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Abstract 

In this work a GNSS navigation filter is developed and procedures are derived in order to 
provide integrity of the navigation solution. The position solution has to meet high accuracy 
demands, for example those of zero-visibility precision approach. Therefore, low-noise carrier 
phase measurements are processed in addition to the GNSS pseudorange measurements. It is 
essential to resolve the ambiguities of the carrier phase measurements quickly and reliably in 
order to support high-accuracy real-time kinematic (RTK) positioning. Ambiguity resolution 
relies in this work on a geometry-based model. It is expected for the near future that the satellite 
geometry and the signal quality will improve, since GPS is planned to be modernized and 
GALILEO will be operational. Both factors are relevant for making progress in the domain of 
RTK carrier phase-based relative positioning. This study is restricted to the use of dual-
frequency measurements in order to ensure compatibility with the requirements of civil aviation 
with respect to the Aeronautical Radio-Navigation Service (ARNS) bands. GPS’s L1 and L5 
signals or GALILEO’s E1 and E5a signals are considered as measurement input to the filter. The 
user position and velocity vector, the ambiguities of the phase measurements and ionospheric 
terms are estimated by the filter. The performance of three different ionosphere models has been 
investigated. Although the estimation of ionospheric range errors is improved by processing 
measurements on two different frequencies, the results are only very good in absence of un-
modeled biases. For example, if multiple measurements are biased by multipath it might happen 
that these un-modeled biases intrude into the ionosphere state estimation. The unknown states 
are only estimated reliably by the Extended Kalman Filter (EKF) if all un-modeled error sources 
were white Gaussian noise. Both multipath errors and residual tropospheric range errors after 
double-differencing are neglected in this filter approach. Alternatively to estimating the residual 
ionospheric errors it has also been considered to utilize ionosphere-free linear combinations. The 
user velocity vector is derived from instantaneous Doppler shift measurements. All 
measurements which are processed by the filter are double-differenced in order to keep the 
number of parameters to be estimated as small as possible. The disadvantage of double-
differencing is that the measurement noise is amplified. 

By implementing the standard equations of the EKF numeric stability cannot be assured. 
Numerical problems were avoided by choosing the Bierman-Thornton UD filter implementation 
for the problem at hand. Though, it is already sufficient to make the standard EKF equations 
more robust by implementing the Joseph form for the update of the covariance matrix of state 
estimation uncertainty. After introducing this measures in order to improve numeric robustness 
of the filter in presence of computer round-off errors, no further numerical problems where 
observed any longer in the succeeding simulation runs. 

Because of the usage of an EKF it is difficult to derive the integrity risk analytically. The results 
depend on filter initialization and the concrete data sequence. However, a linear Kalman filter 
produces optimal state estimates by minimizing the sum of the mean-square errors. The integrity 
risk can be estimated for the nonlinear navigation filter solution by making some restrictive 
assumptions. Nevertheless, the effective integrity risk has to be determined by excessive 
simulations. Autonomous Filter-based fault Detection, Identification and model Adaptation 
(AFDIA) is proposed in order to detect model invalidations and to compensate them. So far only 
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single-channel biases can be detected and corrected, although the extension to multiple biases is 
possible, but complex. In the navigation algorithm tests all simulated cycle slips and code-
outliers were detected successfully and the model was adapted properly afterwards. Protection 
levels are computed for both the user position estimates and the user velocity estimates. The 
derivation of the protection levels for the filter-based approach is restricted to two mutually 
exclusive hypotheses: normal operation of the filter in absence of biases and the fault mode if 
there is one bias in the measurement data. The non-Gaussian tails of the error distributions are 
accounted for by introducing inflation factors in the computation of the protection levels. This 
procedure is referred to as sigma-overbounding. 

The performance of the navigation filter and the plausibility of the protection levels have been 
verified by Monte-Carlo simulations. In addition, real-signal tests of a precision approach have 
been carried out with a hardware simulator and a GALILEO receiver. The accuracy of the 
position estimates and the magnitude of the protection levels strongly depend on the availability 
of a carrier phase ambiguity-fixed solution. The float solution is already very accurate after the 
first hundred observation epochs because of the filter-based approach. In the Monte-Carlo 
simulations the carrier phase ambiguities could be typically fixed at a baseline length of 20 km 
between the user receiver and the reference receiver. The probability of wrong ambiguity fixing 
has been set to 1 · 10ିଽ. Successful carrier phase ambiguity resolution is demonstrated in the 
real-signal tests for a baseline length of 54 km, where the navigation filter has been started when 
the airplane was about 75 km away from the airport. The results of the real-signal tests are very 
good because of the availability of low-noise E5a pseudorange measurements. Furthermore, only 
ionospheric delays have been simulated with the hardware simulator. Tropospheric delays and 
multipath were neglected. The Vertical Protection Level (VPL) of the carrier phase ambiguity-
fixed position solution is below 20 cm under the condition of good satellite geometry. The 
associated integrity risk is assumed to be at the order of 3 · 10ିଽ. If there are only few visible 
satellites, the VPL may be as large as 2 m although the ambiguities have already been fixed 
correctly. There is a great difference between the fault-mode protection level and the fault-free 
protection level. With respect to bad satellite geometry, the fault-mode protection level clearly 
dominates the overall protection level. 

The performance results of the navigation filter are very promising with respect to the position 
accuracy and the magnitude of the protection levels which can be achieved. Since the actual 
integrity risk has to be assessed by simulations, it is rather difficult to proof that the integrity risk 
is indeed in the range of 10ିଽ, which is required for zero-visibility precision approach in civil 
aviation. The application of the navigation filter in domains where even higher position accuracy 
than in civil aviation is required, but where the specified integrity risk can still be verified by 
simulations, seems to be more likely. Several airport-related applications can be listed, for 
example automated cargo traffic, taxiing and coasting, but also precision approach in the military 
domain. 
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Zusammenfassung 

Die vorliegende Arbeit, deren Ergebnisse hier gekürzt dargestellt sind, beschäftigt sich mit der 
Entwicklung eines GNSS Navigationsfilters und dem Herleiten von Mechanismen, um die 
Integrität der Navigationslösung sicherzustellen. Die Positionslösung soll hohen 
Genauigkeitsanforderungen gerecht werden, beispielsweise denen eines autonomen 
Landeanflugs. Aus diesem Grund werden neben GNSS Code-Messungen auch die wesentlich 
rauschärmeren Trägerphasenmessungen verarbeitet. Für hochgenaue und echtzeitkritische 
Positionierungsanwendungen ist es wichtig, dass die Mehrdeutigkeiten der Trägerphasen-
messungen schnell und zuverlässig gelöst werden. Die Lösung der Mehrdeutigkeiten beruht in 
dieser Arbeit auf einem geometriebasierten Modell. Da sowohl eine Modernisierung von GPS 
geplant ist, als auch GALILEO operativ zur Verfügung stehen wird, kann zukünftig mit einer 
verbesserten Satellitengeometrie und mit höherer Signalqualität gerechnet werden. Beides sind 
relevante Faktoren, um Fortschritte im Bereich der echtzeitfähigen relativen Trägerphasen-
positionierung zu machen. Die hier durchgeführte Studie beschränkt sich auf die Verwendung 
von Zweifrequenzmessungen, um mit den Anforderungen der zivilen Luftfahrt hinsichtlich der 
zugelassenen Frequenzbänder konform zu bleiben. Es werden GPS-Signale auf L1 und L5 oder 
alternativ GALILEO-Signale auf E1 und E5a berücksichtigt. Die Zustände, die mit dem Filter 
geschätzt werden, sind der Positionsvektor und der Geschwindigkeitsvektor des Nutzers, die 
Mehrdeutigkeiten der Phasenmessungen und ionosphärische Störgrößen. Drei verschiedene 
Ionosphärenmodelle sind hinsichtlich ihrer Effizienz untersucht worden. Obwohl die Schätzung 
von Ionosphärenfehlern durch die Verwendung von Messungen auf zwei verschiedenen 
Frequenzen verbessert wird, sind die Ergebnisse nur in Abwesenheit von nicht modellierten 
systematischen Fehlern sehr gut. Sind beispielsweise mehrere Messungen durch Mehrwege-
ausbreitung gestört, so fließen diese nicht modellierten Störgrößen gegebenenfalls fälschlicher-
weise in die Schätzung der Ionosphärenfehler mit ein. Der verwendete Extended Kalman Filter 
(EKF) Ansatz gewährleistet nur eine zuverlässige Schätzung der Zustände, insofern alle nicht 
modellierten Fehlerquellen durch weißes gaußsches Rauschen beschrieben werden können. 
Neben Mehrwegeausbreitung bleibt auch der troposphärische Restfehler nach der Doppelten 
Differenzbildung unberücksichtigt. Als Alternative zur Schätzung der ionosphärischen 
Restfehler wurde auch die Verwendung ionosphärenfreier Linearkombinationen in Betracht 
gezogen. Die Geschwindigkeit des Nutzers wird aus Messungen der Dopplerfrequenz-
verschiebung ermittelt. Um die Anzahl der zu schätzenden Parameter gering zu halten, werden 
Doppelte Differenzen aller Messgrößen gebildet, mit dem Nachteil eines verstärkten 
Messrauschens. 

Die numerische Stabilität des EKF muss durch eine geeignete Implementierung sichergestellt 
werden, die sich nicht durch die Verwendung der Standardgleichungen erzielen lässt. Beispiels-
weise weißt der Bierman-Thornton UD Filteransatz für das vorliegende Problem keine 
numerischen Probleme auf. Es ist allerdings auch bereits ausreichend, die Standardgleichungen 
numerisch robuster zu gestalten, indem die Joseph-Form für die Aktualisierung der Kovarianz-
matrix der Zustandsschätzungen gewählt wird. Nach diesen Stabilisierungsmaßnahmen konnte 
in keinem weiteren Simulationslauf ein numerisches Problem mehr nachgewiesen werden. 
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Ein analytischer Ansatz zur Bestimmung des Integritätsrisikos gestaltet sich auf Grund des 
verwendeten EKF als schwierig. Die Ergebnisse sind von der Filterinitialisierung sowie von der 
tatsächlichen Datensequenz abhängig. Ein lineares Kalman Filter ist hingegen ein optimaler 
Schätzer hinsichtlich der Minimierung der Summe aus den mittleren quadratischen Zustands-
schätzfehlern. Mit gewissen Einschränkungen kann aber auch für den nichtlinearen Navigations-
filter, der hier entwickelt wurde, eine Abschätzung des Integritätsrisikos erstellt werden. Der 
tatsächliche Nachweis muss jedoch durch aufwändige Simulationen erbracht werden. Für die 
Erkennung, Identifizierung und Behebung von Modellfehlern wird die Verwendung von AFDIA 
(Autonomous Filter-based fault Detection, Identification and Model Adaptation) vorgeschlagen. 
Bisher wird nur die Identifizierung und Adaption für einzeln auftretende Fehler unterstützt. Alle 
simulierten Einzelfehler, beispielsweise Cycle Slips und Ausreißer der Code-Messungen, sind 
stets erfolgreich erkannt und kompensiert worden. Für die Positionslösung und für die 
Geschwindigkeitslösung werden Protection Levels berechnet. Das Herleiten der Protection 
Levels für den Filteransatz beschränkt sich auf zwei sich gegenseitig ausschließende 
Hypothesen: der Filter arbeitet im Normalbetrieb und es liegen keine systematischen Fehler vor 
oder es liegt genau ein systematischer Fehler vor. Durch Gewichtungsfaktoren, die größer eins 
sind, wird berücksichtigt, dass es in der Realität zu Abweichungen von den angenommenen 
Gaußverteilungen kommt. Man spricht in diesem Zusammenhang von Sigma-Verbreiterung zur 
Erfassung nicht-gaußscher Fehlerrandverteilungen. 

Die Leistungsfähigkeit des Navigationsfilters und die Plausibilität der Protection Levels wurden 
durch Monte-Carlo Simulationen nachgewiesen. Zudem wurde mit einem Hardware-Simulator 
ein GALILEO-Szenario erzeugt und die Signale mit einem GALILEO-Empfänger für einen 
simulierten Landeanflug aufgezeichnet. Die Genauigkeit der Positionslösung, und dem-
entsprechend auch die Größenordnung der Protection Levels, sind stark davon abhängig, ob die 
Trägerphasenmehrdeutigkeiten bereits gelöst wurden. Auf Grund des gewählten Filteransatzes 
werden allerdings auch schon für die Float-Lösung sehr hohe Genauigkeiten erzielt. In den 
Monte-Carlo Simulationen konnten die Trägerphasenmehrdeutigkeiten typischerweise ab einer 
Distanz von 20 km zur Referenzstation gelöst werden. Die Wahrscheinlichkeit, die 
Mehrdeutigkeiten falsch zu lösen, liegt dabei bei 1 · 10ିଽ. Bei der Auswertung der realen 
Empfängermessungen ließen sich die Trägerphasenmehrdeutigkeiten auf E1 bereits in einer 
Entfernung von 54 km zur Referenzstation erfolgreich lösen. Die sehr guten Ergebnisse bei den 
Tests mit den realen Signalmessungen ergeben sich durch die Verwendung der enorm 
rauscharmen Code-Messung auf E5a. Zudem wurden nur Ionosphärenfehler mit dem HW-
Simulator simuliert, nicht aber Mehrwegeausbreitung und Troposphärenfehler. Der VPL 
(Vertical Protection Level) der Positionslösung nach erfolgreicher Trägerphasen-
Mehrdeutigkeitslösung liegt unterhalb von 20 cm insofern eine gute Satellitengeometrie vorliegt. 
Das zugrunde liegende Integritätsrisiko wird dabei auf 3 · 10ିଽ geschätzt. Sind nur sehr wenige 
Satelliten in Sicht, so kann sich auch ein VPL von knapp 2 m ergeben. Es stellt sich dann eine 
starke Abweichung zwischen dem Protection Level für den Fehlerfall und dem Protection Level 
für den Normalbetrieb ein, wobei das Protection Level für den Fehlerfall klar dominiert. 

Die mit dem Filter erzielten Ergebnisse sind hinsichtlich der Positionsgenauigkeit und der 
dazugehörigen Protection Levels vielversprechend. Da der Nachweis des tatsächlichen 
Integritätsrisikos jedoch durch Simulationen erbracht werden muss, ist es entsprechend 
schwierig, in den Bereich von 10ିଽ, der in der zivilen Luftfahrt für die Landung ohne Sicht 
vorgesehen ist, vorzudringen. Anwendungen, bei denen noch höhere Genauigkeitsanforderungen 
als in der zivilen Luftfahrt bestehen, die aber ein größeres Integritätsrisiko zulassen, so dass der 
Nachweis durch Simulationen erfolgen kann, erscheinen geeigneter für den Einsatz des 
Navigationsfilters. Zu diesen flughafennahen Anwendungen gehören beispielsweise der 
automatisierte Frachtverkehr und Logistikaufgaben, aber auch der Einsatz für Landeanflüge im 
militärischen Bereich. 
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1 Introduction 

1.1 Requirements for Precision Approach and Landing 

Real-time kinematic carrier phase techniques fulfill the highest accuracy requirements once the 
unknown carrier phase ambiguities have been resolved successfully. However, in the domain of 
safety-critical applications this is not yet sufficient: integrity, continuity and availability 
requirements have to be met as well. Many safety regulations for civil aviation are published by 
the Federal Aviation Administration (FAA) which belongs to the U.S. Department of 
Transportation. In this work the requirements for Category III precision instrument approach and 
landing are of special interest, since they are the most challenging for present-day technology. 
There is no decision height minimum assigned to Category III, e.g. it applies to the final phase of 
the flight (see Figure 1.1). The Instrument Landing System (ILS) category CAT III can be 
subdivided into three sub-classes: CAT IIIa requires a runway visual range of at least 700 feet, 
CAT IIIb requires a visual range of at least 150 feet and CAT IIIc finally applies to zero-
visibility. The user-referenced position solution of the airplane has to be protected against severe 
position errors in order to prevent hazardous maneuvers due to wrong position information. 
Therefore a horizontal alert limit (HAL) and a vertical alert limit (VAL) are specified. The HAL 
is defined as the radius of a circle in the horizontal plane and the horizontal position estimate is 
required to be located within this circle with a specified probability as derived from the integrity 
risk [36]. The true horizontal position of the airplane is located in the center of this circle. 
Similarly, the VAL is defined as half the length of a segment on the vertical axis. The vertical 
position estimate is required to be located within this segment during the approach with a 
specified probability as derived from the integrity risk. The true vertical position of the airplane 
is located in the center of the segment. Concerning CAT IIIc precision approaches, the HAL is 
defined to be 15.5 m and the VAL is defined to be 5.3 m.  

 
Figure 1.1: Requirements for precision approach and landing (Source FAA [8]) 
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Recent research in the domain of GNSS (Global Navigation Satellite System) addresses to 
developing GNSS integrity architectures satisfying the requirements of civil aviation with regard 
to precision approach and even auto-landing. GNSS as primary source of navigation could 
replace ILS even during the most critical phases of flight if powerful integrity monitoring 
algorithms were available for high-accuracy relative positioning with GNSS. There are multiple 
GNSS-related navigation error sources, and only some of them are listed hereafter. The precision 
of the measurements may be deteriorated by multipath. Solar storms, unannounced satellite 
maneuvers, incorrect upload of the navigation message data, component failures as well as 
jumps of the satellite clock frequency or excessive clock drifts can cause severe degeneration of 
the position solution. Concerning carrier phase based positioning undetected cycle slips 
deteriorate the navigation performance and have to be accounted for as well. 

The modernization of GPS and the introduction of GALILEO favor the research with regard to 
the use of carrier phase based techniques in safety-critical applications. It is expected that the 
availability of civil signals on multiple frequencies will improve the success rate of integer 
ambiguity resolution and shorten the time which is required in order to derive an ambiguity-
fixed solution [37]. The GNSS frequencies considered for civil aviation have to reside in 
aeronautic radio-navigation service (ARNS) bands. The two ARNS bands which are of relevance 
for GNSS go from 960 – 1215 MHz and from 1559 – 1610 MHz. In case of modernized GPS, 
the L1 and L5 signals reside in an ARNS band. Concerning GALILEO, the E1 and E5 band are 
considered for civil aviation as they also reside in an ARNS band. The characteristics of the 
GNSS signals which are considered in this work are listed in Table 7.1 of Sect. 7.1.1.  

The navigation filter which is derived here will always forward the best navigation solution that 
is presently available. This solution may either be a float solution or an ambiguity-fixed solution. 
As soon as the carrier phase ambiguities are resolved, the required accuracy for precision 
approach and landing will easily be met. Achieving the compliance with the integrity 
requirements of civil aviation will be more difficult part. Characteristic parameters of integrity 
are according to [23] the alert limit, the Time To Alert (TTA) and the integrity risk. The HAL 
and the VAL have been defined before. An alarm has to be raised if the user position error 
exceeds the alert limit. After the occurrence of an alarm condition the user has to be informed 
within the specified time to alert. Finally, the integrity risk is given by the probability of not 
informing the user-site of a position error that exceeds the alert limit within the specified TTA. 
Further important parameters are the continuity risk and the system availability. Preliminary 
numerical values for characteristic integrity parameters during precision approach and landing 
are indicated in the GNSS Evolutionary Architecture Study [9]. The system availability must be 
greater than 99% under all weather conditions. The continuity risk may not exceed 8x10-6 per 15 
seconds for the duration of the airport approach. Finally, the integrity risk may not exceed 1x10-9 
per approach if an autoland was to be performed.  

Pervan et al. presented in [33] the requirements for military shipboard landings under zero-
visibility conditions. A vertical alert limit of 1.1 m with an associated integrity risk of 10-7 and a 
system availability of at least 99.7% has been assessed. Compared to the requirements of civil 
aviation, the VAL is set even tighter, but the integrity risk is more relaxed. There are far more 
applications than precision approach and landing the navigation filter with integrated integrity 
monitoring features might address to. Among them are taxiing, coasting, automated cargo traffic 
and military aeronautical applications. All these applications require possibly even higher 
position accuracy than precision approach and landing in civil aviation, but are likely to be more 
relaxed with respect to the system availability and the continuity risk. Reliable carrier phase 
based relative positioning might therefore be even more appealing to airport-related traffic 
management and logistic if it turns out that ambiguity resolution on-the-fly does not meet the 
continuity and availability requirements of civil aviation. 
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1.2 Objectives and Outline of the Work 

The main object of this work is to derive robust navigation filter algorithms for carrier phase 
based relative positioning and to investigate the integrity of the filter-based navigation solution. 
The derivation of an integrity concept requires basic knowledge in statistical test. In chapter 2 
important parameter distributions, which are used when developing the protection levels for the 
navigation solution, are presented. Furthermore, the basics of hypothesis testing are introduced, 
which play a major role in GNSS model validation. Double-differenced pseudorange, carrier 
phase and Doppler shift measurements are processed by the navigation filter. The observation 
equations and the variance-covariance error propagation due to double-differencing are 
presented in chapter 3. This thesis is focused on processing dual-frequency measurement data 
from either GPS or GALILEO. The concept of forming inter-frequency combinations as well as 
its advantages and disadvantages are also depicted in chapter 3. The widelane phase 
measurement, which is generated by combining the E1 and E5a or L1 and L5 phase 
measurements, has a wavelength of 0.75 m. It is used as filter input with the expectation that the 
widelane integer ambiguities can be resolved faster than the carrier phase integer ambiguities. 
Furthermore, the utilization of ionosphere-free measurement combinations is considered as an 
alternative to estimating ionospheric delay terms. The navigation filter which is developed here 
relies on the theory of Kalman filtering. In chapter 4 the Kalman filter equations are introduced. 
Filter convergence and divergence are discussed as well as numerical stability of the Kalman 
filter equations. It has shown in the simulations in MATLAB® that numerical robustness due to 
computer round-off is indeed a problem with respect to the classical filter equations. Therefore, 
the Bierman-Thornton UD filter implementation is considered as well as further implementation 
aspects in order to improve numerical robustness. In chapter 5 the actual navigation filter 
architecture is presented in detail. An extended Kalman filter is used, where the linearization 
takes place about the filter’s estimated trajectory. The underlying measurement model and state 
space model are depicted. Altogether three different ionosphere models are considered in order 
to estimate the ionospheric delay terms. The widelane and the carrier phase integer ambiguities 
are resolved in the filter by resorting to standard ambiguity resolution methods, e.g. the 
LAMBDA method or Integer Bootstrapping. The theoretical part of this thesis is completed with 
chapter 6. In this chapter a concept in order to monitor the integrity of the filter-based navigation 
solution is proposed. Autonomous Filter-based fault Detection, Identification and model 
Adaptation (AFDIA) is suggested for the overall model validation and the proceedings after an 
error has been detected. In addition, a procedure for computing the position and velocity solution 
protection levels for the fault-free mode and the fault-mode is derived. The navigation filter 
performance is evaluated by Monte-Carlo simulations and by real-signal tests, whose results are 
presented in chapter 7 and 8. It is verified whether AFDIA is capable of detecting and correcting 
single-channel biases. Finally, the results of this work are summarized in chapter 9. 
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2 Basics of Model Testing and Integrity 

2.1 Important Distributions in Statistical Tests 

2.1.1 Normal Distribution 

Given the expectation ܧ൛ܰµ,஢మൟ ൌ µ and the dispersion ܦ൛ܰµ,஢మൟ ൌ σଶ of a normally distributed 
random variable ܰµ,஢మ , the general form of the normal distribution of ܰµ,஢మ reads 

ሻݔே,µ,஢ሺܨ  ൌ ܲ൫ܰµ,஢మ ൑ ൯ݔ ൌ
1

√2π · σ
න eି

ሺ୲ିµሻమ
ଶ·஢మ dt

௫

ିஶ

, (2.1)

with the probability density function (PDF) 

 ே݂,µ,஢ሺݔሻ ൌ
1

√2π · σ
· eି

ሺ୲ିµሻమ
ଶ·஢మ . (2.2)

The following notation is used in order to specify the normal distribution of an n-dimensional 
random vector ݔ: 

ܰ~ݔ  ቀµ, Qቁ , (2.3)

where µ is the n-dimensional vector of expectation and Q is the (n)x(n) positive definite 
covariance matrix. The standardized normal distribution follows from the general normal 
distribution by setting µ ൌ 0 and σଶ ൌ 1: 

 Φሺxሻ ൌ P൫ ଴ܰ,ଵ ൑ x൯ ൌ
1

√2π
· න eି

୲మ
ଶ dt

୶

ିஶ

 (2.4)

 

2.1.2 Chi-Square Distribution 

The χ2-distribution belongs to the family of exponential distributions. Assuming that there are υ 
independently distributed samples ݔ௜~ܰሺ0,1ሻ, then the squared sum of the samples 

 ෍x୧ଶ
஥

୧ୀଵ

~χଶሺυሻ , x௜~ܰሺ0,1ሻ (2.5)

is χ2-distributed [27]. The central χ2-PDF is given as 
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݂ఞమ,஥ሺݔሻ ൌ

݁ି
௫
ଶ · ݔ

஥
ଶିଵ

2
஥
ଶ · ሺυ2ሻ߁

, ݔ ൐ 0

݂ఞమ,஥ሺݔሻ ൌ 0 , ݔ ൑ 0

 (2.6)

with υ degrees of freedom and the Gamma function 

ሺxሻ߁  ൌ න ௫ିଵݐ · ݁ି௧݀ݐ
ஶ

଴

, ݔ ൐ 0 . (2.7)

The run of the central χ2-PDF for various degrees of freedom is illustrated in Figure 2.1. 

 
Figure 2.1: Central χ2-PDF for three different degrees of freedom 

The χ2 cumulative distribution function is obtained from integrating the PDF of Eq. (2.6): 

ሻݔఞమ,஥ሺܨ  ൌ ܲሺ߯ଶ ൑ ሻݔ ൌ
1

2
஥
ଶ · ሺυ2ሻ߁

න ݁ି
௧
ଶ · ݐ

஥
ଶିଵ݀ݐ

௫

଴
, ሺݔ ൐ 0ሻ (2.8)

According to [3] it holds that ܧሼ߯ଶሽ ൌ υ and ܦሼ߯ଶሽ ൌ 2 · υ in case of a central χ2 distribution. 

Now it is assumed that the υ samples are again independently normally distributed with unit 
variance, but arbitrary mean, e.g. ݔ௜~ܰሺµ୧, 1ሻ. Then the squared sum of samples 

 ෍x୧ଶ
஥

୧ୀଵ

~χଶሺυ, λሻ , x୧~ܰሺµ୧, 1ሻ (2.9)

has a non-central χ2 distribution with the noncentrality parameter λ, which follows from [27]: 

 λ ൌ෍µ୧ଶ
஥

୧ୀଵ

 (2.10)

The non-central χ2 probability density function with the noncentrality parameter λ is 
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 ݂ఞమ,஥,஛ሺݔሻ ൌ
݁ି

௫ା஛
ଶ · ݔ

ଵ
ଶ·ሺ஥ିଵሻ · √λ

2 · ሺλ · ሻݔ
஥
ସ

· ஥ܫ
ଶିଵ

൫√λ · ൯ݔ , ݔ ൐ 0 ,

݂ఞమ,஥,஛ሺݔሻ ൌ 0 , ݔ ൑ 0 ,

 (2.11)

where ܫ୩ሺݖሻ is a modified Bessel function of the first kind 

ሻݖ୩ሺܫ  ൌ ቀ
ݖ
2
ቁ
௞
·෍

ቀ2ݖቁ
ଶ·௜

݅! ሺ݇߁ ൅ ݅ ൅ 1ሻ

ஶ

௜ୀ଴

. (2.12)

In case of a non-central χ2 distribution it holds that ܧሼ߯ଶሽ ൌ υ ൅ λ and ܦሼ߯ଶሽ ൌ 2 · υ ൅ 4 · λ. 
The non-central χ2-PDF is plotted in Figure 2.2 for various degrees of freedom. 

 
Figure 2.2: Non-central χ2-PDF with λ=5 for three different degrees of freedom 

 

2.1.3 F-Distribution 

A random variable ܨ஥భ,஥మ that is calculated from the ratio of two independent χ2-distributed 
random variables ଵܺ and ܺଶ divided by their degrees of freedom υଵ and υଶ, 

஥భ,஥మܨ  ൌ
ଵܺ · υଶ
υଵ · ܺଶ

,ሺυଵܨ~ υଶሻ , ଵܺ~χଶሺυଵሻ and ܺଶ~χଶሺυଶሻ , (2.13)

has an F-distribution with υ1 and υ2 degrees of freedom [3]. The central F-PDF with degrees of 
freedom υ1 and υ2 reads 

 
ி݂,஥భ,஥మሺݔሻ ൌ ൬

υଵ
υଶ
൰
஥భ
ଶ
·

߁ ቂυଵ ൅ υଶ
2 ቃ · ݔ

஥భିଶ
ଶ

߁ ቀυଵ2 ቁ · ߁ ቀ
υଶ
2 ቁ · ቂ1 ൅

υଵ
υଶ
· ቃݔ

஥భା஥మ
ଶ

, ݔ ൐ 0

ி݂,஥భ,஥మሺݔሻ ൌ 0 , ݔ ൑ 0

 (2.14)

and the cumulative F-distribution function is given by 
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ሻݔி,஥భ,஥మሺܨ  ൌ ܲ൫ܨ஥భ,஥మ ൑ ൯ݔ ൌන ி݂,஥భ,஥మሺݐሻ݀ݐ .

௫

଴

 (2.15)

It holds that the expectation of ܨ஥భ,஥మ~ܨሺυଵ, υଶሻ is ܧ൛ܨ஥భ,஥మൟ ൌ
஥మ

஥మିଶ
 (υଶ ൐ 2) and its dispersion 

is ܦ൛ܨ஥భ,஥మൟ ൌ
ଶ·஥మమ·ሺ஥భା஥మିଶሻ

஥భ·ሺ஥మିଶሻమ·ሺ஥మିସሻ
 (υଶ ൐ 4). The run of the central F-PDF is depicted in Figure 2.3, 

where the first degree of freedom υ1 is set to a fixed value and second degree of freedom υ2 is 
varied. 

 
Figure 2.3: F-PDF in dependence of the degrees of freedom υ1 and υ2 

In the following the more general case of two independently normally distributed random 
vectors with arbitrary expectation µ, ݔଵ~ܰ ቀµଵ, Qଵቁ of length υ1 and ݔଶ~ܰ ቀµଶ, Qଶቁ of length υ2, 
will be considered. The ratio 

 
ଵ்ݔ · Qଵିଵ · ଵݔ · υଶ
υଵ · ଶ்ݔ · Qଶିଵ · ଶݔ

,ሺυଵܨ~ υଶ, ሻߣ , ܰ~ଵݔ ቀµଵ, Qଵቁ and ܰ~ଶݔ ቀµଶ, Qଶቁ (2.16)

has a non-central F-distribution (see [47]) with the noncentrality parameter ߣ 

ߣ  ൌݔଵ் · Qଵିଵ · ଵݔ . (2.17)

Furthermore, the following notation is used in this work: 

 
்ݔ · ܳ · ݔ

υ
,∞,ሺυܨ~ ሻߣ , ณݔ

஥ൈଵ

~ܰ ቀµ, Qቁ (2.18)

A further important relationship between F-distributed random variables and χ2-distributed 
random variables in the context of statistical test, which is frequently used in this work, becomes 
obvious from Eq. (2.18): If ݔ~ܰሺߤ, ܳሻ is a vector of length υ with normally distributed random 
variables with mean ߤ and the covariance matrix ܳ, then ൫்ݔ · ܳିଵ · ,൯~߯ଶሺυݔ -ሻ is χ2ߣ
distributed with υ degrees of freedom and the noncentrality parameter ߣ ൌ ்ߤ · ܳିଵ ·  By .ߤ
dividing the weighted sum of squared entries ்ݔ · ܳିଵ ·  by the number of degrees of freedom ݔ

υ, then ௫
೅·ொషభ·௫
஥

,∞,ሺυܨ~  .ሻ is F-distributed with υ and ∞ degrees of freedomߣ
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2.2 Statistical Testing 

2.2.1 Fundamentals of Statistical Test Theory 

In hypothesis testing the problem of deciding whether a hypothesis that has been formulated is 
correct or false is solved by statistical means. Based on the test result the hypothesis is accepted 
or rejected. An introduction to statistical tests can be found in [18]. First, the parameter space θ 
is divided into two mutually exclusive and non-empty sub-sets θ0 and θ1: 

ߠ  ൌ ଴ߠ ׫ ଵ (2.19)ߠ

The sub-set ߠ଴ is called the region of acceptance, and the subset ߠଵ the critical region. A 
statistical test provides a decision rule for any realization x of the random variable X, which 
assesses whether the null hypothesis ܪ଴ ሺԂ א ଵܪ ଴ሻ or the alternative hypothesisߠ ሺԂ א  ଵሻ isߠ
accepted. In hypothesis testing the correct decision may be taken or one of two possible errors 
may be committed, see also Table 2.1. The error of the 1st kind denotes the case that the null 
hypothesis ܪ଴ is wrongly rejected due to the test outcome. The probability of wrongly rejecting 
 ଴ is given by α, which is also referred to as level of significance of the statistical test. Theܪ
confidence level of the statistical test is given by 1-α. The error of the 2nd kind denotes the case 
that the null hypothesis ܪ଴ is wrongly accepted due to the test outcome, but in truth it holds that 
Ԃ א  ଵ. The probability of the error of the 2nd kind is β. Although it is desirable to keep both theߠ
probability of the error of the 1st kind and the probability of the error of the 2nd kind to a 
minimum, it is not possible to control both probabilities simultaneously for a given number of 
observations [27]. The power of the test is given by 1- β, e.g. the probability of rejecting ܪ଴ 
when it is indeed false. 

Provided that it is known that the random variable under test is either normally-, χ2- or F-
distributed, the critical value k can be determined uniquely for a given level of significance α 
and for the concrete PDF at hand. The critical value k is also referred to as (1-α)-quantile or 
decision threshold and follows from solving the cumulative normal PDF in Eq. (2.1), or the 
cumulative χ2-PDF in Eq. (2.8), or cumulative F-PDF in Eq. (2.15), respectively, for the upper 
limit of the integral. The (1-α)-quantiles are frequently computed in advance for the different 
levels of significance α which are of interest for the concrete application at hand, and for 
different degrees of freedom in case of the χ2-distribution and the F-distribution. Then the pre-
computed quantiles are saved in lookup-tables in order to reduce the real-time computational 
effort during operation. 

 

Table 2.1: Hypothesis Testing
  Reality 

  ϑאΘ0 ϑאΘ1 

D
ec

is
io

n 

H0 Correct decision 
(normal operation) 

Error of 2nd kind (β) 
(missed detection) 

H1 Error of 1st kind (α) 
(false alarm) 

Correct decision 
(alarm) 

 

Statistical testing is applied in GNSS integrity monitoring algorithms. In safety-critical 
navigation tasks it has to be ensured that an alert is forwarded within the specified TTA with a 
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probability close to 1 if the position error does exceed a critical value. Therefore, the probability 
of missed detection ெܲ஽,ሾ௧,௧ା்ಾሿ is introduced. ெܲ஽,ሾ௧,௧ା்ಾሿ is defined as the probability of not 
raising an alarm within the specified TTA after a critical event has occurred. A critical event 
occurs when the position estimate is outside of the admissible region for the position solution. In 
this work ெܲ஽ will only refer to the current observation epoch and therefore no time interval 
index is used in the notation. In the context of hypothesis testing, ெܲ஽ corresponds to the 
probability β of the error of the 2nd kind. Besides a very low probability of missed detection, high 
continuity of the system during the duration of a maneuver ெܶ shall be preserved. The 
probability of the continuity risk ௖ܲ௥,ሾ௧,௧ା்ಾሿ can be approximated as [14]: 

 ௖ܲ௥,ሾ௧,௧ା்ಾሿ ൌ ܲ൫ܣሾ௧,௧ା்ಾሿ|ܧሾ௧,௧ା்ಾି்்஺ሿ൯ ൅ ிܲ஺,ሾ௧,௧ା்ಾሿ , (2.20)

with ܲ൫ܣሾ௧,௧ା்ಾሿ|ܧሾ௧,௧ା்ಾି்்஺ሿ൯ is the probability of an alert ܣ in the interval ሾݐ, ݐ ൅ ெܶሿ under 
the condition of a critical event ܧ in the interval ሾݐ, ݐ ൅ ெܶ െ  ሿ. ிܲ஺,ሾ௧,௧ା்ಾሿ is the probabilityܣܶܶ
of false alarm in the interval ሾݐ, ݐ ൅ ெܶሿ, e.g. the probability of raising an alarm although no 
critical event has occurred. Hereafter, the probability of false alarm will only refer to the current 
observation epoch. Therefore, the notation ிܲ஺ is used in the following sections instead of 
ிܲ஺,ሾ௧,௧ା்ಾሿ. ிܲ஺ corresponds to the probability α of the error of the 1st kind in hypothesis testing. 

The procedure that is frequently used in GNSS integrity monitoring algorithms is to fix the 
probability of false alarm in order to derive the decision threshold, e.g. the (1-α)-quantile, for the 
test statistic. 

 

2.2.2 Hypothesis Testing in GNSS Model Validation 

Hypothesis testing is used in order to validate the stochastic and the functional GNSS model. 
The following considerations refer to parameter adjustment by least-squares estimation in batch 
mode. The randomness of variables is explicitly expressed by a tilde ᇝ෥ above the variable name 
in this section. Let the functional model be  

ܧ  ቄݕ෤ቅ ൌ ܣ · ݔ , (2.21)

where y෤ is the random vector of observables, ܣ is the design matrix and ݔ is the vector of 
unknown parameters. The stochastic model that reflects the measurement uncertainty is 
expressed by 

ܦ  ቄݕ෤ቅ ൌ ܴ , (2.22)

where ܴ is the covariance matrix of the observables. The definition of the functional and 
stochastic model is used in order to formulate the null hypothesis: 

:଴ܪ  ܧ ቄݕ෤ቅ ൌ ܣ · ݔ , ܦ ቄݕ෤ቅ ൌ ܴ (2.23)

Furthermore, it is assumed that ݕ෤ is normally distributed, e.g. the null hypothesis is completely 
specified by: 

:଴ܪ  ܣ෤~ܰ൫ݕ · ,ݔ ܴ൯ (2.24)

H଴ is tested against an alternative hypothesis, Hଵ, which reflects the presence of biased 
observables: 
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:ଵܪ  ܧ ቄݕ෤ቅ ൌ ܣ · ݔ ൅ ܧ · ߝ , ܦ ቄݕ෤ቅ ൌ ܴ (2.25)

 is an unknown q-dimensional vector of biases ߝ is a known design matrix of model errors and ܧ
that have been assumed to be absent in the null hypothesis. An appropriate test statistic for the 
quality control of the functional model is given in Teunissen [44]: 

 ෨ܶ ൌ
1
ݍ
· ෤መ்ߥ · ܴିଵ · ܧ · ்ܧൣ · ܴିଵ · ܳఔෝ · ܴିଵ · ൧ܧ

ିଵ · ்ܧ · ܴିଵ · ෤መߥ , (2.26)

where ߥ෤መ ൌ ෤ݕ െ  ෤෠ is the measurement residuals vector after the least-squares adjustment and ܳఔෝݕ
is the associated covariance matrix of measurement residuals. If H଴ is true, the test statistic has a 
central F-distribution with υଵ ൌ q and υଶ ൌ ∞ degrees of freedom: 

:଴ܪ  ෨ܶ~ܨሺݍ,∞ሻ (2.27)

Contrary, the distribution of the test statistic is non-central under Hଵ: 

:ଵܪ  ෨ܶ~ܨሺݍ,∞, ߣ ് 0ሻ , (2.28)

where the noncentrality parameter λ follows from 

ߣ  ൌ்ߝ · ்ܧ · ܴିଵ · ܳఔෝ · ܴିଵ · ܧ · ߝ . (2.29)

For a fixed level of significance α the hypothesis H଴ is only accepted if ෨ܶ ൏  ఈ. The decisionܦ
threshold ܦ஑ is chosen such that it fulfills ܨி,୯,ஶሺܦ஑ሻ ൌ 1 െ α according to Eq. (2.15). This 
ensures that the probability of falsely rejecting H0 although it is indeed true, e.g. the error of the 
1st kind, does not exceed a specified limit. The error of the 2nd kind implies that H0 is accepted 
while it is indeed false. The probability of the error of the 2nd kind follows from: 

ߚ  ൌ න ி݂,୯,ஶ,஛ஷ଴ሺݔሻ݀ݔ

஽ಉ

଴

 (2.30)

In general, the model error ܧ ·  is not known. This implies that one cannot compute the ߝ
noncentrality parameter λ from Eq. (2.29). However, if the probabilities α and ߚ follow from the 
system specification, it is possible to determine λ from Eq. (2.30). Once the noncentrality 
parameter λ is known, it is possible to indicate the Minimum Detectable Bias (MDB). The MDB 
is the size of a model error that can still be detected with a probability of 1 െ  Restricting to .ߚ
the one-dimensional case where q=1 (e.g. ߝ is reduced to a scalar), and therefore ܧ reduces to a 
vector ݁, the MDB |ߝ| can be calculated from [44]: 

|ߝ|  ൌ ඨ
ߣ

்݁ · ܴିଵ · ܳఔෝ · ܴିଵ · ݁
 (2.31)

 

2.3 Basics of RAIM 

Integrity monitoring is crucial during landing approaches since deviations of the estimated user 
position from the actual flight path lead to hazardous misinformation. There are several methods 
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of GNSS integrity monitoring, e.g. RAIM which is an acronym for Receiver Autonomous 
Integrity Monitoring, SBAS (Satellite Based Augmentation System) and GBAS (Ground Based 
Augmentation System). The benefit of RAIM is that the integrity monitoring of the position 
solution is directly performed at the user-site. RAIM becomes even more important if GNSS is 
to be used as primary navigation system at the airplane. In order to allow for integrity checks it is 
required that redundant measurements are available. RAIM has originally been developed for 
standalone GPS. If only pseudorange measurements are used to derive the position solution, at 
least five visible satellites are required in order to detect hazardous position errors [23]. The 
measurement redundancy is one since there are five pseudorange measurements available, but 
only four system unknowns, e.g. the user position vector and the user receiver clock bias. Given 
that there are six or even more satellites in view, the faulty satellite can even be identified and 
excluded from the navigation solution. This is an important feature in order to reduce the 
continuity risk for airborne use of GNSS. RAIM algorithms aim at determining protection levels 
for the horizontal and vertical component of the position estimate. These levels restrict the 
maximum deviation of the position estimate from the true position without being detected with a 
specified probability of missed detection and a specified probability of false alert. The horizontal 
and vertical position errors are user-referenced. The horizontal position error comprises the error 
in the east and north component, while the vertical position error comprises the up-component. 
The probability of missed detection PMD is derived from the integrity risk and the probability of 
false alert PFA follows from the continuity risk according to the respective system specification. 

The horizontal and vertical position errors are not directly observable. Other methods have to be 
found in order to derive appropriate test statistics. Three popular RAIM schemes that have 
already been developed in the late 1980s are: 

- Range-Comparison Method [26] 

- Least-Squares Residuals Method [31] 

- Parity-Space Method [38] 

The equivalence of the three RAIM schemes with regard to equal alarm rates is demonstrated in 
Brown [4]. Comparing the RAIM schemes under the aspect of implementation, the least-squares 
residuals method seems favorable. The test statistic is obtained by simply summing up the 
squared residuals of the least-squares solution. If a weighted least-squares approach is used in 
order to derive the position solution, Walter et al. [50] propose to compute the weighted sum of 
least-squares residuals. The weighting matrix is given by the inverse of the covariance matrix of 
measurement noise. The identification of biased measurements with the parity-space method is 
less computational expensive than the range-comparison method, which requires the 
computation of different permutations. 

In the following the test statistic will be derived from the Weighted Sum of Squared Errors 
(WSSE). The WSSE has a chi-square distribution as the least-squares residuals vector ݎ is 
normally distributed. The number of degrees of freedom of the chi-square distribution depends 
on the actual algorithm in use [55]: 

ܧܹܵܵ  ൌ ்ݎ · ܹ · ݎ ~ ቊ߯
ଶሺ݊௠௘௔௦ െ ݊௦௧௔௧௘௦, ሻߣ

߯ଶሺ݊௠௘௔௦, ሻߣ
, ݐ݋݄ݏ݌ܽ݊ݏ ݄݉ݐ݅ݎ݋݈݃ܽ
, ݎ݁ݐ݈݂݅ ݄ܿܽ݋ݎ݌݌ܽ  (2.32)

Concerning snapshot RAIM algorithms, the size of the parity vector is given by the number of 
measurements ݊௠௘௔௦ reduced by the number of states ݊௦௧௔௧௘௦ to be estimated. Thus, the WSSE 
is composed of only ߭ ൌ ݊௠௘௔௦ െ ݊௦௧௔௧௘௦ independently normally distributed random variables. 
The number of states is four if only the user position vector and the receiver clock bias are to be 
estimated. In contrast to snapshot RAIM algorithms, the number of degrees of freedom of filter-
based integrity monitoring algorithms is ߭ ൌ ݊௠௘௔௦ as both present and past information is used 
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to derive the navigation solution. The computation of the residual vector ݎ and the weighting 
matrix ܹ in Eq. (2.32) is also dependent on the concrete algorithm in use. If a measurement is 
biased, the noncentrality parameter λ of the chi-square PDF differs from zero. The hypothesis H0 
“no bias present” is tested against the alternative hypothesis H1 “bias present”. The formal 
representation of hypothesis testing has already been introduced in Sect. 2.2.1. The central chi-
square PDF which corresponds to H0 and the non-central chi-square PDF which corresponds to 
H1 are depicted graphically in Figure 2.4. The graphic represents the case that the WSSE itself is 
taken as normalized test statistic. The degrees of freedom of the chi-square PDFs are given by 
the parameter υ. 

 

Figure 2.4: Relationship between the detection threshold, the probability of missed detection and 
the probability of false alert 

 

If the probability of false alert PFA is specified, the decision threshold ܦ can be computed from: 

 1 െ ிܲ஺ ൌ න ݂ఞమ,஥ሺݔሻ݀ݔ
஽

଴

 (2.33)

Many RAIM algorithms ([4], [10], [50]) take the square root of the WSSE as test statistic instead 
of the WSSE itself. Consequently, the new decision threshold follows from the square root of the 
decision threshold ܦ indicated in Eq. (2.33). The navigation system is only declared available if 
the computed protection levels (HPL, VPL) are below the specified alert limits (HAL, VAL): 

ܮܲܪ  ൏ ܮܣܪ
ܮܸܲ ൏ ܮܣܸ ቅ ܯܫܣܴ ݏ݅ (2.34) ݈ܾ݈݁ܽ݅ܽݒܽ

If the inequalities indicated in Eq. (2.34) are not fulfilled, an alert flag has to be raised that 
indicates that the position solution may not be trusted. 

Low availability of integrity monitoring is not tolerable in aeronautics. Especially during a 
landing approach high availability of RAIM is essential to support GNSS as primary means of 
navigation. It has to be investigated if a filter-based approach and the usage of low-noise carrier 
phase measurements for positioning do improve the availability of modified RAIM algorithms. 
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3 GNSS Observation Model 

3.1 Single-Point, Differential and Relative Positioning 

Both differential and relative positioning involve two or even more receivers in the system, 
while one receiver is sufficient for single-point positioning. However, single-point positioning is 
less accurate than differential or relative positioning. The following definition of single-point 
positioning assumes that no single-differences between different satellites (see Sect. 3.5) and no 
inter-frequency combinations of observations (see Sect. 3.4) are formed. Under these 
assumptions both the receiver antenna coordinates and the receiver clock error plus the receiver 
hardware biases have to be estimated in single-point positioning. Satellite-dependent nuisance 
parameters and atmospheric refraction are assumed to be absent. These assumptions are not 
justified where high precision of the position solution is required. Differential positioning aims 
at improving the precision of the position solution by applying extrapolated differential 
corrections to the measurements from the user receiver. The differential corrections are 
calculated at one or multiple reference receiver sites and provided to the user receiver via a data 
link. All further considerations are restricted to the use of two receivers in the system. One 
receiver serves as reference receiver whose coordinates are known precisely. The second 
receiver is the user receiver which may be mobile or static and whose coordinates are to be 
determined. In Figure 3.1 the constellation of a reference receiver A and a user receiver B as 
well as two satellites S1 and S2 is shown. The displacement between receiver A and B is 
denoted as baseline ஺ܾ஻. 

