10.4◦ E

Madere 32.4◦ N 17.1◦ W Tromsö 69.5◦ N 19.0◦ E

Melilla 35.4◦ N 3.0◦ W Zürich 47.2◦ N 8.3◦ E

The vertical ionospheric delays in a 5◦ × 5◦ grid over Europe are estimated using a least-

squares fitting. Fig. 4.3 shows the map of Europe with EGNOS RIMS stations (red

circles), ionospheric pierce points (green circles) and ionospheric grid points (blue squares)

for a 5◦ × 5◦ grid.

Fig. 4.4 shows the achievable accuracies for GIVD estimates, which depend on the
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Fig. 4.3: Ionospheric grid: Map of Europe with EGNOS RIMS stations (red circles),

ionospheric pierce points (green circles) and ionospheric grid points (blue squares) of a

5◦ × 5◦ grid. The grid points for which the ionospheric delay can be estimated most and

least accurately are also indicated (blue triangles).

geometry of the pierce points around the grid points. The geometry-free ionosphere-

preserving combination of code measurements on E1 and E5, along with the geometry-

free ionosphere-preserving time-differenced combination of carrier phase measurements

are used in a Kalman filter to estimate the code biases and the GIVD. The most and least

accurately computable vertical grid ionospheric delays are also indicated in Fig. 4.3 as

blue triangles.

Fig. 4.5 shows the error in receiver bias estimates using a least-squares fitting with simu-

lated E1 and E5 Galileo measurements from a network of 30 EGNOS reference stations.

The boundary circle for each grid point has been set to 2000 km. Fig. 4.6 shows the

errors in satellite bias estimates for the same scenario. The simulation results show that

the code biases and vertical ionospheric delays can be estimated with a 1-cm accuracy.

After the estimation of the code biases and grid ionospheric vertical delays, the GIVDs

can then be applied to a single-frequency user to determine its ionospheric slant delay. It

has been recommended in Henkel et al. [6] and [7] that the satellite code bias estimates

b̂Ik are transmitted by a satellite based augmentation system.
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Fig. 4.4: Achievable accuracies for GIVD: A least-squares fitting has been used to estimate

the states for each grid point, and the figure shows the accuracy of the estimates, in which

the worst and best grid points depended on the geometry of the pierce points around them,

as shown in Fig. 4.3.
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Fig. 4.5: Error in receiver biases with simulated E1 and E5 Galileo measurements from

a network of 30 EGNOS stations. After 300 epochs the errors in receiver biases are

converged to 1 cm.



4. Estimation of Code Biases and Ionospheric Grid 48

0 50 100 150 200 250 300
−10.0

−8.0

−6.0

−4.0

−2.0

0.0

2.0

4.0

6.0

8.0

10.0

E
rr

or
in

sa
te

lli
te

b
ia

s
es

ti
m

at
es

ε b̂
I

k
[c

m
]

Number of epochs

Fig. 4.6: Error in satellite biases estimates using same scenario as in Fig. 4.5. The errors

are bounded by 1 cm after 300 epochs.
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5 Real Data Analysis

5.1 Estimation of Receiver and Satellite Phase Biases

Chapter 3 has presented a method to estimate the receiver and satellite phase biases using

measurements from a network of reference stations. The proposed method is validated

here with real GPS measurements from the SAPOS network. A 1 mm accuracy and a

stability between 10 cm/hour and 20 cm/hour are observed in the bias estimates.

The GPS code and carrier phase measurements on frequencies L1 and L2 are taken from

the SAPOS stations in Bavaria (Fig. 5.1) on March 1, 2010, 8:00-10:00 UTC. The state

vector of the Kalman filter includes the ranges, range rates, second derivatives of ranges

(range accelerations), ionospheric slant delays, phase biases and integer ambiguities, i.e.

xn =

[

g̃T(tn), ˙̃gT(tn), ¨̃g
T(tn), Ĩ

T
(tn),

˜̃̃
βT

R,
˜̃̃
βT

S , Ñ

]T

, (5.1)

with the range accelerations being

¨̃g(tn) =
[
¨̃g11(tn), . . . , ¨̃g

K1
1 (tn), . . . , ¨̃g

KR

R (tn)
]T

(5.2)

and other component vectors described in (3.14).