 
Figure 3.1: Differential and relative positioning 

 

In case of differential positioning the knowledge of the reference receiver coordinates is 
exploited by computing the difference between the measured range and the true geometric range 
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between the reference station and each satellite in view. From this information the differential 
corrections are derived. According to Hofmann-Wellenhof et al. [19], satellite-related and 
medium-related biases can be reduced significantly by applying the differential corrections at the 
user receiver site. Although the precision of differential positioning is already much better than 
the precision of single-point positioning, further improvement can be achieved by relative 
positioning. In case of relative positioning, the observations from the reference receiver are 
directly transferred to the user receiver instead of transferring extrapolated differential 
corrections. It is required that the reference receiver and the user receiver make their 
observations (almost) simultaneously to a sufficient number of the same satellites. Furthermore, 
there are stringent requirements on the data link with regard to delay times in order to support 
real-time kinematic (RTK) positioning. Therefore, the operational area of relative positioning is 
restricted given that there is not a whole network of reference receivers. However, relative 
positioning is well-suited for precision landing as the operational area is restricted to the vicinity 
of the airport. Nuisance parameters can be reduced to a great degree by applying differencing 
methods that are described in detail in Sect. 3.5. Integrity concepts for differential and relative 
positioning systems are more complex than those for single-point positioning since the reliability 
of data link and reference receiver related issues have to be considered as well. In this work the 
focus is on integrity monitoring at the user receiver site when using relative positioning 
techniques. 

 

3.2 Coordinate Systems 

The global Cartesian Earth-Centered Earth-Fixed (ECEF) coordinate system is chosen as 
reference system for relative positioning in this work. The origin of the ECEF coordinate system 
is identical with the origin of the World Geodetic System 1984 (WGS-84) ellipsoidal. 
Transformation equations for the conversion from ellipsoidal coordinates to Cartesian 
coordinates and vice versa can be found in textbooks on GNSS, for example in [13], [19] and 
[23]. 

Besides the two global coordinate systems, e.g. ECEF and WGS-84, also a local coordinate 
system is frequently used in this thesis. The first reason for referring to local coordinates is that 
the protection levels and alert limits of RAIM are in general indicated in a user-referenced 
coordinate system. The second reason is that in navigation it is often desirable to exclude 
satellites seen under low elevation angles at the receiver-site from the position solution. Signals 
from these satellites suffer from large atmospheric delay and are more likely subject to 
multipath. Therefore, satellites that are seen below a scalable receiver masking angle are either 
excluded from the position solution or they are scaled with less weight in a weighted position 
solution. In order to compare the satellite elevation angles at the receiver site with the receiver 
masking angle, a transformation from ECEF coordinates to local level coordinates, e.g. East-
North-Up (ENU) coordinates, is performed. Then the elevation angle Ԃ can be computed from 
the Cartesian ENU coordinates xୣୟୱ୲, x୬୭୰୲୦, x୳୮ by applying a conversion to spherical 
coordinates [3]: 

ߴ  ൌ
ߨ
2
െ ଵି݊ܽݐ

ۉ

ۇ
ටݔ௘௔௦௧ଶ ൅ ௡௢௥௧௛ଶݔ

௨௣ݔ
ی

ۊ ൌ ଵିݐ݋ܿ

ۉ

ۇ
ටݔ௘௔௦௧ଶ ൅ ௡௢௥௧௛ଶݔ

௨௣ݔ
ی

(3.1) ۊ
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However, initially the satellite and receiver coordinates are indicated in the global ECEF 
coordinate system and a conversion to ENU is required. After [19], the satellite ECEF 
coordinates can be transformed to ENU coordinates with the receiver antenna location in the 
origin of the local coordinate system by 

 ܺாே௎ௌ ൌ ൥
െ sin ோߣ cos ோߣ 0

െ sin߮ோ cos ோߣ െ sin߮ோ sin ோߣ cos߮ோ
cos߮ோ cos ோߣ cos߮ோ sin ோߣ sin߮ோ

൩ · ቎
ௌݔ െ ோݔ
ௌݕ െ ோݕ
ௌݖ െ ோݖ

቏ , (3.2)

where: 

ܺோ ൌ ሺݔோ ோݕ  ோሻ்: Receiver position in ECEF coordinatesݖ

ܺௌ ൌ ሺݔௌ ௌݕ  ௌሻ்: Satellite position in ECEF coordinatesݖ

ܺாே௎ௌ ൌ ൫ݔ௘௔௦௧ௌ ௡௢௥௧௛ௌݔ ௨௣ௌݔ ൯்: Satellite position in ENU coordinates 

߮ோ: WGS-84 ellipsoidal latitude of the receiver position 

 ோ: WGS-84 ellipsoidal longitude of the receiver positionߣ

 

The geodetic latitude ߮ோ and longitude ߣோ of the receiver position with respect to the WGS-84 
ellipsoid can be derived from the receiver’s ECEF coordinates ܺோ in closed-form. While ߣோ 
follows immediately from 

ோߣ  ൌ

ە
ۖ
۔

ۖ
tanିଵۓ ൬

ோݕ
ோݔ
൰ , ோݔ  ൒ 0

tanିଵ ൬
ோݕ
ோݔ
൰ ൅ ߨ , ோݔ   ൏ ோݕ ݀݊ܽ 0 ൒ 0

tanିଵ ൬
ோݕ
ோݔ
൰ െ ߨ ,   ோݔ ൏ 0 ܽ݊݀ ோݕ ൏ 0

 (3.3)

a closed-form solution of ߮ோ is rather lengthy and can be found in [23]. Instead of applying a 
closed-form solution, the geodetic latitude and height can also be found iteratively as 
demonstrated in [19]. The geodetic latitude ߮ோ can be expressed as a function of the radius of 
curvature ܰ in prime vertical and the geodetic height ݄ோ: 

 ߮ோ ൌ tanିଵ ൥
ோݖ 

ඥݔோଶ ൅ ோଶݕ
· ቆ1 െ

ܽଶ െ ܾଶ

ܽଶ
·

ܰ
ܰ ൅ ݄

ቇ
ିଵ

൩ , (3.4)

where ܽ ൌ 6378137.0 ݉ is the semi-major axis of the WGS-84 reference ellipsoid and ܾ ൌ
6356752.314 ݉ is the semi-minor axis. The radius of curvature ܰ in prime vertical is given by 

 
ܰ ൌ

ܽ

ට1 െ ܽଶ െ ܾଶ
ܽଶ · ଶ߮ோ݊݅ݏ

 
(3.5)

and the geodetic height ݄ோ follows from 

 ݄ோ ൌ
ඥݔோଶ ൅ ோଶݕ

ݏ݋ܿ ߮ோ
െ ܰ . (3.6)

In the positioning software Eq. (3.4) and Eq. (3.6) are solved iteratively. 
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3.3 Observation Equations 

3.3.1 Pseudorange Observation 

The notation pseudo-ranging has been introduced into the terminology of satellite navigation in 
order to indicate that the measured ranges differ from the true geometric ranges. The receiver 
measurements are biased by clock offsets since the receiver clocks are not perfectly 
synchronized to GPS/GALILEO system time. Besides the clock offset, there are far more error 
sources which deteriorate the pseudorange measurements and that have to be accounted for in 
order to derive an accurate position solution. 

The following notation is used in this work: the subscript c indicates the dependency on the 
carrier frequency, the subscript R indicates the receiver and the superscript S indicates the 
satellite, respectively. The time-dependency of the parameters is not explicitly shown. Using this 
notation, the pseudorange measurement can be expressed by 

 
௖,ோߩ
ௌ௝ ൌ ோݎ

ௌ௝ ൅ ܿ଴ · ൫݀ݐௌ௝ െ ோ൯ݐ݀ ൅ ݀௜௢௡,ோ
ௌ௝ · ௜݂௢௡

ଶ

௖݂
ଶ ൅ ݀௢௥௕

ௌ௝ ൅ ݀௧௥௢௣,ோ
ௌ௝ ൅ ݀௠ഐ,೎,ோ

ௌ௝

൅ ݀௕೎
ௌ௝ ൅ ݀௕೎,ோ ൅ ఘ߭೎,ோ

ௌ௝ , 
(3.7)

where: 

௖,ோߩ
ௌ௝ : Pseudorange measurement 

ோݎ
ௌ௝: True geometric range between the receiver R and the satellite S୨: 

ோݎ 
ௌ௝ ൌ ඥሺݔௌ௝ െ ோሻଶݔ ൅ ሺݕௌ௝ െ ோሻଶݕ ൅ ሺݖௌ௝ െ  ோሻଶݖ

ܿ଴: Velocity of light 

 ௌ௝: Satellite clock errorݐ݀

 ோ: Receiver clock errorݐ݀

݀௜௢௡,ோ
ௌ௝ : Range error due to ionospheric refraction with respect to the frequency f୧୭୬ 

௖݂ : Carrier frequency 

݀௢௥௕
ௌ௝ : Orbital error 

݀௧௥௢௣,ோ
ௌ௝ : Troposphere range error 

݀௠ഐ,೎,ோ
ௌ௝ : Multipath range error on the pseudorange 

݀௕೎
ௌ௝: Satellite hardware bias 

݀௕೎,ோ: Receiver hardware bias 

߭஡ౙ,R
ௌ௝ : Pseudorange measurement noise 

By expressing the range difference due to ionospheric refraction by ݀௜௢௡,ோ
ௌ௝ · ௙೔೚೙

మ

௙೎మ
, range errors 

which correspond to higher order terms of the ionospheric gradient are assumed to be negligible. 
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3.3.2 Carrier Phase Observation 

The carrier phase observation is ambiguous in contrast to the pseudorange observation. Carrier 
phase measurements are obtained by comparing the phase of the carrier signal generated by the 
receiver at signal reception time with phases of the carrier signals generated by the satellites at 
signal transmission time. The ambiguity of the carrier phase measurement results from the 
periodicity of the phase with 2π. Only the fractional carrier phase can be measured, leaving an 
unknown number of integer cycles between the satellite and the receiver. However, only the 
initial integer ambiguities are unknown. With the help of a cycle counter all further inter cycles 
are recorded during continuous tracking as long as no cycle slip occurs. Carrier phase 
observations are of special importance for high-accuracy positioning. The receiver noise of the 
carrier phase measurement is frequently lower than 0.01 cycles, which corresponds to a 
measurement noise in the range domain of less than 2 mm at L1 or E1, respectively. Therefore, 
the key to RTK positioning with accuracies of the position solution in the centimeter range is 
fast carrier-cycle ambiguity resolution. The parameterization of the carrier phase observation can 
be written as 

 
߶௖,ோ
ௌ௝ ൌ ோݎ

ௌ௝ ൅ ௖ߣ · ௖ܰ,ோ
ௌ௝ ൅ ܿ଴ · ൫݀ݐௌ௝ െ ோ൯ݐ݀ െ ݀௜௢௡,ோ

ௌ௝ · ௜݂௢௡
ଶ

௖݂
ଶ ൅ ݀௢௥௕

ௌ௝ ൅ ݀௧௥௢௣,ோ
ௌ௝

൅ ݀௠ഝ,೎,ோ
ௌ௝ ൅ ݀௕ഝ,೎

ௌ௝ ൅ ݀௕ഝ,೎,ோ ൅ ߭థ೎,ோ
ௌ௝ , 

(3.8)

where: 

߶௖,ோ
ௌ௝ : Carrier phase measurement in units of meters 

 ௖: Carrier wavelengthߣ

௖ܰ,ோ
ௌ௝ : Initial carrier phase integer ambiguity in units of cycles 

݀௠ഝ,೎,ோ
ௌ௝ : Multipath range error on the carrier phase 

݀௕ഝ,೎
ௌ௝ : Satellite hardware bias 

݀௕ഝ,೎,ோ: Receiver hardware bias 

߭థ೎,ோ
ௌ௝ : Carrier phase measurement noise in units of meters 

Note that unlike the other parameters, the integer ambiguity ௖ܰ,ோ
ௌ௝  is not time-varying as long as 

no cycle slip occurs. As mentioned before, GNSS receivers do not provide the carrier phase 
measurement in units of meters ߶௖,ோ

ௌ௝  as indicated in Eq. (3.8), but the carrier phase measurement 
in units of cycles ߔ௖,ோ

ௌ௝ . The conversion is given as: 

௖ߣ  · ௖,ோߔ
ௌ௝ ൌ ߶௖,ோ

ௌ௝  (3.9)

From Eq. (3.7) and (3.8) follows that the carrier phase is advanced by the ionospheric 
refractivity, while the code (group) phase is delayed. The derivation of ionosphere-free linear 
combinations of code and carrier phase measurements is described in Sect. 3.4. 
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3.3.3 Instantaneous Doppler Measurement 

The measurement of the Doppler frequency shift is a by-product of the carrier phase 
measurement. Nevertheless, Xu [54] states that the Doppler measurement is an independent 
observation, providing useful information about the instantaneous range rate. The Doppler 
frequency shifts are caused by relative motion of the satellites with respect to the receiver 
antenna. Both the velocity of the space vehicle travelling along its orbit and the receiver velocity 
in case of a mobile receiver contribute to observed relative range change. The Doppler frequency 
shift is expressed by 

 
∆ ோ݂

ௌ ൌ ோ݂
ௌ െ ௖݂

ௌ ൌ െ ௖݂
ௌ ·
௥௘௟,ோௌݒ ל

ܺௌ െ ܺோ
ோௌݎ

ܿ଴
, 

(3.10)

where: 

∆ ோ݂
ௌ: Doppler frequency shift due to the relative motion between the satellite ܵ and the 

receiver antenna ܴ 

ோ݂
ௌ: Frequency of the satellite signal ܵ received at the receiver antenna site ܴ 

௖݂
ௌ: Carrier frequency transmitted by the satellite ܵ 

௥௘௟,ோௌݒ : Vector of the relative velocity between the satellite ܵ and the receiver antenna ܴ 

௑ೄି௑ೃ
௥ೃ
ೄ : Line-of-sight unit vector pointing from the receiver site ܴ to the satellite ܵ, also 

denoted as 1ோௌ , where ݎோௌ ൌ ฮܺௌ െ ܺோฮଶ is the true geometric range between satellite ܵ 
and receiver ܴ 

According to [23], Doppler frequency shifts typically range from ±4 kHz with respect to 
௖݂
ௌ=1575.42 MHz due to relative GPS satellite motion observed from an earth-fixed receiver. 

The relative velocity vector ݒ௥௘௟,ோௌ  introduced in Eq. (3.10) can be rewritten in terms of the 
satellite velocity vector and the receiver velocity vector: 

௥௘௟,ோௌݒ  ൌ ሶܺ ௌ െ ሶܺோ ൌ ൭
ሶݔ ௌ
ሶݕ ௌ

ሶݖ ௌ
൱ െ ൭

ሶோݔ
ሶோݕ
ሶோݖ
൱ (3.11)

The determination of the satellite velocity vector ሶܺ ௌ from broadcast ephemeris data is shown in 
Appendix B. Following the parameterization of the Doppler equation in terms of known and 
unknown parameters given in [23], Eq. (3.10) can be rearranged as 

 
c଴ · ∆fRS

fୡS
൅ ቌ

xሶ S
yሶ S

zሶ S
ቍ ל

ۉ

ۈ
ۈ
ۈ
ۈ
ۇ
xS െ xR
rRS

yS െ yR
rRS

zS െ zR
rRS ی

ۋ
ۋ
ۋ
ۋ
ۊ

ൌ ൭
xሶ R
yሶ R
zሶR
൱ ל

ۉ

ۈ
ۈ
ۈ
ۈ
ۇ
xS െ xR
rRS

yS െ yR
rRS

zS െ zR
rRS ی

ۋ
ۋ
ۋ
ۋ
ۊ

. (3.12)

From Eq. (3.12) follows that the instantaneous Doppler measurements provided by many GNSS 
receivers are well-suited in order to derive the velocity of the user receiver. In general, the 
transmitted frequency ௖݂

ௌ is offset from the nominal carrier frequency, which has to be 
considered when working with measured quantities. However, according to Kaplan et al. [23] 
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the offset between the transmitted satellite signal frequency and the nominal carrier frequency is 
usually negligible. Also ோ݂

ௌ is biased by a frequency offset compared to the theoretical receive 
signal frequency, which would be obtained if ideal clocks were available. The bias related to the 
receiver clock drift is in general not negligible. The following short notation of the measured 
Doppler frequency shift scaled to range rate will be used in the succeeding sections: 

௖,ோௌܦ  ൌ  
ܿ଴ · ∆ ோ݂

ௌ

௖݂
ௌ ൌ െ൫ ሶܺ ௌ െ ሶܺோ൯ ל

ܺௌ െ ܺோ
ோௌݎ

൅ ܿ଴ · ൫݀ݐሶ ௌ െ ሶݐ݀ ோ൯ ൅ ߭஽೎,ோ
ௌ , (3.13)

where ݀ݐሶ ௌ and ݀ݐሶ ோ denote the satellite and receiver clock drift and ߭஽೎,ோ
ௌ  denotes the combined 

measurement noise. In Eq. (3.13), changes of the atmospheric refractivity during the 
measurement interval are incorporated in the combined noise term ߭஽೎,ோ

ௌ . 

 

3.4 Inter-frequency Combinations of Observations 

3.4.1 Dual-frequency Carrier Phase Combination 

With present high-end GPS receivers measurements on two different carrier frequencies can be 
taken. Depending on the specific task, various strategies have been developed to exploit the 
availability of dual-frequency measurements. In the near future, GALILEO and modernized GPS 
will provide signals on more than just two frequencies. Thus, there will be the possibility to form 
linear combinations of observations on three or even more frequencies. Nevertheless, in civil 
aeronautics there is the requirement that the GNSS frequencies have to reside in an ARNS band. 
For this reason most considerations on evolutionary GNSS techniques in the domain of civil 
aviation are restricted to the use of GPS’s L1 and L5 band and GALILEO’s E1 and E5 band. It is 
assumed here that a dual-frequency approach will more easily meet certain certification 
standards. Therefore, the subsequent sections are restricted to the use of measurement data on 
two different frequencies. 

The following representation of dual-frequency linear carrier phase combinations is mainly after 
Wübbena [53]. The linear carrier phase combination 

ఈ,ఉߔ  ൌ ߙ · ௙భߔ ൅ ߚ · ௙మߔ  (3.14)

with the coefficients ߙ and ߚ has a resulting frequency of 

 ఈ݂,ఉ ൌ ߙ · ଵ݂ ൅ ߚ · ଶ݂ . (3.15)

Consequently, the wavelength of the combined signal follows from: 

ఈ,ఉߣ  ൌ
ܿ଴

ߙ · ଵ݂ ൅ ߚ · ଶ݂
ൌ

ଵߣ · ଶߣ
ߙ · ଶߣ ൅ ߚ · ଵߣ

 (3.16)

The new ambiguity term is as well a linear combination of the integer ambiguities of the original 
carrier phase measurements: 

 ఈܰ,ఉ ൌ ߙ · ଵܰ ൅ ߚ · ଶܰ (3.17)

In the following it is assumed that the original carrier phase measurements are uncorrelated, that 
they have all the same standard deviation ߪః [cycles], and that the measurement noise is 
normally distributed with N(0, σ஍). The standard deviation ߪః of the carrier phase measurement 
in units of cycles is: 
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ఃߪ  ൌ
݇௡
ߨ2

 (3.18)

If only PLL thermal noise jitter, whose computation is indicated in [23], is taken into account as 
exclusive noise source of the carrier phase measurement, the factor ݇௡ can be expressed as 

 ݇௡ ൌ ඨ
௡ܤ
/ܥ ଴ܰ

· ൬1 ൅
1

2 · ܶ · /ܥ ଴ܰ
൰ , (3.19)

where ܤ௡ is the receiver carrier loop noise bandwidth, ܶ is the pre-detection integration time and 
/ܥ ଴ܰ is the carrier-to-noise ratio. Typical values of ݇௡ are in the region of 0.06, which 
corresponds to a standard deviation of the carrier phase noise at L1 of less than 2 mm in the 
range domain. According to the law of error propagation and the assumptions made before, the 
standard deviation of the dual-frequency linear combination of carrier phases in units of meters 
is given by: 

థ,ఈఉߪ  ൌ ఃߪ · ඥߙଶ ൅ ଶߚ · ఈఉ (3.20)ߣ

 

Since the classical widelane (WL) combination serves as measurement input to the navigation 
filter, its characteristics are listed as an example hereafter. The widelane phase measurement is 
formed by setting the coefficient α to 1 and β to -1: 

ௐ௅ߔ  ൌ ாଵ|௅ଵߔ െ ாହ௔|௅ହ (3.21)ߔ

By choosing the coefficients α and β as integer values, it is ensured that the widelane ambiguity 
ܰௐ௅ is also an integer value. The wavelength of the widelane that is formed from the E1 (or L1) 
and E5a (or L5) carrier phase measurement is 0.75 cm and follows from Eq. (3.16). A 
disadvantage of the widelane measurement is that its standard deviation is increased compared to 
the original phase measurements, see Eq. (3.20). The standard deviation ߪథ,ௐ௅ of the widelane is 
increased by a factor of 5.58 compared to the standard deviation ߪథ,ாଵ|௅ଵ of the phase 
measurement on E1 (or L1). It is frequently assumed that the widelane ambiguities can be 
resolved more easily than the original carrier phase ambiguities since the wavelength becomes 
larger. Teunissen [40] has investigated the decorrelating property of the L1-L2 widelane on a 
theoretical level. It is shown there that the LAMBDA method (see Sect. 5.4.2) does either result 
in the ambiguity decorrelation of the widelane technique or that it even improves the results 
achieved with the widelane technique, depending on the actual ambiguity covariance matrix. 

 

3.4.2 Dual-frequency mixed Code-Carrier Combination 

Uncompensated residual ionospheric errors are the main problem associated with successful 
ambiguity resolution. The availability of measurements on two different frequencies offers the 
possibility of forming linear combinations of measurements in which ionospheric error terms of 
up to 1st order are canceled. However, this benefit is bought at the price of an increased noise 
level of the “new” measurements that result from the linear combinations. The general 
expression of a mixed code-carrier combination is: 

௟௖ߣ  · ௟௖ߔ ൌ෍ሺߙ௜ · ௜ߣ · ௜ߔ ൅ ܽ௜ · ௜ሻߩ
ே

௜ୀଵ

, (3.22)

where: 



3.4 Inter-frequency Combinations of Observations  33 

 

 ௟௖: Wavelength of the linear combinationߣ

 ௟௖: Carrier phase of the linear combinationߔ

 ௜: Weighting coefficient of the carrier phase measurementߙ

ܽ௜: Weighting coefficient of the pseudorange measurement 

Hereafter only the combination of either GALILEO’s E5a and E1 signals or the combination of 
GPS’s L5 and L1 signals are considered for the same reasons as mentioned before. Nevertheless, 
it should be noted that GALILEO and modernized GPS will provide far more options in order to 
form useful linear combinations, for example see [16]. 

The constraints in order to form an ionosphere-free, geometry-preserving mixed code-carrier 
combination are given in Henkel et al. [17], and will be repeated here with the restriction to dual-
frequency data. The geometry is preserved by the linear combination if the following constraint 
is fulfilled: 

 ෍ሺߙ௜ ൅ ܽ௜ሻ
ଶ

௜ୀଵ

ൌ 1 (3.23)

In order to form an “ionosphere-free” combination, it is exploited that the carrier phase is 
advanced and the code phase is delayed by ionospheric refractivity: 

 ෍ ଵ݂
ଶ

௜݂
ଶ · ሺߙ௜ െ ܽ௜ሻ

ଶ

௜ୀଵ

ൌ 0 (3.24)

It is assumed in Eq. (3.24), which imposes the “ionosphere-free” constraint, that higher order 
terms of the ionospheric refraction are negligible. Since merely dual-frequency combinations are 
considered in this work, only ionospheric effects up to the 1st order can be eliminated anyway. 
The last constraint is given by the requirement to preserve the integer nature of the ambiguities. 
This allows computing an integer ambiguity-fixed position solution which is more precise than 
an ambiguity-float solution. The integer constraint is given as 

௜ߙ  ൌ
݇௜ · ௟௖ߣ
௜ߣ

, ݅ ൌ 1,2 , (3.25)

where ݇௜ א ܼ and ߣ௟௖ is the resulting wavelength of the linear combination. 

In this work a mixed code-carrier combination is formed that is only almost “ionosphere-free”, 
while all other constraints are fulfilled. This is considered to be justified since double-
differenced observations are processed by the filter and thus only the residual ionospheric error 
after double-differencing has to be suppressed sufficiently. The code-carrier combination found 
in this work makes use of the phase measurements on E1 (or L1) and E5a (or L5) as well as the 
code measurement on E5a (or L5). It is characterized by: 

௟௖ߣ  · ௟௖ߔ ൌ ଵߙ · ாଵ|௅ଵߣ · ாଵ|௅ଵߔ ൅ ଶߙ · ாହ௔|௅ହߣ · ாହ௔|௅ହߔ ൅ ܽଶ · ாହ௔|௅ହ (3.26)ߩ

The code measurements on E1 (or L1) are not included in the code-carrier combination since 
they are far noisier than the E5a (or L5) code measurements. Another approach that is not 
considered here would be to give them low weight in the code-carrier combination. No inter-
system combinations will be considered here, e.g. either a mixed L1, L5 code-carrier 
combination or a mixed E1, E5a code-carrier combination is formed. The numerical values of 
the weighting coefficients of Eq. (3.26) are listed in Table 3.1. The coefficients are found by a 
trade-off between high suppression of the ionospheric range errors and a large ratio of the 
wavelength λ୪ୡ to the standard deviation ߪ௟௖ of the mixed code-carrier combination. Note that the 
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standard deviation of the mixed code-carrier combination is always higher than that of the pure 
carrier phase and code measurements, respectively. 

 

Table 3.1: Characteristics of the mixed code-carrier combination 

GALILEO 

 ௜௢௡௢ܣ ௟௖ߪ/௟௖ߣ ௟௖ߣ ௟௖ߪ ௜ ܽ௜ߙ ఘ ݇௜ߪ థߪ 

E1 3mm 25cm 1 15.5974 0
16.19cm 2.968m 18.3 5.8e-4 

E5a 4mm 5cm -1 -11.6474 -2.9500

Modernized GPS 

 ௜௢௡௢ܣ ௟௖ߪ/௟௖ߣ ௟௖ߣ ௟௖ߪ ௜ ܽ௜ߙ ఘ ݇௜ߪ థߪ 

L1 3mm 30cm 1 15.5974 0
24.53cm 2.968m 12.1 5.8e-4 

L5 4mm 8cm -1 -11.6474 -2.9500

 

Table 3.1 exhibits the strong sensitivity of the standard deviation of the mixed-code carrier 
combination, ߪ௟௖, on the pseudorange measurement noise ߪఘ on E5a or L5. The investigation of 
the decrease of the positioning accuracy in severe multipath environments is therefore of special 
interest when using this linear combination. The standard deviation of the linear combination 
under the assumption of uncorrelated and Gaussian distributed noise of carrier and code 
measurements is computed from: 

௟௖ߪ  ൌ ටߪФଶ · ൫ߙଵଶ · ாଵ/௅ଵଶߣ ൅ ଶଶߙ · ாହ௔/௅ହଶߣ ൯ ൅ ఘಶఱೌ/ಽఱߪ
ଶ · ܽଶଶ (3.27)

For the values indicated in Table 3.1 the standard deviation of the phase measurement in units of 
cycles has been set to ߪФ ൌ 0.1/ሺ2 ·  ሻ. The computation of the wavelength of the linearߨ
combination is given as [16]: 

௟௖ߣ  ൌ
∑ ௜ଶߙ
௜ୀଵ

∑ ݇௜
௜ߣ

ଶ
௜ୀଵ

 (3.28)

Finally, the ionospheric amplifier ܣ௜௢௡௢ indicated in the last column of Table 3.1 is defined as: 

௜௢௡௢ܣ  ൌ෍ቆߙ௜ ·
ଵ݂
ଶ

௜݂
ଶ െ ܽ௜ ·

ଵ݂
ଶ

௜݂
ଶቇ

ே

௜ୀଵ

 (3.29)

 

Similarly to the mixed code-carrier combination, a geometry-preserving, ionosphere-free code-
only combination can be generated. Once more the considerations are restricted in this work to 
the use of either GALILEO’s E5a and E1 signals or GPS’s L5 and L1 signals. The coefficient 
ܽଵ,௖௢ௗ௘ି௢௡௟௬ and ܽଶ,௖௢ௗ௘ି௢௡௟௬ of the geometry-preserving, ionosphere-free code-only 
combination follow from Eq. (3.23) and (3.24): 

 
ܽଶ,௖௢ௗ௘ି௢௡௟௬ ൌ

1

1 െ ଵ݂
ଶ

ଶ݂
ଶ

 
(3.30)
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ܽଵ,௖௢ௗ௘ି௢௡௟௬ ൌ െ ଵ݂
ଶ

ଶ݂
ଶ · ܽଶ,௖௢ௗ௘ି௢௡௟௬ 

Numerically, the coefficient ܽଵ,௖௢ௗ௘ି௢௡௟௬ is equal to 2.2606 and the coefficient ܽଶ,௖௢ௗ௘ି௢௡௟௬ is 
equal to -1.2606 for both GALILEO and GPS. This corresponds to a standard deviation of the 
code-only combination of ߪఘ,௟௖=56.87cm in case of GALILEO and of ߪఘ,௟௖=68.56cm in case of 
GPS. The mixed code-carrier combination and the code-only combination presented in this 
section can also be used as measurement input to the navigation filter. The benefit of the 
ionosphere-free combinations is that ionospheric delay terms need no longer to be estimated, 
however at the cost of an increased noise level. 

 

3.5 Differencing between Observations 

3.5.1 Single- and Double-Differences 

Filter algorithms for relative positioning are derived in this work. In contrast to single-point 
positioning, relative positioning makes use of differencing methods in order to eliminate 
nuisance parameters. Single- and double-differencing are frequently applied in navigation 
software. Also triple-differencing is of some importance. It is, for example, applied in some 
cycle slip detection algorithms. However, triple-differencing will not be discussed here. More 
information on triple-differencing can be found in textbooks, e.g. [19] or [23]. Both differencing 
between code and carrier phase observations is possible. Since the procedure is the same for both 
types of observations, only the equations for differencing between phase measurements are 
indicated in the following. 

Single-Differencing: 

A single-differenced observable is generated by subtracting the observation from receiver B to 
satellite S୨ from the observation from receiver ܣ to satellite ௝ܵ. The single-differenced carrier 
phase observable reads 

 ∆߶௖,஺஻
ௌ௝ ൌ ߶௖,஺

ௌ௝ െ ߶௖,஻
ௌ௝ , (3.31)

where ∆ is the single-difference operator and c is the index of the respective carrier frequency. 
Cancellation of nuisance parameters is only guaranteed if receiver ܣ and receiver ܤ take their 
measurements simultaneously. Single-differencing between receivers largely eliminates satellite-
related hardware delays, satellite clock biases, orbital errors and, depending on the baseline 
length between receiver ܣ and ܤ, range errors due to atmospheric refraction. The residual 
ionospheric and tropospheric errors are correlated with the baseline length. Obviously, the 
propagation medium related range errors become zero for a zero-baseline where receiver ܣ and 
 share the same receive antenna. In this special case, the signal propagation paths through the ܤ
atmosphere are identical for both receivers. The single-differenced ionospheric error is also 
negligible for short baselines under normal conditions, e.g. in absence of ionospheric storms. 
Pseudorange and carrier phase errors induced by receiver noise and multipath are uncorrelated 
between receivers.  

The single-differencing scheme presented in Eq. (3.31) involves differencing of the observations 
from different receivers. Similarly, single-differencing of the observations from one receiver, but 
to different satellites, is also possible. The nuisance parameters that are canceled out by 
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differencing between satellites are different from those that are canceled out by differencing 
between receivers. Both satellite- and receiver-related nuisance parameters are canceled out 
when forming double-differences. 

 

Double-Differencing: 

Double-differencing is applied in order to additionally cancel out the receiver clock errors and 
biases from the receiver hardware under the assumption that the biases are identical for different 
receiver channels. As mentioned before, receiver-related nuisance parameters are cancelled out 
by taking the difference of observations from different satellites. In case of double-differencing 
this is achieved by taking the difference between two single-differenced observables of the same 
observation epoch, but of two different satellites ௝ܵ and ܵ௞: 

௖,஺஻߶∆ߘ 
ௌ௝ௌ௞ ൌ ∆߶௖,஺஻

ௌ௝ െ ∆߶௖,஺஻ௌ௞ ൌ ߶௖,஺
ௌ௝ െ ߶௖,஻

ௌ௝ െ ߶௖,஺ௌ௞ ൅ ߶௖,஻ௌ௞ , (3.32)

where ׏∆ is the double-difference operator. The double-differenced phase observable indicated 
in Eq. (3.32) is rewritten in order to show all remaining error sources after double-differencing: 

 
௖,஺஻߶∆ߘ

ௌ௝ௌ௞ ൌ ஺஻ݎ∆ߘ
ௌ௝ௌ௞ ൅ ௖ߣ · ∆ߘ ௖ܰ,஺஻

ௌ௝ௌ௞ െ ௜௢௡,஺஻݀∆ߘ
ௌ௝ௌ௞ · ௜݂௢௡

ଶ

௖݂
ଶ ൅ ௢௥௕,஺஻݀∆ߘ

ௌ௝ௌ௞

൅ ௧௥௢௣,஺஻݀∆ߘ
ௌ௝ௌ௞ ൅ ௠ഝ,೎,஺஻݀∆ߘ

ௌ௝ௌ௞ ൅ థ೎,஺஻߭∆ߘ
ௌ௝ௌ௞  

(3.33)

The subscript c indicates that the respective parameter is dependent on the carrier frequency. The 
parameterization of the double-differenced code observable is similar to that of Eq. (3.33) except 
from the ambiguity term and the sign of the residual ionospheric error: 

 
௖,஺஻ߩ∆ߘ

ௌ௝ௌ௞ ൌ ஺஻ݎ∆ߘ
ௌ௝ௌ௞ ൅ ௜௢௡,஺஻݀∆ߘ

ௌ௝ௌ௞ · ௜݂௢௡
ଶ

௖݂
ଶ ൅ ௢௥௕,஺஻݀∆ߘ

ௌ௝ௌ௞ ൅ ௧௥௢௣,஺஻݀∆ߘ
ௌ௝ௌ௞

൅ ௠ഐ,೎,஺஻݀∆ߘ
ௌ௝ௌ௞ ൅ ∆ߘ ఘ߭೎,஺஻

ௌ௝ௌ௞  
(3.34)

It is justified to neglect the residual orbital error ߘ∆݀௢௥௕,஺஻
ௌ௝ௌ௞  in Eq. (3.33) and in Eq. (3.34) since 

its magnitude is very small compared to the other error sources. Furthermore, there are various 
models available in order to estimate the delay of the radio-navigation signals caused by the 
troposphere. This allows computing observables that have been largely compensated for the 
tropospheric delay. However, it should be mentioned that accurate estimation of tropospheric 
delays might fail under abnormal conditions even if the most sophisticated models were applied. 
Especially for signals from satellites seen under low elevation angles accurate modeling of the 
tropospheric delay term becomes very difficult. It is rather common to leave multipath 
unmodeled although there exist complex multipath models. The items mentioned so far allow for 
further simplification of Eq. (3.33) and Eq. (3.34). The simplified model of double-differenced 
carrier phase observable becomes: 

௖,஺஻ௌଵௌଶ߶∆ߘ  ൌ ஺஻ௌଵௌଶݎ∆ߘ ൅ ௖ߣ · ∆ߘ ௖ܰ,஺஻
ௌଵௌଶ െ ௜௢௡,஺஻ௌଵௌଶ݀∆ߘ · ௜݂௢௡

ଶ

௖݂
ଶ ൅ థ೎,஺஻߭∆ߘ

ௌଵௌଶ  (3.35)

The same bias terms are left out in the simplified model of the double-differenced pseudorange 
observable: 

௖,஺஻ߩ∆ߘ 
ௌ௝ௌ௞ ൌ ஺஻ݎ∆ߘ

ௌ௝ௌ௞ ൅ ௜௢௡,஺஻݀∆ߘ
ௌ௝ௌ௞ · ௜݂௢௡

ଶ

௖݂
ଶ ൅ ∆ߘ ఘ߭೎,஺஻

ௌ௝ௌ௞  (3.36)
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3.5.2 Variance-Covariance Error Propagation 

The double-differenced carrier phase and pseudorange observables are obtained by linear 
combination of the original measurements from the reference receiver ܣ and the user receiver ܤ. 
In the following the representation of the variance-covariance error propagation due to 
differencing is restricted to the carrier phase observables since an analog representation can 
immediately be indicated for the pseudorange observables. It is assumed that the measurement 
noise of the original observations is white Gaussian distributed. The measurements on the carrier 
frequency c are summarized in an n-dimensional vector ߔ௖,஺ for the reference receiver and in an 
n-dimensional vector ߔ௖,஻ for the user receiver, where n is the number of satellites. First, single-
differencing between receivers is considered. The n-dimensional single-differenced phase 
measurement vector is generated by: 

௖,஺஻ߔ∆  ൌ ܵ · ൤
௖,஺ߔ
௖,஻ߔ

൨ , (3.37)

with the generator matrix S that reflects the linear dependency of the phase measurements: 

 ܵ ൌ ሾܫሺ௡ሻ௫ሺ௡ሻ െܫሺ௡ሻ௫ሺ௡ሻሿ , (3.38)

where ܫሺ௡ሻ௫ሺ௡ሻ is the identity matrix of size (n)x(n). The covariance matrix of the single-
differenced measurements results from the law of error propagation: 

௖,஺஻ൟߔ∆൛ܦ  ൌ ܵ · ൤
௖,஺ሻߔሺݒ݋ܥ 0

0 ௖,஻ሻߔሺݒ݋ܥ
൨ · ்ܵ , (3.39)

where ݒ݋ܥሺߔ௖ሻ is the covariance matrix of the original phase measurements. Under the 
assumption that all phase measurements are uncorrelated and have the same variance ߪఃଶ , then 
the variances of the single-differenced phase measurements are twice the variances of the 
original phase measurements: ߪ∆ఃଶ ൌ 2 · ఃଶߪ . The single-differenced measurements are still 
uncorrelated if the original measurements were uncorrelated.  

The covariance matrix of double-differenced observables can be derived from the original 
covariance matrices in a similar way. The computation of the double-differenced (n-1)-
dimensional phase measurement vector is given by: 

௖,஺஻ߔ∆ߘ  ൌ ܦ · ൤
௖,஺ߔ
௖,஻ߔ

൨ , (3.40)

with the generator matrix D 

ܦ  ൌ ሾ1ሺ௡ିଵሻ െܫሺ௡ିଵሻ௫ሺ௡ିଵሻ െ1ሺ௡ିଵሻ ሺ௡ିଵሻ௫ሺ௡ିଵሻሿ (3.41)ܫ

reflecting the linear dependency of the original measurements. The single measurements in the 
n-dimensional vector ߔ௖ are arranged such that the measurement to the reference satellite comes 
first. The unit vector 1ሺ୬ିଵሻ is an (n-1)-dimensional vector whose entries are all set to 1. By 
applying the law of variance-covariance error propagation, the covariance matrix of the double-
differenced observables results from: 

௖,஺஻ൟߔ∆ߘ൛ܦ  ൌ ܦ · ൤
௖,஺ሻߔሺݒ݋ܥ 0

0 ௖,஻ሻߔሺݒ݋ܥ
൨ · (3.42) ்ܦ

Assuming again that the original phase measurements are uncorrelated and have all the same 
variance ߪఃଶ , it becomes obvious from the structure of the generator matrix ܦ that the double-
differenced measurements are no longer uncorrelated. Furthermore, the variances of the double-
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differenced measurements are four times larger than the variances of the original measurements: 
ఇ∆ఃଶߪ ൌ 4 · ఃଶߪ . 
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4 Kalman Filtering 

4.1 Filter Equations 

When initially introduced by R.E. Kalman in 1960 [22], the Kalman filter solved the Wiener 
filtering problem of linear dynamic systems using the state space model for dynamic and random 
processes. The optimal filter problem is based on minimizing the sum of the mean-square errors 
in the state estimates. In the meantime, Extended Kalman filter (EKF) approaches have been 
introduced that address to the solution of nonlinear problems. Concerning GNSS navigation 
systems, there is a nonlinear dependency between the observations and the states of interest. 
However, in this section the basics of linear Kalman filtering problems are introduced first 
before considering the extension to nonlinear problems. 

The discrete-time Kalman filter equations are developed, for example, in Brown et al. [4] and 
Grewal et al. [12], and a good summary of Kalman filtering can be found in [23]. The most 
important equations are repeated here, since they are essential for the development of the 
navigation filter. Kalman filtering benefits from knowledge of the system dynamics and the 
statistical nature of the system errors. This knowledge is used to set up a discrete-time state 
space model of the random process. The state space model of the linear system is 

௞ݔ  ൌ Φ௞ିଵ · ௞ିଵݔ ൅ ߱௞ିଵ ߱௞~ܰ൫0, ܳ௞൯ , (4.1)

where ݔ௞ is the system state vector, Φ୩ is the state transition matrix, ߱௞ is the process noise 
vector and ܳ௞ is the covariance matrix of process noise. The subscript ݇ indicates the respective 
epoch. Innovation is brought into the filter by new measurements. The linear measurement 
model is given by 

௞ݖ  ൌ ௞ܪ · ௞ݔ ൅ ߭௞ ߭௞~ܰ൫0, ܴ௞൯ , (4.2)

where ݖ௞ is the measurement vector, ܪ௞ is the measurement sensitivity matrix, ߭௞ is the 
measurement noise and ܴ௞ is the covariance matrix of measurement noise. Two fundamental 
assumptions are made in Eq. (4.1) and in Eq. (4.2): unmodeled process noise and unmodeled 
measurement noise are zero-mean Gaussian processes. This should be accounted for when 
evaluating the Kalman filter performance. Any non-white sequences can produce non-optimal 
state estimates.  

With the help of the state space model the new system state can be predicted from the last valid 
information. The a priori state estimate ݔො௞ሺെሻ at epoch k is obtained from extrapolation, using 

ො௞ሺെሻݔ  ൌ Φ௞ିଵ · ௞ିଵሺ൅ሻݔ , (4.3)

where ݔො௞ିଵሺ൅ሻ is the posteriori state estimate of the previous epoch. The covariance matrix of 
state estimation uncertainty, ௞ܲሺെሻ, is extrapolated as well, using 

 ௞ܲሺെሻ ൌ Φ௞ିଵ · ௞ܲିଵሺ൅ሻ · Φ௞ିଵ
் ൅ ܳ௞ିଵ . (4.4)
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The symbol ‘ሺെሻ‘ is used to indicate an a priori estimate, and the symbol ‘ሺ൅ሻ‘ indicates 
estimates after the update, e.g. posteriori estimates. 

So far the prediction of the system state with the help of the state model has been considered. 
Now the update of the predicted system state based on new measurement data is presented. The 
criterion for deriving optimal gain factors is the minimization of the trace of covariance matrix 
of state estimation ௞ܲሺ൅ሻ. This corresponds to minimizing the sum of the mean-square errors in 
the state estimates. The derivation of the gain factors is given in [4] and [12]. The optimal 
Kalman gain matrix ܭ௞, which assesses the weight of the measurement data from the current 
epoch, is computed from 

௞ܭ  ൌ ௞ܲሺെሻ · ௞்ܪ · ௞ܪൣ · ௞ܲሺെሻ · ௞்ܪ ൅ ܴ௞൧
ିଵ

. (4.5)

The update of the covariance matrix of state estimate uncertainty is given by 

 ௞ܲሺ൅ሻ ൌ ሾܫ െ ௞ܭ · ௞ሿܪ · ௞ܲሺെሻ . (4.6)

Finally, the update of the state estimate vector based on the measurements from the current 
epoch k is calculated from 

ො௞ሺ൅ሻݔ  ൌ ො௞ሺെሻݔ ൅ ௞ܭ · ቀݖ௞ െ ௞ܪ · ො௞ሺെሻቁݔ . (4.7)

In Eq. (4.7) the predicted state vector ݔො௞ሺെሻ is combined with the observations of the current 
epoch ݖ௞ in a minimum mean-squares sense. The posteriori state vector ݔො௞ሺ൅ሻ is thus the filtered 
state estimate based on all prior observations and the current observations at epoch k. Under the 
assumptions made about the process noise and the measurement noise, e.g. ߱௞~ܰ൫0, ܳ௞൯ and 
߭௞~ܰ൫0, ܴ௞൯, the posteriori state estimate ݔො௞ሺ൅ሻ is unbiased. It is important to note the 
difference between the Kalman filter estimate, whose optimization criterion is minimum sum of 
mean-square errors, and the least-squares estimate, whose optimization criterion is minimum 
sum of square errors in a deterministic sense. Brown et al. [5] have shown that under certain 
circumstances both estimators will lead to identical solutions. However, the advantage of 
Kalman filtering is that prior knowledge of the process being estimated can be incorporated 
constructively. If there is no or only very poor prior knowledge, the Kalman filter advantage is 
lost. 

The Kalman Filter loop is illustrated in Figure 4.1. In this representation of the filter loop the 
update is computed first instead of starting with the prediction. In epoch k the prediction of the 
system state in epoch k+1 is determined and buffered. The prediction equations of the Kalman 
filter follow from Eq. (4.3) and Eq. (4.4). However, comparing the epoch indices used in the 
equations with those indicated in the illustration, it has to be noted that the epoch indices of the 
prediction are offset by one epoch. The update equations of the Kalman filter follow from Eq. 
(4.5), (4.6) and (4.7). When starting the filter, an initial “guess” of ݔො଴ሺെሻ ൌ ଴ൟ and ଴ܲሺെሻݔ൛ܧ ൌ
෤଴ݔ൛ܧ ·  ෤଴்ൟ is required in order to initialize the buffers with the predicted system state. Theݔ
problems associated with filter initialization will be addressed later in this work. 
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Figure 4.1: Flow-Chart of the Kalman Filter Loop 

 

According to [19], there is a strong relationship between Kalman filtering and sequential least-
squares adjustment. Sequential least-squares adjustment used for stationary processes may be 
considered as a sub-class of Kalman filtering. Kalman filtering addresses to the more general 
case where also non-stationary processes are covered. The main difference between Kalman 
filtering and sequential least-squares adjustment is founded in the prediction step. The proof that 
Kalman filtering reduces to sequential least-squares adjustment in case of a stationary process is 
given in [54]. 

 

4.2 Filter Convergence 

It has to be considered that even a Kalman filter that has been designed for solving a linear 
problem may exhibit divergence problems. These problems arise from practical limits rather than 
from filter theory. When implementing the Kalman filter one has to deal with finite word-length 
effects. Round-off errors can cause instable behavior of the filter. The problem of computer 
round-off and methods to ease this kind of stability problem of Kalman filtering are addressed in 
detail in Sect. 4.3. The next kind of divergence problem is caused by bad observability of one or 
more system states. However, since the system observability can be determined formally, the 
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problem of possibly unobservable states can already be detected during the filter design phase. 
According to Grewal et al. [12], the observability matrix ࣩ of a linear dynamic system model 
follows from: 

 ࣩሺܪ௞,Φ௞, 1 ൑ ݇ ൑ ሻܭ ൌ ෍ቐ൥ෑΦ௞ି௜

௞ିଵ

௜ୀ଴

൩

்

· ௞்ܪ · ௞ܪ · ൥ෑΦ௞ି௜

௞ିଵ

௜ୀ଴

൩ቑ
௄

௞ୀଵ

 (4.8)

The system observability does not depend on the measurement inputs, but only on the 
measurement sensitivity matrix ܪ௞ and the state transition matrix Φ୩ over the discrete time 
interval from ݐ଴ ൑ ݐ ൑  ௄. Equation (4.8) refers to linear systems. Nevertheless, thisݐ
observability test is also applied to the linearized GNSS navigation problem in this work in order 
to get a rough idea if the filter states are observable.  

Two further problems of Kalman filtering are listed in [54]. First, if the state transition matrix 
does not reflect the true physical process properly due to imprecise knowledge of the actual 
system behavior, or if the statistic properties of the physical process are mismodeled, the 
estimated states might not converge to the true values. The issue of divergence due to modeling 
errors should also be covered during the filter design phase. Non-convergence of a filter may 
also be caused by leaving one or more state variables of the dynamic system unmodeled. In the 
performance tests of the navigation filter, which is developed in this work, it will be investigated 
whether a simple linear model of the precision approach is sufficient or not. Accelerations are 
not modeled as additional filter states. However, the simulated physical process does comprise 
accelerations of the airplane. The second item listed in [54] is that the Kalman filter performance 
depends on accurate filter initialization. Accurate initialization with ଴ܲሺെሻ and ݔො଴ሺെሻ is 
particularly important with respect to convergence of nonlinear filters. In this work, an ordinary 
least-squares solution is computed before starting the filter in order to obtain good initial 
estimates of the current system state. 

In theory, the Kalman filter performance is characterized by the covariance matrix ௞ܲሺ൅ሻ of 
state estimation uncertainty. If the characteristic values of ௞ܲሺ൅ሻ are growing without bound, the 
theoretical filter performance diverges. The covariance matrix ௞ܲሺ൅ሻ solves a nonlinear discrete-
time Riccati equation for the estimation uncertainty with the given initial conditions. The a priori 
value of the covariance matrix, ௞ܲሺെሻ, is of interest when computing the Kalman gain matrix. It 
is assumed that the a priori covariance matrix ௞ܲሺെሻ can be fractionally decomposed into a 
numerator matrix ܣ௞ and a nonsingular denominator matrix ܤ௞: 

 ௞ܲሺെሻ ൌ ௞ܣ · ௞ିଵ (4.9)ܤ

The reason for fraction decomposition of ௞ܲሺെሻ is to transform the nonlinear Riccati equation 
into a system of two simultaneous linear equations. In [12] the proof is given that ௞ܲାଵሺെሻ ൌ
௞ାଵܣ · ௞ାଵିଵܤ  solves the discrete-time Riccati equation at t୩ାଵ, where 

 ൤ܣ௞ାଵܤ௞ାଵ
൨ ൌ ቂܳ௞ ܫ

ܫ 0ቃ · ൤
Ф௞
ି் 0
0 Ф௞

൨ · ൤ܪ௞
் · ܴ௞ିଵ · ௞ܪ ܫ

ܫ 0
൨ · ൤ܣ௞ܤ௞

൨ . (4.10)

From Eq. (4.10) follows that the state transition matrices Ф୩ have to be non-singular. 

It is always useful to survey the diagonal terms of the posteriori covariance matrix ௞ܲሺ൅ሻ of 
state estimation uncertainty, e.g. the expected variances of the estimated states. The advantage of 
this approach is that the theoretical Kalman filter performance can easily be surveyed during the 
operational phase after the filter design phase has already been closed. An example of the 
coherence between the predicted performance, which is derived from the main diagonal of 
௞ܲሺ൅ሻ, and the actual performance of the filter state estimation is shown in Figure 4.2 and 

Figure 4.3. The example refers to the estimation of ionospheric delay terms. One time the 
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Vertical Ionospheric Gradient (VIG) is estimated by a sub-optimal navigation filter and the other 
time the double-differenced ionospheric range error is estimated by an optimal navigation filter. 

 
Figure 4.2: Divergence of the Vertical Ionospheric Gradient estimates (left: predicted variances, 
right: true estimation errors) 

 
Figure 4.3: Convergence of the DD ionospheric range error estimates (left: predicted variances, 
right: true estimation errors) 

First, the case is considered where the estimation errors of the VIGs diverge (Figure 4.2). This is 
properly reflected by the theoretical variances of the VIGs. During operation, it becomes obvious 
that the results may not be trusted since the variances of the estimated VIGs increase 
continuously while the filter is running. During design phase, the results of this example suggest 
that the design phase of that sub-optimal filter should not yet be closed. Second, the case is 
considered where the estimated VIGs converge (Figure 4.3). Again, there is coherence between 
the predicted variances and the actual estimation errors. 

On the other hand, the information provided by ௞ܲሺ൅ሻ should not be overestimated. Even if the 
expected values of the estimation errors do not indicate divergence of the estimated states from 
the true system states, the states estimated by the filter might still diverge due to unpredictable 
behavior. A common approach during filter design phase is to analyze by extensive Monte Carlo 
simulations if the ensemble mean estimation error is indeed unbiased. An example is given 
below that demonstrates the mismatch between the predicted state estimation errors and the 
actual state estimation errors. 
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Figure 4.4: Theoretical values of the position estimation error variances 

 
Figure 4.5: Actual errors of the position solution derived from simulation 

 

From Figure 4.4 and Figure 4.5 it becomes obvious that the theoretical filter performance may 
differ significantly from the true filter performance. While the predicted variances of the position 
estimate errors suggest that the position estimates perfectly converge, the magnitude of the true 
position errors is up to 0.5 m. However, in order to demonstrate that the theoretical filter 
performance should not be overestimated, some errors during filter design phase have 
intentionally been introduced: First, a severe modeling error has been committed, e.g. state 
variables of the dynamic system have not been modeled - namely ionospheric delay terms. 
Second, the measurement variances which were fed into the filter have significantly been 
reduced compared to the actual variances of the measurements. Due to the introduction of 
modeling errors the widelane and carrier phase ambiguities were fixed to the wrong integer 
values after the first four observation epochs. After fixing the ambiguities with the required level 
of integrity, the variances of process noise of the ambiguity states have been set to zero. 
Consequently, the ambiguity estimates remain unaffected by new measurement information. 
However, the theoretical position estimate errors derived from ௞ܲሺ൅ሻ are not completely wrong. 
The bias due to wrong integer ambiguity fixing is not reflected in the theoretical values. 
However, the true position estimate errors - although biased - are indeed of low noise. But the 
trend of ݕߜ ,ݔߜ and ݖߜ are not properly reflected since the actual position errors are slowly 
growing while the theoretical variances become smaller. 
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It should be mentioned here that although if the biases in the state estimates are not reflected by 
௞ܲሺ൅ሻ, there are other means in Kalman filtering in order to detect these biases. More details on 

fault detection are given in Sect. 6. 

 

4.3 Numerical Stability 

4.3.1 Bierman-Thornton UD Filter 

There are more robust filter implementations in presence of computer round-off errors than the 
standard Kalman filter equations presented in Sect. 4.1. The original formulation of the Kalman 
filter showed only marginal stability of the numerical solution of the associated Riccati equation. 
Therefore, square-root filtering and UD filtering (UD: Upper diagonal matrix − Diagonal matrix 
factorization) have been introduced, which rely on the theoretical background of the Kalman 
filter, but provide better numerical stability in presence of round-off errors. If high-integrity 
navigation solutions were to be provided by the filter, degradation of the filter performance due 
to round-off errors is not tolerable. Without actually investigating the numerical stability of the 
filter at hand, no statement can be made about the need for more robust implementations. In this 
chapter, an alternative implementation to the standard Kalman filter equations is presented, and 
in the next chapter it will be discussed whether the numerical stability of the standard equations 
is sufficient for the filtering problem at hand or not. 

In this work the Bierman-Thornton UD filter implementation is considered as alternative 
implementation since it has been shown, e.g. by Grewal et al. [13], that this implementation 
works well even in presence of an ill-conditioned problem. Ill-conditioning also includes large 
matrix dimensions. Since measurements on two different frequencies are processed by the filter, 
the matrix dimensions grow respectively compared to processing of only single-frequency 
measurement data. By reformulating the Riccati equations, the Bierman-Thornton UD filter has 
a modified Cholesky factor as dependent variable instead of the covariance matrix of state 
estimation uncertainty ௞ܲ. First, the UD factorization is defined: The covariance matrix C is 
factorized in an upper diagonal matrix U and a pure diagonal matrix D 

ܥ  ൌ ܷ · ܦ · ்ܷ (4.11)

by applying modified Cholesky factorization. In contrast to standard Cholesky factorization, the 
modified Cholesky factorization does not require the computation of square-roots. 

If the GNSS measurement model is based on the use of double-differenced observations or linear 
combinations of observations on multiple frequencies, then different components of the 
measurement vector are correlated. Accordingly, the covariance matrix of measurement noise 
ܴ ൌ ൫߭ܧ · ்߭൯ is not a pure diagonal matrix. In order to compute the Bierman-Corrector, a 
decorrelation of the measurement model is required. The procedure adopted here in order to 
decorrelate the measurements follows the one presented in [13]. First, modified Cholesky 
factorization, see Eq. (4.11), is applied to the covariance matrix of measurement noise R. As a 
result of the factorization, one obtains the upper triangular matrix UR and the pure diagonal 
matrix DR. Second, the decorrelation of the measurement model follows from: 

 ܴௗ ൌ  ோܦ , (4.12)

ݖ  ൌ ܷோ · ௗݖ , (4.13)
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ܪ  ൌ ܷோ · ௗܪ , (4.14)

where the subscript ݀ indicates the decorrelated form of the respective measurement matrix or 
measurement vector. Thus, the decorrelated measurement model reads: 

ௗݖ  ൌ ௗܪ · ݔ ൅ ߭ௗ , ൛߭ௗܧ · ߭ௗ்ൟ ൌ ܴௗ  (4.15)

Since ܴௗ is a pure diagonal matrix, the measurement errors are now uncorrelated. The 
decorrelation of the measurement model is required in order to allow for sequential processing of 
scalar observations when performing the observational update of the filter estimates. 

The Bierman-Thornton UD filter comprises two processes. The first process is the observational 
update according to Bierman [1] and the second process is prediction according to Thornton 
[45]. The Bierman observational update processes the decorrelated measurements sequentially, 
e.g. a loop with ݊ iterations is required if ݊ is the length of the measurement vector at the current 
epoch. The basic problem to be solved is how to derive an efficient method for the UD 
factorization of the following expression: 

௉ሺିሻܦ  െ ௉ሺିሻܦ · ܽ · ൣ்ܽ · ௉ሺିሻܦ · ܽ ൅ ܴௗ,ሺ௝,௝ሻ · ൧ܫ
ିଵ · ்ܽ · ௉ሺିሻܦ

ൌ ܷ஻ · ௉ሺାሻܦ · ܷ஻் , 
(4.16)

with the UD factorized a priori covariance matrix of state estimation uncertainty 

 ܲሺെሻ ൌ ܷ௉ሺିሻ · ௉ሺିሻܦ · ܷ௉ሺିሻ் , (4.17)

and the n-dimensional vector 

 ܽ ൌ ܷ௉ሺିሻ் · ௗ,ሺ௝,ଵ…௨ሻ்ܪ . (4.18)

 ௗ,ሺ௝,ଵ…௨ሻ is the jth row of the decorrelated measurement sensitivity matrix and u is the numberܪ
of unknown states. The variance that corresponds to the jth measurement is given by ܴௗ,ሺ௝,௝ሻ. As a 
result, the modified Cholesky decomposition of the posteriori covariance matrix of state 
estimation uncertainty is obtained: 

 ܲሺ൅ሻ ൌ ܷ௉ሺାሻ · ௉ሺାሻܦ · ܷ௉ሺାሻ் , (4.19)

where UPሺାሻ is computed from 

 ܷ௉ሺାሻ ൌ ܷ௉ሺିሻ · ܷ஻ . (4.20)

One possible implementation of Bierman’s observational update is shown in Table 4.1. Further 
details on implementation aspects of the rank 1 modification algorithm for modified Cholesky 
factors are given in [12]. 
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Table 4.1: Structure Diagram of Bierman’s Observational Update Algorithm 

ሺ൅ሻݔ ൌ  ሺെሻݔ

ܷ௉ሺାሻ ൌ ܷ௉ሺିሻ 

௉ሺାሻܦ ൌ  ௉ሺିሻܦ

For i = 1, i ≤ number of measurements, i++ 

 

ܽ ൌ ܷ௉ሺାሻ் · ௗ,ሺ௜,ଵ…௨ሻ்ܪ  

ܾ ൌ ௉ሺାሻܦ · ܽ 

ݎ ൌ ௗ,ሺ௜ሻݖ െ ௗ,ሺ௜,ଵ…௨ሻܪ ·  ሺ൅ሻݔ

ߙ ൌ ܴௗ,ሺ௜,௜ሻ 

ߛ ൌ
1
 ߙ

For j = 1, j ≤ number of states, j++ 

 

ߚ ൌ  ߙ

ߙ ൌ ߙ ൅ ܽሺ௝ሻ · ܾሺ௝ሻ 

ߣ ൌ െܽሺ௝ሻ ·  ߛ

ߛ ൌ
1
 ߙ

௉ሺାሻ,ሺ௝,௝ሻܦ ൌ ߚ · ߛ ·  ௉ሺାሻ,ሺ௝,௝ሻܦ

For k = 1, k ≤ j-1, k++ 

 

ߚ ൌ ܷ௉ሺାሻ,ሺ௞,௝ሻ 

ܷ௉ሺାሻ,ሺ௞,௝ሻ ൌ ߚ ൅ ܾ௞ ·  ߣ

ܾ௞ ൌ ܾ௞ ൅ ܾ௝ ·  ߚ

ሺ൅ሻݔ ൌ ሺ൅ሻݔ ൅ ߛ · ݎ · ܾ 

 

The second process besides the Bierman observational update is the extrapolation of the system 
state to the next epoch. The prediction process according to Thornton uses UD-factorization of 
the temporal update. Thereby the robustness of the prediction in presence of computer round-off 
errors is improved. In order to speed up computations, the covariance matrix of process noise is 
UD-factorized: 

 ܳ ൌ ܷொ · ொܦ · ܷொ் (4.21)

The modified Cholesky factor ܷொ is used in order to determine the modified process noise 
coupling matrix ܩ௠: 

௠ܩ  ൌ ܩ · ܷொ (4.22)

So far, it has been assumed that the process noise coupling matrix ܩ were the identity matrix, 
e.g. ܩ ൌ  ሺ௨ሻ௫ሺ௨ሻ, which corresponds to uncoupled process noise terms. This assumption will beܫ
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sustained during this work. As a consequence, ܩ௠ is simply given by ܷொ. For completeness, the 
more general form of the discrete-time system equation, which contains the process noise 
coupling matrix, is also indicated: 

 x୩ ൌ Φ୩ିଵ · x୩ିଵ ൅ G · ߱௞ିଵ ߱௞~ܰሺ0, ܳ௞ሻ (4.23)

The reformulation of the Kalman filter prediction step according to Thornton is given in Table 
4.2. For background information on the derivation of Thornton’s temporal update it is referred to 
Thornton [45] or Grewal et al. [12].  

 

Table 4.2: Structure Diagram of Thornton’s Prediction Algorithm 

௞ାଵሺെሻݔ ൌ ௞ߔ ·  ௞ሺ൅ሻݔ

ܩ ൌ  ௠ܩ

ߴ ൌ ௞ߔ · ܷ௉ೖሺାሻ 

ܷ௉ೖశభሺିሻ ൌ  ܫ

For i = number of states, i ≥ 1, i-- 

 

ߪ ൌ 0 

For j = 1, j ≤ number of states, j++ 

 

ߪ ൌ ߪ ൅ ሺ௜,௝ሻଶߴ ·  ௉ೖሺାሻ,ሺ௝,௝ሻܦ

j ≤ dimension of process noise 

 

true 
 

ߪ ൌ ߪ ൅ ሺ௜,௝ሻଶܩ ·   ொೖ,ሺ௝,௝ሻܦ

௉ೖశభሺିሻ,ሺ௜,௜ሻܦ ൌ  ߪ

For j = 1, j ≤ i-1, j++ 

 

ߪ ൌ 0 

For k = 1, k ≤ number of states, k++ 

ߪ  ൌ ߪ ൅ ሺ௜,௞ሻߴ · ௉ೖሺାሻ,ሺ௞,௞ሻܦ ·  ሺ௝,௞ሻߴ

 

For k = 1, k ≤ dimension of process noise, k++ 

ߪ  ൌ ߪ ൅ ሺ௜,௞ሻܩ · ொೖ,ሺ௞,௞ሻܦ ·  ሺ௝,௞ሻܩ

ܷ௉ೖశభሺିሻ,ሺ௝,௜ሻ ൌ
ߪ

௉ೖశభሺିሻ,ሺ௜,௜ሻܦ
 

For k = 1, k ≤ number of states, k++ 

ሺ௝,௞ሻߴ  ൌ ሺ௝,௞ሻߴ െ ܷ௉ೖశభሺିሻ,ሺ௝,௜ሻ ·  ሺ௜,௞ሻߴ

For k = 1, k ≤ dimension of process noise, k++ 

ሺ௝,௞ሻܩ  ൌ ሺ௝,௞ሻܩ െ ܷ௉ೖశభሺିሻ,ሺ௝,௜ሻ ·  ሺ௜,௞ሻܩ
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4.3.2 Evaluation of the Numerical Filter Stability 

The Bierman-Thornton UD filter implementation presented in the previous chapter ensures that 
the covariance matrix of state estimation uncertainty ௞ܲ remains symmetric and positive-definite. 
However, it is also possible to enforce symmetry of ௞ܲ manually in order to prevent numeric 
instability if the implementation of the standard Kalman filter equations has been chosen: 

 ௞ܲ ൌ
1
2
· ൫ ௞ܲ ൅ ௞ܲ

்൯ (4.24)

However, this does not yet ensure positive definiteness of the covariance matrix. 

The implementation of the covariance matrix update according to Eq. (4.6) is especially 
susceptible to computer round-off errors. Therefore, in this work the Joseph form of the update 
of the covariance matrix of state estimation uncertainty is implemented: 

 ௞ܲሺ൅ሻ ൌ ሾܫ െ ௞ܭ · ௞ሿܪ · ௞ܲሺെሻ · ሾܫ െ ௞ܭ · ௞ሿ்ܪ ൅ ௞ܭ · ܴ௞ · ௞் (4.25)ܭ

According to Brown et al. [4] and Wendel [52], the Joseph form provides better numeric 
stability. Improved numeric stability by using the Joseph form has also been verified during 
various simulation runs with the navigation filter developed in this work, where the covariance 
matrix ௞ܲሺ൅ሻ still remained symmetric, while the formulation of the covariance matrix update 
according to Eq. (4.6) lead to slight asymmetry of ௞ܲሺ൅ሻ. For example, numerical problems of 
the formulation given in Eq. (4.6) arise if there is large uncertainty in the initial estimate of the 
covariance matrix ଴ܲሺെሻ, corresponding to large values along the major diagonal. Given that in 
the first epoch there are on the other hand very precise measurements available, then the 
covariance matrix must transit from very large values to values close to zeros within a single 
computation step. These problems are overcome in many situations with the update equation 
presented in Eq. (4.25). A negative aspect of Joseph’s form of the covariance matrix update is an 
increased computational effort compared to the simpler update form indicated in Eq. (4.6). 

The Kalman filter equations introduced in Sect. 4.1 address linear problems. The navigation 
filter derived in this work is, however, founded on Extended Kalman filter equations. 
Nevertheless, the considerations on numerical stability made so far remain still valid. First, the 
standard EKF equations (see Appendix A) have been implemented. In analogy to Eq. (4.6), the 
covariance matrix update of the EKF according to Eq. (A.8) shows numeric instability. 
Therefore, the covariance matrix update indicated in Eq. (A.8) is replaced by the Joseph form 
according to Eq. (4.25). The only difference to Eq. (4.25) is that the measurement sensitivity 
matrix H୩ has to be replaced by the sensitivity matrix ܪ௞כ, which is derived from linearized 
observation equations. This simple modification of the covariance matrix update of the standard 
EKF equations ensured that ௞ܲሺ൅ሻ remained symmetric and positive-definite in the simulations 
that were performed. Although the simulation results do not suggest that additional means of 
symmetrizing ௞ܲሺ൅ሻ are required, symmetry is enforced by applying Eq. (4.24) to ௞ܲሺ൅ሻ as 
derived from the Joseph form of the covariance matrix update. Second, the Bierman-Thornton 
UD filter equations have been implemented. The following observations concerning numerical 
robustness have been made with the navigation filter developed here: 

1) The covariance matrix ௞ܲሺ൅ሻ shows slight asymmetries due to round-off errors during 
the first few epochs if the standard EKF equations are implemented without any 
additional means to improve numerical stability. 

2) If the symmetry of ௞ܲሺ൅ሻ is enforced by applying Eq. (4.24), no significant degradation 
of the filter performance due to round-off errors is observable. 
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3) If the Joseph form of the covariance matrix update according to Eq. (4.25) is 
implemented, ௞ܲሺ൅ሻ stays symmetric even without enforcing symmetry by Eq. (4.24). 

4) The Bierman-Thornton UD filter implementation ensures positive-definiteness and 
symmetry of ௞ܲሺ൅ሻ anyway. No noticeable difference in filter performance has been 
observed between the Bierman-Thornton UD filter implementation and a numerically 
stabilized version of the standard EKF equations (Joseph form and symmetry 
enforcement). 

In this work the filter algorithms are running on a computer platform with 52 bits in the mantissa 
of the standard data word so that computer round-off errors do not severely degrade the filter 
performance of the navigation problem at hand. The filter algorithms are implemented in 
MATLAB®, which is optimized for matrix operations rather than for program loops with regard 
to computing time. If the simulations run in a MATLAB® environment, the Bierman-Thornton 
UD filter implementation tends to increase the computing time significantly. The reason for the 
increase in computing time is founded in the sequential rank 1 modifications. Thus, single 
measurement data is sequentially processed in for-loops instead of using matrix notation, while 
matrix notation is in general to be favored when using MATLAB®. No performance degradation 
is observed when using the modified standard EKF equations, which are made numerically 
stable by applying Eq. (4.24) and Eq. (4.25). Therefore, in the following of this work the 
Bierman-Thornton implementation will no longer be considered. However, if the filter 
algorithms were to be implemented in a FPGA, it is expected that the difference in computing 
time would be less distinctive. Under the assumption of almost identical computing times, the 
Bierman-Thornton UD filter implementation seems favorable, since it is ensured that ௞ܲ stays 
symmetric and positive definite without additional effort. 
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5 Real-time Kinematic Positioning Concept 

5.1 Software Overview 

A navigation filter for real-time kinematic relative positioning is developed in this work. The 
software architecture is depicted in Figure 5.1. Double-differenced measurement data is 
processed by a nonlinear filter, which is described in detail in Sect. 5.2. The nonlinear filter is 
based on a dynamic state space model for the dynamics of the airplane. Discrete-time extended 
Kalman Filter equations, see Appendix A, have been implemented. In addition, the numerically 
robust Bierman-Thornton UD filter implementation has also been considered as alternative to the 
standard EKF equations. The filter loop of the EKF is very similar to that of the standard 
Kalman filter illustrated in Figure 4.1. 

Pseudorange measurements on at least one frequency are required as filter input. The EKF 
supports also the processing of pseudorange measurements on multiple frequencies 
simultaneously. The same holds true for the instantaneous Doppler shift measurements. 
However, in this work most of the time dual-frequency data is used as measurement input to the 
filter. With respect to the carrier phase measurements, it is required that at least measurements 
on two different carrier frequencies are available. According to Figure 5.1, a cascading 
ambiguity resolution scheme is applied. It is a two-step procedure from the Widelane (WL) 
ambiguity-fixed solution to the Carrier Phase (CP) ambiguity-fixed solution. The software 
architecture can be easily extended to a three carrier ambiguity resolution scheme. With respect 
to the certification in civil aviation and the complexity of the receiver hardware, it is desirable to 
restrict the filter input data to dual-frequency measurements. In general, an ambiguity-fixed 
solution is derived in three steps: 

1) Computation of the float solution. 

2) Mapping of the float ambiguity vector ෡ܰ of length ݉ to an integer ambiguity vector ෙܰ 
of length ݉, using the mapping function ܵ:Թ௠ ՜ Ժ௠. E.g. multiple float ambiguity 
vectors are mapped to the same integer ambiguity vector. 

3) Adjustment of the float solution if the fixed integer ambiguities are accepted. 

Here, item 1) is achieved by the EKF, item 2) is achieved by either the LAMBDA method or 
Integer Bootstrapping and item 3) is achieved by sequential application of the theory of 
conditional least squares adjustment. There are different quality categories of the navigation 
filter position solution: the filter can provide either a float solution, or widelane-fixed solution, 
or a carrier phase-fixed solution. An ambiguity fixed solution is only available if there is enough 
confidence in the integer vector derived from ambiguity resolution. Ambiguity resolution and 
ambiguity validation is presented in detail in Sect. 5.4. Besides the position vector, the 
navigation filter estimates also the velocity vector of the airplane. The user velocity is however 
rather a by-product of the underlying dynamic model. The quality of the velocity solution is 
mainly determined by the precision of the double-differenced instantaneous Doppler shift 
measurements. It is not considered here to augment the velocity solution by using time-
derivatives of the phase measurements. 
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The integrity of the navigation solution is surveyed by Autonomous Filter-based fault Detection, 
Identification and model Adaptation (AFDIA) as described in Sect. 6. If a failure is detected, the 
source of the model invalidation is searched. The model can be adapted afterwards if there is 
enough confidence in the identification of the model invalidation. The computation of protection 
levels for the user position and velocity solution has to be adapted to the filter-based approach. If 
there is an ambiguity-fixed position solution available, the protection levels for the user position 
will be tighter than the protection levels for a float solution. This is especially important during 
the final phase of the flight and in order to make progress in the domain of auto-landing. AFDIA 
serves also for the detection of cycle slips after the ambiguities have already been fixed. If 
necessary, the ambiguity-fixed solution is abandoned and the filter steps back to a float solution. 
However, if there is only a single cycle slip in the carrier phase measurement data, the accuracy 
of the position solution does not get significantly worse and the ambiguities can be re-fixed 
quickly. The actual performance of the navigation filter is evaluated by tests, whose results are 
presented in Sect. 7 and 8. 

Instead of forwarding pseudorange ߩ∆׏௞, widelane ׏∆߶ௐ௅,௞ and carrier phase measurements 
-ூி,௞ and codeߩ∆׏ ஼௉,௞ to the filter, it is also supported to process ionosphere-free code-only߶∆׏
carrier ׏∆߶ூி,௞ combinations. If the ionosphere-free combinations are used as measurement 
input, the cascading ambiguity resolution scheme reduces to the resolution of the ambiguities of 
the code-carrier combination. The main interest of this work is, however, to obtain a carrier 
phase ambiguity-fixed solution. Only then the highest position accuracies can be achieved. 
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Figure 5.1: Navigation software architecture 
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5.2 Nonlinear Navigation Filter 

5.2.1 Extended Kalman Filter 

In GNSS-based positioning, the unknown user coordinates appear in nonlinear form in the 
pseudorange and carrier phase measurements. Due to this nonlinear measurement relationship, 
the standard Kalman filter equations introduced in Sect. 4.1 cannot be used immediately. Brown 
et al. [5] suggest two options to proceed with nonlinear relationships. One option is to implement 
a linearized Kalman filter. The linearization takes place about a nominal trajectory in state space. 
Actual measurement data has no impact on the linearization. However, in this work it is assumed 
that no nominal trajectory is known in advance. Therefore, the linearized Kalman filter does not 
fit for the problem at hand. The second option is to determine the trajectory dynamically by 
continuously updating the trajectory with the states estimated by the filter. Consequently, actual 
measurement data has an impact on the linearization. The filter is called an Extended Kalman 
Filter (EKF) if this method is applied. Due to the feedback of the measurement sequence into the 
process model, the performance of the EKF depends on the actual sample measurement 
sequence. For this reason, Monte-Carlo simulations are generally preferred in order to evaluate 
the performance of an EKF rather than following an analytical approach. The main concern 
associated with extended Kalman filtering is that it might diverge if the reference about which 
the linearization takes place is poor. In [5] it is mentioned that in practice the initial estimates of 
 ො଴ሺെሻ forms theݔ ො଴ሺെሻ and ଴ܲሺെሻ are frequently poor. Since the a priori state estimation vectorݔ
starting point of the linearization, it should not be too poor in order prevent that the dynamically 
updated trajectory drifts away from the true trajectory. In Wendel [52] the performance of a 
Sigma-Point Kalman filter is compared with the performance of an EKF. No significant 
improvement of the navigation performance could be demonstrated in simulations where 
realistic scenarios (limited measurement errors) were considered by using a Sigma-Point Kalman 
filter. However, in case of large initial state estimate errors, the Sigma-Point Kalman filter 
tended to converge faster than the EKF. As mentioned before, a good initial estimate of the 
unknown user coordinates can be derived from ordinary least-squares estimation for single-point 
positioning with the Newton-Raphson method. Furthermore, the linearization problem associated 
with GNSS measurements is rather convenient. 

It is depicted in Figure 5.2 that it is important to have a good initial estimate of the user position 
available when starting the nonlinear filter. On the right side of Figure 5.2, the initial estimate of 
the user receiver coordinates has been set to the origin of the ECEF coordinate system, e.g. [0m 
0m 0m]. This corresponds to an initial RMS position estimate error of approximately 6368 km. 
Obviously the estimated user positions during precision approach are useless for navigation. 
Nevertheless, the position estimates do not diverge, but they converge far too slowly since the 
filter does not iterate multiple times over the same solution. On the left side of Figure 5.2, the 
initial estimate of the user receiver coordinates has been derived from ordinary least-squares 
estimation for single-point positioning without applying any correction terms. Consequently, the 
filter is initialized with a coarse estimate of the user position that shows still an RMS position 
error of 65 m. However, this is already sufficient in order to get the filter started properly. 
Directly after starting the filter the error of the filtered position estimate is already below 0.5 m.  
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Figure 5.2: Importance of proper filter initialization 

 

While the Kalman filter equations indicated in Sect. 4.1 refer to linear problems, the EKF 
equations listed in Appendix A can be used for nonlinear applications with respect to the 
measurement model and/or the state space model. In the special case of linear dynamic systems, 
Kalman filtering results in a best linear unbiased estimator (BLUE) for the state vector [19]. 
However, the following assumptions have to be valid: the system noise follows a Gaussian 
distribution with zero mean, e.g. ߱௞~ܰ൫0, ܳ௞൯, and the measurement noise follows a Gaussian 
distribution with zero mean, e.g. ߭௞~ܰ൫0, ܴ௞൯. These same assumptions have to hold for the 
EKF in order to ensure good filter performance. Without any further restrictions, it does not hold 
in general that the EKF state estimates will converge. As mentioned in the beginning of this 
chapter, the filter estimates depend on the actual measurement sequence, which has an impact on 
the dynamically generated reference trajectory for the linearization. Furthermore, as 
demonstrated in the example on proper filter initialization, the estimates of the nonlinear filter do 
also strongly depend on a priori knowledge of the system state. Analytical proof of the 
exponential boundedness of the squared mean of the state estimation errors for the continuous 
EKF can be found in Günther [15]. However, this proof is based on some constraints. If these 
constraints are violated, for example if the initial state estimation errors are too large or if the 
measurements are very noisy, the state estimation errors might diverge. Considering the 
application of EKFs in practice, there are reliable methods in order to monitor if the EKF state 
estimates diverge. For example, by keeping track of the innovation vector, anomalies can be 
detected. Health monitoring of the EKF is discussed in detail in Sect. 6. 

 

5.2.2 Linearized Observation Model 

In this section the linearized observation model for relative positioning using double-differenced 
code and carrier phase measurements is derived. The nonlinear relationship between the 
observations and the user receiver coordinates is the reason for using an EKF instead of a linear 
Kalman filter. While there are nonlinear relationships with respect to the measurement model, a 
linear dynamic state space model is used in order to model the system dynamics. Therefore, only 
the respective observation equations have to be linearized. The general form of the linearized 
GNSS model is: 

 y ൌ כܪ · ݔ ൅ ߭ , (5.1)
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where כܪ is the design matrix derived from linearized observation equations, ݔ is the vector of 
unknowns in terms of incremental values, y is the vector of measured minus computed 
observations and ߭ is the noise vector. 

The mathematical model that is considered in this work is a geometry-based model, since the 
parameters of interest are the coordinates of the user receiver antenna. Taylor series expansion is 
used in order to linearize the geometric range with respect to approximate values for the user 
receiver coordinates ݔො௎, ݕො௎ and ̂ݖ௎. An estimate ̂ݎ௎ௌ of the geometric range between the satellite 
ܵ and the user ܷ is obtained from: 

௎ௌݎ̂  ൌ ඥሺݔௌ െ ො௎ሻଶݔ ൅ ሺݕௌ െ ො௎ሻଶݕ ൅ ሺݖௌ െ ௎ሻଶ (5.2)ݖ̂

Note that all quantities of Eq. (5.2) vary with time, where the time index is not explicitly 
indicated. The actual user receiver coordinates ሾݔ௎ ௎ݕ  ௎ሿ can be expressed by an initial guessݖ
ሾݔො௎ ො௎ݕ ௎ݔ∆௎ሿ and the respective offset ሾݖ̂ ௎ݕ∆  :௎ሿݖ∆

௎ݔ  ൌ ො௎ݔ ൅ ௎ݕ        ,௎ݔ∆ ൌ ො௎ݕ ൅ ௎ݖ        ,௎ݕ∆ ൌ ௎ݖ̂ ൅ ௎ (5.3)ݖ∆

The Taylor series expansion of a continuously differentiable function in ሾݔ௎ ௎ݕ  ௎ሿ is given byݖ
[3]: 

 

݂ሺݔො௎ ൅ ,௎ݔ∆ ො௎ݕ  ൅ ,௎ݕ∆ ௎ݖ̂ ൅ ௎ሻݖ∆
ൌ ݂ሺݔො௎, ,ො௎ݕ  ௎ሻݖ̂

൅
1
1!
൬
߲
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(5.4)

In order to linearize the function indicated in Eq. (5.4), the Taylor series expansion has to be 
truncated after the linear term. Making use of the Taylor series expansion and neglecting terms 
of higher orders, the true geometric range ݎ௎ௌ can be expressed by: 

௎ௌݎ  ൌ ௎ௌݎ̂ ൅ ቆ
ො௎ݔ െ ௌݔ

௎ௌݎ̂
௎ݔ∆ ൅

ො௎ݕ െ ௌݕ

௎ௌݎ̂
௎ݕ∆ ൅

௎ݖ̂ െ ௌݖ

௎ௌݎ̂
௎ቇ (5.5)ݖ∆

Next, the geometry term of double-differenced observations is considered: 

஺஻ௌଵௌଶݎ∆ߘ  ൌ ൫ݎ஺ௌଵ െ ஻ௌଵ൯ݎ െ ൫ݎ஺ௌଶ െ ஻ௌଶ൯ (5.6)ݎ

The subscript ܣ is used for the reference receiver, whose coordinates are known precisely, and 
the subscript ܤ is used for the mobile user receiver, whose coordinates are to be determined. Eq. 
(5.6) can be rewritten by introducing the unknown rover receiver coordinate increments ∆ݔ஻, 
 ஻ that represent the offset between an initial estimate of the user receiver locationݖ∆ ஻ andݕ∆
and the actual location of the user receiver. The result of the linearized geometric range with 
respect to the user receiver coordinates indicated in Eq. (5.5) is reused in order to reformulate the 
double-differenced geometry term as follows: 
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െ ቈݎ஺ௌଶ െ ቆ̂ݎ஻ௌଶ ൅
ො஻ݔ െ ௌଶݔ

஻ௌଶݎ̂
஻ݔ∆ ൅

ො஻ݕ െ ௌଶݕ

஻ௌଶݎ̂
஻ݕ∆ ൅

஻ݖ̂ െ ௌଶݖ

஻ௌଶݎ̂
 ஻ቇ቉ݖ∆

(5.7)
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Thus, the design matrix for the geometry states ݔ௚௘௢ ൌ ሾ∆ݔ஻ ஻ݕ∆  ஻ሿ் of the linearizedݖ∆
GNSS model for relative positioning reads: 

כ௚௘௢ܪ ൌ

ۏ
ێ
ێ
ێ
ێ
ො஻ݔۍ െ ௌଶݔ

஻ௌଶݎ̂
െ
ො஻ݔ െ ௌଵݔ

஻ௌଵݎ̂
ො஻ݕ െ ௌଶݕ

஻ௌଶݎ̂
െ
ො஻ݕ െ ௌଵݕ

஻ௌଵݎ̂
஻ݖ̂ െ ௌଶݖ

஻ௌଶݎ̂
െ
஻ݖ̂ െ ௌଵݖ

஻ௌଵݎ̂
ڭ ڭ ڭ

ො஻ݔ െ ௌ௝ݔ

஻ݎ̂
ௌ௝ െ

ො஻ݔ െ ௌଵݔ

஻ௌଵݎ̂
ො஻ݕ െ ௌ௝ݕ

஻ݎ̂
ௌ௝ െ

ො஻ݕ െ ௌଵݕ

஻ௌଵݎ̂
஻ݖ̂ െ ௌ௝ݖ

஻ݎ̂
ௌ௝ െ

஻ݖ̂ െ ௌଵݖ

஻ௌଵݎ̂ ے
ۑ
ۑ
ۑ
ۑ
ې

 (5.8)

By introducing the line-of-sight vector 1஻ௌ  pointing from the user receiver ܤ to the satellite ܵ, the 
expression given in Eq. (5.8) can be rewritten as: 

כ௚௘௢ܪ  ൌ ൦
൫1஻ௌଵ െ 1஻ௌଶ൯

்

ڭ
൫1஻ௌଵ െ 1஻

ௌ௝൯
்
൪  (5.9)

Note that the change of sign between Eq. (5.8) and Eq. (5.9) results from the definition of the 
orientation of the line of sight vector. The double-differenced geometry term is present in both 
the double-differenced pseudorange equations and the double-differenced carrier phase 
equations. Furthermore, it can be found in the double-differenced Doppler shift equations, which 
becomes obvious from Eq. (3.12). However, the sign of the entries of ܪ௚௘௢כ  has to be inverted in 
order to obtain the design matrix for the velocity states ݔ௩௘௟ ൌ ሾ∆ݔሶ஻ ሶ஻ݕ∆  ሶ஻ሿ். The signݖ∆
inversion results from the definition of the Doppler shift scaled to range rate ܦோௌ as defined in 
Eq. (3.13). The double-differenced Doppler shift measurements are given by: 

஺஻ௌଵௌଶܦ∆ߘ  ൌ ൫ܦ஺ௌଵ െ ஻ௌଵ൯ܦ െ ൫ܦ஺ௌଶ െ ஻ௌଶ൯ (5.10)ܦ

From Eq. (3.12) follows that the double-differenced Doppler shift measurements can be 
parameterized in terms of the unknown user velocity vector ሶܺ஻: 

஺஻ௌଵௌଶܦ∆ߘ  ൅ ሶܺ ௌଵ ל ൫1஺ௌଵ െ 1஻ௌଵ൯ െ ሶܺ ௌଶ ל ൫1஺ௌଶ െ 1஻ௌଶ൯ ൌ ሶܺ஻ ל ൫1஻ௌଶ െ 1஻ௌଵ൯ (5.11)

The terms of known parameters are on the left side of the Eq. (5.11), leaving the terms of 
unknown parameters on the right side of the equation. In Eq. (5.11) it has already been used that 
the reference receiver A is static, e.g. ሶܺ஺ ൌ 0. Just as before, the user velocity vector ሶܺ஻ can be 
split into an initial estimate ෠ܺሶ஻ and an incremental offset ∆ ሶܺ஻. Finally, the design matrix for the 
velocity parameters can be set up as follows: 

௩௘௟ܪ  ൌ ൦
൫1஻ௌଶ െ 1஻ௌଵ൯

்

ڭ
൫1஻

ௌ௝ െ 1஻ௌଵ൯
்
൪  (5.12)

By comparing Eq. (5.12) with Eq. (5.9) it follows that ܪ௩௘௟ ൌ െܪ௚௘௢כ . 

In real-time kinematic positioning it is required that the exact reference receiver coordinates ܺ஺ 
are available at the user receiver site. Furthermore, the satellite positions and velocities are 
required by the user positioning software. The procedure in order to determine the satellite 
positions and velocities from broadcast ephemeris data is shown in Appendix B. In the next 
section the measurement model of the nonlinear filter is presented and the information on the 
measurement sensitivity matrices derived in this section can be reused. 
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5.2.3 Measurement Model 

In this work it is assumed that both the reference station and the airplane are equipped with a 
dual-frequency receiver. This allows for inter-frequency combinations of the measurements. 
However, in the following only the linear combination of phase measurements on two different 
frequencies is considered in order to form a widelane observation. The selection of the GNSS 
frequencies is such that it is assured that they reside in an ARNS band in order to be compatible 
with the requirements of civil aviation. The widelane linear phase combination is used in this 
work as measurement input to the filter instead of simply forwarding the carrier phase 
measurements on two different frequencies separately to the filter. The reasoning in favor of the 
widelane is founded in the concrete application at hand. The characteristics of a widelane 
ambiguity-fixed position solution are better than those of a sole float position solution. For many 
applications the accuracy of a widelane ambiguity-fixed position solution is already sufficient. 
Therefore, it is advantageous to have a widelane ambiguity-fixed solution available, which is 
easier to obtain than a carrier phase ambiguity-fixed solution, as long as carrier phase ambiguity 
resolution may not be trusted. Many dual-frequency receivers on the market provide in addition 
to the pseudorange and carrier phase measurements also the instantaneous Doppler shift 
measurements. In the following only the Doppler shifts measured on the highest carrier 
frequency are included in the measurement model. However, the processing of Doppler shift 
measurements on multiple carrier frequencies is supported by the navigation software and has 
also been tested successfully. 

In this section it holds that ଶ݂ ൐ ଵ݂ and that the ionosphere reference frequency ௜݂௢௡ ൌ ଶ݂, e.g. 
ionospheric delay terms which are estimated by the filter are referenced to ଶ݂. Higher order terms 
of the ionospheric gradient are neglected in this representation. Furthermore, signal delay due to 
refractivity of the troposphere is assumed to be absent in this work. Though, in general the 
double-differenced residual tropospheric range errors are not negligible. Multipath remains an 
unmodeled, non-white nuisance parameter. The following observation equations are considered 
in the measurement model, which have already been introduced in Sect. 3 and are repeated here 
for convenience: 

a) Double-differenced pseudorange measurements 

௖,஺஻ߩ∆ߘ 
ௌଵௌ௝ ൌ ஺஻ݎ∆ߘ

ௌଵௌ௝ ൅ ௜௢௡,஺஻݀∆ߘ
ௌଵௌ௝ · ௜݂௢௡

ଶ

௖݂
ଶ ൅ ∆ߘ ఘ߭೎,஺஻

ௌଵௌ௝  (5.13)

b) Double-differenced phase-only widelane measurements 

 
ௐ௅,஺஻߶∆ߘ

ௌଵௌ௝ ൌ ஺஻ݎ∆ߘ
ௌଵௌ௝ ൅ ௐ௅ߣ · ௐ௅,஺஻ܰ∆ߘ

ௌଵௌ௝ െ ௐ௅ߣ · ௜௢௡,஺஻݀∆ߘ
ௌଵௌ௝

· ቆ ௜݂௢௡
ଶ

ଶ݂
ଶ · ଶߣ

െ ௜݂௢௡
ଶ

ଵ݂
ଶ · ଵߣ

ቇ ൅ థೈಽ,஺஻߭∆ߘ
ௌଵௌ௝  

(5.14)

c) Double-differenced carrier phase measurements 

௖,஺஻߶∆ߘ 
ௌଵௌ௝ ൌ ஺஻ݎ∆ߘ

ௌଵௌ௝ ൅ ௖ߣ · ∆ߘ ௖ܰ,஺஻
ௌଵௌ௝ െ ௜௢௡,஺஻݀∆ߘ

ௌଵௌ௝ · ௜݂௢௡
ଶ

௖݂
ଶ ൅ థ೎,஺஻߭∆ߘ

ௌଵௌ௝  (5.15)

d) Double-differenced Doppler shift measurements 

௖,஺஻ܦ∆ߘ 
ௌଵௌ௝ ൌ െݎ∆ߘሶ஺஻

ௌଵௌ௝ ൅ ஽೎,஺஻߭∆ߘ
ௌଵௌ௝  (5.16)

All measurements indicated so far are summarized in the measurement vector ݖ௞. The actual 
measurements at epoch k are compared with the predicted measurements. From Eq. (A.10) 
follows that the predicted measurements are computed differently if an EKF is used, e.g. the 
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predicted measurements follow from ̂ݖ௞ ൌ ݄௞൫ݔො௞ሺെሻ൯ instead of using ̂ݖ௞ ൌ ௞ܪ ·  .ො௞ሺെሻݔ
Consequently, the prediction of the measurements at epoch k follows directly from inserting the 
predicted state vector ݔො௞ሺെሻ into the nonlinear measurement functions ݄௞. The EKF is updated 
at epoch k using the information from the innovations, which is the difference between the actual 
measurements z୩ and the predicted measurements zො୩: 

 

൫ݖ௞ െ ௞൯ݖ̂

ൌ

ۉ

ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۇ
ଵ,஺஻ௌଵௌଶߩ∆ߘ

ڭ
ଵ,஺஻ௌଵௌ௡ߩ∆ߘ

ଶ,஺஻ௌଵௌଶߩ∆ߘ

ڭ
ଶ,஺஻ௌଵௌ௡ߩ∆ߘ

ௐ௅,஺஻߶∆ߘ
ௌଵௌଶ

ڭ
ௐ௅,஺஻߶∆ߘ

ௌଵௌ௡

ଶ,஺஻ௌଵௌଶ߶∆ߘ

ڭ
ଶ,஺஻ௌଵௌ௡߶∆ߘ

ଶ,஺஻ௌଵௌଶܦ∆ߘ

ڭ
ଶ,஺஻ௌଵௌ௡ܦ∆ߘ ی

ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۊ

௞

െ

ۉ

ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۇ
஺஻ௌଵௌଶݎ̂∆ߘ ൅ ∆ߘ መ݀௜௢௡,஺஻ௌଵௌଶ · ଶ݂

ଶ

ଵ݂
ଶ

ڭ

஺஻ௌଵௌ௡ݎ̂∆ߘ ൅ ∆ߘ መ݀௜௢௡,஺஻ௌଵௌ௡ · ଶ݂
ଶ

ଵ݂
ଶ

஺஻ௌଵௌଶݎ̂∆ߘ ൅ ∆ߘ መ݀௜௢௡,஺஻ௌଵௌଶ

ڭ
஺஻ௌଵௌ௡ݎ̂∆ߘ ൅ ∆ߘ መ݀௜௢௡,஺஻ௌଵௌ௡

஺஻ௌଵௌଶݎ̂∆ߘ ൅ ௐ௅ߣ · ∆ߘ ෡ܰௐ௅,஺஻
ௌଵௌଶ െ ∆ߘ መ݀௜௢௡,஺஻ௌଵௌଶ · ௐ௅ߣ · ቆ

1
ଶߣ
െ ଶ݂

ଶ

ଵ݂
ଶ · ଵߣ

ቇ

ڭ

஺஻ௌଵௌ௡ݎ̂∆ߘ ൅ ௐ௅ߣ · ∆ߘ ෡ܰௐ௅,஺஻
ௌଵௌ௡ െ ∆ߘ መ݀௜௢௡,஺஻ௌଵௌ௡ · ௐ௅ߣ · ቆ

1
ଶߣ
െ ଶ݂

ଶ

ଵ݂
ଶ · ଵߣ

ቇ

஺஻ௌଵௌଶݎ̂∆ߘ ൅ ଶߣ · ∆ߘ ෡ܰଶ,஺஻ௌଵௌଶ െ ∆ߘ መ݀௜௢௡,஺஻ௌଵௌଶ

ڭ
஺஻ௌଵௌ௡ݎ̂∆ߘ ൅ ଶߣ · ∆ߘ ෡ܰଶ,஺஻ௌଵௌ௡ െ ∆ߘ መ݀௜௢௡,஺஻ௌଵௌ௡

െݎ∆ߘሶመ஺஻ௌଵௌଶ
ڭ
െݎ∆ߘሶመ஺஻ௌଵௌ௡ ی

ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۊ

௞,ሺିሻ

 

(5.17)

The index ݇ after the brackets in Eq. (5.17) indicates the current observation epoch. The ‘ሺെሻ’ 
symbol in the subscript of the second bracket, which contains the predicted observations, 
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indicates that the predicted measurements are based on a priori state estimates that are derived 
from extrapolation as indicated in Eq. (A.7). So far, the ambiguity terms ߘ∆ ෡ܰ஺஻

ௌଵௌ௝ are treated as 
floating numbers. 