The state transition matrix for predicting the next state for the current one is given by

Φ =









1s×s ∆t · 1s×s 1
2
∆t2 · 1s×s 0

0 1s×s ∆t · 1s×s 0

0 0 1s×s 0

0 0 0 13s×3s









, (5.3)

with s defined in Eq. (3.19).

The process noise of the state vector follows a zero mean Gaussian distribution with the

noise covariance matrix defined by Eq. (3.28). The parameter Sp has been set to 1
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Fig. 5.1: Reference stations of SAPOS network in Bavaria [26].

(mm/s2)2/s, thus, the variances of the process noise follow

σ2
g̃ =

1

20
Sp ·∆t5 = 0.05mm2

σ2
˙̃g

=
1

3
Sp ·∆t3 = 0.33 mm2/s2

σ2
¨̃g

= Sp ·∆t = 1 mm2/s4, (5.4)

and the standard deviation of the ionospheric process noise has been set to 1 cm.

The code and carrier phase measurement noise is also assumed to be zero mean Gaus-

sian distributed, but with an elevation-dependent standard deviation σρ(E
k
r ) and σφ(E

k
r ),

which are assumed to be described by an exponential profile, i.e.

σρ(E
k
r ) = σρ(0

◦) · e−Ek
r /ζρ

σφ(E
k
r ) = σφ(0

◦) · e−Ek
r /ζφ , (5.5)

where Ek
r denotes the elevation angle of the r-th receiver and k-th satellite, and ζρ and

ζφ are the decay factors of the noise bound. The following parameters are chosen for the

exponential profiles:

σρ(0
◦) = 100.0cm, σρ(90

◦) = 25.0cm

σφ(0
◦) = 10.0mm, σφ(90

◦) = 2.5mm. (5.6)
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Fig. 5.2 shows the elevation-dependent standard deviation of both code and carrier phase

measurement noise, with an elevation-mask of 5◦.
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Fig. 5.2: Elevation-dependent standard deviations of code and carrier phase measurement

noise.

The least-squares initialization requires at least three measurement epochs to get initial

estimates of ranges, range rates and range accelerations, etc:






x̂(tn−1)

x̂(tn)

x̂(tn+1)






= (HT

combΣ
−1
combHcomb)

−1HT
combΣ

−1
comb ·







z(tn−1)

z(tn)

z(tn+1)






, (5.7)

with

Hcomb =
[

13×3 ⊗H g̃ 13×3 ⊗H Ĩ 13×1 ⊗
[

H ˜̃̃
βR

H ˜̃̃
βS

HÑ

]]

, (5.8)

and the combined measurement noise covariance matrix

Σcomb = 13×3 ⊗ΣR. (5.9)

The covariance matrix of the least-squares estimates follows Eq. (5.7) as

Σls = W−1
ls = (HT

combΣ
−1
combHcomb)

−1 (5.10)

The high dimensionality of the covariance matrix and its ill-conditioning result in non-

negligible errors with matrix inversion. However, the matrixW ls has a blockwise structure
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since the measurements are uncorrelated, i.e. Σcomb consists of blocks of diagonal matrices.

Therefore, W ls can be subdivided into
[

A B

C D

]

,

[

W 2sT1×2sT1

ls W 2sT1×2s
ls

W 2s×2sT1
ls W 2s×2s

ls

]

, (5.11)

where T1 denotes the number of epochs for least-squares initialization, and A and D are

square matrices, which can be inverted. Furthermore, based on the special structure of

Hcomb and Σ−1
comb, A contains four diagonal matrices with equal dimensions. If A and

D −CA−1B are non-singular, there holds

Σls =

[

A B

C D

]−1

=

[

A−1 +A−1B(D −CA−1B)−1CA−1 −A−1B(D −CA−1B)−1

−(D −CA−1B)−1CA−1 (D −CA−1B)−1

]

. (5.12)

Thus, the inversion of the high dimensional matrix turns into matrix multiplications and

the inversion of two matrices A and D−CA−1B with special structure and much smaller

dimension, which makes the inversion more accurate and stable.