The actual states of interest are the position and velocity vector of the user receiver. The 
widelane and carrier phase ambiguities as well as the ionospheric delay terms have also to be 
included in the state vector in order to model the physical process properly. According to 
Kalman filter theory, an optimal filter leaves only white Gaussian noise terms as unmodeled 
error sources. In this work tropospheric delay terms are neglected and therefore also excluded 
from the simulated physical process. Thus, the state vector comprises the following parameters: 

௞ݔ  ൌ

ۉ

ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۇ

஻,௞ݔ
஻,௞ݕ
஻,௞ݖ
ሶ஻,௞ݔ
ሶ஻,௞ݕ
ሶ஻,௞ݖ

ௐ௅,஺஻ܰ∆ߘ
ௌଵௌଶ

ڭ
ௐ௅,஺஻ܰ∆ߘ

ௌଵௌ௡

∆ߘ ଶܰ,஺஻
ௌଵௌଶ

ڭ
∆ߘ ଶܰ,஺஻

ௌଵௌ௡

ଶ,௞ଵ݊݋ܫ

ڭ
ଶ,௞௜݊݋ܫ ی

ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۊ

 (5.18)

The EKF can be operated with total estimates of the system states instead of incremental 
quantities. The derivation can be found in [5]. Keeping track of the total estimates in the EKF 
rather than incremental ones is adopted here. In Eq. (5.18) the terms ݊݋ܫଶ,௞௜  have been 
introduced, which serve as placeholders for the actual ionosphere-related quantities that are to be 
estimated with respect to the reference frequency ଶ݂. Three different ionosphere models are 
implemented in this work. They are presented in detail in Sect. 5.3. 

Using the results of the linearization of the GNSS observation model as derived in Sect. 5.2.2, 
the measurement sensitivity matrix ܪ௞כ can be expressed by: 

כ௞ܪ  ൌ

ۉ

ۈۈ
ۇ

כ௚௘௢,௞ܪ 0 0 0 ௜௢௡,ଵ,௞ܪ
כ௚௘௢,௞ܪ 0 0 0 ௜௢௡,ଶ,௞ܪ
כ௚௘௢,௞ܪ 0 ௐ௅ߣ · ሺ௡ିଵሻ௫ሺ௡ିଵሻܫ 0 ௜௢௡,ௐ௅,௞ܪ

כ௚௘௢,௞ܪ 0 0 ଶߣ · ሺ௡ିଵሻ௫ሺ௡ିଵሻܫ െܪ௜௢௡,ଶ,௞
0 ௩௘௟,௞ܪ 0 0 0 ی

ۋۋ
ۊ

 (5.19)

Note that apart from the inverse sign of the single matrix entries, ܪ௚௘௢,௞כ  corresponds to ܪ௩௘௟,௞, 
e.g. ܪ௩௘௟,௞ ൌ െܪ௚௘௢,௞כ . The negative sign is due to the definition of range rate measurement ܦ௖

ௌ௝ 
made in Eq. (3.13). ܪ௚௘௢,௞כ  and ܪ௩௘௟,௞ are (n-1)x(3) matrices, where n is the number of satellites 
used in the navigation solution. The identity matrices multiplied by the respective wavelength in 
the third and fourth column of ܪ௞כ account for the ambiguity terms of the phase measurements. 
In the last column of ܪ௞כ, the design matrices ܪ௜௢௡,௖,௞ are introduced which serve as placeholders 
for the ionospheric measurement sensitivity matrices. They are also dependent on the concrete 



5.2 Nonlinear Navigation Filter  61 

 

ionosphere model in use and will therefore be discussed in Sect. 5.3. The inverse sign of ܪ௜௢௡,ଶ,௞ 
in the second and fourth column of Eq. (5.19) results from the fact that the phase velocity is 
advanced compared to the propagation in vacuum, while the group velocity is delayed when 
passing through the ionosphere. 

Finally, the covariance matrix of measurement noise ܴ is derived. If the measurement model 
reflects the physical process properly, it should hold that the measurement noise is white 
Gaussian, e.g. ߭௞~ܰሺ0, ܴ௞ሻ as indicated in Eq. (A.2). The stochastic model should account for 
cross-correlations and time-correlations of the GNSS measurements. The issue of time-
correlations becomes more severe if high sampling rates are considered. Here it is assumed in 
the derivation of the covariance matrix of measurement noise that time-correlations are 
negligible. In the simulations a low sampling rate of 1 Hz is considered. The focus of the 
stochastic measurement model presented here is directed to the cross-correlations of 
measurements due to double-differencing and inter-frequency combinations. The variance-
covariance error propagation due to double-differencing has already been introduced in detail in 
Sect. 3.5.2, so that the results can be reused here. The covariance matrix ܴ for the concrete 
measurement model at hand reads: 

 ܴ௞ ൌ

ۏ
ێ
ێ
ێ
ێ
ܦۍ ቄߩ∆ߘଵ,஺஻ቅ 0 0 0

0 ܦ ቄߩ∆ߘଶ,஺஻ቅ 0 0

0 0 ܦ ቄߘ∆߶஺஻ቅ 0

0 0 0 ےଶ,஺஻ൟܦ∆ߘ൛ܦ
ۑ
ۑ
ۑ
ۑ
ې

௞

 (5.20)

, with ߘ∆߶஺஻் ൌ ௐ௅,஺஻߶∆ߘൣ
் ଶ,஺஻்߶∆ߘ ൧. The dispersions of the double-differenced pseudorange 

measurements and range rate measurements follow immediately from Eq. (3.42). The general 
form of the error propagation due to double-differencing reads: 

஺஻ൟ݉∆ߘ൛ܦ  ൌ ܦ · ൤
ሺ݉஺ሻݒ݋ܥ 0

0 ሺ݉஻ሻݒ݋ܥ
൨ · (5.21) ்ܦ

, where ܦ is the double-difference generator matrix according to Eq. (3.41) and ݉ is a 
placeholder for the respective measurement type. When computing the dispersion of the 
widelane and carrier phase measurements ܦ ቄߘ∆߶஺஻ቅ, it has to be considered that the widelane 
and carrier phase measurements are correlated due to the inter-frequency linear combination. 
The stochastic measurement model for a geometry-based cascading ambiguity resolution scheme 
using phase measurements on three different frequencies is depicted in Zhang et al. [57]. This 
stochastic model for inter-frequency combinations of phase measurements can be broken down 
to dual-frequency application. The dispersion of the widelane and carrier phase measurements in 
the range domain becomes: 

ܦ  ቄߘ∆߶஺஻ቅ ൌ ܮ · ቈ
ଵ,஺஻ൟߔ∆ߘ൛ܦ 0

0 ଶ,஺஻ൟߔ∆ߘ൛ܦ
቉ · (5.22) ்ܮ

, where ܮ is a frequency-dependent scaling matrix that accounts for the linear combination of the 
carrier phase measurements on ଵ݂ and ଶ݂ in order to form the widelane: 

ܮ  ൌ ቈ
െߣௐ௅ · ሺ௡ିଵሻ௫ሺ௡ିଵሻܫ ௐ௅ߣ · ሺ௡ିଵሻ௫ሺ௡ିଵሻܫ

0 ଶߣ · ሺ௡ିଵሻ௫ሺ௡ିଵሻܫ
቉ (5.23)

Note that scaling with the matrix ܮ has also the effect of transiting from the space of cycles to 
the space of ranges, since ܦ൛ߔ∆ߘ஺஻ൟ is the dispersion of the phase measurements in units of 
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 Φ௞ିଵ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
1 0 0 ݐ∆ 0 0 ڮ 0
0 1 0 0 ݐ∆ 0
0 0 1 0 0 ݐ∆
0 0 0 1 0 0 ڮ 0
0 0 0 0 1 0
0 0 0 0 0 1
ڭ ڭ ሺଶ௡ିଶሻ௫ሺଶ௡ିଶሻܫ
0 0 Φ௜௢௡ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (5.26)

The first (6)x(6) entries of the state transition matrix follow from the linear dynamic model for 
the user position and velocity states given in Eq. (5.25). The identity matrix of size (2n-2)x(2n-2) 
reflects that the (n-1) widelane ambiguities and the (n-1) carrier phase ambiguities stay constant 
between different observation epochs. Again, the matrix Φ௜௢௡ will be specified when presenting 
the different ionosphere models. The covariance matrix of process noise associated with the state 
space equations is given by: 

 ܳ௞ିଵ ൌ

ۏ
ێ
ێ
ۍ
ܳ௉௏ 0 0 0
0 ܳேೈಽ 0 0
0 0 ܳேమ 0
0 0 0 ܳ௜௢௡ے

ۑ
ۑ
ې

௞ିଵ

, (5.27)

where the covariance matrix of position- and velocity-related process noise ܳ௉௏ follows from 

 ܳ௉௏ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
௣ܵۍ ·

ଷݐ∆

3
0 0 ܵ௣ ·

ଶݐ∆

2
0 0

0 ܵ௣ ·
ଷݐ∆

3
0 0 ܵ௣ ·

ଶݐ∆

2
0

0 0 ܵ௣ ·
ଷݐ∆

3
0 0 ܵ௣ ·

ଶݐ∆

2

ܵ௣ ·
ଶݐ∆

2
0 0 ܵ௣ · ݐ∆ 0 0

0 ܵ௣ ·
ଶݐ∆

2
0 0 ܵ௣ · ݐ∆ 0

0 0 ܵ௣ ·
ଶݐ∆

2
0 0 ܵ௣ · ݐ∆ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

. (5.28)

The parameter ܵ௣ denotes the spectral amplitude of the random walk process. The derivation of 
Eq. (5.28) is indicated in Brown et al. [5], where the variances and covariances of the random 
walk process are computed from: 

ሻሽݐ∆௜ሺݔሻݐ∆௜ሺݔሼܧ  ൌ න න ݑ · ݒ ·
∆୲

଴

∆୲

଴

ܵ௣ · ݑሺߜ െ ݒ݀ݑሻ݀ݒ ൌ ܵ௣ ·
∆tଷ

3 , (5.29)

ሻሽݐ∆௜ାଷሺݔሻݐ∆௜ାଷሺݔሼܧ  ൌ න න 1 · 1 ·
∆୲

଴

∆୲

଴

ܵ௣ · ݑሺߜ െ ݒ݀ݑሻ݀ݒ ൌ ܵ௣ · ∆t , (5.30)

ሻሽݐ∆௜ାଷሺݔሻݐ∆௜ሺݔሼܧ  ൌ න න 1 · ݒ ·
∆୲

଴

∆୲

଴

ܵ௣ · ݑሺߜ െ ݒ݀ݑሻ݀ݒ ൌ ܵ௣ ·
∆tଶ

2 , (5.31)
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where ߜ  is the Dirac delta function. The subscript i ranges from 1…3 and corresponds to either 
the x-, y- or the z-component of the position and velocity vector, e.g. xଵ ൌ xB, xସ ൌ xሶ B,… . 
Besides the stochastic model for the random walk process, a stochastic model for the ambiguities 
is required. In principle, estimating the initially unknown integer ambiguities with an EKF 
corresponds to estimating constant values if it is supposed that there are no cycle slips. As a 
consequence, the covariance matrices of process noise that correspond to the ambiguity terms, 
ܳேೈಽ  and ܳேమ, are zero matrices in theory. In practice, the variances of the double-differenced 
ambiguities are set to values greater than zero. Here it is chosen to perform a continuous 
downscaling of the ambiguity variances: 

 ܳேೈಽ,௞ ൌ ேೈಽ,௞ߪ
ଶ · ሺ௡ିଵሻ௫ሺ௡ିଵሻܫ , (5.32)

 ܳேమ,௞ ൌ ேమ,௞ߪ
ଶ · ሺ௡ିଵሻ௫ሺ௡ିଵሻܫ . (5.33)

As long as the filter still works with float ambiguities, the variances ߪேೈಽ,௞
ଶ  and ߪேమ,௞

ଶ  are 
decreased with time. It is ensured that the variances will never go below a lower limit as long as 
the ambiguities are not fixed. After accepting the integer ambiguities, the covariance matrices 
ܳேೈಽ,௞ and ܳேమ,௞ are set to zero-matrices. Successful integer ambiguity fixing is also reflected 
by the covariance matrix of state estimation uncertainty ௞ܲ. The entries which correspond to 
uncertainties in the ambiguity estimates are set to zero after accepting the integer ambiguities. 

This leaves the sub-matrix ܳ௜௢௡ in Eq. (5.27) as only unspecified entry. The process noise 
covariance matrix ܳ௜௢௡, which corresponds to a concrete stochastic ionosphere model, is derived 
in the following chapter for three different ionosphere models. 

 

5.3 Stochastic Modeling of the Ionosphere 

5.3.1 LAAS Model of the Differential Ionospheric Ranging Error 

The indication of precise and globally valid models for the electron content in the atmosphere is 
hardly possible. The electron content varies amongst others with the day time, the season, the 
sun cycle and the geomagnetic activity. Although a great part of the ranging errors caused by 
ionospheric delay cancel out when double-differencing between observations, the residual 
ionospheric error is not necessarily negligible. Especially when the baseline length between the 
reference receiver and the user receiver increases or in presence of ionosphere storms, 
uncompensated residual ionospheric range errors may severely degrade the navigation solution. 
Therefore, the differential ionospheric errors are estimated as separate states in the EKF. 

The first model which is considered is the Local Area Augmentation System (LAAS) model of 
the differential ionospheric ranging error after [28]. It aims at estimating the single-differenced 
ionospheric range error as a function of the vertical ionospheric gradient (VIG): 

 
∆݀௜௢௡,஺஻

ௌ௝ ൌ ஺஻ܩܫܸ
ௌ௝ ·

ฮܺ஺ െ ෠ܺ஻ฮଶ

ඨ1 െ ൬ܴ௘ · ܧሺݏ݋ܿ
ௌ௝ሻ

ܴ௘ ൅ ݄ூ
൰
ଶ

, 
(5.34)

where: 
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∆݀௜௢௡,஺஻
ௌ௝ : Single-differenced ionospheric ranging error due to spatial decorrelation of the delays 

 caused by the ionosphere at the receiver sites A and B 

஺஻ܩܫܸ
ௌ௝ : Vertical ionospheric gradient with respect to the reference frequency ௜݂௢௡ 

 and the constellation of satellite ௝ܵ and receiver A and B 

ܴ௘: Mean radius of the earth (6368 km) 

  ௌ௝: Satellite elevation angle of ௝ܵ (in this work the satellite elevation angle at theܧ
 reference receiver site is chosen) 

݄ூ: Mean ionospheric shell height 

Note that Eq. (5.34) results from the LAAS ionospheric model by setting the smoothing time 
constant to zero. In this work ݄ூ is assumed to be 350 km, which is according to [13] also used 
as the mean ionospheric shell height in Klobuchar’s ionospheric delay model. The procedure of 
modeling the VIG for each observed satellite as additional state in a covariance analysis has 
already been proposed by Pervan et al. [33]. Thus, if there are n satellites in view, also n VIGs 
have to be included as separate states in the filter: 

 ቌ
ଶ,௞ଵ݊݋ܫ

ڭ
ଶ,௞௜݊݋ܫ

ቍ ൌ ቌ
ଶ,௞ௌଵܩܫܸ

ڭ
ଶ,௞ௌ௡ܩܫܸ

ቍ (5.35)

According to [28], it is reasonably conservative to set the standard deviations of the VIGs to 
௏ூீߪ ൌ 2݉݉/݇݉ in most locations and at most times, but it may also be as high as ߪ௏ூீ ൌ
8݉݉/݇݉ in equatorial regions. The expected variance ߪ௏ூீଶ  of the vertical ionospheric gradient 
is used in order to set up the sub-matrix ܳ௜௢௡ of the covariance matrix of process noise: 

 ܳ௜௢௡ ൌ ௏ூீଶߪ · ሺ௡ሻ௫ሺ௡ሻ (5.36)ܫ

The sensitivity of the ionospheric state estimation on the parameter ߪ௏ூீଶ  has to be investigated, 
since this parameter is generally not known precisely in advance. It is assumed that the VIGs are 
just driven by a white-noise process. Therefore, the sub-matrix for the ionospheric terms of the 
state transition matrix simply becomes the identity matrix: 

 Φ௜௢௡ ൌ ሺ௡ሻ௫ሺ௡ሻ (5.37)ܫ

The LAAS model of the differential ionospheric ranging error refers to the single-differenced 
ionospheric range error. However, the measurement model presented in Sect. 5.2.3 is based on 
double-differenced measurements. An estimate of the residual double-differenced ionospheric 
range error ߘ∆ መ݀௜௢௡,஺஻

ௌଵௌ௝  is obtained by differencing the single-differenced ionospheric range 
errors, see Eq. (5.34), between different satellites: 

 

∆ߘ መ݀௜௢௡,஺஻
ௌଵௌ௝ ൌ ∆ መ݀௜௢௡,஺஻ௌଵ െ ∆ መ݀௜௢௡,஺஻

ௌ௝ ൌ ฮܺ஺ െ ෠ܺ஻ฮଶ

·

ۉ

ۈ
ۇ

෢ܩܫܸ ஺஻
ௌଵ

ඨ1 ൅ ൬ܴ௘ · ܧሺݏ݋ܿ
ௌଵሻ

ܴ௘ ൅ ݄ூ
൰
ଶ
െ

෢ܩܫܸ ஺஻
ௌ௝

ඨ1 ൅ ൬ܴ௘ · ܧሺݏ݋ܿ
ௌ௝ሻ

ܴ௘ ൅ ݄ூ
൰
ଶ

ی

ۋ
(5.38) ۊ

As stated before, the frequency-dependent VIGs are referenced to the carrier frequency f2. 
Neglecting terms of higher orders, the additional delay of L-band signals caused by ionospheric 
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refraction is proportional to 1/f2. Therefore, simple scaling can be applied in order to derive the 
different matrices ܪ௜௢௡,௖,௞: 

௜௢௡,௖,௞ܪ  ൌ
ଶ݂
ଶ

௖݂
ଶ ·

ۉ

ۈ
ۇ
݉௜௢௡,௞
ௌଵ െ݉௜௢௡,௞

ௌଶ 0 ڮ 0
݉௜௢௡,௞
ௌଵ 0 െ݉௜௢௡,௞

ௌଷ ڮ 0
ڭ ڭ ڭ ڰ ڭ

݉௜௢௡,௞
ௌଵ 0 0 ڮ െ݉௜௢௡,௞

ௌ௡
ی

ۋ
ۊ

, (5.39)

with: 

 
݉௜௢௡,௞
ௌ௝ ൌ

ฮܺ஺ െ ෠ܺ஻ฮଶ

ඨ1 ൅ ൬ܴ௘ · ܧሺݏ݋ܿ
ௌ௝ሻ

ܴ௘ ൅ ݄ூ
൰
ଶ

 
(5.40)

The frequency-dependent scaling factor for the residual ionospheric terms of the widelane 
measurements follows from Eq. (5.14). Thus, the measurement sensitivity matrix of the double-
differenced widelane ionospheric range errors becomes: 

 

௜௢௡,ௐ௅,௞ܪ ൌ െߣௐ௅ · ቆ
1
ଶߣ
െ ଶ݂

ଶ

ଵ݂
ଶ · ଵߣ

ቇ

·

ۉ

ۈ
ۇ
݉௜௢௡,௞
ௌଵ െ݉௜௢௡,௞

ௌଶ 0 ڮ 0
݉௜௢௡,௞
ௌଵ 0 െ݉௜௢௡,௞

ௌଷ ڮ 0
ڭ ڭ ڭ ڰ ڭ

݉௜௢௡,௞
ௌଵ 0 0 ڮ െ݉௜௢௡,௞

ௌ௡
ی

ۋ
ۊ

 
(5.41)

There is one main drawback associated with the application of the LAAS differential ionosphere 
model in this work. It has been designed for the processing of single-differenced measurements. 
However, if double-differenced measurements are processed, there arises the problem of bad 
observability: there are n-1 double-differenced observations, but n VIGs have to be estimated. 
As indicated before, it is possible to set up an appropriate measurement sensitivity matrix even 
when using double-differenced observations. But the observability test according to Eq. (4.8) 
reveals that the observability matrix ࣩ has a rank deficiency of 1 if a discrete time interval of 
only one single epoch is considered. By extending the discrete time interval to two epochs, the 
observability matrix ࣩ  is already of full rank, but still bad conditioned. From Kalman filter 
theory it is known that bad observability of system states is reflected by the covariance matrix of 
state estimation uncertainty  ௞ܲሺ൅ሻ. On the left side of Figure 5.4 it is shown that the main 
diagonal terms of ௞ܲሺ൅ሻ, which correspond to the predicted variances of the VIGs, indicate that 
the VIG estimation errors diverge due to bad observability. 
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Figure 5.4: Bad observability of the Vertical Ionospheric Gradients 

 
Figure 5.5: Good performance of the ionospheric state estimation despite of bad observability 

 

On the other hand, by comparing the simulated VIGs illustrated on the right side of Figure 5.4 
with the remaining estimation errors of the VIGs illustrated on the left side Figure 5.5, one can 
see that the estimation of the VIGs with the LAAS model works quite well despite of using 
double-differenced observations. On the other hand, the results refer to a noise-free simulation 
scenario, e.g. only propagation delay due to ionospheric refractivity has been simulated. In Sect. 
7.2.4 test results are presented when using this ionosphere model in a multipath environment. 

 

5.3.2 Double-difference Ionosphere Model 

A second approach that addresses to the modeling of the stochastic behavior of the double-
differenced ionospheric range error instead of the single-differenced ionospheric range error is 
presented in Goad et al. [11]. The placeholders for the ionosphere terms introduced in Eq. (5.18) 
can therefore be filled with: 

 ቌ
ଶ,௞ଵ݊݋ܫ

ڭ
ଶ,௞௜݊݋ܫ

ቍ ൌ ቌ
௜௢௡,ଶ,௞ௌଵௌଶ݀∆ߘ

ڭ
௜௢௡,ଶ,௞ௌଵௌ௡݀∆ߘ

ቍ (5.42)
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In this approach “virtual” measurements of the double-differenced ionospheric range errors are 
introduced. The original measurement vector  ݖ௞ is extended by the virtual measurements to the 
new measurement vector ݖ௘௫௧,௞: 

௘௫௧,௞ݖ  ൌ ൬
௞ݖ

0ሺ௡ିଵሻ൰ (5.43)

From Eq. (5.43) follows that the n-1 pseudo-measurements of the double-differenced 
ionospheric range errors are all set to zero. This corresponds to ideal spatial correlation of the 
ionospheric range errors. The variance ߪఇ∆ௗ೔೚೙,ಲಳ

ଶ  of the pseudo-measurements is calculated 

from: 

ఇ∆ௗ೔೚೙,ಲಳߪ 
ଶ ൌ ஶଶߪ · ൬1 െ ݁ିଶ·

|ఋ|
஽ ൰ , (5.44)

where σஶଶ ൌ 2mଶ is the empirically found upper limit of the double-differenced ionospheric 
variance at a distance of 1500 km. The change of the baseline length between two successive 
epochs is represented by δ, and D represents the first order correlation distance of the double-
differenced ionosphere. The extended covariance matrix of measurement noise becomes: 

 ܴ௘௫௧,௞ ൌ ቈ
ܴ௞ 0
0 ఇ∆ௗ೔೚೙,ಲಳߪ

ଶ · ሺ௡ିଵሻ௫ሺ௡ିଵሻ቉ (5.45)ܫ

Since the double-differenced residual ionospheric range errors are estimated directly, the 
resulting measurement sensitivity matrix of the ionospheric terms simplifies to 

௜௢௡,௖,௞ܪ  ൌ
ଶ݂
ଶ

௖݂
ଶ · ሺ௡ିଵሻ௫ሺ௡ିଵሻ (5.46)ܫ

and for the widelane measurements the matrix of ionospheric terms is given by 

௜௢௡,ௐ௅,௞ܪ  ൌ െߣௐ௅ · ቆ
1
ଶߣ
െ ଶ݂

ଶ

ଵ݂
ଶ · ଵߣ

ቇ · ሺ௡ିଵሻ௫ሺ௡ିଵሻܫ . (5.47)

The pseudo-measurements which have been introduced here have also to be reflected by the 
measurement sensitivity matrix. The extended measurement sensitivity matrix reads: 

௘௫௧,௞ܪ  ൌ ൤
௞ܪ

0ሺ௡ିଵሻ௫ሺଶ௡ାସሻ ሺ௡ିଵሻ௫ሺ௡ିଵሻܫ
൨ (5.48)

This completes the extensions of the measurement model. Next, the placeholders of state space 
model are filled. The variance of the prediction error of the double-differenced ionosphere is 
approximated by: 

௣௜௢௡,஺஻ଶߪ  ൌ ஶଶߪ · ቆ1 െ ݁ିଶ·൬
|ఛ|
் ା

|ఋ|
஽ ൰ቇ , (5.49)

where ߬ is the sampling time interval and T is the first order correlation time of the double-
differenced ionosphere. Adopting the values indicated in [11], T is set to 64 minutes and D is set 
to 1500 km. When comparing Eq. (5.44) with Eq. (5.49), it becomes obvious that the variance of 
the ionospheric prediction error ߪ௣௜௢௡,஺஻ଶ  will always be larger than the variance of the pseudo-
measurements of the double-differenced ionospheric range errors. It has to be discussed whether 
this is useful or not with respect to precise positioning. After the variance of the ionospheric 
prediction error has been defined, the sub-matrix ܳ௜௢௡ can be indicated as: 



5.3 Stochastic Modeling of the Ionosphere  69 

 

 ܳ௜௢௡ ൌ ௣௜௢௡,஺஻ଶߪ · ሺ௡ିଵሻ௫ሺ௡ିଵሻ (5.50)ܫ

The state equations of the double-differenced ionosphere read: 

௜௢௡,ଶ,௞ାଵ݀∆ߘ 
ௌଵௌ௝ ൌ ௜௢௡,ଶ,௞݀∆ߘ

ௌଵௌ௝ · ݁ି൬
|ఛ|
் ା

|ఋ|
஽ ൰ ൅ ߭௜௢௡,௞ (5.51)

Consequently, the ionospheric prediction operator is an exponential function with respect to the 
sampling time ߬ and the baseline length change ߜ. It is assumed that ߭௜௢௡,௞ is white Gaussian 
noise. The exponential prediction function of the double-differenced ionosphere can also be 
found in the sub-matrix ߔ௜௢௡ of the state transition matrix: 

 Φ௜௢௡ ൌ ݁ି൬
|ఛ|
் ା

|ఋ|
஽ ൰ · ሺ௡ିଵሻ௫ሺ௡ିଵሻ (5.52)ܫ

When evaluating the exponential function indicated in Eq. (5.52) with realistic values for the 
sampling rate and the velocities of the airplane, it becomes obvious that ߔ௜௢௡ virtually reduces to 
the identity matrix. 

 

5.3.3 Single-difference Ionosphere Model 

The double-difference ionosphere model presented in the previous section has the drawback that 
it does not reflect the elevation-dependency of the residual ionospheric range errors. This 
drawback is overcome with the third model presented in this section, which was originally 
developed for estimating the single-differenced ionospheric range errors. However, it can be 
adopted in order to estimate the double-differenced range errors. In contrast to the adaptation of 
the LAAS differential ionosphere model, here the adaptation from single-differences to double-
differences does not cause bad observability of the ionospheric states. This is ensured by 
including the double-differenced ionospheric range errors instead of the single-differenced 
ionospheric range errors in the system state vector: 

 ቌ
ଶ,௞ଵ݊݋ܫ

ڭ
ଶ,௞௜݊݋ܫ

ቍ ൌ ቌ
௜௢௡,ଶ,௞ௌଵௌଶ݀∆ߘ

ڭ
௜௢௡,ଶ,௞ௌଵௌ௡݀∆ߘ

ቍ (5.53)

Since the states to be estimated are identical with those presented in Eq. (5.42), it follows that 
 .௜௢௡,ௐ௅,௞ corresponds to that of Eq. (5.47)ܪ ௜௢௡,௖,௞ corresponds to that of Eq. (5.46) andܪ
However, here no pseudo-measurements of the double-differenced ionospheric range errors are 
introduced into the measurement model. 

Wübbena [53] suggests a stochastic model for the single-differenced ionospheric range error, 
which is exponentially correlated with the baseline length ฮXA െ X෡Bฮଶ between the user receiver 
and reference receiver: 

ௗ೔೚೙,ಲಳ∆ߪ 
ଶ ൌ ௌ௝ሻܧଶሺߪ · ݁

ฮ௑ಲି௑෠ಳฮమ
ௗ , (5.54)

where d is the correlation distance. Unlike D in Goad’s ionosphere model [11], the correlation 
distance d is assumed to be between 200…400 km. The variance of the single-differenced 
ionospheric range error in zenith is set to σଶሺ90°ሻ ൌ ሺ3ܿ݉ሻଶ. In [53] it is suggested to model the 
dependency on the satellite elevation angle as: 

ௌ௝൯ܧଶ൫ߪ  ൌ ଶܨܵ · ଶሺ90°ሻ (5.55)ߪ

The parameter ܵܨ in Eq. (5.55) is the Slant Factor, which is defined as: 
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ܨܵ  ൌ ܿ݁ݏ ቊܽ݊݅ݏܿݎ ቈ
ܴ௘ · ௌ௝൯ܧ൫ݏ݋ܿ
ܴ௘ ൅ ݄ூ

቉ቋ (5.56)

By applying the trigonometric properties ܽ݊݅ݏܿݎሺݔሻ ൌ 1√ݏ݋ܿܿݎܽ െ  ଶ for 0 ≤ x ≤ 1 andݔ
ሻݔሺܿ݁ݏ ൌ  ሻ to Eq. (5.56), it follows that the same definition of the slant factor is alsoݔሺ ݏ݋ܿ/1
used by the LAAS differential ionosphere model in Eq. (5.34).  

The variance of the double-differenced ionospheric range error is derived from Eq. (5.54) by 
applying the law of error propagation: 

ߪ 
ఇ∆ௗ೔೚೙,ಲಳ

ೄభೄೕ
ଶ ൌ ൫ܵܨௌଵଶ ൅ ௌ௝ଶܨܵ ൯ · ଶሺ90°ሻߪ · ݁

ฮ௑ಲି௑෠ಳฮమ
ௗ  (5.57)

The elevation-dependent covariance matrix of process noise ܳ௜௢௡ becomes: 

 ܳ௜௢௡ ൌ ௜ܵ௢௡ · ൦
ௗ೔೚೙,ಲಳೄభ∆ߪ
ଶ ڮ 0

ڭ ڰ ڭ
0 ڮ ௗ೔೚೙,ಲಳೄ೙∆ߪ

ଶ
൪ · ௜ܵ௢௡

் , (5.58)

with the single-difference ionospheric generator matrix ௜ܵ௢௡ 

 ௜ܵ௢௡ ൌ ሾ1ሺ௡ିଵሻ െܫሺ௡ିଵሻ௫ሺ௡ିଵሻሿ . (5.59)

Finally, the state transition sub-matrix Φ௜௢௡ has to be derived. In this work it is assumed that the 
discrete-time state equation of the double-differenced ionospheric range error can be indicated as 
follows: 

௜௢௡,ଶ,௞ାଵ݀∆ߘ 
ௌଵௌ௝ ൌ ௜௢௡,ଶ,௞݀∆ߘ

ௌଵௌ௝ · ቌ1 ൅ ݁
ฮ௑ಲି௑෠ಳฮమ

ௗ ·
݀
ݐ݀ ቀฮܺ஺ െ

෠ܺ஻ฮଶቁ
݀

· ቍݐ∆ ൅ ߭௜௢௡,௞ (5.60)

From Eq. (5.60) follows that Φ௜௢௡ can be expressed by: 

 Φ௜௢௡ ൌ ቌ1 ൅ ݁
ฮ௑ಲି௑෠ಳฮమ

ௗ ·
݀
ݐ݀ ቀฮܺ஺ െ

෠ܺ஻ฮଶቁ
݀

· ቍݐ∆ · ሺ௡ିଵሻ௫ሺ௡ିଵሻ (5.61)ܫ

The measurement model and the state space model used in the EKF are now completely defined 
for all three stochastic ionosphere models. It is also provided by the software to omit modeling 
of the double-differenced residual ionospheric errors, e.g. the residuals are treated as white 
Gaussian noise. 

 

5.4 Integer Ambiguity-fixed Navigation Solution 

5.4.1 Integer-nature preserving GNSS Model 

The general form of the linearized GNSS model has already been introduced in Sect. 5.2.2. In 
this section the integer-nature preserving GNSS model is presented, since carrier phase 
measurements are used in addition to pseudorange measurements in order to derive a navigation 
solution. A general approach is to start with the GNSS model presented in Eq. (5.1), which 
neglects the integer-nature of the carrier phase ambiguities. The resulting position solution is 
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referred to as float solution. Afterwards, a GNSS model is introduced that distinguishes between 
real-valued and integer parameters. The mathematical model of double-differenced linearized 
observation equations which explicitly accounts for the integer nature of the ambiguities is 

ݕ  ൌ ܣ · ܰ ൅ ܤ · ܾ ൅ כ߭ , (5.62)

where: 

,ܣ  Design matrices :ܤ

y א Թ୬: Vector of residuals between measured and computed double-differenced observations 

ܰ א Ժ୫: Vector of double-differenced integer ambiguities 

ܾ א Թ୮: Vector of remaining real-valued states excluding the integer ambiguities 

כ߭ א Թ୬: Noise vector 

Note that in this and the following sub-sections the double-difference operator ׏∆ is skipped in 
order to simplify notations. Furthermore, a second change of notation is carried out. The 
measurement vector ݖ of Eq. (5.1) is now denoted as ݕ א Թ௡, while the m-dimensional vector 
ݖ א Ժ௠ will represent a vector of integer-values. In order to distinguish between float and 
integer estimates, in the following a hat above the parameter ᇝෝ indicates that the parameter is a 
float estimate, while an inverse hat above a parameter ᇝ෕ indicates that the parameter is an integer 
estimate. 

Teunissen et al. [42] state that the performance of ambiguity resolution is expected to be better 
for geometry-based models than for geometry-free models. In this work it is intuitive to use a 
geometry-based model since the baseline solution is of interest rather than the integer 
ambiguities themselves. Additional redundancy is introduced by linking all ranges to the same 
baseline solution and changes of the relative receiver-satellite geometry over time can be 
exploited beneficially. So far, the integer-nature of the double-differenced ambiguities has been 
neglected. As a result, the float solution of the system states was obtained. In the float solution of 
state estimates both the real-valued parameters ܾ, like the user position and the user velocity, and 
the actually integer-valued ambiguities ܰ are given as real numbers: 

 ቆ
෡ܰ
෠ܾ ቇ , ቈ

ܳே෡ ܳே෡,௕෠
ܳ௕෠,ே෡ ܳ௕෠

቉ (5.63)

The float solution vector indicated in Eq. (5.63) corresponds to the vector of state estimates 
 ොሺ൅ሻ, and its covariance matrix to the covariance matrix of state estimation uncertainty ܲሺ൅ሻ. Inݔ
the next sub-sections two different procedures of integer ambiguity resolution will be presented, 
which are implemented in the navigation software. After having found the integer ambiguity 
vector ෙܰ, in [21] the following approach is presented in order to compute the fixed solution bෘ  of 
the actual parameters of interest: 

 ෘܾ ൌ ෠ܾ െ ܳ௕෠,ே෡ · ܳே෡
ିଵ · ൫ ෡ܰ െ ෙܰ൯ (5.64)

The covariance matrix ܳ௕ෘ  of the fixed solution follows from applying the law of error 
propagation: 

 ܳ௕ෘ ൌ ܳ௕෠ െ ܳ௕෠,ே෡ · ܳே෡
ିଵ · ܳே෡,௕෠  (5.65)

Eq. (5.64) and Eq. (5.65) result from the sequential application of the theory of conditional least 
squares adjustment. Thus a re-computation of the solution with fixed ambiguities is not required, 
which is an important implementation aspect. The accuracy of the fixed solution is at the 
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centimeter-level provided that ෙܰ corresponds to the true integer ambiguity vector ܰ. In RTK 
applications like landing approaches, integer ambiguity resolution is more difficult than in static 
applications. The assessment of the reliability of the estimated integer ambiguity vector ෙܰ plays 
a major role in high-integrity carrier phase-based positioning for precision landing. Therefore, 
the integer ambiguity estimators presented hereafter have to be judged by the capability of 
quantifying the probability of wrong integer ambiguity fixing rather than by the integer 
ambiguity resolution success rates. 

 

5.4.2 LAMBDA Method and Integer Ambiguity Validation 

The LAMBDA method, which has been proposed by Teunissen [39] in 1993, is applied in this 
work in order to compute integer least squares ambiguity estimates ෙܰ from a vector of float 
ambiguities ෡ܰ and their associated covariance matrix ܳே෡. The determination of the float solution 
is accomplished by disregarding the integer constrains on the ambiguities as described in Sect. 
5.2. However, by taking into account the integer nature of the ambiguities, an even more precise 
position solution can be derived provided that the integer ambiguities are fixed correctly. 
LAMBDA is an acronym for “Least-squares AMBiguity Decorrelation and Adjustment”, which 
points to the two basic steps involved in the computation of ෙܰ: In the first step, the float 
ambiguities and their covariance matrix are decorrelated. In the second step, a discrete search 
strategy based on sequential conditional least squares adjustment is applied in order to determine 
the integer ambiguities. Applying a decorrelating ambiguity transformation prior to the 
sequential conditional least-squares adjustment has the advantage that the discrete search can be 
performed more efficiently. The float ambiguities ෡ܰ are decorrelated by applying the 
transformation: 

ݖ̂  ൌ ்ܼ · ෡ܰ (5.66)

The transformation matrix Z is chosen such that the covariance matrix ܳ௭̂ of the decorrelated 
float ambiguities ̂ݖ resembles more a diagonal matrix than the original covariance matrix ܳே෡. 
The covariance matrix of the decorrelated ambiguities is calculated from: 

 ܳ௭̂ ൌ ்ܼ · ܳே෡ · ܼ (5.67)

The transformation depicted in Eq. (5.66) is referred to as Z-transformation in the context of 
ambiguity resolution with the LAMBDA method. The Z-matrix has the following properties: its 
entries are integer values and its entries are chosen such that the volume of the search space is 
preserved by the Z-transformation, e.g. the number of candidate grid points is transformation-
invariant. The performance of the integer ambiguity search is improved by designing the Z-
matrix such that it reduces the correlation between the float ambiguities as far as possible. More 
details on the construction of the Z-matrix can be found in Teunissen [44]. The re-parameterized 
ambiguity integer least-squares problem reads 

 ݉݅݊
௭

ቂ൫̂ݖ െ ൯்ݖ · ܳ௭̂ିଵ · ൫̂ݖ െ ൯ቃݖ , ݖ א Ժ௠ (5.68)

and the search space of the integer least-squares problem is defined by 

 ෍
൫̂ݖ௜|ூ െ ௜൯ݖ

ଶ

௭̂೔|಺ߪ
ଶ

௠

௜ୀଵ

൑ ߯ଶ , (5.69)

where: 
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 ௜|ூ: ith least-squares ambiguity estimate, conditioned on a fixing of the previous (i-1)ݖ̂
 ambiguities, which is denoted by ‘|I’ 

 ௜: ith ambiguity, which corresponds to the true (decorrelated) ambiguityݖ

௭̂೔|಺ߪ
ଶ : variance of the ith conditional least-squares ambiguity estimate 

A detailed description of the LAMBDA method is given in [19], while here it is sufficient to 
outline the general idea behind the LAMBDA method. After having found the decorrelated 
integer vector zු from integer least-squares adjustment, the integer ambiguity vector Nෙ is obtained 
from the following retransformation: 

 ෙܰ ൌ ܼି் · (5.70) ݖ̌

Finally, the fixed solution is obtained from Eq. (5.64) and (5.65). However, some quality checks 
should be performed before accepting the fixed solution. Wrong integer ambiguity fixing may 
cause severe biases on the baseline solution that are not acceptable for precision landing. The 
integer ambiguities are validated with the help of the ratio test, which is frequently applied for 
integer ambiguity validation in navigation software: 

 
ฮ ෡ܰ െ ෙܰଶ௡ௗฮீ෡ಿషభ

ଶ

ฮ ෡ܰ െ ෙܰฮீ෡ಿషభ
ଶ ൌ

൫ ෡ܰ െ ෙܰଶ௡ௗ൯
் · ே෡ܩ

ିଵ · ൫ ෡ܰ െ ෙܰଶ௡ௗ൯

൫ ෡ܰ െ ෙܰ൯் · ே෡ܩ
ିଵ · ൫ ෡ܰ െ ෙܰ൯

൐ ݇௖ , (5.71)

where ݇௖ is the critical value of acceptance, ෙܰ is the best integer least-squares ambiguity 
estimate and ෙܰଶ௡ௗ is the second-best integer least-squares ambiguity estimate. The cofactor 
matrix ܩே෡ of the float ambiguities follows from ܳே෡ ൌ ଶߪ · ே෡ܩ . The integer ambiguity vector ෙܰ 
is only accepted if the ratio of the weighted ambiguity distance norms is greater than the critical 
value ݇௖. However, the determination of the critical value for a maximum allowable probability 
of wrong integer ambiguity fixing is non-trivial. Frequently the critical value is found 
empirically. Comparing different critical values indicated in literature, the empirically found 
critical value of 3 gives an upper limit for most applications. In order to be even more 
conservative, ݇௖ is set to 4 in this work. Since the choice of the critical value for the ratio test is 
rather intuitively, this method of integer ambiguity fixing and validation will only serve for the 
purpose of comparison. Analytical determination of the critical value for a fixed fail rate is not 
possible since the stochastic variances of the second-best and the best integer least-squares 
estimate are dependent. Another approach is to find the critical value by extensive simulations. 
This approach might be appealing in post-processing software, but otherwise the computational 
effort can generally not be afforded. Further information on variations of the ratio test and the 
problems of the ratio test associated with classical hypothesis testing can be found in Verhagen 
[47]. There it is also mentioned that if the confidence in the float solution was not sufficient, an 
integer test that takes into account the randomness of the fixed ambiguities should be applied in 
addition to the ratio test. The integer test is based on testing the following two hypotheses 
against another: 

 
:ଵܪ ݕ ൌ ܣ · ܰ ൅ ܤ · ܾ ൅ כ߭ , ܰ߳Թ௠ , ܾ߳Թ௣ , Թ௡߳כ߭

:ଶܪ ݕ ൌ ܣ · ܰ ൅ ܤ · ܾ ൅ כ߭ , ܰ߳Ժ௠ , ܾ߳Թ௣ , Թ௡ (5.72)߳כ߭

The difference between ܪଵ and ܪଶ is that one time it is assumed that the ambiguity vector ܰ is a 
real-valued vector, and the other time it is assumed that the ambiguity vector ܰ is an integer 
vector. The integer test which is used in practice is defined by: 
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ฮ ෡ܰ െ ෙܰฮீ෡ಿషభ

ଶ

݉ · ොଶߪ
൏ ,ଵିఈሺ݉ܨ ݊ െ ݉ െ ሻ݌ , 

(5.73)

where m is the number of integer ambiguities to be estimated, n is the dimension of the 
measurement vector and p is the number of the float parameters to be estimated. The quantile 
,ଵିఈሺ݉ܨ ݊ െ ݉ െ  ሻ is the unique solution of the critical value x in the F cumulative distribution݌
function, see Eq. (2.15), for a given level of significance α. The estimated variance factor ߪොଶ is 
computed from: 

ොଶߪ  ൌ
்݁̂ · ௬ିଵܩ · ݁̂

݊ െ ݉ െ ݌ , (5.74)

with the measurement residual vector ݁̂ of the float solution and the cofactor matrix ܩ௬ of 
measurement noise. Only if the integer test is passed, the outcome of the ratio test will be 
considered at all. Otherwise, the float solution should be kept as best solution which is currently 
available. In [48] it is stated that if the float solution was affected by biased observations, e.g. 
due to multipath on the pseudorange measurements, incorrect integer ambiguity fixing might 
occasionally occur although the formal precision and the success rate based on the stochastic 
model, which does not account for multipath, are very high. 

Precision landing has stringent integrity requirements and the probability of wrong integer 
ambiguity fixing has to be known precisely. The fail rate of integer ambiguity fixing cannot be 
indicated analytically for the integer estimator introduced in this section. Therefore, in the next 
section an integer ambiguity estimator is presented which allows for real-time computation of 
the exact probability of wrong ambiguity fixing. 

 

5.4.3 Integer Bootstrapping 

There exists a great variety of integer estimators and a good summary of the most important 
methods can be found in [47]. Integer estimation with the LAMBDA method, which is very 
popular in practice, has already been introduced in the previous section. Here a second integer 
estimator is presented, which is frequently used when a certain integrity risk requirement has to 
be kept since the probability of wrong integer ambiguity fixing can be computed analytically. 
There are several decision criterions on which the selection of a concrete integer estimator can 
be based on: 

1) Opportunity to compute the exact probability of wrong integer ambiguity fixing 

2) Low additional computational effort of the integer estimation method 

3) High success rate of the integer estimator (few epochs to fix the float ambiguities 
correctly) 

As mentioned before, the first item is important in order to determine the integrity risk 
associated with the carrier phase ambiguity-fixed position solution. The second and third item is 
of great practical relevance for RTK applications. The availability of the navigation system is 
influenced by the success rate of the integer estimator if the HAL and VAL specifications were 
very restrictive. With respect to high success rates, the LAMBDA method outperforms Integer 
Bootstrapping (IB), e.g. see [47]. Nevertheless, in this work integer bootstrapping is considered 
to be the better choice for reliable ambiguity estimation due to the item listed in 1). Integer 
bootstrapping, which is also referred to as conditional rounding, is a sequential rounding scheme 
that takes into account the correlations between the entries of the float ambiguity vector ෡ܰ, see 
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e.g. Blewitt [2]. The first entry of the m-dimensional float ambiguity vector is simply rounded to 
its nearest integer. Afterwards, the m-1 remaining float ambiguities are corrected by taking into 
account their correlation with the first, now fixed ambiguity. Then, the second entry of the float 
ambiguity vector is rounded to its nearest integer and a correction to the remaining m-2 float 
ambiguities is applied. This procedure is repeated until all m ambiguities of the vector ෡ܰ are 
fixed to integers. After having applied the conditional rounding to all float ambiguity entries, the 
resulting integer estimate ambiguity vector ෙܰ is given by: 

 ෙܰ  ൌ

ۉ

ۈ
ۈ
ۇ

ൣ ෡ܰଵ൧
ൣ ෡ܰଶ|ଵ൧
ൣ ෡ܰଷ|ଵ…ଶ൧

ڭ
ൣ ෡ܰ௠|ெ൧ ی

ۋ
ۋ
ۊ
ൌ

ۉ

ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۇ

ൣ ෡ܰଵ൧

൥ ෡ܰଶ െ
ே෡మ,ே෡భߪ
ே෡భߪ
ଶ · ൫ ෡ܰଵ െ ෙܰଵ൯൩

൥ ෡ܰଷ െ
ே෡య,ே෡భߪ
ே෡భߪ
ଶ · ൫ ෡ܰଵ െ ෙܰଵ൯ െ

ே෡య,ே෡మ|భߪ
ே෡మ|భߪ
ଶ · ൫ ෡ܰଶ|ଵ െ ෙܰଶ൯൩

ڭ

൥ ෡ܰ௠ െ ෍
ே෡೘,ே෡೔|಺ߪ
ே෡೔|಺ߪ
ଶ · ൫ ෡ܰ௜|ூ െ ෙܰ௜൯

௠ିଵ

௜ୀଵ

൩
ی

ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۊ

, (5.75)

where |ܫ indicates that the ith ambiguity is conditioned on the previous i-1 sequentially rounded 
ambiguities. Rounding to the nearest integer is represented by squared brackets [.]. In order to 
ease the computations of the variances and covariances indicated in Eq. (5.75), modified 
Cholesky factorization is applied to the symmetric positive definite ambiguity covariance matrix 
 ே෡. Note that modified Cholesky factorization has already been introduced in Sect. 4.3.1 in∆׏ܳ
the context of deriving a numerically robust implementation of the Kalman filter equations. 
Instead of UD factorization, here the term LD factorization (LD: Lower diagonal matrix, 
Diagonal matrix) is preferred in literature. The covariance matrix ܳ׏∆ே෡  is factorized in a lower 
diagonal matrix L and a pure diagonal matrix D: 

ே෡∆׏ܳ  ൌ ܮ · ܦ · (5.76) ்ܮ

The factorization algorithm behind Eq. (4.11) and Eq. (5.76) is essentially the same. The upper 
triangle of the matrix ܮ is all-zeros and the matrix’s main diagonal is all-ones. The lower triangle 
of the matrix ܮ contains the entries of interest for computing the bootstrapped ambiguities: 

ܮ  ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

1 0 0 ڮ 0
ே෡మ,ே෡భߪ
ே෡భߪ
ଶ 1 0 ڮ 0

ே෡య,ே෡భߪ
ே෡భߪ
ଶ

ே෡య,ே෡మ|భߪ
ே෡మߪ
ଶ 1 ڮ 0

ڭ ڭ ڭ ڰ ڭ
ே෡೘,ே෡భߪ
ே෡భߪ
ଶ

ே෡೘,ே෡మ|భߪ
ே෡మ|భߪ
ଶ

ே෡೘,ே෡య|భ…మߪ
ே෡య|భ…మߪ
ଶ ڮ 1

ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

, (5.77)

and the diagonal matrix ܦ contains the variances along its main diagonal 

 ݀݅ܽ݃ሺܦሻ ൌ ቀߪே෡భ
ଶ , ே෡మ|భߪ

ଶ , ே෡య|భ…మߪ
ଶ , ڮ ே෡೘|ಾߪ

ଶ ቁ . (5.78)

The square-root of the conditional ambiguity variances will be used for computing the success 
rate of the integer bootstrapping estimator. From Eq. (5.75) to (5.78) it becomes clear that the 
ordering of the float ambiguity vector has impact on the outcome of the integer estimation. The 
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sensitivity of the outcome on the ordering of the float ambiguities can significantly be reduced 
by applying an ambiguity transformation with decorrelating properties. Near-optimal 
performance of IB is achieved if the ambiguities are almost uncorrelated after the 
transformation. Teunissen [43] recommends applying the decorrelating Z-transformation of the 
LAMBDA method, see Eq. (5.66), before rounding the float ambiguities sequentially. 