An example in Fig. 5.3 uses simulated Galileo measurements on E1 and E5 and estimates

the ranges, range rates, range accelerations, ionospheric delays, biases and ambiguities.

It shows the maximum relative differences between least-squares estimated biases and

ambiguities, and their counterparts, i.e.
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∣
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λm ·

∣
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∣
∣
∣
∣

ˆ̃
N k

m,r − Ñ
k

m,r

Ñ
k

m,r

∣
∣
∣
∣
∣
∣



 . (5.13)

The least-squares initialization in the estimation process is computed based on the two

distinctive methods of matrix inversion, i.e. direct inversion and blockwise inversion,

which are denoted as ”dl” and ”bl” in Fig. 5.3 . As the dimension of the covariance

matrix is getting higher, the errors in blockwise inversion stay at low values, while the

direct inversion introduces significantly higher errors.
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Fig. 5.3: Maximum relative differences between Least-squares estimated and true biases

and ambiguities, using two distinctive methods of matrix inversion. The numbers of

receivers and satellites are assumed to be the same. As the size of the network increases

from 2 × 2 to 10 × 10, the dimension of the covariance matrix is getting higher, and

thus, the direct inversion becomes more inaccurate, while the blockwise inversion remains

highly accurate.

The variances and covariances of the state vectors from the least-squares estimates are

described in Eq. (3.39).

A sequential ambiguity fixing with integer decorrelation has been performed in the process

of Kalman filtering after the least-squares initialization. The decorrelated a posteriori float

ambiguities of the Kalman filter can be obtained from Eq. (3.40), and the ambiguity to

be fixed is chosen in each step that the cost function below reaches the minimum (see

Henkel [1]). Since the standard deviation of the a posteriori estimate can not reveal the

modeling errors in the state vectors fully, the real differences between the estimates and

true ones are considered to make the modeling errors visible. The cost function combines

the a posteriori statistical information σ
N̂

′,k,+
m,r

of the Kalman filter and the actual deviation

between the a posteriori estimate N̂
′,k,+
m,r and its rounded value [N̂

′,k,+
m,r ], and takes different
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weights on the two components, i.e.

min
N̂

′,k,+
m,r

{

w1 · |N̂
′,k,+
m,r − [N̂

′,k,+
m,r ]|+ w2 · σN̂

′,k,+
m,r

}

, (5.14)

where the coefficients have been set in this work to w1 = 2 and w2 = 1. Additionally, the

ambiguity to be fixed shall also fulfill the following constraints on both components

σ
N̂

′,k,+
m,r

≤ 0.1 cycles, and |N̂ ′,k,+
m,r − [N̂

′,k,+
m,r ]| ≤ 0.1 cycles. (5.15)

When one ambiguity is fixed within a step of Kalman filtering, the decorrelated and

partially fixed ambiguity is transformed back to the correlated space and subtracted from

the measurements, i.e.

N̂ = Z−1 ˆ̌N
′

= [Λ1 Λ2]




N̂

′

A[

N̂
′

B

]



 , (5.16)

which simplifies the system of equations Ψ = Hξ +AN + ε to

Ψ−AΛ2

[

N
′

B

]

= Hξ +AΛ1N
′

A + ε

= [H AΛ1] ·
[

ξ

N
′

A

]

. (5.17)

It is noted that the ambiguity part of the state vector is then adapted to the decorrelated

ones, and thus, the state transition matrix Φ will be adjusted correspondingly containing

the integer transformation matrix Z.

Fig. 5.4 and 5.5 show the receiver and satellite phase bias estimates on L1 and L2. The

vertical black lines indicate the ambiguity fixings. Totally 125 out of 128 ambiguities

have been sequentially fixed. It is obvious that the fixing of the ambiguities improves the

stability of the phase bias estimates substantially.

5.2 Estimation of Grid Ionospheric Vertical Delays

and Satellite Code Biases

Chapter 4 presented two models for estimating grid ionospheric vertical delays and receiver

and satellite code biases with a Kalman filter using measurements from a network of
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Fig. 5.4: Receiver phase bias estimates on frequencies L1 and L2 of SAPOS reference

stations in Bavaria. The GPS measurements are taken on March 1, 2010, 8:00-10:00 UTC.

The vertical black lines indicate the ambiguity fixings. The green error bars show the a

posteriori standard deviations of the Kalman filter. The small magnitude of these error

bars indicate a millimeter accuracy of the bias estimates. The fixing of the ambiguities

substantially improves the stability of the bias estimates.

reference stations. The proposed estimation method of performing a weighted least-

squares fitting is validated in this section with real GPS measurements from a network of

Continuously Operating Reference Stations (CORS) [27] in USA.

A first validation has been made with real GPS data from 7 CORS stations (Tab. 5.1)

in Vermont, estimating the grid ionospheric vertical delay and code biases with the opti-

mization problem described in (4.15) for a single grid point. The vectors and matrices in

(4.15) are explained further in Eq. (4.16) to (4.24).

Fig. 5.6 shows the map of the 7 CORS station. The GPS code and carrier phase mea-

surements on frequencies L1 and L2 have been chosen. The ionospheric grid point has

been set to a longitude of λ = −71◦ and a latitude of φ = 43◦.

The following residuals of the ionospheric slant delays, which are obtained from the grid

estimation of (4.15), are plotted in Fig. 5.7. Smaller residuals refer to the ionospheric

pierce points that are closer to the grid point and have larger elevation angles, while larger

residuals can be observed for the pierce points that are farer away. Consequently, these
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Fig. 5.5: Satellite phase bias estimates on L1 and L2 based on GPS measurements on

March 1, 2010, 8:00-10:00 UTC from SAPOS reference stations in Bavaria. The vertical

black lines indicate the ambiguity fixings. The green error bars show the a posteriori

standard deviations of the Kalman filter. The small magnitude of these error bars indicate

a millimeter accuracy of the bias estimates. The fixing of the ambiguities substantially

improves the stability of the bias estimates.

Table 5.1: 7 CORS reference stations in Vermont, USA

Station Latitude Longitude

Middlebury 44.00◦ N 73.15◦ W

Montpelier 44.26◦ N 72.58◦ W

Randolph Center 43.94◦ N 72.60◦ W

Danby 43.35◦ N 73.00◦ W

Bradford 44.01◦ N 72.11◦ W

Derby 44.95◦ N 72.16◦ W

Brighton 44.82◦ N 71.89◦ W

ionospheric residuals also indicate irregularities in the ionosphere.

rI(tn) =


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. (5.18)



5. Real Data Analysis 57

Fig. 5.6: Map of the 7 CORS Stations in Vermont.
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Fig. 5.7: Residuals of slant ionospheric delays: A least-squares fit has been used to

estimate the vertical ionospheric delay for each grid point from the slant delays of the

surrounding pierce points. In this work, a radius of 400 km boundary circle is chosen for

the grid point.

A second validation used measurements from a larger network of 21 CORS reference

stations on April 14, 2010 in USA. The locations of the stations (in Fig. 5.8) are listed in

Tab. 5.2. The grid points where the ionospheric vertical delays are estimated have been
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set to a 2.5◦ × 2.5◦ grid of longitude −82.5◦ to −77.5◦ and latitude 37.5◦ to 40.0◦.

Table 5.2: Locations of the 21 CORS stations on April 14, 2010 in USA.

Station Latitude Longitude Station Latitude Longitude

Kenton, KY 40.37◦ N 83.37◦ W Norwalk, OH 41.10◦ N 82.33◦ W

Louisville, KY 38.16◦ N 85.36◦ W Wintersville, OH 40.22◦ N 80.43◦ W

Flemingsburg, KY 38.25◦ N 83.46◦ W Pittsburgh, PA 40.26◦ N 79.57◦ W

Pikeville, KY 37.48◦ N 82.53◦ W Schuylhill Haven, PA 40.38◦ N 76.09◦ W

Lebanon, OH 39.25◦ N 84.17◦ W Greensburg, PA 40.18◦ N 79.30◦ W

Lisbon, OH 40.46◦ N 80.48◦ W Harriman, TN 39.54◦ N 84.36◦ W

Mount Vernon, OH 40.23◦ N 82.30◦ W Huntsville, TN 36.24◦ N 84.31◦ W

Albemarle, NC 35.20◦ N 80.12◦ W Dunlap, TN 35.23◦ N 85.22◦ W

Jackson, NC 36.24◦ N 77.26◦ W Nashville, TN 36.10◦ N 86.52◦ W

Monroe Township, NJ 40.18◦ N 74.28◦ W Morgantown, WV 39.38◦ N 79.58◦ W

Logan, OH 39.32◦ N 82.26◦ W

Fig. 5.8: Map of the 21 CORS Stations in USA (listed in Tab. 5.2).