An important selection criterion in favor of the IB estimator is the opportunity to determine the 
fail rate of integer ambiguity fixing exactly and at a low computational expense. The exact 
success probability ௌܲ of IB for biased measurements is given by [41]: 

 ௌܲ ൌ ܲ൫ ෙܰ ൌ ܰ൯ ൌෑ൥Φ൭
1 െ 2 · bN෡౟|I
2 · σN෡౟|I

൱ ൅ Φ൭
1 ൅ 2 · bN෡౟|I
2 · σN෡౟|I

൱ െ 1൩
୫

୧ୀଵ

, (5.79)

where Φሺxሻ is the standardized normal distribution as indicated in Eq. (2.4) and bN෡౟|I are the 
conditional ambiguity biases. The conditional standard deviations ߪே෡೔|಺ of the ambiguities follow 
from Eq. (5.78). According to Figure 5.1 the cascading ambiguity resolution is only called by the 
program loop under the fault-free hypothesis. In absence of measurement biases Eq. (5.79) 
reduces to: 

 ௌܲ ൌ ܲ൫ ෙܰ ൌ ܰ൯ ൌෑ൥2 · Φ൭
1

2 · σN෡౟|I
൱ െ 1൩

୫

୧ୀଵ

 (5.80)

Since there are only two possible outcomes of the IB estimator, e.g. ෙܰ ൌ ܰ ߳ Ժ௠ or ෙܰ ൌ
Ժ௠\ሼܰሽ, the exact probability of false integer ambiguity fixing ிܲ ߳ ݖ  simply follows from: 

 ிܲ ൌ ܲ൫ ෙܰ ് ܰ൯ ൌ 1 െ ௌܲ ൌ 1 െෑቈ2 · Φቆ
1

2 · ே෡೔|಺ߪ
ቇ െ 1቉

௠

௜ୀଵ

 (5.81)

A maximum allowable fail rate of integer ambiguity estimation can be derived from the integrity 
risk. By comparing the maximum allowable fail rate with the result of Eq. (5.81), it can be 
decided whether or not to accept the ambiguity-fixed solution. More details on partitioning the 
overall integrity risk are given in Sect. 6.2. 

The arguments in favor of using IB in this work can be summarized as follows: First, the success 
rate of integer ambiguity estimation shows close-to-optimal performance if LAMBDA’s cycle 
ambiguity decorrelation is used prior to the sequential rounding. Second, integer bootstrapping is 
computationally simple compared to many other methods. Third, the exact fail rate of ambiguity 
fixing can be indicated without the need of complex calculations. However, the fail-rate of IB is 
fixed for a specific underlying model. In the meantime, Integer Aperture Bootstrapping (IAB) 
has been introduced by Teunissen [43], which provides a controllable fail-rate of ambiguity 
fixing. There are two items that influence the success rate of integer ambiguity estimation. The 
first item is the probability density function of the float vector. Its probability density function is 
dependent on the strength of the mathematical model from which the float solution is derived. 
The second item is the integer estimator that has been chosen. If both the mathematical model 
and the integer estimator are fixed, than the fail-rate of integer ambiguity resolution is also fixed. 
In order to provide a flexible fail-rate, an integer aperture estimator can be chosen instead of an 
integer estimator. In contrast to the class of integer estimators, both integer and float values may 
result from the class of integer aperture estimators, since the pull-in regions have gaps. The size 
of the aperture parameter follows from the desired fail-rate. Nevertheless the IAB estimator is 
not applied in this work since the computational load increases compared to IB and it is assumed 
that the benefits of IAB are only marginal. 
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6 Filter-based Integrity Monitoring 

6.1 Basic Principle of AFDIA 

An approach for Autonomous Filter-based fault Detection, Identification and model Adaptation 
(AFDIA) is depicted in this and the following sections for the previously derived navigation 
filter. The GNSS model for relative positioning is based on the use of two receivers 
simultaneously, and the quality control presented here is performed on a baseline level. Note that 
there is the possibility of single receiver quality control, which is very useful for the reference 
receiver since its exact position is known in advance. The a-priori knowledge of the reference 
receiver position can be exploited in data-snooping algorithms at the reference receiver site. 
However, the following investigations focus on integrity monitoring at the user receiver site. The 
navigation filter processes both pseudorange and carrier phase measurements simultaneously. 
Positive aspects of using carrier phase data with respect to integrity monitoring are lower levels 
of multipath errors and measurement noise, resulting in smaller protection levels and improved 
separation between different error channels. One negative aspect is that the initial cycle count is 
unknown and has to be resolved successfully before carrier phase-based positioning becomes 
possible. A further negative aspect is that the effects of undetected cycle slips on the position 
estimate contribute to the overall integrity risk. According to Yun et al. [55] filter-based integrity 
monitoring provides better performance than snapshot RAIM algorithms due to a reduction of 
the measurement noise by filtering. This is particularly important as long as the navigation 
solution is mainly based on noisy pseudorange measurements. Furthermore, the detection of 
ramp errors, which are more difficult to detect than large step failures, is favored by a filter-
based integrity monitoring approach. Diesel et al. [7] showed that this can be achieved by 
estimating the mean of the innovation vector over a long period of time and using the averaged 
innovation vector in order to detect anomalies. The present version of AFDIA is developed for 
identifying data anomalies from the current observation epoch, but it is recognized that there is 
further potential in detecting old model invalidations by introducing a moving window for past 
observation epochs. 

AFDIA comprises the detection of unspecified model errors on the basis of an overall model test 
and, if an inconsistency has been detected, the identification of the model error as well as, if 
possible, the adaptation of the model. Horizontal and vertical protection levels are derived for 
the user position and velocity estimates. The relative positioning concept described in Sect. 5 
makes use of double-differenced observables. In consequence, if the reference satellite fails all 
double-differenced observables will be affected simultaneously. If a failure of the reference 
satellite is detected, the navigation system is declared unavailable and no attempt is made to 
adapt the model. An improvement would be to implement a second simultaneously running filter 
which works with a different reference satellite or to develop a double-differencing scheme that 
does not rely on one single reference satellite. 

Both past and present information have an impact on the position and velocity solution due to 
filtering. Snapshot RAIM algorithms can therefore not be adopted without any modifications. 
AFDIA can be applied even if only one satellite is in view since the filter-based minimum mean-
squares solution relies on both present and past observations. This is a great advantage of filter-
based approaches compared to snapshot RAIM. High availability of AFDIA is achieved even in 
presence of signal shading, for example when the airplane flies a turn. 
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6.2 Breakdown of the Integrity Risk 

The position solution of the navigation filter is based on pseudorange measurements and carrier 
phase measurements. Since the carrier phase measurements are ambiguous the reliability of 
ambiguity resolution does also impact the overall integrity risk. Previous work on high-integrity 
carrier phase-based position, see e.g. Pervan et al. [33], does also resort to Integer Bootstrapping 
in combination with LAMBDA cycle ambiguity decorrelation in order to derive an ambiguity 
fixed position solution. Other approaches, see e.g. Feng et al. [10], use the LAMBDA method 
together with the ratio test for integer ambiguity validation. However, the approach presented in 
[10] does not account for the contribution of wrong integer ambiguity fixing to the integrity risk 
in the position domain. Therefore, in the following the IB estimator is considered which eases 
the partitioning of the integrity risk associated with the ambiguity-fixed solution. 

There are two viewpoints when partitioning the integrity risk. The first viewpoint is 
conservative, since it considers the excess of the computed protection level under ܪ଴, e.g. no 
bias present, 

଴,௦௣௘௖ܫ  ൌ ܲ൫หݔො௩,஻ െ ௩,஻หݔ ൐ ଴൯ (6.1)ܮܸܲ

rather than the excess of the alert limit by the resulting position estimation error due to wrong 
ambiguity fixing. As usual, the parameter ݔො௩,஻ is the vertical component of the estimated user 
position vector and ݔ௩,஻ is the true vertical component of the user position vector. The 
considerations are restricted to the vertical component since there the requirements are harder to 
fulfill. ܫ଴,௦௣௘௖ is the specified integrity risk and ܸܲܮ଴ is the vertical protection level under the 
hypothesis ܪ଴, which corresponds to the fault-free case. Furthermore, it is assumed that Wrong 
integer ambiguity Fixing (WF) will always cause an error in the position domain that is larger 
than the computed protection level under ܪ଴: 

 ܲ൫หݔො௩,஻ െ ௩,஻หݔ ൐ ൯ܨܹ|଴ܮܸܲ ൌ 1 (6.2)

The second viewpoint is to admit wrong integer ambiguity fixing as long as the resulting 
position error does not exceed the specified alert limit VAL: 

଴ܫ  ൌ ܲ൫หݔො௩,஻ െ ௩,஻หݔ ൐ ൯ (6.3)ܮܣܸ

In order to derive a tighter bound on the integrity risk, an efficient approach to computing the 
following expression is required: 

 ܲ൫หݔො௩,஻ െ ௩,஻หݔ ൐ ൯ܨܹ|ܮܣܸ · ிܲ ൌ ෍൛ܲ൫หݔො௩,஻ െ ௩,஻หݔ ൐ ௜൯ܨܹ|ܮܣܸ · ிܲ,௜ൟ
ஶ

௜ୀଵ
് 1 · ிܲ , 

(6.4)

where ிܲ  is the overall probability of false integer ambiguity fixing, ிܲ,௜ is the probability of 
incorrectly fixing the ith integer ambiguity vector candidate, which does not correspond to the 
true ambiguity vector, and ܹܨ௜ is the event of incorrectly fixing the ith integer ambiguity vector 
candidate. This approach has recently been proposed by Khanafseh et al. [24]. At first glance, 
this suggests being the better approach since it is not unnecessarily conservative and yet 
theoretically sound. At second glance, the concrete structure of the navigation software has to be 
considered in order to judge the impact of wrong ambiguity fixing on the overall integrity risk in 
the position domain. In this work the more conservative approach is favored because the user 
position is estimated by an EKF. Although momentarily the acceptance of wrong integer 
ambiguities may result in a position error that is below the specified alert limit, the position error 
will increase over time if false ambiguity fixing is not detected at a later time. However, it has to 
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be questioned if wrong integer ambiguity fixing can still be detected by the EKF at a later point 
of time when the biased reference trajectory, which is used for linearization, is offset from the 
true user trajectory for many epochs. The implemented fault detection algorithm would have to 
go through large sequences of old data in order to detect when the model invalidation actually 
took place. When adapting the model after an error has been identified that occurred some time 
ago, some recursive form of correction is required. In this work error detection is restricted to the 
current observation epoch, assuming that no error has occurred in the previous observation 
epochs. On the one hand, this reduces the computational burden significantly. On the other hand, 
it has to be assumed that wrong ambiguity fixing will lead to intolerable high position errors 
with some time delay between the occurrence of the error and the undetected excess of the alert 
limit, since reliable detection of old model invalidations is no longer controllable. From a 
practical viewpoint, it is desirable to fly a missed approach rather sooner than later if it is 
assumed that the position error due to wrong ambiguity fixing increases with time. 

The conservative approach of the derivation of the maximum allowable probability of false 
integer ambiguity fixing ிܲ  from the specified integrity risk ܫ଴,௦௣௘௖ follows from [32]: 

 
଴,௦௣௘௖ܫ ൌ ܲ൫หݔො௩,஻ െ ௩,஻หݔ ൐ ଴൯ܮܸܲ

ൌ ܲ൫หݔො௩,஻ െ ௩,஻หݔ ൐ ൯ܨܥ|଴ܮܸܲ · ௌܲ
൅ ܲ൫หݔො௩,஻ െ ௩,஻หݔ ൐ ൯ܨܹ|଴ܮܸܲ · ிܲ , 

(6.5)

where ܨܥ denotes the event of correct integer ambiguity fixing. If the IB estimator is used for 
integer ambiguity estimation, than it holds that the success rate ௌܲ of integer ambiguity fixing is 
given by: 

 ௌܲ ൌ 1 െ ிܲ  (6.6)

Note that if an integer aperture estimator was used, Eq. (6.6) would not be valid in general. By 
substituting Eq. (6.2) and Eq. (6.6) in Eq. (6.5) and solving for ிܲ , the maximum admissible 
probability of false integer ambiguity fixing becomes a function of the specified integrity risk 
 :଴,௦௣௘௖ and the probability of missed detection conditioned on correct integer ambiguity fixingܫ

 ிܲ ൌ
଴,௦௣௘௖ܫ െ ܲ൫หݔො௩,஻ െ ௩,஻หݔ ൐ ൯ܨܥ|଴ܮܸܲ
1 െ ܲ൫หݔො௩,஻ െ ௩,஻หݔ ൐ ൯ܨܥ|଴ܮܸܲ

 (6.7)

When inserting ܫ଴,௦௣௘௖ ൌ 2 · 10ିଽ and ܲ൫หݔො௩,஻ െ ௩,஻หݔ ൐ ൯ܨܥ|଴ܮܸܲ ൌ 1 · 10ିଽ into Eq. (6.7), it 
follows that ிܲ ൎ 1 · 10ିଽ.  

Now the navigation filter architecture which is depicted in Figure 5.1 is considered. First, the 
fault-free integrity risk is investigated. Several assumptions are made in the derivation of the 
fault-free integrity risk: One issue is that it is assumed that position errors that exceed ܸܲܮ଴ are 
not detectable by the fault detection algorithm. This seems reasonable since under ܪ଴ there are 
no concrete measurement outliers, but the occurrence of หݔො௩,஻ െ ௩,஻หݔ ൐  ଴ is rather due toܮܸܲ
wide spectrum of normal operation of the nonlinear filter. The second issue is that it is assumed 
that position errors due to wrong model adaptation are negligible under ܪ଴. For example, if the 
probability of false alarm ிܲ஺ of the fault detection algorithm is set to 1 · 10ି଻ and the 
probability of wrong error identification is ௐܲூ஽ ൌ 2 · 10ିଽ, then the product of both 
probabilities is indeed negligible. In this work a Cascading Ambiguity Resolution (CAR) 
scheme is applied. In consequence, both the widelane and the carrier phase ambiguities can be 
fixed wrongly, which corresponds to the events ܹܨௐ௅ and ܹܨ஼௉. The complementary events 
are ܨܥௐ௅ and ܨܥ஼௉. In consequence Eq. (6.5) has to be adapted in order to account for the 
cascading resolution scheme: 
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଴,஼஺ோ,௦௣௘௖ܫ ൌ ܲ൫หݔො௩,஻ െ ௩,஻หݔ ൐ ଴൯ܮܸܲ
ൌ ܲൣหݔො௩,஻ െ ௩,஻หݔ ൐ ,ௐ௅ܨܥ଴|ሺܮܸܲ ஼௉ሻ൧ܨܥ · ௌܲ,ௐ௅ · ௌܲ,஼௉
൅ ܲൣหݔො௩,஻ െ ௩,஻หݔ ൐ ,ௐ௅ܨ଴|ሺܹܮܸܲ ஼௉ሻ൧ܨܥ · ிܲ,ௐ௅ · ௌܲ,஼௉
൅ ܲൣหݔො௩,஻ െ ௩,஻หݔ ൐ ஼௉ሻ൧ܨܹ,ௐ௅ܨܥ଴|ሺܮܸܲ · ௌܲ,ௐ௅ · ிܲ,஼௉
൅ ܲൣหݔො௩,஻ െ ௩,஻หݔ ൐ ஼௉ሻ൧ܨܹ,ௐ௅ܨ଴|ሺܹܮܸܲ · ிܲ,ௐ௅ · ிܲ,஼௉ 

(6.8)

The most pessimistic approach is to assume that any wrong ambiguity fixing causes a position 
error that violates the protection level under ܪ଴. Under this assumption Eq. (6.8) simplifies to: 

 
଴,஼஺ோ,௦௣௘௖ܫ ൌ ܲ൫หݔො௩,஻ െ ௩,஻หݔ ൐ ଴൯ܮܸܲ

ൌ ܲൣหݔො௩,஻ െ ௩,஻หݔ ൐ ,ௐ௅ܨܥ଴|ሺܮܸܲ ஼௉ሻ൧ܨܥ · ௌܲ,ௐ௅ · ௌܲ,஼௉
൅ ிܲ,ௐ௅ · ௌܲ,஼௉ ൅ ௌܲ,ௐ௅ · ிܲ,஼௉ ൅ ிܲ,ௐ௅ · ிܲ,஼௉ 

(6.9)

The resulting integrity risk becomes approximately ܫ଴,஼஺ோ,௦௣௘௖ ൎ 3 · 10ିଽ if ܲൣหݔො௩,஻ െ ௩,஻หݔ ൐
,ௐ௅ܨܥ଴|ሺܮܸܲ ஼௉ሻ൧ܨܥ ൌ 1 · 10ିଽ, ிܲ,ௐ௅ ൌ ൫1 െ ௌܲ,ௐ௅൯ ൌ 1 · 10ିଽ and ிܲ,஼௉ ൌ ൫1 െ ௌܲ,஼௉൯ ൌ
1 · 10ିଽ are inserted into Eq. (6.9). In Figure 6.1 the consequences of wrong integer ambiguity 
fixing in the position domain are shown. The resulting horizontal position error ݔߜො௛,஻ exceeds 
the horizontal protection level ܮܲܪ଴ already after having fixed the widelane ambiguities 
wrongly by altogether 5 cycles, while the resulting vertical position error ݔߜො௩,஻ exceeds the 
vertical protection level ܸܲܮ଴ after having fixed the carrier phase ambiguities wrongly by 
altogether 112 cycles. It seems that the resulting position errors do not drift away after having 
fixed the integer ambiguities wrongly. The reason, however, is found in the short observation 
time which is considered in Figure 6.1. During the short period of time there is not much change 
in the relative receiver-satellite geometry. In this concrete example, severe multipath has been 
simulated, error identification and model adaptation have been disabled and the probabilities of 
false integer ambiguity fixing have been set to ிܲ,ௐ௅ ൌ 0.5 and ிܲ,஼௉ ൌ 0.5. 

 
Figure 6.1: Violation of the H0 protection levels due to wrong integer ambiguity fixing 

 

Next, the integrity risk under ܪଵ is considered, e.g. it is assumed that there is a bias in the 
measurement data: 

ଵ,௦௣௘௖ܫ  ൌ ܲ൫หݔො௩,஻ െ ௩,஻หݔ ൐ ଵ൯ܮܸܲ , (6.10)

where ܸܲܮଵ is the protection level if one bias is present in the measurement data. The 
probability of missed detection ெܲ஽,ଵ under ܪଵ is defined as: 
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 ெܲ஽,ଵ ൌ ܲ൫หݔො௩,஻ െ ௩,஻หݔ ൐ |ଵܮܸܲ ҧ݀൯ , (6.11)

where | ҧ݀ stands for “under the condition that the violation is not detected”. If it occurs that the 
position error exceeds ܸܲܮଵ and this event is not detected by the fault detection algorithm, the 
cascading ambiguity resolution scheme is called next in the program loop. It is assumed here that 
if หݔො௩,஻ െ ௩,஻หݔ ൐ ො௩,஼஺ோ,஻ݔଵ before calling the CAR scheme, it will also hold that หܮܸܲ െ ௩,஻หݔ ൐
 ଵ after finishing CAR; e.g. it is assumed that ambiguity fixing will not reduce the positionܮܸܲ
error by chance. It can also happen that the fault detection algorithm detects the violation of the 
protection level ܸܲܮଵ, but the succeeding fault identification algorithm identifies the wrong 
model error. It is assumed conservatively that model adaptation based on a wrongly identified 
model error will always lead to position errors larger than ܸܲܮଵ. Under the assumptions made so 
far, the integrity risk under ܪଵ can be indicated as: 

ଵ,௦௣௘௖ܫ  ൌ ܲ൫หݔො௩,஻ െ ௩,஻หݔ ൐ ଵ൯ܮܸܲ ൌ ெܲ஽,ଵ ൅ ௐܲூ஽ · ൫1 െ ெܲ஽,ଵ൯ (6.12)

By setting the probability of missed detection to ெܲ஽,ଵ ൌ 1 · 10ିଽ and the probability of wrong 
model error identification to ௐܲூ஽ ൌ 2 · 10ିଽ, it follows that ܫଵ,௦௣௘௖ ൎ 3 · 10ିଽ. 

There remain some concluding remarks on the determination of the integrity risk of the 
nonlinear navigation filter. First, since the hypotheses ܪ଴ and ܪଵ are mutually exclusive, the 
approximated overall integrity risk is not given by the sum of ܫ଴,௦௣௘௖ and ܫଵ,௦௣௘௖, but by the 
maximum of ܫ଴,௦௣௘௖ and ܫଵ,௦௣௘௖. Second, the event space covered by ܪ଴ and ܪଵ is not equal to the 
overall event space. The occurrence of multiple measurement biases simultaneously is not 
covered in this approach. It is acknowledged here that it is rather optimistic to assume that there 
is only one bias at a time, especially since multipath and cycle slips belong to the group of biases 
under consideration. Therefore, ݉ܽݔ൫ܫ଴,௦௣௘௖,  .ଵ,௦௣௘௖൯ is no overbound of the actual integrity riskܫ
Furthermore, the actual performance of the EKF is data-driven due to the internal feedback of 
the measurement data into the system model. The performance is also dependent on the precision 
of the filter initialization. To conclude, the actual integrity risk of the navigation filter solution 
has to be derived from extensive simulations, since any analytical approach would require 
introducing assumptions on the measurement input data and the precision of the filter 
initialization. 

 

6.3 Fault Detection 

Anomalous measurement data has to be detected and rejected. This can for example be achieved 
by AFDIA, where bad measurement data is identified and the model is adapted afterwards 
provided that there is enough confidence in the error identification. If no fault detection 
algorithms were implemented at all, the filter estimates might seriously be corrupted by bad 
measurement data. Grewal et al. [13] state that degradation of the state estimates due to 
temporary component failures or signal corruption can persist for some time, since the Kalman 
filter has infinite impulse response. The same holds true for the EKF, whereas the consequences 
of undetected faults may even be worse due to continuous adaptation of the trajectory which 
serves as reference for linearization. 

In filter-based approaches, the innovation vector is usually used for health monitoring. Some 
information provided by the innovation vector is already useful during the filter design phase in 
order to detect discrepancy between the model and the real system, other information is also 
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useful for online surveying of the filter performance. The innovation vector is defined as the 
difference between the actual measurements ݖ௞ and the projected measurements ̂ݖ௞: 

௞ݎ  ൌ ௞ݖ െ ௞ݖ̂ ൌ ௞ݖ െ ݄௞൫ݔො௞ሺെሻ൯ (6.13)

Since an EKF is used, ̂ݖ௞ follows from inserting the a-priori state estimates ݔො௞ሺെሻ into the 
nonlinear observation equations. In contrast, snapshot RAIM algorithms use the measurement 
residual vector ݎ௟௦௤ in order to compute the test statistic: 

௟௦௤ݎ  ൌ ݕ െ ܪ · ො௟௦௤ (6.14)ݔ

, where ݕ is the vector of observations, ܪ is the measurement sensitivity matrix and ݔො௟௦௤ is the 
least-squares solution of the states. It is assumed that the innovation vector ݎ௞ of the EKF has the 
following properties in absence of biases, see e.g. [7]: 

௞ൟݎ൛ܧ  ൌ 0 (6.15)

and 

௞ݎ൛ܧ  · ௞்ൟݎ ൌ ܳ௥ೖ ൌ ܴ௞ ൅ כ௞ܪ · ௞ܲሺെሻ · (6.16) ்כ௞ܪ

From Eq. (6.16) follows that the covariance matrix ܳ௥ೖ of the innovation vector depends both on 
the actual measurement noise at epoch k and the predicted state estimation uncertainty. The 
expectation of ݎ௞ is only zero in absence of biases. By computing the means of the innovations 
important information on the filter health is obtained. If the means are non-zero, sensor biases or 
mismodeled output biases may deteriorate the results. The detection of anomalous measurement 
data can be based on the likelihood function of the innovations, see e.g. [13]: 

 ࣦሺݎ௞ሻ ൌ ݁ି
ଵ
ଶ·௥ೖ

೅·ொೝೖ
షభ·௥ೖ (6.17)

The associated log-likelihood is: 

 logൣࣦሺr୩ሻ൧ ൌ െ
1
2
· ௞்ݎ · ܳ௥ೖ

ିଵ · ௞ (6.18)ݎ

The next property of the innovation vector is used in global model validation, where error 
detection is extended to several observation epochs in order to support the detection of 
unmodeled trends (ramp errors): 

௝ݎ൛ܧ  · ௞்ൟݎ ൌ 0 , ݆ ് ݇ , (6.19)

e.g. the innovation vectors are independent for different observation epochs. Eq. (6.19), which is 
also called innovations property, is fulfilled if all noise sources are Gaussian white noise and if 
the physical system is modeled correctly. By keeping track of the relative frequency of data 
anomalies trends can be detected. Global model error detection by using a moving window of 
designated length is covered in [7] and [44]. Here all further considerations are restricted to the 
innovation vector from the current epoch and innovation vectors from former epochs are not 
buffered. 

Model validation in the context of least-squares estimation has already been introduced in Sect. 
2.2.2. Some modification of the hypothesis test is required here, since Kalman filtering is a 
generalized form of recursive least-squares estimation. According to Teunissen [44], recursive 
least-squares estimation produces optimal estimators of the state, which are unbiased and have 
minimum variance within the class of linear unbiased estimators. However, it has to be kept in 
mind that a nonlinear filter approach is used since the geometry-based measurement model 
contains the user position states in nonlinear form. In general it holds that misspecifications in 
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the functional model have to be detected in order to prevent severe degradation of the filter 
performance. The detection of misspecifications is accomplished by hypothesis testing. Similar 
to Eq. (2.23) and Eq. (2.25), the null hypothesis ܪ଴ and the alternative hypothesis ܪଵ for the 
filter-based approach read: 

:଴ܪ  z෤୩ ൌ ݄௞൫x෤୩൯ ൅ ෤߭௞ (6.20)

:ଵܪ  z෤୩ ൌ ݄௞൫x෤୩൯ ൅ ௞ܧ · ߝ ൅ ෤߭௞ (6.21)

Just as in Sect. 2.2.2, ܧ௞ represents a known design matrix of model errors and ߝ an unknown 
vector of biases. If ݊௞ is the number of measurements at epoch k and q is the number of different 
model errors under consideration, then z෤୩ is of size n୩਀1, ܧ௞ is of size n୩਀q and ߝ is of size q਀1. 
The randomness of variables is here explicitly indicated by a tilde ᇝ෥. The recursive nature of the 
estimation procedure has to be accounted for in contrast to the model validation scheme 
presented in Sect. 2.2.2. This implies that fault detection has to be performed recursively as well. 
As time-series of measurements are considered in the filtering process, in principle also the time 
of occurrence of model invalidation has to be determined. However, the application at hand 
requires that the integrity monitoring is performed in real-time. In [44] a local detection 
procedure is proposed which can be executed in real-time. The local test, which is performed at 
epoch k, depends only on the predicted state vector xො෨୩ at epoch k and on the observations z෤୩ at 
epoch k. It is assumed that either no model errors have occurred so far or that model errors have 
been identified successfully and that an appropriate model adaptation has been applied 
afterwards. Model validation uses the information provided by the innovation vector of the 
navigation filter, see Eq. (6.13). The properties of the innovation vector in absence of biases 
have already been indicated in (6.15), (6.16) and (6.19).The hypotheses of a local test are less 
complex to test against each other than the hypotheses of a global test which considers possible 
misspecifications from the first epoch to the current epoch. In case of a local test the hypotheses 
simplify to: 

:଴௞ܪ  E൛̃ݎ௞ൟ ൌ 0 (6.22)

:ଵ௞ܪ  E൛̃ݎ௞ൟ ൌ ௥ೖܧ · (6.23) ߝ

In order to detect model invalidation at epoch k, no restrictions are imposed on the moment of 1st 
order given in Eq. (6.23), e.g.: 

:ଵ௞ܪ  E൛̃ݎ௞ൟ א Թ୬ౡ (6.24)

Consequently, the matrix ܧ௥ೖ is square and regular of size n୩਀n୩, and the number of degrees of 
freedom becomes ݍ ൌ n୩. According to [44], the test statistic ෨ܶ௞, which corresponds to the local 
test, is given by: 

 ෨ܶ௞ ൌ
௞்ݎ̃ · ܳ௥ೖ

ିଵ · ௞ݎ̃
݊௞

 (6.25)

Thus, the test statistic is the weighted sum of squared innovations divided by the degrees of 
freedom. Due to the filter-based approach the degrees of freedom is equal to the number of 
measurements at epoch k. In contrast, the degrees of freedom of the least squares approach 
presented in Sect. 2.2.2 follows from the number of measurements reduced by the number of 
unknown states. The covariance matrix ܳ௥ೖ of the innovation vector has already been indicated 
in Eq. (6.16). By comparing Eq. (6.25) with Eq. (2.18) and under the assumption that all white-
noise sources are Gaussian, it becomes obvious that the test statistic has an F-distribution with 
n୩ and ∞ degrees of freedom: 
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 ෨ܶ௞~ܨሺ݊௞,∞, ሻ (6.26)ߣ

The noncentrality parameter λ is zero in absence of biases. Finally, the decision threshold ܦ஑,୩ at 
epoch k for a given level of significance α can be computed from the cumulative F-distribution 
function indicated in Eq. (2.15) by solving 

஑,୩൯ܦி,୬ౡ,ஶ൫ܨ  ൌ 1 െ α (6.27)

for the quantile ܦ஑,୩. It is assumed that the functional model is valid if ෨ܶ௞ ൏  .ఈ,௞. From Sectܦ
2.1.3 it is known that ݊௞ · ෨ܶ௞ ൌ ෨ܶ௞כ has a ߯ଶ-PDF with n୩ degrees of freedom: 

 ෨ܶ௞כ ൌ ݊௞ · ෨ܶ௞~߯ଶሺ݊௞, ሻ (6.28)ߣ

In the navigation filter algorithms implemented in this work, the square root of ෨ܶ௞כ is actually 
used as test statistic of the local test: 

 ෨ܶ௞,௟௢௖௔௟்௦௧ ൌ ට̃ݎ௞் · ܳ௥ೖ
ିଵ · ௞ (6.29)ݎ̃

The associated decision threshold ܦ୩,୪୭ୡୟ୪Tୱ୲ depends on the maximum allowable probability of 
missed detection ெܲ஽,ଵ: 

୩,୪୭ୡୟ୪Tୱ୲ܦఞమ,୬ౡ൫ܨ 
ଶ ൯ ൌ 1 െ ெܲ஽,ଵ (6.30)

If ෨ܶ௞,௟௢௖௔௟்௦௧ ൒  ௞,௟௢௖௔௟்௦௧ the underlying model is considered to be invalid and some action hasܦ
to be undertaken. Either the model error is identified with the required level of confidence and 
the model can be adapted or an alert flag has to be raised. 

 

6.4 Identification of Model Errors and Adaptation 

In case that an unspecified model error has been detected by the local test described in the 
previous section, it is desirable to identify the model error and adapt the model afterwards. 
Successful identification of biases and model adaptation enhance the system availability. In civil 
aviation the availability of a reliable navigation solution is one of the hardest requirements to 
meet. Instead of model adaptation, it is also possible to exclude for example a satellite from the 
navigation solution. According to Wendel [52], the rejection of measurements may lead to state 
estimate errors that grow with time. Thus, the innovation also starts to grow. If the growth of 
state estimate errors is not precisely reflected by the covariance matrix of state estimation 
uncertainty ௞ܲ, further measurements may be rejected that were not biased. This has to be 
prevented at any rate. In this work the concept of fault detection, identification and model 
adaptation is adopted instead of the concept of fault detection and exclusion. 

On the one hand, it is sufficient to indicate only one alternative hypothesis for the detection of 
unspecified model errors, e.g. see Eq. (6.24). On the other hand, it is necessary to formulate 
several alternative hypotheses in order to identify the model error. The number of alternative 
hypotheses can grow very large if the identification of multiple biases simultaneously shall also 
be covered. So far the proposed AFDIA scheme applies to single-channel biases, also in theory 
an extension to multiple biases is possible. Since AFDIA does not only aim at the detection and 
exclusion of faulty satellites, but also at the identification of cycle slips and multipath, it is 
acknowledged that multiple-channel biases are far more likely to occur. 
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In the following the vector of model errors ߝ is reduced to a scalar ߝ. For one-dimensional model 
errors the matrix ܧ௞ reduces to a vector ݁௞. Per measurement type (ߩ௖, ߶௖, ܦ௖), altogether as 
many alternative hypotheses are specified as there are satellites in view. The number of different 
measurement types is given by t୫, the number of satellites in view is given by s୩ and the 
number of double-differenced measurements at epoch k is given by n୩ (n୩ comprises all 
different measurement types). The alternative hypotheses ܪଵ,௜௞  are formulated such that ݁௞,௜ 
becomes a vector of length n୩: 

ଵ,௜௞ܪ  : E൛̃ݎ௞ൟ ൌ ݁௞,௜ · ߝ , ݅ ൌ 1… ௠ݐ · ௞ (6.31)ݏ

The ith vector ݁௞,௜ is set up such that there is either one biased double-differenced measurement 
or that all s୩ െ 1 double-differenced measurements are biased of some measurement type. The 
case with s୩ െ 1 biased double-differenced measurements corresponds to anomalous data from 
the reference satellite, since all double-differenced observables from one measurement type are 
affected simultaneously if the reference satellite signal is corrupted. In order to test the 
alternative hypotheses against the null hypothesis ܪ଴௞: E൛̃ݎ௞ൟ ൌ 0, the following test statistics 
are computed: 

 
෨ܶ௜௞ ൌ

݁௞,௜் · ܳ௥ೖ
ିଵ · ௞ݎ̃

ට݁௞,௜் · ܳ௥ೖ
ିଵ · ݁௞,௜

, ݅ ൌ 1… ௠ݐ · ௞ (6.32)ݏ

Teunissen [44] indicates that the test statistics have a standardized normal distribution 
෨ܶ௜௞~ܰሺ0,1ሻ under ܪ଴௞. The most likely model error results from a search for the largest value 
among all test statistics: 

 ෨ܶ௠௔௫௞ ൌ max
௜
൫ห ෨ܶ௜௞ห൯ (6.33)

The identification of the model error is only trusted if it holds that: 

 ෨ܶ௠௔௫௞ ൒ ஑/ଶ (6.34)ܦ

, with the decision threshold ܦ஑/ଶ. Here the level of significance α corresponds to the probability 
of wrong identification ௐܲூ஽ according to Sect. 6.2. The decision threshold ܦWID is derived 
from the standardized normal distribution given in Eq. (2.4) such that it holds that ΦሺܦWIDሻ ൌ
1 െ ௐܲூ஽/2. If the model error is identified with the required level of confidence, the model is 
adapted. Therefore, the least-squares estimator of the model error and its variance has to be 
computed: 

ሚ̂௞ߝ  ൌ
෨ܶ௝௞

ට݁௞,௝் · ܳ௥ೖ
ିଵ · ݁௞,௝

 (6.35)

ఌො,௞ߪ 
ଶ ൌ

1
݁௞,௝் · ܳ௥ೖ

ିଵ · ݁௞,௝
 (6.36)

The subscript ݆ refers to the jth test statistic with the largest absolute value. The vector of state 
estimates ݔො෨௞ሺ൅ሻ and its covariance matrix ௞ܲሺ൅ሻ are updated by: 

ො෨௞,௔ሺ൅ሻݔ  ൌ ො෨௞ሺ൅ሻݔ െ ௞ܭ · ݁௞,௝ · ሚ̂௞ (6.37)ߝ

 ௞ܲ,௔ሺ൅ሻ ൌ ௞ܲሺ൅ሻ ൅ ௞ܭ · ݁௞,௝ · ఌො,௞ߪ
ଶ · ݁௞,௝் · ௞் (6.38)ܭ
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The adapted vector of state estimates ݔො෨௞,௔ሺ൅ሻ and its covariance matrix ௞ܲ,௔ሺ൅ሻ are used to re-
compute the prediction of the state estimate vector ݔො෨௞ାଵ,௔ሺെሻ and its covariance matrix 
௞ܲାଵ,௔ሺെሻ for the next epoch.  

The proposed scheme of AFDIA is capable of detecting cycle slips after the initial ambiguities 
have already been fixed. There are several possibilities to proceed after a cycle slip has been 
detected. One option is to clear the integer ambiguity buffer and to restart with a float solution. 
With respect to the availability of tight protection levels during the final phase of the flight this 
option is not considered here. A further option is to re-fix the integer ambiguity on the basis of 
the adapted user position solution and the resulting theoretical range. This kind of ambiguity 
fixing is however not considered to be safe enough. One could also simply exclude the satellite 
where the cycle slip has occurred from the navigation solution. This might however deteriorate 
the PDOP (Position Dilution Of Precision) and if several cycle slips occur the system availability 
is endangered. Now the procedure is described which is indeed applied in this navigation filter. 
After successful ambiguity fixing, the integer ambiguities are not removed from the vector of 
state estimates. The fact that the ambiguities have already been fixed is reflected by the 
covariance matrix of process noise, or more precisely by the zero-matrix ܳேೈಽ  (and the zero-
matrix ܳேమ). Furthermore, the uncertainty in the ambiguity estimates is removed, e.g. the 
covariance matrix of state estimation uncertainty ௞ܲ is adapted with respect to the ambiguity 
variance-covariance entries. If a cycle slip is detected, the variance of process noise that 
corresponds to the respective ambiguity is set to a value significantly different from zero. All 
other ambiguity variances of process noise are set to a value very close to zero. Because there is 
only noticeable uncertainty of just one single ambiguity term, the ambiguities can be re-fixed 
very quickly by the standard procedure, e.g. most of the time within five epochs. This procedure 
exploits the stochastic model of the EKF beneficiary. High availability of the ambiguity-fixed 
solution is ensured even in presence of cycle slips and without introducing additional integrity 
risk due to ad-hoc strategies for ambiguity re-fixing. 

 

6.5 Protection Levels 

If GNSS equipment is used as primary means of navigation for safety-critical applications, it is 
necessary to indicate an upper bound for the maximum position error which cannot be detected 
by health monitoring algorithms. Of course the upper bound has to be determined by 
probabilistic means. Thus, there remains an integrity risk that the maximum position error is 
above the computed upper bound without being detected. In aviation both the vertical and the 
horizontal component of the user position vector have to be protected against excessive errors. 
This is reflected by the specified VAL and HAL. In this work protection levels are computed in 
parallel to the navigation solution. If the horizontal or vertical protection level is above the 
respective alert limit, then the navigation filter solution is declared unavailable and an alert flag 
is raised. The usage of a filter-based approach instead of some snapshot algorithm in order to 
derive the navigation solution has to be reflected by the computation of the protection levels. 
Similarly to the breakdown of the integrity risk described in Sect. 6.2, the fault-free normal 
operation of the filter is investigated as well as the filter operation in presence of a bias. While in 
snapshot RAIM algorithms the fault-free operation is sometimes neglected since the protection 
levels are effectively determined by the biased case, in a filter-based approach the fault-free 
normal operation should be evaluated as well. Before the determination of the protection levels 
is further investigated, a coordinate transformation from global to local coordinates is performed, 
since the HAL, VAL, HPL and VPL are user-referenced. The user position and velocity vector 
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coordinates are computed in the ECEF frame. The indication of the horizontal and vertical 
protection and alert limits however refers to a local ENU frame. The origin of the local 
coordinate system is in general located at the GNSS antenna phase center at the airplane (see e.g. 
[36]). Therefore, the matrices involved in the computation of the protection levels have to be 
transformed. The coordinate transformation from ECEF to ENU has already been indicated in 
Eq. (3.2) and the computation of the rotation matrix is repeated here for convenience: 

 ܴாே௎ ൌ ൥
െ sin ஻ߣ cos ஻ߣ 0

െ sin߮஻ cos ஻ߣ െ sin߮஻ sin ஻ߣ cos ߮஻
cos߮஻ cos ஻ߣ cos߮஻ sin ஻ߣ sin߮஻

൩ , (6.39)

where ߮஻ and ߣ஻ are the latitude and longitude in WGS-84 of the user receiver antenna phase 
center. The vector of system states comprises the carrier phase ambiguities and ionosphere terms 
in addition to the user position and velocity vector. Therefore, the overall rotation matrix ܴݐ݋ 
has to transform position- and velocity-related terms, while ambiguity- and ionosphere-related 
terms remain unaffected: 

ݐ݋ܴ  ൌ ቎
ܴாே௎ 0 0
0 ܴாே௎ 0
0 0 ሺ௡௢ೞ೟ೌ೟೐ೞି଺ሻ௫ሺ௡௢ೞ೟ೌ೟೐ೞି଺ሻܫ

቏ (6.40)

The rotation is applied to the P-, H- and K-matrix, which are used for the computation of the 
protection levels. The transformation of the covariance matrix of state estimation uncertainty ܲ 
is derived from: 

ො෨ݔ൛ܧ  · ො෨்ൟݔ ൌ ܲ (6.41)

ܧ  ቄܴݐ݋ · ො෨ݔ · ൫ܴݐ݋ · ො෨൯ݔ
்ቅ ൌܴݐ݋ · ܲ · ்ݐ݋ܴ ൌ ܲாே௎ (6.42)

Similarly, the measurement sensitivity matrix ܪ can be found in the ENU-system: 

 z෤ ൌ ܪ · x෤ (6.43)

 z෤ ൌ ாே௎ܪ · ݐ݋ܴ · x෤ (6.44)

By comparing Eq. (6.43) with Eq. (6.44), it follows that: 

ாே௎ܪ  ൌ ܪ · Rotିଵ (6.45)

The modified Kalman gain matrix ܭாே௎ is derived by inserting ܪாே௎ and ܲாே௎  into Eq. (A.5): 

ாே௎ܭ  ൌ ݐ݋ܴ · ܲ · ்ݐ݋ܴ · ሺܪ · Rotିଵሻ்
· ሾܪ · Rotିଵ · ݐ݋ܴ · ܲ · ்ݐ݋ܴ · ሺܪ · Rotିଵሻ் ൅ ܴ௞ሿିଵ ൌ ݐ݋ܴ · (6.46) ܭ

Now the protection levels referenced to the local ENU coordinate system can be computed from 
the transformed matrices. 

The processing of carrier phase measurements in addition to pseudorange measurements does 
not require much change of classical pseudorange-based RAIM algorithms. However, the 
protection levels will become tighter thanks to the low-noise carrier phase measurements. The 
main reason why classical snapshot RAIM algorithms cannot be applied here is founded in the 
usage of an EKF for navigation. An approach to define protection levels for a Kalman filter-
based navigation solution has already been proposed by Feng et al. [10]. The procedure of 
calculating the fault-free protection levels during normal filter operation is adopted in this work. 
In order to determine the filter performance, the information provided by the EKF can be used 
immediately. The first three main diagonal elements of the covariance matrix ௞ܲ

ாே௎ሺ൅ሻ contain 
the theoretical variances of the position estimate uncertainty in ݔ௘௔௦௧, ݔ௡௢௥௧௛ and ݔ௨௣. The 
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theoretical standard deviations of the horizontal and vertical position estimate uncertainty are 
given by: 

ு,௞ߪ  ൌ ට ௞ܲ,ሺଵ,ଵሻ
ாே௎ ሺ൅ሻ ൅ ௞ܲ,ሺଶ,ଶሻ

ாே௎ ሺ൅ሻ , ௏,௞ߪ ൌ ට ௞ܲ,ሺଷ,ଷሻ
ாே௎ ሺ൅ሻ (6.47)

The posteriori covariance matrix of state estimation uncertainty, ௞ܲ
ாே௎ሺ൅ሻ, is only meaningful in 

terms of state estimation errors if the state transition matrix Φכ and the measurement sensitivity 
matrix כܪ in the implemented filter reflect the physical model accurately. More insight on sub-
optimal filter analysis can be found in [5]. Note that some aspects with respect to the predicted 
variance and the actual variance of the state estimation errors have already been discussed in 
Sect. 4.2. In contrast to the approach presented in [10], here sigma-overbounding is introduced 
on the theoretical standard deviations of position estimation uncertainty. An inflation factor ௉݂௢௦ 
is defined for this purpose. Now the horizontal and vertical error bounds ܮܲܪ଴,௞ and ܸܲܮ଴,௞, 
which refer to the fault-free condition, can be indicated. They are computed from the standard 
deviations of the position estimate uncertainties, the inflation factors and the probabilities of 
missed detection ଴ܲ,ெ஽_௏ ൌ ܲൣหݔො௩,஻ െ ௩,஻หݔ ൐ ,ௐ௅ܨܥ଴|ሺܮܸܲ ஼௉ሻ൧ and ଴ܲ,ெ஽_ுܨܥ ൌ
ܲൣหݔො௛,஻ െ ௛,஻หݔ ൐ ,ௐ௅ܨܥ଴|ሺܮܲܪ  :஼௉ሻ൧ as derived from the specified integrity riskܨܥ

଴,௞ܮܲܪ  ൌ ݇଴,ெ஽_ு · ு,௞ߪ · ௉݂௢௦,ு , ଴,௞ܮܸܲ ൌ݇଴,ெ஽_௏ · ௏,௞ߪ · ௉݂௢௦,௏ (6.48)

It is assumed that the user’s position error is characterized by a normal distribution. This allows 
for computing the scalar factors ݇଴,ெ஽_כ, which reflect the probabilities of missed detection, from 
a standardized normal distribution [36]: 

 Φ൫݇଴,ெ஽_כ൯ ൌ 1 െ
1
2
· ଴ܲ,ெ஽_(6.49) כ

The definition of Φሺݔሻ is according to Eq. (2.4). The ݇଴,ெ஽ factor, which bounds the user’s 
position with 6.109 sigma (two-sided Gaussian), is shown in Figure 6.2. It corresponds to a 
probability of missed detection ଴ܲ,ெ஽ ൌ 1 · 10ିଽ per sample. 

 
Figure 6.2: Bounding of the user’s position during normal operation 

 

Since it comes without additional effort, the protection levels for the user’s velocity ܮܲܪ_݈݁ݒ଴,௞ 
and ܮܸܲ_݈݁ݒ଴,௞ under the fault-free condition can be indicated as well: 

 
଴,௞ܮܲܪ_݈݁ݒ ൌ ݇଴,ெ஽_ு · ௩௘௟,ு,௞ߪ · ௏݂௘௟,ு , 

଴,௞ܮܸܲ_݈݁ݒ ൌ ݇଴,ெ஽_௏ · ௩௘௟,௏,௞ߪ · ௏݂௘௟,௏ , 
(6.50)
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with the theoretical standard deviations of the horizontal and vertical component of the velocity 
estimation uncertainty: 

௩௘௟,ு,௞ߪ  ൌ ට ௞ܲ,ሺସ,ସሻ
ாே௎ ሺ൅ሻ ൅ ௞ܲ,ሺହ,ହሻ

ாே௎ ሺ൅ሻ , ௩௘௟,௏,௞ߪ ൌ ට ௞ܲ,ሺ଺,଺ሻ
ாே௎ ሺ൅ሻ (6.51)

 

The second error bound that is considered refers to the presence of a bias and follows from a 
projection of the test statistic to the position domain. This approach requires determining the 
maximum SLOPE, e.g. the maximum ratio of the position error to the test statistic. When 
computing the SLOPE factors it is assumed that there is a single bias in the measurement error 
vector. The detection of multiple biases simultaneously is not covered in this thesis. The 
projection of the test statistic to the position domain with the help of the largest SLOPE is 
illustrated in Figure 6.3. The illustration corresponds to snapshot RAIM. But the general idea of 
assessing the protection level in presence of a single bias resembles that of the filter-based 
RAIM approach. 

 
Figure 6.3: Derivation of the protection level in presence of a bias 

 

The red-dotted line displayed in Figure 6.3 indicates the detection threshold ܦ that depends on 
the probability of false alarm ிܲ஺ as derived from the continuity risk and the degrees of freedom 
of the test statistic. The computation of ܦ follows from Eq. (2.33), where it has to be 
remembered to take the square-root of ܦ if √ܹܵܵܧ serves as test statistic. The black-dotted line 
in Figure 6.3 indicates the minimum detectable bias ௕ܲ௜௔௦. It is shifted to the right of the 
detection threshold ܦ in order to keep the missed detection rate as low as specified by the 
probability of missed detection ெܲ஽,ଵ. The protection level for the position estimate in presence 
of a bias results from the intersection of ௕ܲ௜௔௦ with the maximum SLOPE factor. A bias on the 
satellite signal measurement with the largest SLOPE results in the smallest test statistic, e.g. this 
bias will be the most difficult to detect. The navigation system will provide the user with 
Hazardous Misleading Information (HMI) if the resulting position error is above the protection 
level, but no alert flag can be raised because the test statistic is below the decision threshold ܦ. 
The corresponding area is red-shaded in Figure 6.3. 

The determination of the SLOPE in case of a Kalman filter-based approach is derived hereafter 
and compared with the SLOPE calculation of snapshot RAIM. In snapshot RAIM the position 
error vector ݔߜ௉ is defined as: 
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௉ݔߜ  ൌ ො௟௦௤ݔ െ (6.52) ݔ

For simplicity a non-weighted least-squares approach is considered. By substituting the least 
squares estimate ݔො௟௦௤ by  

ො௟௦௤ݔ  ൌ ሺ்ܪ · ሻିଵܪ · ்ܪ · ݕ , (6.53)

it is shown in [23] that a single range bias on the ith satellite signal measurement corresponds to a 
position error vector 

௉,௜ݔߜ  ൌ ሺ்ܪ · ሻିଵܪ · ்ܪ · ܾ௜ . (6.54)

The range bias error vector ܾ௜ has a range bias ܾ in row ݅, and zero elements elsewhere. The 
horizontal and vertical component of the position errors of the least-squares approach, ܪߜ௜ and 
ߜ ௜ܸ, follow immediately from Eq. (6.54): 

௜ܪߜ  ൌ ටݔߜ௉,௜,ሺଵሻ
ଶ ൅ ௉,௜,ሺଶሻݔߜ

ଶ  (6.55)

ߜ  ௜ܸ ൌ ටݔߜ௉,௜,ሺଷሻ
ଶ  (6.56)

 

Now the filter-based approach is considered. The derivation of protection levels for Kalman 
filter solutions has first been proposed by Diesel et al. [7]. For clearness, the most important 
filter equations are repeated hereafter. The posteriori state estimation vector is given by 

ො௞ሺ൅ሻݔ  ൌ ො௞ሺെሻݔ ൅ ௞ܭ · ൫ݖ௞ െ ௞൯ݖ̂ , (6.57)

where the difference ݖ௞ െ  ௞. From Eq. (6.57) followsݎ ௞ corresponds to the innovation vectorݖ̂
that a range bias ܾ௜ is mapped to the domain of posteriori states by: 

௞,௜ሺ൅ሻݔߜ  ൌ ௞ܭ · ܾ௜ (6.58)

If one is interested in the horizontal position error, only the first two elements of ݔߜ௞,௜ሺ൅ሻ have 
to be considered. The horizontal position error ܪߜ௞,௜ሺ൅ሻ is:  

௞,௜ሺ൅ሻܪߜ  ൌ ටݔߜ௞,௜,ሺଵሻ
ଶ ሺ൅ሻ ൅ ௞,௜,ሺଶሻݔߜ

ଶ ሺ൅ሻ (6.59)

Analogously, the vertical position error ߜ ௞ܸ,௜ሺ൅ሻ results from the third element of ݔߜ௞,௜ሺ൅ሻ: 

ߜ  ௞ܸ,௜ሺ൅ሻ ൌ ටݔߜ௞,௜,ሺଷሻ
ଶ ሺ൅ሻ (6.60)

 

In the next step, the test statistics of both snapshot RAIM and filter-based RAIM are compared. 
Snapshot RAIM uses the residual vector from the least-squares solution ݎ௟௦௤ in order to compute 
the test statistic. The least-squares measurement residual vector results from: 

௟௦௤ݎ   ൌ ݕ െ ො௟௦௤ݕ ൌ ݕ െ ܪ · ො௟௦௤ݔ ൌ ሾܫ െ ܪ · ሺ்ܪ · ሻିଵܪ · ሿ்ܪ · (6.61) ݕ

The mapping function ௟ܵ௦௤ is introduced in order to facilitate further considerations: 

 ௟ܵ௦௤  ൌ ܫ െ ܪ · ሺ்ܪ · ሻିଵܪ · (6.62) ்ܪ

Similarly a mapping function ܵ௞ can be derived for the filter-based approach. In contrast to 
snapshot RAIM, the innovation vector is used in order to compute the test statistic. It has to be 
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determined how a single measurement bias propagates to the innovation vector ݎ௞. Since the 
innovation vector is defined by ݎ௞ ൌ ௞ݖ െ  ௞, it follows thatݖ̂

௞,௜ݎߜ   ൌ ܫ · ܾ௜ , (6.63)

and thus the mapping function ܵ௞ for the filter-based approach reduces to 

 ܵ௞  ൌ (6.64) ܫ

The SLOPE is defined as the no-noise ratio of the position error to the test statistic for both 
snapshot RAIM and filter-based RAIM. The computation of the SLOPE factors for snapshot 
RAIM follows from Eq. (6.55), (6.56) and (6.62): 

௟௦௤,௜ܧܱܲܮܵܪ  ൌ
௜ܪߜ

ඥ ௟ܵ௦௤,ሺ௜,௜ሻ · |ܾ|
 (6.65)

௟௦௤,௜ܧܱܲܮܸܵ  ൌ
ߜ ௜ܸ

ඥ ௟ܵ௦௤,ሺ௜,௜ሻ · |ܾ|
 (6.66)

, where |ܾ| is the magnitude of the bias in row ݅. Note that the magnitude of the bias has no 
impact on the SLOPE factors. The bias |ܾ| cancels out when forming the ratio of the position 
error to the test statistic, e.g. |ܾ| is also contained in ܪߜ௜ and ߜ ௜ܸ, respectively. 

The SLOPE factors for the filter-based RAIM approach follow from Eq. (6.59), (6.60) and 
(6.64): 

௞,௜ܧܱܲܮܵܪ  ൌ
௞,௜ሺ൅ሻܪߜ
1 · |ܾ|

ൌ ටܭ௞,ሺଵ,௜ሻଶ ൅ܭ௞,ሺଶ,௜ሻଶ  (6.67)

௞,௜ܧܱܲܮܸܵ  ൌ
ߜ ௞ܸ,௜ሺ൅ሻ
1 · |ܾ|

ൌ ටܭ௞,ሺଷ,௜ሻଶ  (6.68)

Obviously the SLOPE factors depend only on the Kalman gain if the test statistic is based on the 
innovation vector. Although it is not explicitly indicated in Eq. (6.67) and (6.68), it should be 
noted that ܭாே௎ as derived in Eq. (6.46) is used for the computation of the SLOPE. 

In absence of noise the test statistic and the position error are related by a linear model. In order 
to compute the protection levels, the measurement noise has to be considered as well. Since the 
measurement noise has great impact on the magnitude of the minimum detectable bias ௕ܲ௜௔௦, the 
advantage of using carrier phase measurements becomes clear. First, the computation of ௕ܲ௜௔௦ in 
case of snapshot RAIM is considered. According to [23], the parameter ௕ܲ௜௔௦,௟௦௤ is dependent on 
the noncentrality parameter λ of a chi-square distribution and the standard deviation ߪఘ of the 
pseudorange measurements: 

 ௕ܲ௜௔௦,௟௦௤ ൌ ߣ√ · ఘ (6.69)ߪ

This simple expression for ௕ܲ௜௔௦,௟௦௤ results from the fact that a non-weighted least squares 
approach is considered. However, no single standard deviation for all measurements can be used 
in the filter-based approach. First, different types of measurements are used as input to the filter. 
The standard deviations of the carrier phase measurements are obviously different from the 
standard deviations of the pseudorange measurements. Second, elevation-dependent standard 
deviations are considered. Third, the measurements forwarded to the filter are highly correlated 
due to double-differencing and inter-frequency combinations. Fourth, due to the filter-based 
approach the a priori covariance matrix of state estimation uncertainty has also influence on the 
minimum detectable bias. All these aspects have to be taken into account when computing 
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௕ܲ௜௔௦,௞ for the filter-based approach. According to [44], the minimum detectable bias can be 
computed from 

 ௕ܲ௜௔௦,௞,௜ ൌ ߣ√ ·
1

ටܾ௜் · ܳ௥ೖ
ିଵ · ܾ௜

 (6.70)

under the assumption that no invalidation of the model has taken place prior to the present epoch 
݇ of testing. The noncentrality parameter ߣ is chosen such that the probability of missed 
detection ெܲ஽,ଵ is not exceeded for the given detection threshold ܦ (see Figure 6.3): 

 න ݂ఞమ,஥,஛ሺݔሻ
஽

଴

ݔ݀ ൌ ெܲ஽,ଵ (6.71)

The definition of the non-central chi-square PDF ݂ఞమ,஥,஛ሺݔሻ is given in Eq. (2.11). The number 
of degrees of freedom ߭ follows from the number of double-differenced measurements at epoch 
k. The probability of false alarm ிܲ஺ is reflected by the decision threshold ܦ.  

Sigma overbounding is frequently applied in order to cover the non-Gaussian tails of the actual 
distribution of measurement errors. This technique is adopted here for the PDF of the innovation 
vector. An inflation factor ௥݂, which is multiplied by the standard deviation of a Gaussian 
distribution, is introduced in order to account for the following effects: 

- Unexpected sigma violations 

- Process mixing of Gaussian distributions (time-varying errors, normalization by a 
theoretical sigma) 

- No perfect synchronization of the reference and user receiver data 

More insight on the determination of inflation factors can be found in Lee [25], where different 
inflation factors are combined in order to provide an overall inflation factor during LAAS 
operation. 

By multiplying the maximum SLOPE with the minimum detectable bias and the inflation factor, 
the protection level under the assumption that there exists a bias on the ith satellite measurement 
is obtained from: 

ଵ,௞ܮܲܪ  ൌ max
௜
൫ܧܱܲܮܵܪ௞,௜ · ௕ܲ௜௔௦,௞,௜൯ · ௥݂ (6.72)

ଵ,௞ܮܸܲ  ൌ max
௜
൫ܸܵܧܱܲܮ௞,௜ · ௕ܲ௜௔௦,௞,௜൯ · ௥݂ (6.73)

 

For completeness, the protection levels for the user velocity estimates in presence of a bias are 
also indicated. The derivation is analog to that of the protection levels for the position estimates. 
The velocity SLOPE factors are computed from: 

௞,௜ܧܱܲܮܵܪ_݈݁ݒ  ൌ ටܭ௞,ሺସ,௜ሻଶ ൅ܭ௞,ሺହ,௜ሻଶ  (6.74)

௞,௜ܧܱܲܮܸܵ_݈݁ݒ  ൌ ටܭ௞,ሺ଺,௜ሻଶ  (6.75)

Finally, the user velocity protection levels in presence of a bias are completely specified by: 

ଵ,௞ܮܲܪ_݈݁ݒ  ൌ max
௜
൫ܧܱܲܮܵܪ_݈݁ݒ௞,௜ · ௕ܲ௜௔௦,௞,௜൯ · ௥݂ (6.76)
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ଵ,௞ܮܸܲ_݈݁ݒ  ൌ max
௜
൫ܧܱܲܮܸܵ_݈݁ݒ௞,௜ · ௕ܲ௜௔௦,௞,௜൯ · ௥݂ (6.77)

 

The protection levels of rare normal operation ܮܲܪ଴,௞ and ܸܲܮ଴,௞ have been derived under the 
assumption of absence of biases. The protection levels that correspond to the biased case are 
 ଵ,௞. Since both hypotheses exclude each other, the overall protection levels areܮܸܲ ଵ,௞ andܮܲܪ
given by the larger values of the protection levels for the fault-free and the biased case: 

௞ܮܲܪ  ൌ max൫ܮܲܪ଴,௞, ଵ,௞൯ (6.78)ܮܲܪ

௞ܮܸܲ  ൌ max൫ܸܲܮ଴,௞, ଵ,௞൯ (6.79)ܮܸܲ

And for the overall protection levels for the user velocity estimates it holds that: 

௞ܮܲܪ_݈݁ݒ  ൌ max൫ܮܲܪ_݈݁ݒ଴,௞, ଵ,௞൯ (6.80)ܮܲܪ_݈݁ݒ

௞ܮܸܲ_݈݁ݒ  ൌ max൫ܮܸܲ_݈݁ݒ଴,௞, ଵ,௞൯ (6.81)ܮܸܲ_݈݁ݒ

In the WAAS MOPS [36] it is stated that ܮܲܪ଴ and ܸܲܮ଴ are usually not emphasized by 
snapshot RAIM algorithms. The protection levels that are determined for the single-failure case, 
e.g. ܮܲܪଵ and ܸܲܮଵ, clearly exceed the protection levels of the fault-free case. This holds not 
true in general for filter-based approaches. As mentioned in the beginning of this chapter, the 
protection levels ܮܲܪ଴,௞ and ܸܲܮ଴,௞, which refer to the rare normal filter operation, definitely 
contribute to the integrity risk. This has also been verified during various simulation runs. 

As long as ܮܲܪ௞ ൏ ௞ܮܸܲ and ܮܣܪ ൏  it is assumed that the filter-based navigation ,ܮܣܸ
solution is reliable. However, there is no analytic proof that the integrity risk and the continuity 
risk are not exceeded with the proposed AFDIA scheme. Due to the usage of an EKF, whose 
performance is data-driven, it is recommended to assess the actual integrity and continuity risk 
by test. Of course this will cause serious trouble if it has to be proofed that the integrity risk is as 
small as 10-9. 

  
Figure 6.4: Typical protection levels of the filter-based approach (position solution) 
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In Figure 6.4 the protection levels for the user position solution are displayed for a typical 
landing approach. Altogether 8 satellites are in view at both the reference station and the airplane 
during the whole landing approach. The satellite geometry is good as indicated by the DOP-
values which are displayed in the sub-plots. The widelane ambiguities are fixed in epoch 154 
and the carrier phase ambiguities are fixed in epoch 284. After ambiguity fixing the protection 
levels become smaller. The accuracy of the position solution is then mainly determined by the 
noise of the carrier phase measurements and uncompensated residual ionospheric range errors. 
After ambiguity fixing the pseudorange measurements are low-weighted by the Kalman gain. 
The VAL of CAT IIIc precision approach is 5.3 m. The vertical protection level is already below 
5.3 m before the widelane ambiguities can be resolved after the navigation filter has been 
running for a while (less than 50 epochs). Since the computation of the protection levels for the 
user velocity solution is also supported, the respective protection levels are displayed in Figure 
6.5. The protection levels are in general below 1 m/s and hardly affected by ambiguity 
resolution. The reason for this is that the velocity solution is solely based on the instantaneous 
Doppler shift measurements. Furthermore, the protection levels are rather high since double-
differenced Doppler measurements are processed and thus the measurement noise is amplified 
due to double-differencing. The user velocity solution is only considered as a useful by-product 
and it is not in the focus of this work. 

 
Figure 6.5: Typical protection levels of the filter-based approach for the velocity solution 
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7 Monte-Carlo Simulations 

7.1 Simulation Environment 

7.1.1 Measurement Input Data 

The Satellite Navigation (SatNav) Toolbox 3.0 provided by GPSoft® forms the basis of the 
simulation environment used in this work. Nevertheless, some modifications with respect to the 
generation of pseudorange and carrier phase measurements are required in order to reflect the 
progress made in GNSS receiver technology. Furthermore, the modeling of instantaneous 
Doppler shift measurements has to be added, which is not integrated in the SatNav toolbox. In 
this section the generation of the navigation signals, which are processed by the navigation filter, 
is described. Both the simulation of GALILEO and GPS signals is supported. The GNSS signals 
of interest for civil aviation have to reside in an ARNS band. Here GALILEO’s E1 and E5a 
signal and GPS’s L1 and L5 signal are considered. In Table 7.1 the characteristics of these 
navigation signals are summarized. The indicated values are after [29] and date back to 2006. 

Table 7.1: Extract of GALILEO and modernized GPS signal characteristics 

 Channel Frequency [MHz] Carrier Wavelength [m] 
GALILEO E1 E1-B 1575.42 0.1903 
GALILEO E5a E5a-I 1176.45 0.2548 
GPS L1 (present) - 1575.42 0.1903 
GPS L5 I5 1176.45 0.2548 
 Modulation Chip rate [Mc/s] Data / Symbol Rate 
GALILEO E1 BOC(1,1) 1.023 250 sps 
GALILEO E5a BPSK10 10.23 50 sps 
GPS L1 (present) BPSK 1.023 50 bps 
GPS L5 QPSK 10.23 100 sps 

 

Simulation of thermal receiver noise: 

Pseudorange measurement noise is simulated with the help of a random number generator. The 
standard deviation that corresponds to the respective navigation signal type is multiplied by a 
normally distributed random number ݔ~ܰሺ0,1ሻ. The noise level of the pseudorange 
measurements is varied during different simulation runs. In order to get an impression of the 
expected magnitude of pseudorange measurement noise, the standard deviations ߪ஡ாହ௔, ߪ஡ாଵ and 
 .஡௅ଵ, which have been derived from real-signal measurements, are indicated in Table 8.1ߪ
However, in the software simulations more pessimistic values for the standard deviations are 
used when evaluating the filter performance. 

The carrier phase noise in units of cycles is also assumed to be normally distributed with zero-
mean and a standard deviation of 0.012 cycles. This corresponds to approximately 2.3 mm on E1 
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(or L1). The received power is elevation-dependent and the measurement noise level increases 
for low signal strengths. Therefore, an elevation-dependent scaling factor for the standard 
deviations is introduced: 

 ݇ఙ ൌ 1 ൅
1
2
· ݁ି

ாೄೕ
ଵହ°  (7.1)

The satellite elevation angle ܧௌ௝ of Eq. (7.1) has to be inserted in units of degrees. In Figure 7.1 
the run of the scaling factor over the satellite elevation angle is displayed. Both pseudorange and 
carrier phase measurement standard deviations are scaled by this elevation-dependent factor. 

 
Figure 7.1: Scaling factor for the standard deviations of thermal receiver noise 

 

Simulation of propagation delay/advance caused by ionospheric refraction: 

Ionospheric refraction causes a path length difference, ݀௜௢௡, between the measured range and the 
true geometric range. The modeling of signal delays/advances due to the ionosphere follows 
from [23]. The magnitude of ݀௜௢௡ depends on the electron density along the propagation path, 
which is represented by the Total Electron Content (TEC) in units of electrons/m2. If the TEC is 
referenced to the vertical direction through the ionosphere, it is denoted as VTEC. The TEC can 
be approximated by multiplying the VTEC with the obliquity factor. The obliquity factor F 
reflects the dependency of the ionospheric delay on the satellite elevation angle: 

 
ܨ ൌ

1

ඨ1 െ ൬ܴ௘ · ܧሺݏ݋ܿ
ௌ௝ሻ

ܴ௘ ൅ ݄ூ
൰
ଶ

, 
(7.2)

where: 

Rୣ: Mean radius of the earth 

ES୨: Elevation angle of satellite ௝ܵ 

hI: Mean ionospheric shell height 

The special committee 159 of RTCA [36] also proposes to use the definition of the obliquity 
factor according to Eq. (7.2) for WAAS airborne equipment. In literature this model is referred 
to as “single-layer model”, since it is assumed that all electrons are concentrated within a very 
thin layer at medium ionospheric shell height. According to Wanninger [51], the validity of the 
single-layer model is restricted to satellite elevation angles above 30°. There exist further models 
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for the obliquity factor, resulting in a similar run of the elevation-dependent scaling factor. 
Generally, it can be stated that the lower the elevation angle, the higher is the delay due to an 
increased propagation path through the ionosphere. The definitions made so far allow for 
indicating the ionospheric path delay as: 

 ݀௜௢௡ ൌ ܨ ·
40.3 · ܥܧܸܶ

݂ଶ
 (7.3)

The pseudorange measurement is increased by ݀௜௢௡, while the carrier phase measurement is 
reduced by ݀௜௢௡. This corresponds to a delay of the group velocity ݒ௚ and an advance of the 
phase velocity ݒ௣ due to ionospheric refraction: 

 

௚ݒ ൎ
ܿ଴

1 ൅ 40.3 · ݊௘
݂ଶ

, 

௣ݒ ൎ
ܿ଴

1 െ 40.3 · ݊௘
݂ଶ

, 
(7.4)

where ݊௘ is the electron density. Higher order terms of the refractive index have been neglected 
in Eq. (7.4). Typical values which are used in the simulations for the VTEC are between 
1 · 10ଵ଼ ௘௟

௠మ and 3 · 10ଵ଼ ௘௟
௠మ. These values are already beyond the average VTECs. 

Measurement errors due to atmospheric refraction comprise also the delay of the signals when 
passing through the troposphere. Tropospheric range errors are neither estimated by the 
navigation filter nor simulated as nuisance parameters hereafter. It has to be considered that the 
overall filter performance will degrade if the assumption that the residual double-differenced 
tropospheric range errors are negligible is no longer valid. 

 

Simulation of multipath: 

The magnitude of pseudorange and carrier phase measurement errors due to multipath is 
assumed to depend on the satellite elevation angle. Zappavigna [56] proposes to use an inverse 
tangent run of the multipath scaling factor ܯ over the satellite elevation angle ܧௌ௝: 

ܯ  ൌ 1 െ
ௌ௝൯ܧଵ൫ି݊ܽݐ

ଵି݊ܽݐ ቀ2ߨቁ
 (7.5)

The satellite elevation angle ܧௌ௝ has to be inserted into Eq. (7.5) in units of radian. The factor ܯ 
is used in the simulations in order to scale the zero-angle equivalent pseudorange multipath error 
which is provided by the SatNav toolbox. There are two different multipath error models 
available: in the first model a time constant of approximately 2 minutes and a standard deviation 
of approximately 1.6 m are considered, while the time constant of the second model is 
approximately 15 s and the standard deviation is reduced to approximately 0.4 m. The error of 
the carrier phase measurement due to multipath in units of meters is computed from the 
pseudorange multipath error by multiplying it with the factor 0.02 ·  Examples of pseudorange .ߣ
and carrier phase multipath errors for both models are given in Figure 7.2 and Figure 7.3. 
Satellite 8 is always seen under an elevation angle above 60°, while satellite 19 is always seen 
under an elevation angle below 8°. The first multipath error model is applied for the reference 
receiver site. The second multipath error model, which is characterized by a lower standard 
deviation and a lower time constant of the multipath error, is applied for the receiver located at 
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the airplane. Thereby it is reflected that multipath characteristics due to reflections from the 
surface of the airplane are different from those of ground-based multipath. 

 
Figure 7.2: Multipath Error Model 1 (used for the reference station) 

 
Figure 7.3: Multipath Error Model 2 (used for the airplane) 

 

According to [44], the maximum multipath error on L1 carrier phase measurements is about 5 
cm. In the simulations a constant scaling factor is used in addition to the elevation-dependent 
scaling factor ܯ in order to upscale or downscale the magnitude of multipath errors. 

Further GNSS error sources are not considered here. Especially those biases that cancel out 
when double-differencing between observations, e.g. clock errors, are not simulated. The most 
critical simplification of the simulated measurement data compared to real measurement data is 
founded in the neglecting of troposphere-induced range errors. 
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7.1.2 Simulation of the Precision Approach 

A simple physical model of the airplane’s dynamics during precision approach is chosen for the 
simulations. However, it is tried to use realistic values with respect to the decline rate during the 
final approach. Accelerations are also simulated in order to verify if it is justified to use a state 
space model in the EKF which neglects systematic accelerations. The airplane’s absolute 
velocity ranges from 270 knots (= 500 km/h) at the beginning of the simulation to 196.5 knots (= 
364 km/h) at the end of the simulation. Jittering of the airplane’s trajectory due to cross-wind is 
not considered. In Figure 7.4 and in Figure 7.5 the simulated descent of the airplane is displayed, 
one time as a function of the observation epoch and the other time as a function of the baseline 
length between the user receiver and the reference receiver. According to Kaplan [23], an EKF 
designed for solving a navigation problem stabilizes in a few hundred iterations. Here are 
altogether only 408 observation epochs considered, since the maneuver time span of precision 
landing is limited as well as the broadcast radius in order to transmit the reference receiver data 
to the airplane. In Pervan et al. [33] the relationship between system availability and data 
broadcast radius has been examined for carrier phase DGPS navigation. The maximum data 
broadcast radius considered there was 50 nmi (= 92.6 km). In the simulation results presented 
here the broadcast radius is restricted to 50 km. It is desirable to keep the broadcast radius small 
with regard to the required infrastructure and possible interference between different airport 
service volumes. In the real-signal tests, whose results are presented in Sect. 8, the data 
broadcast radius is extended to approximately 75 km. Although no extensive system availability 
analysis has been made in this work, the data broadcast radius is not considered to be a very 
critical parameter with regard to the performance of this navigation filter. 

 
Figure 7.4: Dynamics of the airplane during precision approach 

 

When starting the simulation, the distance between the user receiver, which is installed at the 
airplane, and the reference receiver, which is located in the vicinity of the landing strip, is about 
50 km. After touchdown, which corresponds to the last simulated observation epoch, the airplane 
is about 160 m away from the reference station. A low receiver sampling rate of 1 Hz is 
considered and the simulation time is limited to the last 6.8 minutes of the final flight phase 
before touchdown. 
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Figure 7.5: Final approach of the airplane 

The reference receiver is located in the vicinity of the airstrip in Oberpfaffenhofen at ߮஺ ൌ
48°4ᇱ13.32ԢԢ, ߣ஺ ൌ 11°16ᇱ6.94ԢԢ and ݄஺ ൌ 600݉. The flight path has been chosen arbitrarily: 
the height above ground is decreased as shown in Figure 7.5 and the latitude of the airplane 
changes, while the longitude is left constant. 

 

7.1.3 Integrity Monitoring Parameters 

The expected alert limits of a CAT IIIc approach are ܮܣܪ ൌ 15.5݉ and ܸܮܣ ൌ 5.3݉. As soon 
as the widelane ambiguities are fixed, the computed horizontal and vertical protection levels for 
the filter-based position solution are smaller than 5.3 m. Therefore, the achievable magnitude of 
the protection levels is investigated rather than the violation of a specific alert limit. Further 
applications like automated cargo-traffic, which are also of interest, might require far smaller 
alert limits than CAT III precision approaches. The integrity monitoring parameters (see Table 
7.2) are not chosen such that the expected CAT IIIc requirements are fulfilled exactly, but the 
order of magnitude will be very similar. Note that here the same tight error bounds are used for 
both the horizontal and the vertical position component while in civil aviation the requirements 
for the horizontal component are more relaxed during precision approach. 

 

Table 7.2: Error probabilities, critical values and sigma-overbounding 

Normal Operation (ࡵ૙,ࢉࢋ࢖࢙,ࡾ࡭࡯) 

Integer Bootstrapping 

Probability of false widelane integer ambiguity fixing 
ிܲ,ௐ௅ ൌ 1 · 10ିଽ 

Probability of false carrier phase integer ambiguity fixing 
ிܲ,஼௉ ൌ 1 · 10ିଽ 

User Position Bounding 

ܲൣหݔො௛,஻ െ ௛,஻หݔ
൐ ,ௐ௅ܨܥ଴|ሺܮܲܪ  ஼௉ሻ൧ܨܥ

ܲൣหݔො௩,஻ െ ௩,஻หݔ
൐ ,ௐ௅ܨܥ଴|ሺܮܸܲ  ஼௉ሻ൧ܨܥ

଴ܲ,ெ஽_ு ൌ 1 · 10ିଽ 
՜ ݇଴,ெ஽_ு ൌ 6.12 

଴ܲ,ெ஽_௏ ൌ 1 · 10ିଽ 
՜ ݇଴,ெ஽_௏ ൌ 6.12 

Horizontal position inflation factor Vertical position inflation factor 
௉݂௢௦,ு ൌ 1.2 ௉݂௢௦,௏ ൌ 1.2 
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Fault Mode (ࡵ૚,࢙ࢉࢋ࢖) 

Fault Detection 

Probability of false alarm 
ிܲ஺ ൌ 1 · 10ି଻ 

Probability of missed detection 

ெܲ஽,ଵ ൌ 1 · 10ିଽ 

Fault Identification 
Probability of wrong error identification 

ௐܲூ஽ ൌ 2 · 10ିଽ 

Sigma Overbounding 
Innovation inflation factor 

௥݂ ൌ 2.8 
 

The associated integrity risk is expected to be at the order of 3 · 10ିଽ. As mentioned before, 
there is no analytic proof that the integrity risk is indeed bounded by 3 · 10ିଽ for this EKF-based 
approach. Unfortunately, the required number of simulated precision approaches is too high in 
order to assess the actual integrity risk by simulations. For this reason other filter performance 
parameters than the integrity risk are evaluated in the following. The simulation results presented 
hereafter are based on the small error probabilities indicated in Table 7.2. Only the IB estimator 
is listed in Table 7.2, since it offers the chance to compute the probability of false integer 
ambiguity fixing exactly. If the LAMBDA method is used for ambiguity resolution, the 
validation of the integer ambiguities is based on the ratio test together with an integer test. The 
levels of significance of the integer test are set to ߙௐ௅ ൌ 2 · 10ିହ and ߙ஼௉ ൌ 2 · 10ିହ and the 
critical values of the ratio test are set to ݇௖,ௐ௅ ൌ 4 and ݇௖,஼௉ ൌ 4. If not indicated otherwise, the 
IB estimator is used for ambiguity resolution. 

 

7.2 Evaluation of the Filter Performance 

7.2.1 Dependency on the Satellite Geometry 

Two different satellite constellations are considered in the simulations. The first constellation is 
derived from an arbitrary GPS RINEX file and the second constellation is derived from a 
GALILEO simulation scenario generated by the Spirent HW simulator. 

 
Figure 7.6: Sky-plot of the satellites during precision approach (left: GPS constellation; right: 
GALILEO constellation) 
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Since the received signal power, the propagation path length through the ionosphere and 
multipath are elevation-dependent, an elevation mask is used to exclude satellites seen under low 
elevation angles. Receiver elevation mask angles between 5° and 30° are considered here. The 
number of satellites used in the navigation solution varies with different settings for the receiver 
elevation mask angle. In Table 7.3 the corresponding DOP values are indicated for the GPS and 
GALILEO satellite constellation of Figure 7.6. The DOP values do not change significantly 
during the maneuver time. 

 

Table 7.3: DOP values in dependency of the receiver elevation mask 

Constellation Elevation Mask # Satellites HDOP VDOP PDOP 

GPS 
20° 6 1.52 3.51 3.83 
10° 8 1.34 1.94 2.36 
5° 10 1.29 1.70 2.13 

GALILEO 
30° 6 1.99 3.01 3.61 
10° 7 1.28 2.44 2.76 
5° 9 1.02 1.15 1.54 

 

Dual-frequency pseudorange, carrier phase and Doppler shift measurements on ଵ݂ ൌ
and ଶ݂ ݖܪܯ1176.45 ൌ  are simulated and forwarded to the navigation filter as ݖܪܯ1575.42
measurement input. The following standard deviations are used for the simulation of 
measurement noise: ߪ஡௅ଵ/ாଵሺ90°ሻ ൌ ஡௅ହ/ாହ௔ሺ90°ሻߪ ,30ܿ݉ ൌ Фሺ90°ሻߪ ,10ܿ݉ ൌ 0.012 cycles 
and ߪDሺ90°ሻ ൌ ௠௜௡ܥܧܸܶ Vertical total electron contents between .ݖܪ0.1 ൌ 1 · 10ଵ଼ ௘௟

௠మ and 

௠௔௫ܥܧܸܶ ൌ 2 · 10ଵ଼ ௘௟
௠మ are considered. The Ionosphere Model 3, see Sect. 5.3.3, is used in the 

navigation filter in order to estimate the double-differenced ionospheric range errors. The 
parameters of this ionosphere model are set to ߪଶሺ90°ሻ ൌ ሺ3ܿ݉ሻଶ and ݀ ൌ 300݇݉. 
Furthermore, the spectral amplitude of the random walk process in the covariance matrix of 
process noise is considered to be ܵ௣ ൌ 3௠

మ

௦మ
௥௔ௗ
௦

. The estimated standard deviations, which are 
used to compute the covariance matrix of measurement noise ܴ, are set to ߪො஡௅ଵ/ாଵ ൌ 40ܿ݉, 
ො஡௅ହ/ாହ௔ߪ ൌ ොФߪ ,20ܿ݉ ൌ 0.0159 cycles and ߪො୰୰,௙మ ൌ 0.02  ୫

ୱ
. Note that the measurement noise 

due to thermal receiver noise has been chosen rather pessimistically. On the other hand, no 
multipath errors have been simulated in this concrete simulation scenario. 

 

 
Figure 7.7: Vertical protection levels and position errors for the GPS constellation 
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The simulation results for the vertical protection levels in dependence of the receiver elevation 
mask angle are shown in Figure 7.7 for the GPS satellite constellation. Besides the VPLs, also 
the vertical component of the user position error, ݔߜ௩, is plotted, which is always clearly below 
the computed protection level. As expected from the DOP values, the results for the horizontal 
position component are even better, and therefore not displayed. A widelane ambiguity-fixed 
solution is obtained in observation epoch 152 (5° elevation mask), 155 (10° elevation mask) and 
162 (20° elevation mask). A carrier phase ambiguity-fixed solution is obtained in observation 
epoch 219 (5° elevation mask) and in observation epoch 286 (10° elevation mask). No carrier 
phase ambiguity resolution with ிܲ,஼௉ ൌ 1 · 10ିଽ is possible if the elevation mask angle is set to 
20°. Here the VPLs of the carrier phase ambiguity-fixed position solutions are between 15 cm 
(5° elevation mask) and 20 cm (10° elevation mask). 

Next, the GALILEO constellation is considered. The measurement standard deviations are not 
modified with respect to GPS. This ensures that the test outcomes are only influenced by the 
variation of satellite geometry. 

 

 
Figure 7.8: Vertical protection levels and position errors for the GALILEO constellation 

 

Independent from the setting of the elevation mask angle, the widelane ambiguities could always 
be fixed successfully in either epoch 152 (5° elevation mask), or in epoch 160 (10° elevation 
mask), or in epoch 166 (30° elevation mask). A carrier phase ambiguity-fixed solution could 
only be determined for an elevation mask angle of 5° in epoch 247. Even if applying sigma-
overbounding, the VPL for the vertical position component of the carrier phase ambiguity-fixed 
solution becomes as low as 10 cm at the end of the simulation run. However, this seems 
reasonable when having a look at the maximum deviation of the vertical position component 
from the true position, which is below 2 cm. For the GALILEO constellation with only 6 or 7 
visible satellites no carrier phase ambiguity-fixed solution was obtained. Nevertheless, the 
protected position accuracy of the widelane ambiguity-fixed position solution is still sufficient 
for CAT IIIc precision approach. In all six simulation runs the VPL of the float solution is below 
5 m after the navigation filter has been running for 100 epochs. The baseline length between the 
reference receiver and the user receiver at observation epoch 100 is approximately 35.6 km. 

The actual satellite constellation is decisive for resolving the ambiguities successfully since a 
geometry-based mathematical model is used for ambiguity resolution. On the one hand, the 
satellite geometries considered here do not correspond to the worst case constellation. On the 
other hand, the measurement noise has been chosen rather pessimistically. In the near future both 
GALILEO and GPS signals can be tracked simultaneously. Therefore, it is assumed that poor 
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satellite geometries will no longer be the limiting factor if combined GALILEO and GPS 
measurements were processed simultaneously by the filter. The test results suggest that the 
number of satellites in view is very important for the confidence in carrier phase integer 
ambiguity vector. The widelane ambiguities could be fixed for all constellations listed in Table 
7.3. However, the computed probability of false carrier phase ambiguity fixing, ிܲ,஼௉, was only 
smaller than 1 · 10ିଽ if at least 8 satellites were visible simultaneously. If a combined 
GALILEO and GPS constellation is considered, a minimum number of 8 visible satellites will 
easily be achievable. The results presented in this section were obtained in absence of multipath. 
The influence of multipath on the filter performance will be investigated separately. 

 

7.2.2 Changes in the Satellite Constellation 

During the flight phase new satellites may appear and other satellites may set while the nonlinear 
filter is already running. Only those satellites which are seen above the specified elevation mask 
at both the reference receiver site and the user receiver site are included into the navigation 
solution. So far it is assumed that the reference satellite will not change. Since the time span of 
precision approach is limited, it is reasonable to assume that one can keep the same reference 
satellite during the whole approach. However, if the reference satellite fails, it would be 
advantageous to have for example a second filter running in parallel which uses a different 
reference satellite. Then one could switch between the two filters if a reference satellite failure 
was detected. The reference satellite is excluded from the further considerations. A setting 
satellite can easily be removed from the filter by deleting the respective rows and columns which 
correspond to this satellite from the matrices and vectors. In Figure 7.9 the variation of the 
horizontal and vertical protection level is shown for the case that one of the tracked satellites 
sets. In this example the carrier phase ambiguities have already been fixed before the satellite is 
excluded from the navigation solution. Therefore, the carrier phase measurements are given the 
most weight within the filter and dominate the position accuracy as well as the magnitude of the 
protection levels. 

 
Figure 7.9: Variation of the protection levels due to a setting satellite 

 

The indicated protection levels for the carrier phase ambiguity-fixed position solution refer to 
moderate DOP values. However, the influence of a setting satellite on the VPL can be clearly 
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mask of 15°, the VDOP changes by 36% and the VPL almost doubles. The impact of the satellite 
exclusion on the HPL is less severe, since the change of the HDOP is also less significant. It 
should be mentioned that in this example the measurement variances in ܴ௞ have not been scaled 
by an elevation-dependent function. The variation of the protection levels due to a setting 
satellite is assumed to be less distinctive if elevation-dependent measurement variances were 
used. 

Besides the event that a satellite may set it is also possible that a new satellite rises while the 
navigation filter is still running. There are several possibilities how to treat the newly appeared 
satellite. The simplest approach would be to simply ignore the new satellite. This might be 
acceptable for short time periods such as the maneuver time of a final landing approach. But the 
navigation filter should be started some time before actually landing in order to let the filter 
solution stabilize and to provide enough time for reliable ambiguity resolution. There is a second 
aspect against this simple approach as long as the carrier phase ambiguities have not yet been 
fixed. It has been observed in simulations that the availability of a further satellite may 
significantly reduce the computed probability of wrong integer ambiguity fixing of the IB 
estimator. Thus, it can happen that the carrier phase integer ambiguity vector is accepted after 
including the new satellite into the solution, while otherwise no carrier phase ambiguity-fixed 
position solution could have been derived. It seems that the reliability of the integer ambiguity 
vector increases with the number of satellites in view in absence of biases. Therefore, a strategy 
is applied in this work that includes rising satellites at once. The inclusion of new satellites is 
unproblematic as long as the initial integer ambiguities of all other satellites have not yet been 
resolved. If the double-differenced ambiguities of the other satellites were already fixed, the 
following procedure is applied in order to include the measurements from the new satellite: In 
the epoch the new satellite appears, the measurements from this new satellite are still excluded at 
first and the navigation solution is computed as before. Afterwards, an initial guess of the new 
unknown double-differenced ambiguities is derived from the fixed solution: 

 ෙܰכ,௜௡௜௧ ൌ ൥כߔ∆ߘ,஺஻
ௌೝ೐೑ௌೣ െ

஺஻ݎ̂∆ߘ
ௌೝ೐೑ௌೣ

כߣ
൩ , (7.6)

where the squared brackets denote rounding to the nearest integer, ܵ௫ is the satellite that has just 
appeared and the symbol ‘*’ can be replaced by the corresponding frequency index (e.g. either 
‘WL’ or ‘CP’). The double-differenced range estimate is computed from the ambiguity-fixed 
position solution: 

஺஻ݎ̂∆ߘ 
ௌೝ೐೑ௌೣ ൌ ฮܺ஺ െ ܺௌೝ೐೑ฮଶ െ ฮܺ஺ െ ܺௌೣฮଶ െ ฮ ෠ܺ஻ െ ܺௌೝ೐೑ฮଶ ൅ ฮ ෠ܺ஻ െ ܺௌೣฮଶ (7.7)

Although the accuracy of the estimated user position vector ෠ܺ஻ is rather good in case of a fixed 
solution, it is not completely safe to use Eq. (7.6) in order to fix the missing integer ambiguities 
of the new satellite. Therefore, in the software a flag is set which indicates that the ambiguities 
are not fixed. Since all ambiguities except from the one of the newly appeared satellite have 
already been fixed, their variances are set to be almost zero in the stochastic model. Only the 
variance of the new double-differenced ambiguity is set to a higher value. Due to the good initial 
estimate of the new ambiguity and the low variances of all other ambiguities the integer 
ambiguities can be (re-)fixed almost immediately. On the one hand this allows keeping a very 
precise position estimate and low protection levels even directly after including the 
measurements from the new satellite. On the other hand ambiguity resolution of the new 
ambiguities is still safe by stepping back to an interim float solution. This approach, which 
benefits from the stochastic model in the EKF, is also used for re-fixing the ambiguities if a 
cycle slip on one of the phase measurements has been detected. 



106  7 Monte-Carlo Simulations 

 

The effects of including a new satellite into the position solution is shown in Figure 7.10 for the 
case that the widelane ambiguities have already been fixed. In observation epoch 178 the number 
of satellites in view, which are above the specified elevation mask angle of 10°, increases from 8 
to 9 satellites. The fixed solution is lost during the next 12 observation epochs because of 
including the new satellite. All widelane ambiguities are re-fixed safely in observation epoch 
190. Now, with 9 satellites in view instead of 8 satellites, reliable carrier phase ambiguity 
resolution is speeded up. In observation epoch 255 the carrier phase ambiguities are fixed. 

 
Figure 7.10: Inclusion of a rising satellite into the filter solution 

 

Hardly any change of the protection levels is observable when the number of satellites is 
increased from 8 to 9 satellites. The HDOP improves only marginally from 1.34 to 1.30 and the 
VDOP slightly improves from 1.90 to 1.81 in this example by including the rising satellite in the 
navigation solution. If the stochastic model is set up conveniently, stepping back from a 
widelane ambiguity-fixed solution to a widelane ambiguity-float solution due to the inclusion of 
a new satellite has hardly any impact on the current precision of the position solution and on the 
protection levels. However, if the ninth satellite was not included at all, a carrier phase 
ambiguity-fixed solution would not be obtained before observation epoch 284. Since in this 
example the enclosure of the ninth satellite did only slightly improve the DOP values, there are 
for sure examples where it is even more important to support the filter adaptation to changes in 
the satellite constellation. 

 

7.2.3 Influence of the Dynamic System Model 

The discrete-time state equations used in the EKF in order to model the airplane’s dynamics 
during the landing approach have been described in Sect. 5.2.4. It is assumed that the final 
approach can be modeled as straight flight condition with constant velocity. In this section it is 
investigated whether the final phase of the flight can indeed be represented by such a simple 
state space model. From Sect. 7.1.2 follows that systematic decelerations are present in the 
physical model of the airplane’s dynamics in this simulation environment. There are also some 
phases of the flight where the straight flight condition with constant velocity is fulfilled. The 
most interesting parameter with respect to the influence of the dynamic system model on the 
filter performance is the spectral amplitude of the random walk ܵ௣. The same simulation setup as 
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described in Sect. 7.2.1 is used. Here the GPS constellation and an elevation mask angle of 10° 
are applied. 

First, the confidence in the state space model is overrated, e.g. the process noise variances of the 
position and velocity states are set to very low values. For this purpose the spectral amplitude of 
the random walk is set to ܵ௣ ൌ 0.01௠మ

௦మ
௥௔ௗ
௦

, which is definitely very optimistic. The effect of 
using lower variances for the position and velocity states in the process model than the actual 
variances of the physical system is shown in Figure 7.11: 

 
Figure 7.11: Error spikes in the position solution due to incorrect process noise settings 

 

The presence of constant minor decelerations does not have much impact on the position 
estimate accuracy. In observation epoch 283 the carrier phase ambiguities are fixed correctly 
although the airplane’s velocity is not constant during this phase of the flight. However, every 
time the acceleration changes slightly between successive observation epochs a position error 
spike can be detected. It has also to be considered that no significant accelerations are present in 
the simulated physical model. It is expected that the results would be even worse if real flight 
tests were considered given that the process noise variances are chosen to be that low. 

 
Figure 7.12: Excess of the protection level due to incorrect process noise settings 
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In Figure 7.12 it is shown that the vertical component of the position estimation error exceeds 
the VPL one time. However, this does not mean that the integrity risk requirement is violated. It 
is ensured by the implemented fault detection algorithms that any excess of the protection levels 
is detected properly (within the specified probability of missed detection). The epochs where 
(unspecified) overall model invalidations are detected are marked by black crosses. In this 
example more faults are detected than there are violations of the VPL and HPL. The protection 
levels have been enlarged by applying sigma-overbounding. The presence of smaller errors can 
still be detected, but their detection is less probable than required by the integrity risk. 
Furthermore, also the excess of the velocity protection levels is detected by the unspecific fault 
detection algorithms as shown in Figure 7.15. Thus, the black crosses displayed in the figures 
refer to the first step of AFDIA, e.g. to the detection of overall model invalidations and not to the 
identification of the error source. Although the integrity of the position solution is not violated 
by reducing ܵ௣, the continuity is endangered by misspecifying the variances of the dynamic 
model. Errors due to incorrect setting of process noise variances cannot be compensated by the 
proposed AFDIA scheme, because so far it is assumed that model invalidations are due to 
anomalous measurement data. 

Next, it is investigated what happens if there is no confidence in the dynamic model. High 
process noise variances are assigned to the position and velocity states if ܵ௣ is set to a very large 
value. Hereafter, a pessimistic assumption is made with respect to the spectral amplitude of the 
random walk, e.g. ܵ௣ ൌ 50௠మ

௦మ
௥௔ௗ
௦

. 

 
Figure 7.13: High process noise variances alleviate the effects of unmodeled accelerations 

 

When comparing Figure 7.11 with Figure 7.13, it becomes obvious that the navigation filter 
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Figure 7.14: Good filter performance despite of a weak dynamic model 

 

The protection levels are hardly influenced by the concrete value of ܵ௣. Therefore, it is suggested 
to choose the variances of process noise rather pessimistic than too optimistic. It is also 
illustrated in Figure 7.15 with respect to the velocity estimates that there is no benefit of setting 
the variances of process noise too tight. During the phases of flight with constant velocity the 
velocity estimate errors are almost identical for different spectral amplitudes ܵ௣. Whenever the 
acceleration of the airplane changes between two successive epochs, the velocity protection 
levels are exceeded if ܵ௣ was set to 0.01௠

మ

௦మ
௥௔ௗ
௦

 and the fault detection algorithm raises an alarm. 

An alarm is still raised if ܵ௣ was set to 1௠
మ

௦మ
௥௔ௗ
௦

, although the position and velocity estimation 
errors are only slightly increased and do not yet exceed the protection levels when the 
acceleration changes. These investigations refer to the availability of good satellite geometry. It 
will be discussed later in this work how the impact of ܵ௣ on the protection levels changes if the 
satellite geometry was poor. 

 
Figure 7.15: Dependency of the user velocity accuracy on the variances of process noise 
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According to [29], the 95th percentiles of the horizontal velocity error are 0.08௠
௦

 for constant 
velocity scenarios if the velocity estimates were based on pseudorange rates. The user velocity 
estimates derived from this navigation filter are vaguely less accurate, since double-differenced 
Doppler shift measurements are used to determine the velocity. Measurement noise 
amplification due to double-differencing contributes to enhanced noise of the velocity estimates. 