As the satellite and receiver code biases occur in the estimation of several ionospheric grid

points, a joint estimation of the grid ionospheric vertical delays and code biases shall be

considered.

Fig. 5.9 shows a simplified illustration of 4 ionospheric grid points, 6 receiver stations

with each having a boundary circle and 8 visible satellites. The measurements at the
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pierce points that are outside the boundary circles have been excluded from the system

of equations, while some measurements are included in the overlapping area of multiple

boundary circles. In the latter case, a linear combination of several grid point delays is

performed

Iv(xIPPk
r
) =

∑

l∈Sk
r

αk,(l)
r · (i(l)0 + i

(l)
φ (φk

r − φ(l)) + i
(l)
λ (λk

r − λ(l))), (5.19)

where Sk
r denotes the set of ionospheric grid points which satisfy the constraint

Sk
r = {l | ‖xIGP(l) − xIPPk

r
‖ < rbound}, (5.20)

with the radius of the boundary circle rbound, which has been set to 400 km in this work.

Different weighting coefficients α
k,(l)
r have been chosen by finding the minimum of the

following equation, i.e.

min
α
k,(l)
r

∑

l∈Sk
r

(αk,(l)
r )2 ·

‖xIPPk
r
− xIGP(l)‖

sinEk
r

, s. t.
∑

l∈Sk
r

αk,(l)
r = 1. (5.21)

The ionospheric slant delays and their rates are modeled in the following equation for the

joint estimation of grid ionospheric vertical delays and code biases, i.e.

[

Ĩn
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]
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
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
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




+ η, (5.22)

and thus, the ionospheric vertical delays at the grid points can be computed by a weighted

least-squares fitting of the ionospheric slant delays from the surrounding pierce points,

i.e.
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[iTn ,i̇

T
n ,b

T
Ir
,bT
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∥

2

Σ
−1

. (5.23)

Let the notation of the ionospheric vertical delay at the grid point (λ(l), φ(l)) be the same

as i
(l)
0 in Chapter 4, and also the latitudinal gradient i

(l)
φ and the longitudinal gradient i

(l)
λ .
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Fig. 5.9: A simplified illustration of 4 ionospheric grid points, 6 receiver stations with

each having 8 visible satellites. The measurements at the pierce points which are outside

the boundary circles have been excluded from the equations.

The measurement and state vectors are then given by
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The H matrix is described as

H =
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(5.25)

The linear combination coefficients matrix A(l)
r is computed in Appendix 7.2 by finding

the minimization in Eq. (5.21) and has the structure of
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...
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
. (5.26)

The mapping matrix from ionospheric vertical delays to slant delays is given by

M r =







mI(E
1
r )

. . .

mI(E
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r )


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
, (5.27)

with mI(E
k
r ) defined in Eq. (4.3).

The interpolation matrix is obtained from the least-squares fitting method as
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The receiver code bias coefficient matrix is given by

HbIr
=




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
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1K1×1

1K2×1

. . .

1KR×1
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


, (5.29)

and the satellite code bias coefficient matrix is written as

Hbk
I

[
r−1∑

r′=1

Kr′ + k, j

]

=

{

1, if j = µ(k,Sr).

0, elsewhere.
, (5.30)

where µ(k,Sr) describes the position of the k-th satellite of subset

Sr , {k1
Sr
, . . . , kKr

Sr
} (5.31)
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within the union set

S = {S1 ∪ S2 ∪ . . . ∪ SR}, (5.32)

which contains all satellites that are visible from at least one reference station.

Fig. 5.10 shows the satellite bias estimates b̂kI using GPS L1 and L2 code and carrier phase

measurements from 21 CORS stations in USA (listed in Tab. 5.2). The red error bars

show the a posteriori standard deviations of the Kalman filter based bias estimates which

are in the order of magnitude of a few millimeters. The stability of the bias estimates

varies between 10 cm/ hour and 20 cm/ hour.
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Fig. 5.10: Ionospheric satellite bias estimates b̂kI using GPS L1 and L2 code and carrier

phase measurements from 21 CORS stations in USA (listed in Tab. 5.2). The red error

bars show the a posteriori standard deviations of the Kalman filter based bias estimates

which are in the order of magnitude of a few millimeters. The stability of the bias estimates

varies between 10 cm/ hour and 20 cm/ hour.
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6 Conclusion

In this work, the receiver and satellite biases on multiple frequencies were estimated with a

Kalman filter and a network of reference stations. The estimation methods were validated

with simulated measurements from the global network of Galileo Sensor Stations as well as

with real data from a few stations of CORS network in USA as well as from the Bavarian

reference stations of SAPOS network. Integer ambiguity resolution is performed during

the estimation process, using the bootstrapped estimator which benefits from a higher

success rate than instantaneous rounding. Moreover, the grid ionospheric vertical delays

were estimated jointly with the satellite and receiver code biases using a Kalman filter

and a least-squares fitting.

A set of parameter mappings has been introduced to remove the rank deficiency of the

system of equations. Firstly, the receiver and satellite code biases on two frequencies

were mapped into ranges and ionospheric delays. Secondly, the satellite phase biases of

one satellite were absorbed by the receiver phase biases. A subset of integer ambiguities

was combined with phase biases using classical Gaussian elimination. The receiver and

satellite phase biases were then estimated by Kalman filtering. Along with the Kalman

filtering, integer ambiguity resolution was performed in such a way that it decorrelated the

float ones and then sequentially fixed them. The pull-in region of the integer estimator has

been included to visualize the integer bootstrapping method. Several simulation results

showed that the benefit of ambiguity fixing resulted in a millimeter-level accuracy after

thousand epochs, the redundancy of a third frequency enabled a much earlier fixing and

thus leaded to a higher accuracy. A second Kalman filter estimated the satellite positions

as well as the combined bias/clock offsets.

Moreover, the receiver and satellite phase biases have been estimated with GPS measure-

ments from the SAPOS network. A 1 mm accuracy and a stability between 10 cm/hour

and 20 cm/hour have been observed in the bias estimates. It has also been shown that the

fixing of the ambiguities improved the stability of the phase bias estimates substantially.

Since some code biases have been mapped into the ionospheric delays, they were estimated
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together with GIVDs using the model of weighted least-squares fittings from different

sets of surrounding pierce points, which were in the boundary circles centered at the grid

points. The least-squares fitting took the vertical delay, the longitudinal and latitudinal

gradients of the slant delay at the grid point into accounts, and used the measurements

from nearby pierce points to perform a fitting plane for the grid point. Simulation results

have been presented with measurements simulated from a network of EGNOS RIMS

stations in Europe, and millimeter-level accuracies on bias and vertical delay estimates

have been achieved. GPS measurements from the CORS network in USA have been used

to validate the estimation method.

The next step will be the estimation of the geometry-dependent code bias bgr and bgk with

an improved orbital model, as well as the introduce of a background model to improve

the accuracies of the bias estimates. The increase of the network will also require more

efficient algorithms as the state vector includes several thousand parameters which results

in a posteriori covariance matrices of several million elements. The completely reduction

would be advised by considering the structure of the state transition of geometry matrices.
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7 Appendix

7.1 Calculation of the Process Noise Covariances for

Range, Range Rate, and Range Acceleration

A more accurate model in Fig. 7.1 for the change in range is to introduce the second

derivative of the range in the estimation, i.e. range acceleration, which is assumed to

follow a random walk process.

white noise acceleration velocity position

n(t) x(∆t)ẋ(∆t)ẍ(∆t)
G(s)G(s) G(s)

Fig. 7.1: Random walk model on range acceleration.

The transfer functions describe the integration, i.e.