Next, it is discussed why in this example almost the same results are obtained for ܵ௣ ൌ 1௠
మ

௦మ
௥௔ௗ
௦

 

and ܵ௣ ൌ 50௠మ

௦మ
௥௔ௗ
௦

. Therefore, the a priori and the posteriori covariance matrix of state 
estimation uncertainties ௞ܲሺെሻ and ௞ܲሺ൅ሻ are examined with respect to the user position and 
velocity states. It holds that the predicted state estimates for the next observation epoch are less 
(or at best equally) precise than the filtered state estimates of the current observation epoch: 

 ௞ܲାଵሺെሻ ൒ ௞ܲሺ൅ሻ (7.8)

Furthermore, the Kalman gain is optimized such that the posteriori state estimates are more (or at 
worst equally) precise than the a priori state estimates: 

 ௞ܲሺെሻ ൒ ௞ܲሺ൅ሻ (7.9)

As shown in Figure 7.16 and in Figure 7.17, the deviation of the variances of the predicted state 
estimates from the variances of the posteriori filtered state estimates depends on the magnitude 
of process noise. The actual parameters of interest when evaluating the filter performance are the 
variances of the posteriori filtered state estimates. They are represented by green bars in Figure 
7.16 and Figure 7.17. One can see that a low value of the spectral amplitude of the random walk 
process ܵ௣ does hardly reduce the posteriori state estimation uncertainty. The variances of the 
position estimation uncertainty, which are depicted in the following figure, are computed from 
the first three main diagonal terms of the covariance matrices of state estimation uncertainty: 

௣௢௦ଶߪ  ൌ ሺܲଵ,ଵሻ ൅ ሺܲଶ,ଶሻ ൅ ሺܲଷ,ଷሻ (7.10)

In analogy, the variances of the velocity estimation uncertainty follow from: 

௩௘௟ଶߪ  ൌ ሺܲସ,ସሻ ൅ ሺܲହ,ହሻ ൅ ሺܲ଺,଺ሻ (7.11)

Consequently, the variances are not subdivided into a horizontal and vertical component in the 
following plots. 

 
Figure 7.16: Theoretical variances of the position estimation uncertainties in dependence of the 
spectral amplitude of the random walk process 
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As soon as the carrier phase ambiguities are fixed, the dynamic state space model does hardly 
have any impact on the position estimates. Only if the measurement standard deviations in ܴ 
were very high or the satellite geometry was very poor, the state space model would effectively 
contribute to the accuracy of the state estimates. As long as the uncertainty of the a priori state 
estimates is far above the uncertainty of the posteriori state estimates, it can be concluded that 
the filtered state estimates mainly depend on the measurement input data from the current 
observation epoch. It is essential for the filter performance that the variances of process noise are 
not set to lower values than the actual physical variances, whereas in this concrete simulation 
scenario it is rather uncritical if the variances of process noise were set to significantly larger 
values. To conclude, the accuracy of the position estimates is here determined by the quality of 
the GNSS measurements rather than the accuracy of the dynamic state space model.  

 

 
Figure 7.17: Theoretical variances of the velocity estimation uncertainties in dependence of the 
spectral amplitude of the random walk process 

 

The theoretical variances of the velocity estimation uncertainties are hardly influenced by 
ambiguity fixing, since the velocity estimates depend mainly on the double-differenced Doppler 
shift measurements. Therefore, the theoretical variances of the velocity estimation uncertainties 
are more or less the same for observation epoch 5 and observation epoch 300. Since the filter 
performance results are quite good if the variances of process noise are set to high values, it is 
assumed here that there is no need to introduce a dynamic model that accounts for systematic 
accelerations. However, if the variances of process noise are set to low values, the model 
invalidations can be indeed observed as shown in Figure 7.11 and Figure 7.12. 

 

7.2.4 Ionosphere Models and Multipath 

So far only the Ionosphere Model 3 according to Sect. 5.3.3 has been considered. Now the three 
different stochastic models for the ionosphere are compared with one another on the basis of 
simulation results. The parameters of the different ionosphere models, which can be varied in a 
sensitivity analysis, are shortly summarized: 

- Model 1 (according to Sect. 5.3.1): Variance of the Vertical Ionospheric Gradient σVIGଶ  
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- Model 2 (according to Sect. 5.3.2): Upper limit of the double-differenced ionospheric 
variance σஶଶ , first order correlation distance of the double-differenced ionosphere D and 
first order correlation time of the double-differenced ionosphere T 

- Model 3 (according to Sect. 5.3.3): Single-differenced ionospheric variance σଶሺ90°ሻ 
and correlation distance of the differential ionosphere d 

One common reference simulation scenario is used hereafter, which is described in Table 7.4. 

 

Table 7.4: Simulation scenario for the evaluation of different ionosphere models 

Satellite constellation: GPS, elevation mask angle 5° 
Signal characteristics: GALILEO E5a and E1 
 ௠௜௡ܥܧܸܶ ௠௔௫ܥܧܸܶ Dሺ90°ሻߪ Фሺ90°ሻߪ ாହ௔ሺ90°ሻߪ ஡ாଵሺ90°ሻߪ

3 ݖܪ0.09 ݏ݈݁ܿݕ0.012ܿ 5ܿ݉ 18ܿ݉ · 10ଵ଼
݈݁
݉ଶ 1 · 10ଵ଼

݈݁
݉ଶ 

 

First, multipath is not simulated and the residual double-differenced tropospheric range error will 
not be considered. Since GALILEO signals are used, the pseudorange measurements are low-
noisy in absence of multipath. The simulated measurement data after double-differencing is 
displayed in Figure 7.18 as a function of the baseline length between the reference receiver and 
the user receiver. 

 

 
Figure 7.18: Measurement noise after double-differencing (excluding multipath) 

 

The absence of multipath is also reflected by the covariance matrix of measurement noise ܴ. On 
the other hand, the VTEC values which are used to simulate the ionospheric range errors 
correspond to high ionospheric activity. In this normal operation performance test the ionosphere 
model parameters are set as follows: 

Model 1: σVIGଶ ൌ ቀ2୫୫
୩୫
ቁ
ଶ
 

Model 2: σஶଶ ൌ 2mଶ, D ൌ 1500km (or D ൌ 500km), T ൌ 64min 

Model 3: σଶሺ90°ሻ ൌ ሺ3cmሻଶ, d ൌ 300km 
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The Ionosphere Model 1 is examined first. From Figure 7.19 follows that the protection levels 
decrease with the decrease of the baseline length. A widelane ambiguity-fixed solution is already 
available when the airplane is still 34 km away from the reference station, and after further 10 
km also the carrier phase ambiguities are fixed. The protection levels for the carrier phase 
ambiguity-fixed solution are at the order of 10 cm, which seems justified when comparing the 
protection levels with the small position estimation errors. However, the position accuracy is 
only that good because tropospheric errors and multipath errors are neglected. After starting the 
navigation filter, it takes some epochs until the estimation of the VIGs stabilizes. 

 
Figure 7.19: Ionosphere Model 1 - position estimation errors and protection levels 

 

Unlike the previous example, the protection levels which are obtained when using the 
Ionosphere Model 2 do not vary significantly with the change of the baseline length. As 
described in Sect. 5.3.2, pseudo-measurements for the double-differenced residual ionospheric 
range error are introduced when using this ionosphere model. The pseudo-measurements equal 
zero. The filter does not succeed in estimating the double-differenced ionospheric range errors 
due to the introduction of pseudo-measurements. However, it is still better to use the 2nd 
ionosphere model than neglecting the residual ionospheric range errors completely. At least it is 
reflected to some degree that the residual ionospheric range errors are not negligible and cannot 
be characterized by white Gaussian noise.  

 
Figure 7.20: Performance of Ionosphere Model 2 in dependency of the correlation distance D 

 

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5
Ionosphere Model 1

H
or

iz
on

ta
l C

om
po

ne
nt

 

 
δxh [m]

HPL [m]

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

V
er

tic
al

 C
om

po
ne

nt

baseline length [km]

 

 
δxv [m]

VPL [m]

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4
Ionosphere Model 1: Zoomed

H
or

iz
on

ta
l C

om
po

ne
nt

 

 

δxh [m]

HPL [m]

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

V
er

tic
al

 C
om

po
ne

nt

baseline length [km]

 

 

δxv [m]

VPL [m]

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1
Ionosphere Model 2 (D = 1500 km)

H
or

iz
on

ta
l C

om
po

ne
nt

 

 
δxh [m]

HPL [m]

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

V
er

tic
al

 C
om

po
ne

nt

baseline length [km]

 

 
δxv [m]

VPL [m]

Undetected excess of the HPL

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1
Ionosphere Model 2 (D = 500 km)

H
or

iz
on

ta
l C

om
po

ne
nt

 

 
δxh [m]

HPL [m]

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

V
er

tic
al

 C
om

po
ne

nt

baseline length [km]

 

 

δxv [m]

VPL [m]



114  7 Monte-Carlo Simulations 

 

If the first order correlation distance is set to ܦ ൌ 1500݇݉, the HPL is exceeded two times 
without being detected by the overall model validation. The widelane ambiguities are fixed 
correctly short after starting the filter. The resulting protection levels for the widelane ambiguity-
fixed solution are too low because the standard deviations of the ionospheric pseudo-
measurements are lower than the standard deviations of process noise which refer to the double-
differenced ionospheric range errors. Consequently, the computed protection levels reflect that 
the stochastic model suggests the absence of large ionosphere errors. If there is high ionospheric 
activity, the protection levels will be exceeded due to the presence of large residual ionospheric 
range errors which are not estimated properly. The excess cannot be detected by AFDIA, 
because the filter is provided with pseudo-measurements and pseudo-measurement variances of 
the ionosphere which do not reflect the actual environmental parameters. The filter estimates of 
the double-differenced ionospheric range errors on E1 are confronted with the actual ionospheric 
range errors in Figure 7.21. 

 
Figure 7.21: Bad performance of the double-differenced ionospheric range error estimation with 
Ionosphere Model 2 

 

The setting of the stochastic double-differenced ionosphere parameters according to [11] seems 
to be too optimistic given that there is high ionospheric activity. In a second simulation run the 
first order correlation distance is reduced to ܦ ൌ 500݇݉. The effect of reducing the correlation 
distance is that it takes longer to fix the widelane ambiguities. The position estimation errors do 
no longer exceed the protection levels. Though, the problem that the ionospheric states are not 
estimated adequately due to the pseudo-measurements is not yet solved. While the widelane 
ambiguity-fixed solution is soon available, no carrier phase ambiguity-fixed solution can be 
derived with this Ionosphere Model for the given simulation scenario. Next it is shown that the 
filter performance with the Ionosphere Model 2 is still better than assuming that the residual 
ionospheric range errors were negligible from the very beginning. In Figure 7.22 the results of a 
simulation run are displayed where only thermal receiver noise has been considered in the 
stochastic models. 
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Figure 7.22: Excess of the protection levels when neglecting the residual ionospheric range 
errors 

 

It is detected that the position estimation errors exceed the protection levels when neglecting the 
double-differenced ionospheric range errors. The reason why an alarm can be raised here while 
the excess of the protection levels has not been detected when using the Ionosphere Model 2 is 
that here the carrier phase ambiguities are fixed wrongly short after starting the filter. This 
means that not the cause of the model invalidation is detected, e.g. the illegal neglecting of the 
residual ionospheric range errors, but the effect of the model invalidation, e.g. wrong carrier 
phase ambiguity fixing. It becomes obvious from the example with the Ionosphere Model 2 and 
the example where the ionospheric refraction is neglected that any too optimistic view-point on 
the residual double-differenced ionospheric errors will lead to protection levels that do not 
effectively bound the position estimation errors. 

Finally, the Ionosphere Model 3 is investigated. Just as the Ionosphere Model 1, it does not make 
use of pseudo-measurements for the unknown ionospheric terms. Therefore, better performance 
in estimating the unknown double-differenced ionospheric range errors may be expected 
compared to the usage of Ionosphere Model 2: 

 
Figure 7.23: Good performance of the double-differenced ionospheric range error estimation 
with Ionosphere Model 3 
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It takes some time until the filter estimates of the double-differenced ionospheric range errors 
stabilize. After initializing the filter, the measurements which are given the most weight in the 
filter solution are the pseudorange measurements. It is rather difficult to estimate the double-
differenced range errors on E1, which are smaller than 30 cm, from noisy double-differenced 
pseudorange measurements. As a function of time and baseline length, the phase measurements 
become more and more important for the filter solution and the estimation of the ionosphere 
errors also improves. As soon as the carrier phase ambiguities are fixed, the residual ionospheric 
range errors are almost perfectly estimated by the filter. The run of the protection levels as a 
function of the baseline length when implementing the Ionosphere Model 3 is similar to that of 
the Ionosphere Model 1. The widelane ambiguities are fixed at a distance of 34 km to the 
reference station and the carrier phase ambiguities are fixed at a baseline length of 24.5 km. 

 
Figure 7.24: Ionosphere Model 3 - position estimation errors and protection levels 

 

In absence of multipath and tropospheric range errors, the VPL of the carrier phase ambiguity-
fixed solution is as low as 14 cm. The protection levels do hardly vary after all ambiguities have 
been fixed. In contrast, if the Ionosphere Model 1 was used, the protection levels of the carrier 
phase ambiguity-fixed solution continued to decrease for baseline lengths below 5 km. The run 
of the protection levels for the different ionosphere models is summarized in Figure 7.25. The 
first order correlation distance ܦ of the Ionosphere Model 2 has been set to 500 km hereafter. 

 
Figure 7.25: Protection levels as a function of the baseline length in dependence of the 
Ionosphere Model 
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Apart from the first 10 km after starting the filter, the resulting protection levels for the 
Ionosphere Model 1 and the Ionosphere Model 3 are almost identical. The results that are 
obtained when using these two ionosphere models seem reasonable when comparing the position 
estimation errors with the protection levels. It is assumed that the Ionosphere Model 3 performs 
slightly better during the first few epochs since the double-differenced ionospheric range error 
states are better observable than the VIG states when using double-differenced measurement 
data. If ionospheric refraction is neglected, the carrier phase ambiguities are almost immediately 
fixed. However, they are fixed to the wrong integer values and the navigation solution has to be 
declared unavailable since the fault detection algorithm raises an alarm. When using the 
Ionosphere Model 2, pseudo-measurements of the double-differenced ionospheric range errors 
are introduced in the measurement model. The widelane ambiguities can be fixed correctly 
sooner than with one of the other ionosphere models. Though, the introduction of zero-valued 
pseudo-measurements and low associated measurement variances is risky. For example, if there 
is a solar storm the excess of the protection levels will not be detected. To conclude, in absence 
of multipath the usage of either Ionosphere Model 1 or Ionosphere Model 3 is recommended. 

It is of special interest to examine the effects of unmodeled non-white error sources on the 
overall filter performance. Measurement errors due to multipath are not modeled in this filter and 
the previously presented results were obtained in absence of multipath. Now multipath errors are 
included in the simulated measurement data, but no separate states for multipath errors are 
introduced in the filter model. If the presence of severe multipath on all channels is not reflected 
by increased measurement noise in the covariance matrix ܴ, it is likely that the widelane 
ambiguities are fixed to the wrong integers. The fault detection algorithm will frequently raise an 
alarm, but the succeeding fault identification does not provide reliable results because it has to 
cope with multiple-channel biases instead of single-channel biases. In order to prevent false 
ambiguity fixing, the pseudorange and carrier phase measurement standard deviations, which are 
used in order to set up ܴ, have to be increased. Thus, measurement errors due to multipath are 
treated as white Gaussian noise sources with high variance. The simulated multipath errors are 
depicted in Figure 7.26, where all receiver channels are affected by multipath to some degree. In 
the following simulations the standard deviations of measurement noise are increased to 
ො஡ாଵߪ ൌ ො஡ாହ௔ߪ ,1݉ ൌ 70ܿ݉ and ߪොФ ൌ 0.0318 cycles. 

 
Figure 7.26: Measurement noise after double-differencing in a severe multipath environment 

 

In a multipath environment it turns out that the introduction of pseudo-measurements of the 
double-differenced ionospheric range errors is quite helpful. In this environment the Ionosphere 
Model 2 outperforms the Ionosphere Models 1 and 3. Introducing ionospheric pseudo-
measurements of low measurement uncertainty in the measurement model has the advantage that 
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unmodeled multipath errors of high amplitudes do not intrude into the process of ionosphere 
state estimation. Hence the ionosphere estimates do not drift off because of multipath. 

 
Figure 7.27: Filter performance in a severe multipath environment (Ionosphere Model 2) 

 

On the left side of Figure 7.27 the position estimation errors are shown for the case that the 
ambiguities are resolved with the LAMBDA method. The integer test and the ratio test are 
passed and therefore at a distance of 21 km to the reference station a widelane ambiguity-fixed 
solution is available and the last 2.5 km of the flight even a carrier phase ambiguity-fixed 
solution is available. The VPL of the float solution starts with 10 m and reduces to 2.2 m after a 
while. The VPL of the carrier phase ambiguity-fixed solution is only 18 cm. Both the HPL and 
the VPL are never exceeded although severe multipath is present. However, the exact probability 
of false integer ambiguity fixing is unknown. On the right side of Figure 7.27 the results are 
shown when the IB estimator is used for ambiguity resolution. Since the measurement variances 
are set to very high values, successful ambiguity resolution with ிܲ ൌ 1 · 10ିଽ is not possible. 
From the run of the green dots, which represent the widlane ambiguity-fixed solution, one can 
also see that the integer least-squares estimator of the LAMBDA method performs better than 
the IB estimator. Although the ambiguities cannot be resolved with the required reliability, the 
resulting protection levels for the float solution are still below the expected alert limits of a CAT 
IIIc precision approach. 

As stated before, if no pseudo-measurements of the ionosphere terms are used in the 
measurement model, there is the threat that non-white error sources cause the ionospheric state 
estimates to drift off. This effect is shown in Figure 7.28, where the presence of severe multipath 
on multiple channels prevents the convergence of the double-differenced ionospheric range error 
estimates. In consequence, there is no chance to fix the widelane ambiguities correctly. While 
ionospheric range errors have the same magnitude for both the code and the carrier phase 
measurements, multipath errors on the carrier phases are less severe. For this reason it is a great 
disadvantage if unmodeled multipath errors intrude into the ionosphere state estimation. Then 
also the carrier phase measurements are severely deteriorated. 
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Figure 7.28: Bad performance of the Ionosphere Model 3 in presence of severe multipath 

 

There are several methods in order to reduce the probability that severe multipath deteriorates 
the measurement quality, for example special care in the design of receive antenna patterns. 
Since the coordinates of the reference receiver antenna are known in advance, it can be 
monitored if the reference receiver measurements were biased by severe multipath. Therefore, in 
the following a more moderate multipath scenario is considered. First, the multipath errors are 
scaled down. Second, it is no longer assumed that there is multipath on all receiver channels 
simultaneously. Multipath errors are modeled only for those satellites which are seen below an 
elevation angle of 30°. In this test this means that measurements from 4 out of 10 satellites are 
biased, which corresponds to 4 biased double-differenced measurements and 5 unbiased double-
differenced measurements. The resulting simulation scenario is expected to be more realistic 
with respect to multipath errors occurring during a landing approach. Hereafter the standard 
deviations of measurement noise, which reflect the presence of multipath, are set to ߪො஡ாଵ ൌ
ො஡ாହ௔ߪ ,40ܿ݉ ൌ 18ܿ݉ and ߪොФ ൌ 0.0318 cycles. The filter performance in dependence of the 
implemented ionosphere model is investigated once more, but now in presence of biased 
measurements. In Figure 7.29 the VPLs are displayed as a function of the baseline length for the 
three different ionosphere models. In addition, the vertical components of the position estimation 
errors are plotted in order to verify if the position errors are indeed below the protection levels. 
The IB estimator is used for ambiguity resolution. 

 
Figure 7.29: Vertical Protection Levels and position estimation errors for different ionosphere 
models in presence of multipath 
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No ambiguity-fixed solution is derived when using the Ionosphere Model 2. However, if the 
LAMBDA method were used for ambiguity resolution instead of IB, both the widelane 
ambiguities at a baseline length of 48.5 km and the carrier phase ambiguities at a baseline length 
of 3.4 km could be fixed correctly (see Figure 7.30). Nevertheless, the vertical position 
component of the float solution estimate error stays below 50 cm all the time even in presence of 
multipath on 4 receiver channels. The VPL of the float solution is below 1.20 m during the final 
approach. Filtering and the usage of carrier phase measurements in addition to pseudorange 
measurements make it possible to achieve such low protection levels for a float solution in a 
multipath environment. 

 
Figure 7.30: Ambiguity resolution with the LAMBDA method in a multipath environment 
(Ionosphere Model 2) 

 

The best filter performance is observed when the Ionosphere Model 3 is implemented. The 
widelane ambiguities are fixed 28 km before touchdown and the carrier phase ambiguities are 
fixed 17 km before touchdown. In presence of biased measurements the VPL of the carrier phase 
ambiguity-fixed solution is as low as 21 cm. 

In a multipath environment it shows clearly that the Ionosphere Model 1 should not be used. The 
VIGs are not observable within a single epoch and the VIG estimates diverge in presence of 
measurement biases. As a result also the user position estimates start to diverge short before 
landing (see Figure 7.31). Furthermore, the integer ambiguities are fixed wrongly since the 
covariance matrix of state estimation uncertainty is corrupted by the non-white measurement 
biases. The divergence of the state estimates during the last few epochs before landing is 
detected by the fault detection algorithm. However, the excess of the VPL due to wrong 
ambiguity fixing is not detected immediately. Single-differenced measurements between 
receivers should be used if the VIGs were to be estimated by the filter, since the problem of bad 
observability of the VIGs can be overcome when using single-difference measurements. Note 
that the actual probability of false ambiguity fixing does not correspond to the theoretical 
probability of false ambiguity fixing ிܲ ൌ 1 · 10ିଽ. In presence of unmodeled biases the actual 
probability of false ambiguity fixing is higher than 1 · 10ିଽ. Not only multipath errors are 
unmodeled biases, but also measurement offsets due to strong interfering signals at nearby 
carrier frequencies. 
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Figure 7.31: Divergence of the position estimates in presence of biases due to bad observability 
of the VIGs 

 

Finally, the information provided by the innovation vector is investigated. The results presented 
hereafter refer to the usage of the Ionosphere Model 3. Range errors due to multipath can be 
observed in the low-noise innovations computed from the pseudorange measurements on E5a as 
shown in Figure 7.32. After the widelane ambiguities have been fixed the position solution 
depends mainly on the phase measurements, which are less affected by multipath range errors. 
Therefore the presence of multipath can be detected in the E5a innovations after ambiguity 
fixing. Besides the measurement biases also abrupt changes of the airplane’s dynamics can be 
observed in the pseudorange innovations. The innovations of the first epoch directly after 
starting the filter are not completely displayed in the figures since their magnitude is far larger 
than the innovations during all following epochs. 

 
Figure 7.32: Pseudorange measurement innovations (Ionosphere Model 3) 

 

The innovations of the widelane and carrier phase measurements are illustrated in Figure 7.33. 
Besides the change of the airplane’s acceleration between two succeeding epochs also the phases 
of flight with non-constant velocity are observable in the phase measurement innovations. The 
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widelane and the carrier phase innovations are far less influenced by multipath than the 
pseudorange innovations. 

 
Figure 7.33: Phase measurement innovations (Ionosphere Model 3) 

 

7.2.5 Performance of the Ionosphere-free Code-Carrier Combination 

The simulation runs of the previous chapter are repeated, but this time with the ionosphere-free, 
geometry-preserving measurement combinations as derived in Sect. 3.4.2. In consequence, no 
ionosphere model has to be implemented and the ionosphere states are removed from the EKF 
state estimation vector. According to [16] the reliability of ambiguity resolution is improved by 
maximizing the ratio between the wavelength and the standard deviation of the mixed code-
carrier linear combination. The double-differenced pseudorange measurements on E1 and E5a 
are replaced by the double-differenced ionosphere-free code-only combination ߩ∆׏ூி,௖௢ௗ௘ି௢௡௟௬, 
where the coefficients of the linear combination follow from Eq. (3.30). Furthermore, the 
double-differenced widelane and carrier phase measurements are replaced by a double-
differenced ionosphere-free code-carrier combination ׏∆߶ூி,௖௢ௗ௘ି௖௔௥௥௜௘௥, which is computed 
from Eq. (3.26). The coefficients of the linear combination with a wavelength of 2.968 m are 
indicated in Table 3.1. Consequently, the new measurement vector, which is forwarded to the 
navigation filter, reads: 

௞ݖ  ൌ ூி,௖௢ௗ௘ି௢௡௟௬ߩ∆ߘൣ ூி,௖௢ௗ௘ି௖௔௥௥௜௘௥߶∆ߘ ଶ൧௞ܦ∆ߘ
் (7.12)

If the ordering of the single measurements in the measurement vector is ߩ∆׏ாହ௔, ߩ∆׏ாଵ, 
 of the ionosphere-free combinations is given ܮ Фாଵ, then the generator matrix∆׏ Фாହ௔ and∆׏
by: 

ܮ  ൌ ൤
ܽଶ,௖௢ௗ௘ି௢௡௟௬ · ܫ ܽଵ,௖௢ௗ௘ି௢௡௟௬ · ܫ 0 0

ܽଶ · ܫ 0 ଶߙ · ܫ ଵߙ · ܫ
൨ (7.13)

The generator matrix ܮ is also used for variance-covariance error propagation due to the inter-
frequency combinations. If there are ݊ satellites in view, then the size of the identity matrices ܫ 
and the zero-matrices 0 is ሺ݊ െ 1ሻ੨ሺ݊ െ 1ሻ. 

First, no multipath is simulated. The measurement noise is also rather low, see Table 7.4, due to 
the usage of the expected GALILEO signal characteristics.  
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Figure 7.34: Performance of the ionosphere-free code-carrier combination in absence of 
multipath 

 

On the left side of Figure 7.34 it shows clearly with respect to the up-component of the position 
estimation error that the accuracy of the ambiguity-fixed solution becomes only better in absence 
of systematic accelerations. The high noise of the ambiguity-fixed position solution is explained 
by the comparably high standard deviation of the double-differenced code-carrier combination, 
which is here ׏ߪ∆థ,ூி,௖௢ௗ௘ି௖௔௥௥௜௘௥ ൌ 42.5ܿ݉. On the right side of Figure 7.34 the corresponding 
protection levels are shown. The overall protection levels, which are illustrated by red-dotted 
lines, result from the maximum of the fault-free and the fault mode protection levels. Reliable 
fixing of the ambiguities of the ionosphere-free code-carrier combination is possible at a baseline 
length of 31 km. The HPL of the ambiguity-fixed code-carrier combination starts with 3 m 
directly after ambiguity fixing and goes back to 2.5 m at the end of the approach. The results for 
the VPL are only slightly different: it starts with 3.2 m and goes back to 3.12 m. A great benefit 
of the ionosphere-free combinations is that there is no restriction to short baselines due to the 
spatial decorrelation of the ionospheric errors, which are cancelled here completely (at least the 
terms up to the 1st order). The run of the fault-free mode protection levels, which is illustrated by 
the green lines, is as expected. The ܸܲܮ଴ is always larger than the ܮܲܪ଴, which is explained by 
better values of the HDOP than the VDOP. The fault-free mode protection levels decrease as 
soon as the ambiguities of the code-carrier combination are fixed. For better comprehension of 
the run of the fault-mode protection levels, the SLOPEs are plotted in Figure 7.35.  

 
Figure 7.35: SLOPE factors for the computation of the fault-mode protection levels (left: 
HSLOPE, right: VSLOPE) 

0 50 100 150 200 250 300 350 400 450

-1

0

1

Ionosphere-free, geometry-preserving combination

δx
ea

st
 [m

]

0 50 100 150 200 250 300 350 400 450

-1

0

1

δx
no

rth
 [m

]

0 50 100 150 200 250 300 350 400 450

-1

0

1

observation epoch

δx
up

 [m
]

ambiguities are fixed

v = const

0 50 100 150 200 250 300 350 400 450
2

4

6

8

10

12

H
P

L 
[m

]

Fault-free Mode and Fault-Mode Protection Levels

 

 

0 50 100 150 200 250 300 350 400 450
0

2

4

6

8

10

V
P

L 
[m

]

observation epoch

 

 
VPL0: fpos = 1.2

VPL1: fr = 2.8

HPL0: fpos = 1.2

HPL1: fr = 2.8

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8
HSLOPE

co
de

-o
nl

y 
co

m
bi

na
tio

n

 

 

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

observation epoch

co
de

-c
ar

rie
r c

om
bi

na
tio

n

S8-S10
S8-S15
S8-S19
S8-S21
S8-S24
S8-S25
S8-S26
S8-S27
S8-S28

code-carrier combination
dominates the HSLOPE

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8
VSLOPE

co
de

-o
nl

y 
co

m
bi

na
tio

n

 

 

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

observation epoch

co
de

-c
ar

rie
r c

om
bi

na
tio

n

S8-S10
S8-S15
S8-S19
S8-S21
S8-S24
S8-S25
S8-S26
S8-S27
S8-S28

code-carrier combination
dominates the VSLOPE



124  7 Monte-Carlo Simulations 

 

The SLOPE factors are computed from the Kalman gain matrix ܭ according to Eq. (6.67) and 
Eq. (6.68). It shows that the maximum HSLOPE is larger than the maximum VSLOPE. From the 
GPS sky-plot, which is depicted in the left side of Figure 7.6, follows that the satellite with 
SVID 28 is decisive for the HDOP. On the other hand, there is no severely outstanding satellite 
with respect to the VDOP. Consequently, the fault mode protection level for the horizontal 
component is worse than that of the vertical component. Starting from approximately 
observation epoch 110 the SLOPE-factors of the code-carrier combination are already larger 
than the SLOPE-factors of the code-only combination, although the ambiguities of the code-
carrier combination are not fixed before observation epoch 132. This is also reflected by the run 
of the fault-mode protection levels. 

Now the performance is investigated in a multipath environment. Just as in the performance tests 
of the different ionosphere models in presence of multipath, only for those satellites multipath 
errors are simulated which are seen below an elevation angle of 30°. The standard deviations of 
measurement noise are adapted to the multipath environment and set to ߪො஡ாଵ ൌ ො஡ாହ௔ߪ ,40ܿ݉ ൌ
18ܿ݉ and ߪොФ ൌ 0.0318 cycles. As a result, the computed protection levels increase. 

 
Figure 7.36: Performance of the ionosphere-free code-carrier combination in presence of 
multipath 

The ambiguities of the code-carrier combination are fixed successfully in observation epoch 169. 
However, the accuracy of the position estimates in presence of multipath does not improve. 
Filtering reduces already the noise of the ionosphere-free code-only combination significantly. 
As the ambiguity-fixed solution is not only based on carrier-phase measurements but on a code-
carrier combination, multipath errors still have strong impact on the accuracy of the position 
solution. If the vertical alert limit were 5.3 m, the navigation system would always be declared 
unavailable because the VPL is still 6.2 m at the end of the approach. When plotting the 
innovations of the code-only and the code-carrier combination (see Figure 7.37), it becomes 
obvious that the velocity of the airplane is no longer constant starting from observation epoch 
150. In addition, the simulated multipath errors are also larger during the second half of the 
considered maneuver time. This also explains why the ambiguity-fixed solution is not more 
precise than shown in Figure 7.36. Since the measurement noise of the ionosphere-free code-
carrier combination is far higher than that of a widelane or carrier phase measurement, the 
availability of a precise dynamic state space model of the precision approach would be 
advantageous. In contrast, if the solution is based on low-noise carrier phase measurements, the 
state space model is hardly decisive for the final position accuracy.  
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Figure 7.37: Innovations of the ionosphere-free linear combinations in presence of multipath 

 

It is recommended that no double-differenced observations should be used when ionosphere-free 
linear combinations of measurements are considered. The measurement noise is already 
enhanced by the inter-frequency combinations of measurements, and double-differencing causes 
additional amplification of the measurement noise. Therefore, single-differenced or even non-
differenced measurements should be used. It is expected that this navigation filter works better if 
the pure carrier phase measurements are forwarded to the EKF and if the ionospheric nuisance 
parameters are estimated explicitly. But if no double-differencing were applied, it is likely that 
the VPL of the ionosphere-free code-carrier combination would stay below 5.3 m even in 
presence of multipath. There are two further options to reduce the noise of the position solution 
derived from the ionosphere-free code-carrier combination. The first option is to model 
accelerations in the state space model systematically by adding three additional states for the 
user acceleration. Then the process noise can be reduced and the dynamic system model will 
efficiently contribute to a reduced noise position solution. The second option is to introduce an 
ionosphere-free carrier-only combination for the purpose of smoothing. The following 
ionosphere-free carrier-only combination is suggested [37]: 

ூி,௖௔௥௥௜௘௥ି௢௡௟௬ߔ  ൌ 154 · ாଵ|௅ଵߔ െ 115 · ாହ௔|௅ହ (7.14)ߔ

The wavelength of this combination is only λூி,௖௔௥௥௜௘௥ି௢௡௟௬ ൌ 2.8݉݉ and therefore the integer 
ambiguities of this combination should not be resolved, but ߔூி,௖௔௥௥௜௘௥ି௢௡௟௬ can be used as 
additional filter input for smoothing. The noise of this carrier-only combination in the range 
domain is only ߪథ,ூி,௖௔௥௥௜௘௥ି௢௡௟௬ ൌ 0.012 · √154ଶ ൅ 115ଶ · 0.0028݉ ൌ 6.5݉݉ with 
σФሺ90°ሻ ൌ 0.012cycles. Furthermore, the carrier-only combination is less affected by multipath 
than the code-carrier combination. This concept of smoothing is considered as a promising 
extension of the current ionosphere-free approach. 

 

7.2.6 Cycle Slip and Outlier Detection and Correction 

In the previous chapter only the detection of failures has been considered, but not the 
identification of the error sources. The proposed AFDIA scheme cannot cope with multiple 
biases simultaneously. Therefore multiple channels which are biased by multipath 
simultaneously cannot be identified. In the following the occurrence of measurement biases is 
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restricted to one bias at a time. First, it is investigated if the AFDIA scheme can identify an 
outlier in the pseudorange measurements properly. For this purpose severe multipath on a single 
channel is simulated on E5a. The measurement standard deviations, which are used in order to 
set up the covariance matrix ܴ, do not reflect the presence of a bias. Thus the weight factor for 
the biased measurement is the same as the weight factors for the unbiased measurements directly 
after starting the filter. The benefit from enabling the filter-based fault identification and model 
adaptation is shown in Figure 7.38. The biased double-differenced pseudorange measurement on 
E5a causes position estimation errors up to 0.9 m. Since the covariance matrix ܴ does not 
indicate that there is a biased measurement within the data set, the computed protection levels 
will be low. The presence of anomalous measurement data is detected properly by the algorithm 
for the overall model validation and the error source is identified correctly with the required 
level of confidence. By adapting the model after successful fault identification the maximum 
position estimation error stays below 0.5 m. The widelane ambiguities are fixed in observation 
epoch 84. If AFDIA is enabled, the widelane ambiguities are fixed correctly. Without AFDIA 
one widelane integer ambiguity is fixed wrongly by one cycle. The horizontal and vertical 
component of the position estimation error stay always below the computed protection levels if 
AFDIA is enabled, while otherwise the computed protection levels are exceed (eventually 
without raising an alarm). 

 
Figure 7.38: Improvement of the user position estimates by error identification and model 
adaptation 

The measurement residual vectors after adapting the model are shown in Figure 7.39. For this 
example of multipath detection on a single channel the Ionosphere Model 3 has been used in the 
simulations. The measurement residuals on E5a which are plotted in red refer to the biased 
double-differenced measurements. Starting from observation epoch 60 the anomalous 
measurement data on E5a is detected frequently. By enabling AFDIA the magnitude of the 
single-channel bias is estimated properly and the navigation solution is corrected with the help of 
this estimated bias. In observation epoch 84 the widelane ambiguity-fixed position solution is 
available. Since there is multipath on one of the pseudorange measurements on E5a, there is also 
multipath on one of the carrier phase measurements on E5a. The multipath error on the carrier 
phase measurement is far less severe and is therefore not detected. From the carrier phase 
measurement residuals on E1 one can infer that the model adaptation performs quite well. The 
measurement residuals should be all white Gaussian noise since the E1 carrier phase 
measurements are unbiased. Only the residuals from that satellite whose E5a measurements are 
biased jitter slightly. It is assumed that it is more difficult to detect creeping multipath over 
several epochs than a pseudorange outlier that occurs only once. Here it has been demonstrated 
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that the model adaptation works fine over several observation epochs without having to exclude 
the satellite from the navigation solution. 

 
Figure 7.39: Double-differenced measurement residuals after model adaptation 

A second error source which has to be considered in carrier phase-based positioning is the 
occurrence of cycle slips. In order to keep the high accuracy of the ambiguity-fixed position 
solution, cycle slips have to be detected and the integer ambiguities have to be adapted. Cycle 
slips can be detected with the proposed AFDIA scheme as long as only one cycle slip occurs at a 
time. The simulated measurement noise is increased to ߪ஡ாଵሺ90°ሻ ൌ 24ܿ݉ and ߪ஡ாହ௔ሺ90°ሻ ൌ
8ܿ݉ and no multipath is simulated. In the following simulation run a series of cycle slips on E1 
and E5a is generated. 

Table 7.5: Simulation of cycle slips 

Carrier Frequency E5a E1 
Observation Epoch 60 280 200 350 
Satellite SVID 28 24 15 24 
# Cycles 10 5 3 1 
 

A cycle slip on the E5a carrier phase measurement has only an impact on the double-differenced 
widelane measurement. In contrast, a cycle slip on E1 impacts both the double-differenced 
widelane measurement and the double-differenced E1 carrier phase measurement. The procedure 
which is applied here to deal with cycle slips does not require distinguishing between cycle slips 
on E5a or E1. The cycle slip recovery is only sensitive with respect to the satellite ID. Both the 
widelane and the carrier phase ambiguities which correspond to this satellite are reset to float 
ambiguities. In Figure 7.40 it is demonstrated that all simulated cycle slips are detected 
immediately in the respective observation epoch and that the SVID is identified correctly. The 
cycle slips on E1 are either detected in the E1 phase measurements (right side of Figure 7.40) or 
in the widelane measurements (left side of Figure 7.40). As mentioned before, the distinction 
between cycle slips on E5a and E1 is not essential for the succeeding recovery procedure. Even 
the cycle slip by only one cycle is detected correctly in the widelane measurements at 
observation epoch 350. 
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Figure 7.40: Detection and identification of cycle slips 

 

Appropriate manipulation of the covariance matrices ensures that the float ambiguities can be re-
fixed quickly without any significant loss of the position estimate accuracy while the float 
ambiguities are not yet re-fixed. In Figure 7.41 it is shown that the quality of the best solution 
which is currently available remains unaffected by cycle slips, while the ambiguity-fixed 
solution may jump. The track of the best solution is indicated by the black line, which does not 
follow the jumps of the ambiguity-fixed solution if a cycle slip occurs. 

 
Figure 7.41: Performance of AFDIA in presence of cycle slips on E5a and E1 

 

The widelane ambiguities are re-fixed within the next three epochs and the carrier phase 
ambiguities are re-fixed within the next eight epochs after a cycle slip has been detected. The 
accuracy of the interim float solution is not worse than the accuracy of the ambiguity-fixed 
solution. This seems reasonable as long as only one cycle slip occurs at a time. The HPL of the 
carrier phase ambiguity-fixed solution is 15 cm and the VPL is 20 cm. If a cycle slip is detected, 
the protection levels increase only marginally by 2 cm. Thus, the availability of the navigation 
system due to cycle slips is not endangered. If AFDIA was disabled, the position estimation 
errors would increase significantly as shown in Figure 7.42. 

0 50 100 150 200 250 300 350 400 450

SVID 10

SVID 15

SVID 19

SVID 21

SVID 24

SVID 25

SVID 26

SVID 27

SVID 28

SVID 08

observation epoch

Widelane Cycle Slip Detection

0 50 100 150 200 250 300 350 400 450

SVID 10

SVID 15

SVID 19

SVID 21

SVID 24

SVID 25

SVID 26

SVID 27

SVID 28

SVID 08

observation epoch

Cycle Slip Detection on E1

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

baseline length [km]

sq
rt(
δx

u2 + δ
y u2 + δ

z u2 ) [
m

]

Deviation of the estimated Position from the true User Position

 

 
best position solution
float solution
widelane fixed solution
carrier phase fixed solution
cycle slip identified



7.2 Evaluation of the Filter Performance  129 

 

 
Figure 7.42: Protection levels in presence of cycle slips on E5a and E1 

 

Cycle slips on the reference satellite measurements influence all double-differenced carrier phase 
measurements simultaneously. This event can be identified by AFDIA, but so far no advanced 
recovery scheme for reference satellite failures is foreseen. The most comfortable solution would 
be to switch to a second filter which is running in parallel to the first filter, but uses a different 
reference satellite. In this chapter good performance of AFDIA in presence of single-channel 
biases could be verified. If multiple channel biases shall be covered, further extensions of the 
fault identification and model adaption algorithms are required. Also the computation of the 
protection levels would have to be adapted, since presently it is assumed that there is only one 
bias at a time. The simulation results presented so far refer to the usage of simulated 
measurement data. The next step in order to validate the navigation filter performance is to use 
real receiver measurements. This allows crosschecking the results obtained from Monte-Carlo 
simulations. The results of the real signal tests are presented in Sect. 8. 
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8 Real-Signal Tests 

8.1 Signal Generator and GALILEO Receiver 

The GALILEO E1 and E5a navigation signals used in the real-signal tests are provided by a full 
constellation hardware simulator. The wavefront simulator is composed of two integrated GSS 
7790 racks from Spirent. The GPS/GALILEO test rack, which is depicted in Figure 8.1, is 
integrated with digital signal processing components developed by DLR.  

 
Figure 8.1: Multi-Output GPS/GALILEO Wavefront Simulator 

The integrated GPS/GALILEO test rack allows for simultaneous generation of GALILEO and 
GPS signals on multiple frequencies. For the real-signal tests presented here, the GALILEO E1 
and E5a signals as well as the GPS L1 signals were simulated simultaneously. The GPS L1 
signal is required by the GPS+GALILEO EuroPak L1L5E5a receiver from Novatel in order to 
derive valid time information. However, only the GALILEO signals are forwarded to the 
navigation filter. The receiver data is logged to file with the help of the gpsolution-software from 
Novatel in order to support offline data evaluation. Later, the receiver data is forwarded to the 
navigation filter as quasi online-stream. No post-processing features are implemented, since real-
time updates of the navigation solution are required during precision approach and landing.  

Before starting with the actual simulations of the precision approach, typical noise characteristics 
of the signal measurements are determined. For this purpose a zero-baseline test is performed. 
Furthermore, it is verified with the help of this test if it is justified to record data of the same 
scenario sequentially in two independent simulation runs, resulting in only two different receiver 
clock biases, but leaving other error sources unaffected by the sequential recording. The landing 
approach of an airplane with a GNSS antenna mounted on its top is simulated with the 
GPS/GALILEO wavefront simulator. The signals are acquired by a Novatel receiver during two 
successive simulations runs where the same simulation scenario is replayed. When merging the 
data of both test runs afterwards, a zero-baseline test can be performed. In this concrete setup, it 
is a moving zero-baseline since the airplane approaches the airport. The frequency standard of 
the receiver is less stable than the frequency standard of the wavefront simulator. Therefore 
double-differencing is applied in order to cancel out the receiver clock biases. 
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In the following the noise level of the double-differenced receiver measurements is determined. 
The only disturbance that has been simulated intentionally is signal refraction due to the 
ionosphere. Ionospheric range errors cancel out for zero baselines anyhow. When comparing the 
noise characteristics of the GALILEO signals with those of the GPS signals it has to be 
considered that they refer to different receive power levels. The simulated transmit power for 
GALILEO and GPS signals was different. For GALILEO signals the Carrier-to-Noise density 
ratio C/N0 is in the range of 44…47dB-Hz and for GPS signals the C/N0 is only in the range of 
41…43dB-Hz. Typical measurement noise of the Novatel receiver derived from the zero-
baseline test is depicted in Figure 8.2 and Figure 8.3. 

 
Figure 8.2: Receiver measurement noise of pseudorange (left) and carrier phase (right) 
measurements after double-differencing 

The Novatel receiver also forwards the instantaneous carrier Doppler frequency. This 
observation is useful in order to determine the velocity of the airplane without the need of 
differentiating the pseudorange or carrier phase measurement. 

 
Figure 8.3: Receiver measurement noise of the instantaneous Doppler shift measurements after 
double-differencing 

Instead of using empirical values for the measurement standard deviations which may be 
weighted in dependence of the satellite elevation angle, it is preferable to use the standard 
deviations estimated by the receiver at hand. Accurate modeling of the actual measurement noise 
can significantly improve the filter performance compared to an imprecise stochastic 
measurement model. In Table 8.1 typical values of the standard deviations σෝRX provided by the 
receiver are confronted with the measured standard deviations σ୫ୣୟୱ derived from the zero-
baseline test. Note that the standard deviations listed in Table 8.1 refer to non-differenced 
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measurements while the measurement noise which has been plotted in the previous figures refers 
to double-differenced measurements, e.g. there is a factor of 2 between them with regard to the 
standard deviations. 

 

Table 8.1: Typical measurement standard deviations of the Novatel receiver 

 ෝ࣌૖,܆܀  
[mm] 

࣌૖,ܛ܉܍ܕ 
[mm] 

ෝ࣌ૉ,܆܀  
[cm] 

࣌ૉ,ܛ܉܍ܕ  
[cm] 

ෝ࣌∆܆܀,܎  
[Hz] 

 ܛ܉܍ܕ,܎∆࣌
[Hz] 

GALILEO E1 1.2…2.2 1.0 18…25 10 N/A 0.083
GALILEO E5a 1.5…2.5 1.4 2…3 3.8 N/A 0.092
GPS L1 1.7…2.5 1.4 28…36 20 N/A 0.125
 

The Novatel GPS+GALILEO receiver provides altogether 16 channels for signal tracking. In 
order to acquire GALILEO signals on two different frequencies, the present receiver firmware 
only provides a mode where 5 channels can be configured for the reception of GALILEO E1, 
further 5 channels for the reception of GALILEO E5a and the remaining 6 channels for the 
reception of GPS L1. Consequently, only 5 GALILEO satellites can be tracked simultaneously 
when measuring both E5a and E1 signals. Although a filter-based approach is used for 
positioning, it would still be desirable to have more than 5 satellites in view with regard to 
reliable ambiguity resolution and fault identification. Therefore, each simulation scenario is 
repeated twice with different GALILEO satellite PRNs assigned to the receiver channels. The 
relative positioning software requires both the raw measurement data from the user receiver and 
the raw measurement data from the reference receiver. Altogether two different simulation 
scenarios are required: one for the reference receiver located in the vicinity of the airstrip and 
one for the user receiver mounted on the top of the airplane. Thus, in total four simulation runs 
(see Table 8.2) are necessary in order to provide a complete data set for relative positioning since 
only one Novatel receiver is available. 