G1(s) = G(s) =
1

s
L
−1

−−→ g1(t) = u(t)

G2(s) = G(s)2 =
1

s2
L
−1

−−→ g2(t) = t · u(t)

G3(s) = G(s)3 =
1

s3
L
−1

−−→ g3(t) =
1

2
t2 · u(t) (7.1)

The noise variances and covariances can be computed as

E{ẍ(∆t)ẍ(∆t)} = E{(n(t) ∗ g1(t)) · (n(t) ∗ g1(t))}

= E

{∫ ∆t

0

n(w)dw ·
∫ ∆t

0

n(v)dv

}

= E

{∫ ∆t

0

∫ ∆t

0

n(w)n(v) · δ(w − v)dwdv

}

=

∫ ∆t

0

∫ ∆t

0

E{n2(w)} · δ(w − v)dwdv

=

∫ ∆t

0

∫ ∆t

0

Sp · δ(w − v)dwdv = Sp ·∆t, (7.2)
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E{ẋ(∆t)ẍ(∆t)} = E{(n(t) ∗ g2(t)) · (n(t) ∗ g1(t))}

= E

{∫ ∆t

0

n(t− w)wdw ·
∫ ∆t

0

n(τ)dτ

}

= E

{∫ ∆t

0

∫ ∆t

0

n(t− w)n(τ) · w · δ(t− w − τ)dwdτ

}

=

∫ ∆t

0

∫ ∆t

0

E{n2(w)} · w · δ(t− w − τ)dwdτ

= Sp ·
∆t2

2
, (7.3)

E{x(∆t)ẍ(∆t)} = E{(n(t) ∗ g3(t)) · (n(t) ∗ g1(t))}

= E

{∫ ∆t

0

n(t− w) · 1
2
w2dw ·

∫ ∆t

0

n(τ)dτ

}

= E

{∫ ∆t

0

∫ ∆t

0

n(t− w)n(τ) · 1
2
w2 · δ(t− w − τ)dwdτ

}

=

∫ ∆t

0

∫ ∆t

0

E{n2(w)} · 1
2
w2 · δ(t− w − τ)dwdτ

=
1

6
Sp ·∆t3, (7.4)

E{ẋ(∆t)ẋ(∆t)} = E{(n(t) ∗ g2(t)) · (n(t) ∗ g2(t))}

= E

{∫ ∆t

0

n(t− w)wdw ·
∫ ∆t

0

n(t− v)vdv

}

= E

{∫ ∆t

0

∫ ∆t

0

n(t− w)n(t− v) · w · v · δ((t− w)− (t− v))dwdv

}

=

∫ ∆t

0

∫ ∆t

0

E{n2(t− w)} · w · v · δ(v − w)dwdv

= Sp ·
∆t3

3
, (7.5)

E{x(∆t)ẋ(∆t)} = E{(n(t) ∗ g3(t)) · (n(t) ∗ g2(t))}

= E

{∫ ∆t

0

n(t− w) · 1
2
w2dw ·

∫ ∆t

0

n(t− v)vdv

}

= E

{∫ ∆t

0

∫ ∆t

0

n(t− w)n(t− v) · 1
2
w2 · v · δ((t− w)− (t− v))dwdv

}

=

∫ ∆t

0

∫ ∆t

0

E{n2(t− w)} · 1
2
w2 · v · δ(v − w)dwdv

=
1

8
Sp ·∆t4. (7.6)
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E{x(∆t)x(∆t)} = E{(n(t) ∗ g3(t)) · (n(t) ∗ g3(t))}

= E

{∫ ∆t

0

n(t− w) · 1
2
w2dw ·

∫ ∆t

0

n(t− v) · 1
2
v2dv

}

= E

{∫ ∆t

0

∫ ∆t

0

n(t− w)n(t− v) · 1
2
w2 · 1

2
v2 · δ((t− w)− (t− v))dwdv

}

=

∫ ∆t

0

∫ ∆t

0

E{n2(t− w)} · 1
2
w2 · 1

2
v2 · δ(v − w)dwdv

=
1

20
Sp ·∆t5. (7.7)

Therefore, the covariance matrix for range, range rate, and the second derivatives of range

is given by

ΣQ,g̃ ˙̃g ¨̃g = Sp ·∆t ·







1
20
∆t4 1

8
∆t3 1

6
∆t2

1
8
∆t3 1

3
∆t2 1

2
∆t

1
6
∆t2 1

2
∆t 1






⊗ 1s×s. (7.8)
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7.2 Calculation of the Linear Combination Coeffi-

cient Matrix

Since some measurements at the pierce points are included in multiple bounding circles

from the grid points, at which the vertical delays and the code biases are estimated

jointly, a linear combination of grid points for one pierce points is performed and different

weighting coefficients are introdwced, i.e.

Iv(xIPPk
r
) =

∑

l∈Sk
r

αk,(l)
r · (i(l)0 + i

(l)
φ (φk

r − φ(l)) + i
(l)
λ (λk

r − λ(l))), (7.9)

where Sk
r denotes the set of ionospheric grid points which satisfy the constraint

Sk
r = {l | ‖xIGP(l) − xIPPk

r
‖ < rbound}, (7.10)

with the radius of the boundary circle rbound.

The coefficients α
k,(l)
r are chosen such that

min
α
k,(l)
r

∑

l∈Sk
r

(αk,(l)
r )2 ·

‖xIPPk
r
− xIGP(l)‖

sinEk
r

, min
α
k,(l)
r

∑

l∈Sk
r

(αk,(l)
r )2(σk,(l)

r )−2, (7.11)

with the constraints
∑

l∈Sk
r

αk,(l)
r = 1. (7.12)

The optimization in Eq. (7.11) is performed for every pierce point IPPk
r . For simplicity,

the index r and k are omitted in the following, and the notations α(l), σ(l) indicate α
k,(l)
r

and σ
k,(l)
r .

Assume that the elements in the set S are l1, . . ., lM , i.e.

S = {l | ‖xIGP(l) − xIPP‖ < rbound} = {l1, . . . , lM}, and

lM∑

l=l1

α(l) = 1, (7.13)

Eq. (7.11) becomes

lM∑

l=l1

(α(l))2(σ(l))−2 = (1−
lM∑

l=l2

α(l))2(σ(l1))−2 +

lM∑

l=l2

(α(l))2(σ(l))−2. (7.14)

Setting the derivatives to zero










∂
∂α(l2)

(

(1−∑lM
l=l2

α(l))2(σ(l1))−2 +
∑lM

l=l2
(α(l))2(σ(l))−2

)

∂
∂α(l3)

(

(1−∑lM
l=l2

α(l))2(σ(l1))−2 +
∑lM

l=l2
(α(l))2(σ(l))−2

)

...
∂

∂α(lM )

(

(1−∑lM
l=l2

α(l))2(σ(l1))−2 +
∑lM

l=l2
(α(l))2(σ(l))−2

)











=










0

0
...

0










(7.15)
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yields 








2 · (1−∑lM
l=l2

α(l)) · (−σ(l1))−2 + 2α(l2)(σ(l2))−2

2 · (1−∑lM
l=l2

α(l)) · (−σ(l1))−2 + 2α(l3)(σ(l3))−2

...

2 · (1−∑lM
l=l2

α(l)) · (−σ(l1))−2 + 2α(lM )(σ(lM ))−2










=










0

0
...

0










, (7.16)

and adding α(l1) into the vector yields

Γ ·










α(l1)

α(l2)

...

α(lM )










=












1

2(σ(l1))−2

2(σ(l1))−2

...

2(σ(l1))−2












, (7.17)

with

Γ =












1 1 1 . . . 1

0 2
(
(σ(l1))−2 + (σ(l2))−2

)
2(σ(l1))−2 . . . 2(σ(l1))−2

0 2(σ(l1))−2 2
(
(σ(l1))−2 + (σ(l3))−2

)
. . . 2(σ(l1))−2

...
...

...
. . . 2(σ(l1))−2

0 2(σ(l1))−2 2(σ(l1))−2 . . . 2
(
(σ(l1))−2 + (σ(lM ))−2

)












(7.18)

Thus, the coefficients α(l) are solved as










α(l1)

α(l2)

...

α(lM )










= Γ−1 ·












1

2(σ(l1))−2

2(σ(l1))−2

...

2(σ(l1))−2












. (7.19)

Consequently, the linear coefficient matrix A is obtained as

A(l)
r =







α
1,(l)
r . . . α

1,(l)
r

...
. . .

...

α
Kr,(l)
r . . . α

Kr,(l)
r






. (7.20)
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