 

Table 8.2: Simulation setup for the real signal test 

Spirent Simulation Run 1: User RX (airplane approaches the airport) 
 GALILEO E1 GALILEO E5a GPS L1 
RX channel 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
PRN 23 9 22 17 15 23 9 22 17 15 19 16 12 5 18 21 
Spirent Simulation Run 2: User RX (airplane approaches the airport) 
 GALILEO E1 GALILEO E5a GPS L1 
RX channel 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
PRN 16 1 24 25 8 16 1 24 25 8 19 16 12 5 18 21 
Spirent Simulation Run 3: Reference RX (stationary near the airstrip) 
 GALILEO E1 GALILEO E5a GPS L1 
RX channel 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
PRN 23 9 22 17 15 23 9 22 17 15 19 16 12 5 18 21 
Spirent Simulation Run 4: Reference RX (stationary near the airstrip) 
 GALILEO E1 GALILEO E5a GPS L1 
RX channel 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
PRN 16 1 24 25 8 16 1 24 25 8 19 16 12 5 18 21 
 

Normally, the receiver clock error cancels when forming single-differences between satellites 
and the satellite clock errors cancel when forming single-differences between receivers. Thus no 
clock errors have to be estimated when using double-differenced observables. However, the 
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simulation setup described so far comprises four simulation runs in order to gather the complete 
data set for relative positioning. If the Novatel receiver clock is free-running and the wavefront 
simulator clock also tends to drift, it is no longer guaranteed that the clock errors indeed cancel 
out when forming double-differences between measurement data gathered during different 
simulation runs. This is demonstrated in the following example, where data from all four 
simulation runs is processed simultaneously. Here the remaining clock error after double-
differencing, εୡ୪୩,DD, is given by: 

 
௖௟௞,஽஽ߝ ൌ   ൣ൫݀ݐ௥௨௡ଷ

ௌ௥௘௙ െ ோ௑,௥௨௡ଷ൯ݐ݀ െ ൫݀ݐ௥௨௡ସ
ௌ௝ െ ோ௑,௥௨௡ସ൯൧ݐ݀

െ ൣ൫݀ݐ௥௨௡ଵ
ௌ௥௘௙ െ ோ௑,௥௨௡ଵ൯ݐ݀ െ ൫݀ݐ௥௨௡ଶ

ௌ௝ െ  ோ௑,௥௨௡ଶ൯൧ݐ݀
(8.1)

The indices “݊ݑݎሺ݇ሻ” indicate the respective simulation run as derived from Table 8.2. The 
satellite clock errors are indicated by ݀ݐௌ and the receiver clock errors by ݀ݐோ௑. If no distinction 
between different runs is necessary, as it is generally the case in relative positioning, one can see 
from Eq. (8.1) that all satellite- and receiver-related clock errors cancel out when differencing 
between receivers and satellites, e.g. ߝ௖௟௞,஽஽ ൎ 0. Of course it is still required that the reference 
receiver and the user receiver take their measurements (almost) simultaneously in order to cancel 
out the satellite clock errors. Satellite clock errors are the minor error source since the satellites 
are provided with very stable frequency standards. The same holds true for the wavefront 
simulator. However, the Novatel receiver clock is less stable. Therefore, if no precautions are 
taken the receiver clock errors will no longer cancel out since ݀ݐோ௑,௥௨௡ଷ ്  ோ௑,௥௨௡ସ andݐ݀
ோ௑,௥௨௡ଵݐ݀ ്  ோ௑,௥௨௡ଶ. This problem could not fully be overcome by connecting an externalݐ݀
very stable 10 MHz frequency standard to the receiver. 

 
Figure 8.4: Double-differenced E5a pseudorange measurements from simulation run 1, 2, 3 and 
4 

 

The plot shown on the left side of Figure 8.4 comprises one satellite-satellite combination, e.g. 
the combination of PRN 16 and PRN 8 (blue-dotted), where only measurements from two 
different simulation runs are involved. In all other satellite-satellite combinations measurements 
from four different simulation runs are involved. Only the double-differenced pseudorange error 
of the combination PRN 16 – PRN 8 is within the expected range of pure receiver noise. The 
plot shown on the right side of Figure 8.4 comprises two satellite-satellite combinations, e.g. 
PRN 23 – PRN 8 (blue-dotted) and PRN 23 – PRN 16 (turquoise-dotted), where measurements 
from four different simulation runs are involved. Only the double-differenced pseudorange 
errors of these two combinations are beyond the expected range. All other satellite-satellite 
combinations involve only measurements from two different simulation runs. As it turns out, the 
measurement data from all four simulation runs cannot be combined without introducing 
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additional errors due to bad synchronization. Therefore, all further considerations are restricted 
to the use of 5 GALILEO satellites which were tracked during the simulation runs 1 and 3. 
Thereby it is ensured that there are only two receiver clock errors: the reference receiver clock 
error and the user receiver clock error. They cancel out when double-differencing between 
observations. 

 

8.2 Simulation Scenario 

The signal generator provides several options in order to simulate GNSS related error sources. In 
the real-signal tests performed in this work only ionosphere-induced signal disturbances are 
considered. Klobuchar’s model as described in IS-GPS-200 [20] is used by the signal generator 
in order to simulate ionospheric refraction. In Figure 8.5 the ionospheric range errors on E5a 
before and after differencing between receivers are displayed. The greatest part of the 
ionospheric range errors is eliminated by double-differencing and the residual errors are smaller 
than 25 cm. 

 

 
Figure 8.5: Ionospheric range errors on E5a simulated by the signal generator (left: before 
differencing between receivers, right: after differencing between receivers) 

 

Two different dynamics simulation files have to be generated. The first file contains the 
dynamics of the airplane during the flight phase, the precision approach, the landing and the 
deceleration after landing. The simulated dynamics of the airplane are depicted in Figure 8.6. 
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Figure 8.6: Simulated approach of the airplane 

The second file contains the static position of the reference receiver antenna located in the 
vicinity of the airstrip. The receiver antenna coordinates are set to 49° 3.22’ N, 11° 4.30’ E and a 
height of 540 m above sea level. The location of the reference receiver and the ground track of 
the airplane are displayed in Figure 8.7. 

 
Figure 8.7: Ground track of the flight and final approach 

 

After the airplane has landed and decelerated, it is only 33 m away from the reference station. 
Then the airplane is at rest and data logging is continued for approximately further 5 minutes 
before the data acquisition of the Novatel receiver is stopped. 

In Figure 8.8 the sky plot of the remaining GALILEO satellites from simulation run 1 and run 3 
is shown. All five satellites are tracked by both the reference receiver and the user receiver 
during the whole landing approach. Satellite 23 is chosen automatically by the navigation 
software as reference satellite, since it is seen under the largest elevation angle. The sky plots for 
the reference receiver site and for the user receiver site are almost the same. The satellite 
positions when starting the simulation are marked in red and the satellite positions at the end of 
the simulation are marked in blue. 
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Figure 8.8: Sky plot of the satellites from the reference receiver site 

 

The quality of the reduced satellite constellation is considered next. The entries of the 
measurement sensitivity matrix, which refer to the position estimate vector and the user clock 
error, are used for the computation of the dilution of precision (DOP). Following the notation 
introduced by Misra and Enge [29], the geometry-dependent, (n)x(4), user-satellite matrix is 
denoted as ܩ hereafter: 

ܩ  ൌ ൦
൫െ1஻ௌଵ൯

் 1
ڭ ڭ

൫െ1஻ௌ௡൯
் 1

൪ (8.2)

The definition of the line of sight vector 1஻
ௌ௝ from the user receiver to the satellite is just as 

before. The mapping matrix DP, which depends only on the current geometry, is computed in 
order to evaluate the quality of the user-satellite geometry: 

௉,ாே௎ܦ  ൌ ܴாே௎ · ሺܩா஼ாி் · ா஼ாிሻିଵܩ · ܴாே௎்  (8.3)

In Eq. (8.3) it has been assumed that the geometry matrix ܩ refers to the global ECEF coordinate 
frame, while the DOP values which are to be determined shall refer to the ENU coordinate 
frame. The rotation matrix RENU follows from Eq. (6.39). The squares of the DOP values of 
interest can be found along the main diagonal of DP,ENU: 

௉,ாே௎ܦ  ൌ ൦
ଶܱܲܦܧ כ כ כ

כ ଶܱܲܦܰ כ כ
כ כ ଶܱܲܦܸ כ
כ כ כ ଶܱܲܦܶ

൪ , (8.4)

where EDOP, NDOP, VDOP and TDOP are the east-, north-, vertical- and time- dilution of 
precision. Besides the DOPs listed so far, frequently also the horizontal DOP, e.g. HDOP ൌ
√EDOPଶ ൅ NDOPଶ, and the position DOP, e.g. PDOP ൌ √EDOPଶ ൅ NDOPଶ ൅ VDOPଶ, are of 
interest. While the DOP values can be used in order to determine the expected RMS position 
errors in a standard least-squares approach for standalone GNSS by multiplying the DOP values 
with the standard deviation of the user range error, this is in general not true for a filter-based 
approach. Thus, the indicated DOP values may not directly be related to the position estimate 
uncertainty in this work. Nevertheless, poor DOP values are still good indicators for possibly 
increased noise of the estimated position solution. The DOP values which correspond to the 
user-satellite geometry shown in Figure 8.8 are listed in Table 8.3. 
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Table 8.3: DOP values of the real-signal test for the reference receiver site 

 EDOP NDOP HDOP VDOP PDOP 
Start of Simulation 1.938 3.281 3.811 9.477 10.215 
End of Simulation 1.181 2.044 2.361 5.281 5.785 
 

The DOP values for the airplane’s locations during the simulation run are almost the same as 
those for the reference receiver site. From Table 8.3 follows that the VDOP improves 
significantly during the whole simulation run, and consequently also the PDOP does. 

 

8.3 Test Results 

As described in the previous sections, the double-differenced observables are only affected by 
amplified receiver noise (due to double-differencing) and the residual ionospheric range errors 
after double-differencing. Consequently, it is important to notice that the test results presented 
hereafter refer to a low measurement error scenario. The filter performance under moderate 
conditions is investigated when using real receiver measurements in order to crosscheck the 
assumptions made in the Monte-Carlo simulations. While the measurement noise is rather low in 
this test, it is sort of worst case scenario with respect to the satellite constellation: 

 
Figure 8.9: Change of the DOP values computed for the airplane’s locations during the approach 

 

The DOP values computed for the reference receiver location are almost the same as those 
computed for the airplane’s locations (see Table 8.3). From the DOP-values shown in Figure 8.9 
it is expected that the up-component of the position and velocity estimates is the worst, followed 
by the north-component and the best estimates are expected for the east-component. This is 
verified with the help of the following test setup: The standard deviations in order to generate the 
measurement covariance matrix ܴ are adopted as provided by the Novatel receiver. Carrier 
phase and pseudorange measurements on E5a and E1 are forwarded to the filter as well as 
instantaneous Doppler measurements on E1. The spectral amplitude of the random walk process 
is assumed to be ܵ௣ ൌ 5௠

మ

௦మ
௥௔ௗ
௦

. The following test results are based on the usage of the 
Ionosphere Model 3 in order to estimate the double-differenced ionospheric range errors. In 
Figure 8.10 and in Figure 8.11 it is shown that the up-component of the position and velocity 
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estimation error vector is indeed larger than the east- and north-component. The widelane 
ambiguities are resolved in observation epoch 47, which corresponds to a baseline length of 69.8 
km, and the carrier phase ambiguities in observation epoch 203, which corresponds to a baseline 
length of 53.6 km. These results are surprising, since the satellite geometry is poor and the 
probabilities of false integer ambiguity fixing have been set to ிܲ,ௐ௅ ൌ 1 · 10ିଽ and ிܲ,஼௉ ൌ 1 ·
10ିଽ. In many publications on ambiguity resolution it is stated that many visible satellites 
improve the performance of ambiguity resolution if a geometry-based model was used. For 
example, Teunissen et al. [42] have investigated the ambiguity resolution success rate in 
dependency of the number of visible satellites. The success rate with only 4 satellites in view is 
significantly lower than the success rate with 8 satellites in view. High ambiguity resolution 
success rates could already be achieved with 6 visible satellites if two epochs of data, separated 
by 10 minutes, were considered. Walsh et al. [49] indicate that with 7 or more satellites in view 
rapid convergence to an ambiguity-fixed solution can be achieved. However, here are only 5 
visible satellites, which is already a difficult scenario with regard to reliable integer ambiguity 
resolution and high success rates of the ambiguity resolution. The filter-based approach 
alleviates the availability of few measurements to some degree. In this concrete test fast 
ambiguity resolution is favored by low measurement noise. Especially the E5a pseudorange 
measurement standard deviations provided by the Novatel receiver are very low, e.g. see Table 
8.1. Since there are no unmodeled biases present in the measurement data, also the estimation of 
the residual ionospheric range errors works well. The availability of an ambiguity-fixed solution 
in this real-signal test is better than in the Monte-Carlo simulations due to reduced measurement 
standard deviations. While the accuracy of the east- and north-component of the user position 
and velocity vector are similar to those in the Monte-Carlo simulations, the accuracy of the up-
component is worse here. This effect can be explained by the poor VDOP in this real-signal test. 
The VDOPs in the Monte-Carlo simulations were always significantly better. 

 
Figure 8.10: East-, north- and up-component of the user position estimation errors (Ionosphere 
Model 3) 
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Figure 8.11: East-, north- and up-component of the user velocity estimation errors (Ionosphere 
Model 3) 

For comparison, the simulation is repeated with the ionosphere-free code-only and code-carrier 
combinations. The velocity estimates remain almost unaffected. However, the position accuracy, 
which has been obtained with the Ionosphere Model 3 after the widelane and carrier phase 
ambiguities have been resolved successfully (see Figure 8.10), cannot be achieved with the 
ionosphere-free combinations (see Figure 8.12). Instead of position estimation errors at the 
centimeter-level, the position estimation errors of the ambiguity-fixed code-carrier solution are 
at the meter-level. The ambiguities of the code-carrier combination are fixed in observation 
epoch 130. Nevertheless, especially the up-component of the user position vector stays rather 
noisy due to poor VDOPs. The protection levels for the position solution derived from the 
ionosphere-free combinations will also be higher than 5.3 m in this test. Therefore, in the real-
signal tests the ionosphere-free combinations will no longer be considered, since the position 
estimation errors are not at the desired centimeter- or decimeter-level. It is assumed that the 
ionosphere-free combinations are better suited for single-point positioning than for relative 
positioning. The results of the cascading ambiguity resolution approach from the widelane fixed 
to the carrier phase fixed solution are more promising with respect to this navigation filter as 
long as no smoothing with a carrier-only combination is implemented in the ionosphere-free 
approach. 

 
Figure 8.12: East-, north- and up-component of the user position estimation errors (usage of the 
ionosphere-free code-carrier combinations) 
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Next, the protection levels are investigated. The noncentrality parameter λ, which is used for the 
computation of the MDB, is larger than in the previous Monte-Carlo simulations since it 
depends on the number of degrees of freedom. The number of degrees of freedom is determined 
by the number of measurements, which is now significantly smaller. Here are only 5 satellites in 
view and only the instantaneous Doppler shift measurements on E1 are processed. For example, 
if it is assumed that ிܲ஺ ൌ 1 · 10ି଻, ெܲ஽,ଵ ൌ 1 · 10ିଽ and that the number of measurement 
equals 54 (10 satellites in view: 3x9x2 double-differenced carrier phase, Doppler shift and 
pseudorange measurements on E5a and E1), the noncentrality parameter is set to λ ൌ 3.312. The 
analytically derived value for λ would be even smaller, but a value of 3.312 is chosen as lower 
limit for the noncentrality parameter. The MDB approaches zero for very large numbers of 
degrees of freedom. It is preferred here to be more conservative by setting λ୫୧୬ ൌ 3.312. The 
same considerations are repeated with only 5 visible satellites instead of 10 visible satellites. In 
the real-signal test there are only 2x4x2 double-differenced carrier phase and pseudorange 
measurements on E5a and E1 and 1x4 double-differenced Doppler shift measurements on E1. 
Consequently, the number of degrees of freedom reduces to 20, and the analytically derived 
noncentrality parameter increases to λ ൌ 46.26. As a result, the MDB is far larger than in the 
previous example. So far, the position variance inflation factor ௣݂௢௦ has been set to 1.2 and the 
innovation variance inflation factor ௥݂  has been set to 2.8. It is illustrated in Figure 8.13 that the 
protection levels ܮܲܪ଴, ܸܲܮ଴, ܮܲܪ_݈݁ݒ଴ and ܮܸܲ_݈݁ݒ଴ of fault-free normal operation, which 
are represented in the plots by the green lines, are of the same magnitude as the protection levels 
in the Monte-Carlo simulations. In contrast to the protection levels under the assumption of 
fault-free normal operation, the fault mode protection levels, e.g. ܮܲܪଵ, ܸܲܮଵ, ܮܲܪ_݈݁ݒଵ and 
 ଵ, are considerably above the protection levels which can be achieved with 6 or moreܮܸܲ_݈݁ݒ
visible satellites. The fault mode protection levels are displayed in Figure 8.13 for two different 
innovation inflation factors ௥݂. It has to be verified by test if the value of ௥݂ ൌ 2.8 is too 
conservative. In Grewal et al. [13] it is suggested to find the decision threshold for the chi-square 
distributed test statistic, which is computed from the innovations, from the operational values 
rather than the theoretical values. The same seems to hold true for the noncentrality parameter λ 
of the chi-square distribution. Here it is proposed to use the analytically derived noncentrality 
parameter λ, which is already conservative compared to the operational values, and to scale the 
sigma of the innovations with a flexible inflation factor ௥݂, which is at minimum 1 if there are 
only few measurements available and at maximum 2.8 if there are many measurements 
available. Since the overall protection level is derived from the maximum of the fault-free mode 
protection level and the fault mode protection level, it can be concluded from the test results that 
there is no benefit from having an ambiguity-fixed solution available with respect to the 
protection levels. As long as the mapping of the MDB to the position domain results in large 
position errors due to the poor satellite geometry, the fault mode protection levels will clearly 
dominate the normal operation protection levels. Note that the HPLs and VPLs during the first 
few epochs after starting the filter are not displayed in Figure 8.13, since they exceed the upper 
limit of 10 m. The small peaks of the position solution protection levels between observation 
epoch 200 and 900 are caused by transient increase of the measurement standard deviations 
forwarded by the receiver. 
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Figure 8.13: Protection levels in dependence of the inflation factors (left: position, right: 
velocity) 

If one of the satellites fails, the filter performance is strongly dependent on an accurate state 
space model. Therefore, the importance of the parameter ܵ௣ increases with respect to the 
magnitude of the protection levels for the fault mode if there are only 5 visible satellites. Just 
like in the Monte-Carlo simulations, the linear state equations used in the EKF do not perfectly 
model the physical dynamic model of the airplane (see Figure 8.14). 

 
Figure 8.14: Accelerations of the airplane in dependency of the observation epoch 

 

By choosing a very small spectral amplitude ܵ௣ ൌ 0.01௠
మ
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, the fault mode protection levels 
decrease considerably. In Figure 8.15 it is depicted that low velocity protection levels can be 
achieved by reducing the process noise of the dynamic system model significantly even if an 
innovation inflation factor of ௥݂ ൌ 2.8 is used. The drawback of reducing ܵ௣ is that in presence 
of accelerations there are error spikes in the velocity and position estimates. These spikes are 
detected correctly by the fault detection algorithm. It is assumed that ௥݂ can be set to a lower 
value than 2.8 since also those increased velocity estimation errors are detected, which are still 
considerably below the computed protection levels. For example, the horizontal component of 
the velocity estimation error is 0.3௠

௦
 below the horizontal velocity protection level during the 

time interval from epoch 832 to 874. Nevertheless, the increased velocity estimation errors due 
to the presence of accelerations are detected. As long as the straight flight condition is fulfilled, 
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the vertical component of the velocity estimation error reduces considerably compared to the 
simulation run with ܵ௣ ൌ 5௠

మ

௦మ
௥௔ௗ
௦

.  

 

 
Figure 8.15: Excess of the velocity protection levels due to incorrect process noise modeling 

 

The test run is repeated with modified parameters. The spectral amplitude of the random walk is 
set to ܵ௣ ൌ 1௠

మ

௦మ
௥௔ௗ
௦

 and the inflation factor of the innovations is reduced to ௥݂ ൌ 1.2. Artificially 
generated errors are introduced into the real measurement data in order to verify if the reduction 
of the inflation factor is justified. One carrier phase measurement on E1 is manipulated by one 
cycle starting from observation epoch 260, which corresponds to a cycle slip in epoch 260. 
Furthermore, in observation epoch 650 a code outlier on E5a is simulated by adding 1.5 m to the 
actual pseudorange measurement. If both errors are identified successfully, the new parameter 
௥݂ ൌ 1.2 is accepted in this simulation. In reality, the finding of appropriate inflation factors is 

far more complex, see e.g. [25]. As shown in Figure 8.16 both errors which have been 
introduced into the measurement data are detected and identified properly. By enabling model 
adaptation the best position solution available is not corrupted. If the airplane’s acceleration 
changes significantly between two successive observation epochs, further model invalidations 
are detected. The source of the model invalidations cannot be identified, because the model 
errors are caused by the violation of the straight flight condition. In the velocity solution minor 
error spikes can be observed in the respective epochs, while the position solution remains 
unaffected as shown in Figure 8.16. 
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Figure 8.16: Successful detection and identification of small errors 
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. In consequence, the number of epochs required in order to 
resolve the widelane ambiguities reduces by 12 epochs. The resulting protection levels for 
f୰ ൌ 1.2 are displayed in Figure 8.17. There is still an order of magnitude between HPL଴ and 
HPLଵ and between VPL଴ and VPLଵ after the carrier phase ambiguities have been fixed correctly. 
As demonstrated before, biases that cause far smaller errors in the position domain than 
protected by the HPL and VPL are identified and corrected successfully. However, the protection 
levels are computed such that PMD,ଵ ൌ 1 · 10ିଽ, which suggests that smaller errors than 
protected by the HPL and VPL can still be detected, but with less certainty. 

 
Figure 8.17: Navigation filter performance with 5 visible satellites 

 

The scenario with only 5 visible satellites is pessimistic with respect to the satellite geometry, 
especially if combined GPS and GALILEO constellations are considered. On the other hand, 
signal shading is still an issue if the navigation filter shall be employed for applications like 
automated cargo traffic in the vicinity of large buildings. With respect to aviation, it is expected 
that more than 5 satellites will be in view. The protection levels for the carrier phase ambiguity-
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fixed solution are therefore expected to be below 1 m. Even in this scenario the protection levels 
stay below 2 m during the last 60 km of the flight because of the availability of low-noise 
measurement data. The VPL is below the expected CAT IIIc vertical alert limit of 5.3 m already 
at a large distance to the reference station. To conclude, the plausibility of the results obtained 
from the Monte-Carlo simulation could be verified successfully with the help of the real-signal 
tests. 
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9 Conclusions and Outlook 

9.1 Recommendations 

The navigation filter presented in this work does not account for range errors induced by the 
troposphere, e.g. it has been assumed that tropospheric refractivity can be modeled perfectly. In 
land-based applications the residual ionospheric range errors after double-differencing between 
observables are in most cases larger than the residual tropospheric range errors. If measurements 
on two or more frequencies are available, ionosphere-free measurement combinations can be 
formed. Alternatively, the ionospheric delay terms can be estimated more accurately if 
measurements on more than one frequency are processed because of the dispersive nature of the 
ionosphere. In contrast to the ionospheric delay terms the tropospheric delays are independent 
from the frequency in the considered GNSS frequency bands. However, the tropospheric range 
errors at the reference receiver site and at the user receiver site are highly correlated for short and 
medium baselines. For this reason the residual tropospheric range errors after differencing the 
observations between receivers are frequently neglected in land-based applications. In 
aeronautical applications large geodetic height differences between the reference receiver and 
the rover receiver have to be considered. The tropospheric range errors at the reference- and 
user-site decorrelate with growing height difference. Thus, it is no longer justified to neglect the 
residual tropospheric range errors in aeronautical applications. Pervan et al. [33], who have 
investigated carrier phase-based DGPS for landing applications, propose to add an additional 
state in the covariance analysis that accounts for the error in the local tropospheric refraction 
index. In a first step standard tropospheric corrections are applied. In a second step the LAAS 
tropospheric error model is applied in order to correct for the residual differential tropospheric 
range error: 

 ∆݀௧௥௢௣௢,஺஻
ௌ௝ ൌ ∆݊ ·

݄଴ · ൣ1 െ ݁ି∆௛/௛బ൧
ඥ0.002 ൅ ௌ௝ሻܧଶሺ݊݅ݏ

, (9.1)

where: 

∆݀௧௥௢௣௢,஺஻
ௌ௝ : Residual differential tropospheric range error after differencing the

 observations between receiver ܣ and ܤ 

∆݊: Difference between the estimated and the actual local index of tropospheric 
 refractivity 

݄଴: Troposphere scale height 

∆݄: Height difference between the reference receiver and the user receiver 

 ௌ௝: Elevation angle of the satellite ௝ܵܧ

The LAAS tropospheric error model presented in Eq. (9.1) can be more easily adapted to the 
usage of double-differenced observations than the LAAS ionospheric error model. Here only one 
additional parameter, ∆݊, has to be included into the vector of state estimates independent from 
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the number of visible satellites instead of one additional parameter per satellite, e.g. 
 ௌ௡. Therefore, it is expected that the developed navigation filter algorithms, whichܩܫܸ…ௌଵܩܫܸ
are based on double-differenced observations, can be easily extended in order to account for 
residual tropospheric range errors. It is proposed to evaluate the filter performance after these 
adaptations on the basis of real GPS measurements. This prevents possible mismodeling of both 
the simulated measurement data and the filter correction algorithmic, which might compensate if 
both were mismodeled in the same way. 

The navigation filter performance results, which were presented in Sect. 7 and 8, showed that the 
availability of an ambiguity-fixed solution and the magnitude of the protection levels are 
dependent on the satellite geometry. In the near future integrated GPS/GALILEO system 
solutions are likely to gain influence wherever high integrity of the navigation solution is 
required. Mowlam et al. [30] indicate that combined GPS/GALILEO integer ambiguity 
estimation is especially well-suited for safety-critical applications. However, it is also stated that 
if a large set of ambiguities has to be resolved, the maximum distance between the reference 
receiver and the user receiver has to be restricted to short baselines in order to maintain high 
ambiguity resolution success rates. By limiting the service volume of relative positioning to the 
vicinity of the airport, for example to a maximum baseline length of 10 km, combined 
GPS/GALILEO integer ambiguity estimation seems to be promising with respect to high-
integrity relative positioning. Further investigations are required in order to quantify the benefit 
from combined GPS/GALILEO system solutions concerning the filter approach which has been 
presented here. For medium and long baselines it is unlikely that a large set of ambiguities can 
be fixed with the required success probability of integer ambiguity fixing. It is suggested to use 
partial ambiguity resolution for large sets of ambiguities. High accuracy of the position solution 
can be achieved even if not all ambiguities were fixed to integer values. Besides ambiguity 
resolution, the second argument in favor of using both GPS and GALILEO measurements is that 
the DOP values of the combined constellation are certainly better than those of a single 
constellation. It has been demonstrated in the real-signal test with only 5 visible satellites that 
poor DOP values cause an increase of the fault mode protection levels. If high availability of the 
navigation solution is required, it is desirable that faults are not only detected, but also identified 
and excluded or compensated reliably. 

In the past it has been proposed by several authors to install pseudolites in the vicinity of the 
airstrip. This improves the geometry and especially the VDOP gets better. A concept for 
precision landing with GPS augmented by integrity pseudolites has already been proposed by 
Cohen et al. [6] in 1993. One main aspect in order to judge the practicability of carrier phase 
based positioning for landing applications is the availability of its associated integrity measures. 
According to Pervan et al. [34], there are several benefits of installing pseudolites under the 
approach path of the airplane: First, the pseudolite-augmented constellation provides large 
geometry changes when the airplane flies by the pseudolites. This facilitates the integer 
ambiguity resolution in real-time. The pure satellite constellation does hardly change during the 
short maneuver time and long observation time spans as in geodetic survey are impracticable. 
Second, the availability of classical and carrier phase based RAIM is enhanced by additional 
measurements from pseudolites compared to an un-augmented GPS-only constellation. As soon 
as GALILEO is fully operational, the second aspect will no longer be of great importance. But 
large geometry changes in a very short time-span, which favor successful ambiguity resolution, 
can indeed only be achieved by using additional pseudolite signals. There remain two last 
comments on the usage of pseudolite signals for precision landing. It is favorable to know that 
the pseudolite signals are not disturbed by atmospheric refraction as soon as the airplane flies at 
low altitude. One can profit from this knowledge when developing new integrity monitoring 
algorithms. Contrariwise, multipath might be a problem with respect to pseudolite signals and 
caution is required to ensure that the pseudolites do not operate as jammers. Jamming can easily 
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be prevented by signal pulsing at the expense of an increased noise level of the pseudolite 
signals. Multipath is more likely to occur along the propagation path between the pseudolite and 
the reference receiver than along the propagation path between the pseudolite and the receiver 
located at the airplane. Since the true geometric range between the reference station and the 
pseudolites is known exactly, the occurrence of multipath can be detected easily. 

In this work the navigation solution is provided by an extended Kalman filter. So far only GNSS 
measurements have been processed by the filter. However, the filter-based approach is well-
suited to be extended to the integration of GNSS and INS (Inertial Navigation System) 
measurements. The most probable state estimate is derived from Kalman filtering by combining 
two optimally weighted estimates of a variable. Titterton et al. [46] list the following items in 
favor of combining complementary INS and GNSS measurements: The first important aspect is 
that both measurement types show different error characteristics. While position estimates 
derived from GNSS pseudorange measurements are rather noisy, but not affected by long-term 
drifts, the position estimates derived from INS measurements are rather smooth, but frequently 
exhibit long-term drifts. The second aspect is that with INS and GNSS equipment different 
quantities are measured. GNSS receivers provide the measurement of pseudoranges, carrier 
phases and range-rates, while INS sensors provide the measurement of specific force 
accelerations. Since only GNSS is susceptible to jamming or signal shading, the availability of 
the navigation solution can be improved by the integrated GNSS and INS approach. These 
considerations on augmenting GNSS with INS mainly refer to pseudorange-based navigation. It 
is still an open issue if the effort of integrating GNSS and INS is justified if the accuracy of 
carrier phase based relative positioning serves as reference. 

 

9.2 Summary 

A nonlinear navigation filter for high-integrity carrier phase based relative positioning has been 
developed. Both the user position vector and the user velocity vector are estimated. The 
ambiguities of the phase measurements and ionospheric terms are included into the state 
estimation vector as nuisance parameters, which have to be estimated as well in order to derive a 
precise position solution. The investigations have been restricted to dual-frequency GNSS 
measurement data. Either GALILEO’s E5a and E1 signals or GPS’s L5 and L1 signals are 
processed, since these signals reside in an ARNS band. Thereby compatibility with the 
requirements of civil aviation is ensured. Three different measurement types, e.g. pseudoranges, 
carrier phases and Doppler shifts, are processed by the filter. The measurements from the 
reference receiver and the user receiver are double-differenced in order to cancel out satellite- 
and receiver-related biases. A great part of propagation medium-related range errors is cancelled 
as well. The ionospheric and tropospheric range errors decorrelate with growing baseline lengths 
between the reference receiver and the user receiver. Thus, the residual medium-related range 
errors are not negligible in general. The performance of three different ionosphere models has 
been compared on the basis of simulation results. When using the first ionosphere model, 
additional states for the vertical ionospheric gradients, one for each visible satellite, are 
introduced. It is assumed that this ionosphere model works fine if single-differenced 
measurements are processed. However, after the adaptation to double-differenced measurements 
an observability problem arises. If there are ݊ satellites in view, also ݊ independent VIGs have to 
be estimated. They are not observable from ݊ െ 1 double-differenced measurements within a 
single epoch. While still good performance is achieved in absence of unmodeled biases, the state 
estimation errors may diverge as soon as multipath errors are present. The second ionosphere 
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model has been developed for estimating the double-differenced ionospheric range error directly. 
In consequence, there are no problems due to bad observability of the system states. Additional 
pseudo-measurements of the double-differenced ionospheric range errors are introduced in the 
measurement model. These pseudo-measurements are always set to zero as if the ionospheric 
range errors were perfectly correlated. Since the measurement noise variances are always lower 
than the process noise variances of the double-differenced ionospheric range errors, the filter 
cannot succeed in estimating the residual ionospheric range errors precisely when using the 
second ionosphere model. In contrast to neglecting the ionospheric range errors at all, it is 
prevented with this ionosphere model that the ambiguities are fixed too quickly to the wrong 
integer values. In presence of unmodeled measurement biases it has been demonstrated that the 
usage of pseudo-measurements for the double-differenced ionospheric range errors is 
advantageous in order to prevent the unmodeled biases from incorporating into the ionosphere 
state estimates. The last ionosphere model that has been investigated does also aim at estimating 
the double-differenced ionospheric range errors. In contrast to the second model, no pseudo-
measurements are introduced. The estimation of the residual ionospheric range errors works well 
in absence of biases. If there are unmodeled biases on several receiver channels, the ionosphere 
terms are no longer estimated properly. This is in coincidence with the theory of Kalman 
filtering, where all unmodeled error sources have to be white Gaussian noise. Therefore, it 
should be considered to model multipath and the residual tropospheric range errors 
systematically. 

Instead of estimating the ionospheric terms it has also been considered to form ionosphere-free 
code-only and code-carrier combinations. However, the measurement noise is amplified by 
forming inter-frequency combinations according to the law of variance-covariance error 
propagation. The position accuracies which can be achieved when utilizing the ionosphere-free 
combinations are worse than those of the widelane and carrier phase ambiguity-fixed position 
solutions. It is recommended that the ionosphere-free measurement combinations should not be 
additionally double-differenced, which causes further amplification of the measurement noise. 
Presumably the utilization of ionosphere-free combinations is particularly suited for single-point 
positioning. Furthermore, it is recommended to use an ionosphere-free carrier-only combination 
with a short wavelength as additional measurement input to the filter, whose ambiguities are not 
resolved, but which serves for smoothing. 

Numerical stability of the EKF equations has also been investigated. The Bierman-Thornton UD 
filter implementation did not show any numerical problems. However, the computation time in 
MATLAB® was increased considerably. Slight asymmetries of the covariance matrix ௞ܲሺ൅ሻ 
were observed when using the standard EKF equations without any means to improve numerical 
robustness. This problem can be overcome for the navigation filter at hand by implementing the 
Joseph form of the covariance matrix update of state estimation uncertainty. If the algorithms 
were to be implemented in hardware instead of in MATLAB®, the Bierman-Thornton UD filter 
implementation might be preferable. 

Protection levels are computed for the user position and velocity estimates. Two different types 
of protection levels are derived: one protection level under the assumption of fault-free normal 
operation and one protection level under the assumption that there is one bias in the 
measurement data. The final protection level is given by the maximum of both values. It has to 
be considered that the presence of multiple measurement biases simultaneously is not covered in 
the computation of the protection levels. Provided that the satellite geometry is good and low-
noise measurements of future GALILEO are available, the VPL of the float solution becomes as 
low as 1 m after the filter has been running for several hundreds of epochs. The float solution is 
smoothed by carrier phase measurements, which are still given some weight in the filter-based 
approach even if no ambiguity fixing is possible with the required probability of success. Under 
the precondition of good satellite geometry, the VPL of the carrier phase ambiguity-fixed 
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solution is below 20 cm for a probability of false alarm of ிܲ஺ ൌ 1 · 10ି଻ and an associated 
integrity risk of ൎ 3 · 10ିଽ. Sigma-overbounding is applied in the computation of the protection 
levels in order to account for non-Gaussian tails of the error distributions. However, the inflation 
factors do not include the uncertainty of tropospheric delay terms. No attempt is made to guess 
the effects of partially compensated tropospheric range errors on the magnitude of the protection 
levels. It should be acknowledged that the protection levels will increase when including the 
uncertainty due to tropospheric refraction in the filter approach. In the real-signal tests it has 
shown that the importance of a precise dynamic state space model in the EKF increases when the 
number of visible satellites decreases. The accuracy of the ambiguity-fixed position solution 
might be very well, which is properly reflected by the fault-free protection levels. However, the 
fault mode protection levels are far above the fault-free mode protection levels if there were 
view visible satellites and high process noise. The position estimation errors will exceed the 
protection levels without being detected if the ambiguities were fixed wrongly. Therefore, 
reliable ambiguity resolution is the key to high-integrity carrier phase based positioning. 
Furthermore, the stochastic models of the measurement noise and of the process noise have to 
reflect the physical conditions adequately. For example, if the presence of unmodeled multipath 
is not reflected by increased measurement variances, the protection levels may be exceeded 
without being detected. The actual integrity risk associated with the navigation filter solutions 
has to be found by extensive simulations. The problem associated with an analytical approach is 
that the results of the EKF are dependent on the actual measurement sequence and the filter 
initialization. Since relative positioning is considered here, the error budget of the real-time data 
link between the reference station and the user has to be accounted for as well when trying to 
specify the overall integrity risk. 

Just like in pseudorange-based snapshot RAIM, a fault detection algorithm is implemented 
which has to detect the excess of the fault-mode protection levels. The test statistic of the filter-
based approach is based on the square root of the weighted sum of squared innovations. In order 
to provide high continuity of the navigation solution, the fault detection algorithm has been 
extended to Autonomous Filter-based fault Detection, Identification and model Adaptation 
(AFDIA). Again, only the identification of single-channel biases is supported, although there is 
in theory no upper limit for the number of biases which can be identified. In the Monte-Carlo 
simulations good performance of AFDIA could be demonstrated. All cycle slips and even 
creeping multipath errors on one channel were identified correctly. Model adaptation ensures 
that the high accuracy and the availability of the navigation solution are not endangered. Also 
artificially generated cycle slips and code outliers in the receiver measurement data were 
identified successfully in the real-signal tests. 

To conclude, good performance of the navigation filter could be verified in the Monte-Carlo 
simulations and in the real-signal tests as long as the model assumptions were kept. Frequently 
carrier phase ambiguity-fixed solutions could be derived when the airplane was still more than 
20 km away from the reference receiver. However, in presence of multiple unmodeled biases, 
the protection levels were exceeded without being detected and the probability of false integer 
ambiguity resolution increased. Further investigations are required in order to find out which 
error sources have to be modeled systematically within the filter, for example multipath and 
tropospheric delay. As long as all error sources are white Gaussian noise, the navigation filter 
provides very accurate position solutions and protection levels. 
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V. Appendix 

A. Extended Kalman Filter Equations 
 

The extension of the standard discrete-time Kalman filter equations to nonlinear dynamic models 
and/or nonlinear measurement models leads to the formulation of the discrete-time extended 
Kalman filter (EKF). In the following the essential filter equations of the EKF are summarized. 
It is referred to [12] for the derivation of the equations. The problem is formulated in discrete 
state-space. The equations presented hereafter refer to the case where both the dynamic model 
and the measurement model are nonlinear: 

௞ݔ  ൌ ௞݂ିଵ൫ݔ௞ିଵ൯ ൅ ߱௞ିଵ, ߱௞~ܰሺ0, ܳ௞ሻ (A.1)

௞ݖ  ൌ ݄௞൫ݔ௞൯ ൅ ߭௞, ߭௞~ܰሺ0, ܴ௞ሻ (A.2)

1) Computation of the a priori covariance matrix of state estimation uncertainty: 

 ௞ܲሺെሻ ൌ Φ௞ିଵ
כ · ௞ܲିଵሺ൅ሻ · Φ௞ିଵ

்כ ൅ ܳ௞ିଵ , (A.3)

where the linear approximation of the state transition matrix is calculated from partial 
derivatives: 

כ௞ିଵߔ  ൎ
߲ ௞݂ሺݔሻ
ݔ߲

ቤ
௫ୀ௫ොೖషభሺିሻ

 (A.4)

2) Computation of the Kalman gain: 

௞ܭ  ൌ ௞ܲሺെሻ · ்כ௞ܪ · כ௞ܪൣ · ௞ܲሺെሻ · ்כ௞ܪ ൅ ܴ௞൧
ିଵ

, (A.5)

where the linear approximation of the measurement sensitivity matrix is computed from 

כ௞ܪ  ൎ
߲݄௞ሺݔሻ
ݔ߲

ቤ
௫ୀ௫ොೖሺିሻ

 (A.6)

and the a priori estimate of the state vector at time k follows from 

ො௞ሺെሻݔ  ൌ ௞݂ିଵ൫ݔො௞ିଵሺ൅ሻ൯ . (A.7)

3) Computation of the posteriori covariance matrix of state estimation uncertainty: 

 ௞ܲሺ൅ሻ ൌ ሾܫ െ ௞ܭ · ሿכ௞ܪ · ௞ܲሺെሻ (A.8)

4) Computation of the posteriori estimate of the state vector at time k: 

ො௞ሺ൅ሻݔ  ൌ ො௞ሺെሻݔ ൅ ௞ܭ · ൫ݖ௞ െ ௞൯ݖ̂ , (A.9)

where the predicted measurement at time k is computed from 

௞ݖ̂  ൌ ݄௞൫ݔො௞ሺെሻ൯ . (A.10)
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B. Ephemeris Data 
 

The position and velocity vector of the satellites in the ECEF coordinate system are calculated 
from ephemeris data broadcast in the navigation message. The determination of the satellite 
ECEF position vector from ephemeris data is described in IS-GPS-200 [20]. In this 
representation the determination of the satellite velocity vector is indicated as well. The velocity 
vector is derived from the first order derivative of the position vector by applying the chain-, 
product- and quotient-rule of differentiation. The results have been counterchecked with the 
satellite velocity determination from broadcast ephemeris published in [35]. The respective first 
order derivatives are listed in the right column of Table 9.1 in addition to the standard formulas 
for the calculation of the satellite position vector taken from the IS-GPS-200, which are 
indicated in the left column of Table 9.1. The depiction is restricted to present GPS broadcast 
ephemeris. 

 

Table 9.1: Satellite position and velocity from ephemeris data 

WGS 84 value of the earth’s gravitational constant 

ߤ ൌ 3.986005 · 10ଵସ ݉ଷ/ݏଶ  

WGS 84 value of the earth’s rotation rate 

ሶ௘ߗ ൌ 7.2921151467 · 10ିହ   ݏ/݀ܽݎ

Semi-major axis 

 (square root of the semi-major axis from ephemeris data :ܣ√)

ܣ ൌ ൫√ܣ൯
ଶ
  

Computed mean motion in rad/s 

݊଴ ൌ ට
ߤ
  ଷܣ

Actual total time difference between the GPS system time at transmission (ݐ) and the epoch time (ݐ௢௘) 

 (௢௘: reference time of ephemeris from ephemeris dataݐ)

௞ݐ ൌ ݐ െ  ௢௘ݐ

If ݐ௞ ൐ ௞ݐ :ݏ302400 ൌ ௞ݐ െ  ݏ604800

If ݐ௞ ൏ െ302400ݐ :ݏ௞ ൌ ௞ݐ ൅  ݏ604800

 

Corrected mean motion 

(∆݊: mean motion difference from computed value from ephemeris data) 

݊ ൌ ݊଴ ൅ ∆݊  

Mean anomaly 

 (଴: Mean anomaly at reference time from ephemeris dataܯ)

௞ܯ ൌ ଴ܯ ൅ ݊ · ሶܯ ௞ݐ ௞ ൌ ݊ 

Kepler’s Equation for eccentric anomaly; eccentric anomaly ܧ௞ may be solved iteratively 

(݁: eccentricity from ephemeris data) 
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௞ܯ ൌ ௞ܧ െ ݁ · sin ሶ௞ܧ ௞ܧ ൌ
݊

1 െ ݁ · cos ௞ܧ
 

True anomaly  

߭௞ ൌ tanିଵ ቆ
√1 െ ݁ଶ · sin ௞ܧ
cosܧ௞ െ ݁ ቇ ሶ߭௞ ൌ

ሶ௞ܧ · sin ௞ܧ · ሺ1 ൅ ݁ · cos ߭௞ሻ
ሺ1 െ ݁ · cos ௞ሻܧ · sin ߭௞

 

Argument of latitude 

(߱: argument of perigee from ephemeris data) 

௞ߔ ൌ ߭௞ ൅ ሶߔ ߱ ௞ ൌ ሶ߭௞ 

Argument of latitude correction (second harmonic perturbation) 

 (௨௦: amplitude of the sine harmonic correction term to the argument of latitude from ephemeris dataܥ)

 (௨௖: amplitude of the cosine harmonic correction term to the argument of latitude from ephemeris dataܥ)

௞ݑߜ ൌ ௨௦ܥ · sinሺ2ߔ௞ሻ ൅ ௨௖ܥ · cosሺ2ߔ௞ሻ ݑߜሶ ௞ ൌ 2 · ሶߔ ௞ · ሾܥ௨௦ · cosሺ2ߔ௞ሻ െ ௨௖ܥ · sinሺ2ߔ௞ሻሿ 

Radius correction (second harmonic perturbation) 

 (௥௦: amplitude of the sine harmonic correction term to the orbit radius from ephemeris dataܥ)

 (௥௖: amplitude of the cosine harmonic correction term to the orbit radius from ephemeris dataܥ)

௞ݎߜ ൌ ௥௦ܥ · sinሺ2ߔ௞ሻ ൅ ௥௖ܥ · cosሺ2ߔ௞ሻ ݎߜሶ௞ ൌ 2 · ሶߔ ௞ · ሾܥ௥௦ · cosሺ2ߔ௞ሻ െ ௥௖ܥ · sinሺ2ߔ௞ሻሿ 

Inclination correction (second harmonic perturbation) 

 (௜௦: amplitude of the sine harmonic correction term to the angle of inclination from ephemeris dataܥ)

 (௜௖: amplitude of the cosine harmonic correction term to the angle of inclination from ephemeris dataܥ)

௞݅ߜ ൌ ௜௦ܥ · sinሺ2ߔ௞ሻ ൅ ௜௖ܥ · cosሺ2ߔ௞ሻ ߜіሶ௞ ൌ 2 · ሶߔ ௞ · ሾܥ௜௦ · cosሺ2ߔ௞ሻ െ ௜௖ܥ · sinሺ2ߔ௞ሻሿ 

Corrected argument of latitude 

௞ݑ ൌ ௞ߔ ൅ ሶݑ ௞ݑߜ ௞ ൌ ሶ߭௞ · ሼ1 ൅ 2 · ሾܥ௨௦ · cosሺ2ߔ௞ሻ െ ௨௖ܥ
· sinሺ2ߔ௞ሻሿሽ 

Corrected radius 

௞ݎ ൌ ܣ · ሺ1 െ ݁ · cosܧ௞ሻ ൅ ሶ௞ݎ ௞ݎߜ ൌ ܣ · ݁ · sinܧ௞ · ሶ௞ܧ ൅ 2 · ሶ߭௞ · ሾܥ௥௦ · cosሺ2ߔ௞ሻ െ
௥௖ܥ · sinሺ2ߔ௞ሻሿ  

Corrected inclination 

(݅଴: inclination angle at reference time from ephemeris data) 

 (rate of inclination angle from ephemeris data :ܱܶܦܫ)

݅௞ ൌ ݅଴ ൅ ௞݅ߜ ൅ ܱܶܦܫ · ௞ іሶ௞ݐ ൌ ܱܶܦܫ ൅ 2 · ሶ߭௞ · ሾܥ௜௦ · cosሺ2ߔ௞ሻ െ ௜௖ܥ ·
sinሺ2ߔ௞ሻሿ  

X-coordinate in orbital plane 

כ௞ݔ ൌ ௞ݎ · cos כሶ௞ݔ ௞ݑ ൌ ሶ௞ݎ · cos ௞ݑ െ כ௞ݕ · ሶݑ ௞ 

Y-coordinate in orbital plane 

כ௞ݕ ൌ ௞ݎ · sin כሶ௞ݕ ௞ݑ ൌ ሶ௞ݎ · sin ௞ݑ ൅ כ௞ݔ · ሶݑ ௞ 

Corrected longitude of ascending node 

 (଴: longitude of ascending node of orbital plane at weekly epoch from ephemeris dataߗ)
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ሶߗ) : rate of right ascension from ephemeris data) 

௞ߗ ൌ ଴ߗ ൅ ൫ߗሶ െ ሶߗ ௘൯ · ௞ݐ െ ሶߗ ௘ · ሶ௞ߗ ௢௘ݐ ൌ ሶߗ െ  ሶ௘ߗ

ECEF x-coordinate 

௞ݔ ൌ כ௞ݔ · cosߗ௞ െ כ௞ݕ · cos ݅௞ · sinߗ௞ 
ሶ௞ݔ ൌ cosߗ௞ · ൫ݔሶ௞כ െ כ௞ݕ · cos ݅௞ · ሶ௞൯ߗ െ
sinߗ௞ · ൫ݔ௞כ · ሶߗ ௞ ൅ כሶ௞ݕ · cos ݅௞ െ כ௞ݕ · sin ݅௞ · іሶ௞൯  

ECEF y-coordinate 

௞ݕ ൌ כ௞ݔ · sinߗ௞ ൅ כ௞ݕ · cos ݅௞ · cosߗ௞ 
ሶ௞ݕ ൌ sinߗ௞ · ൫ݔሶ௞כ െ כ௞ݕ · cos ݅௞ · ሶߗ ௞൯ ൅
cosߗ௞ · ൫ݔ௞כ · ሶߗ ௞ ൅ כሶ௞ݕ · cos ݅௞ െ כ௞ݕ · sin ݅௞ · іሶ௞൯  

ECEF z-coordinate 

௞ݖ ൌ כ௞ݕ · sin ݅௞ ݖሶ௞ ൌ כሶ௞ݕ · sin ݅௞ ൅ כ௞ݕ · cos ݅௞ · іሶ௞ 
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