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Abstract

In this work the effect of high receiver dynamics on several tracking techniques,
used in Global Navigation Satellite Systems (GNSS) receivers, is studied. It is
shown that code tracking experiences the least of this effect and need not be
adapted. Moreover, traditional Phase Locked Loop carrier tracking is simulated
under high dynamics. The conventional linearized simulation model was extended
to mimic the exact signal correlation process under high acceleration. Intermedi-
ate frequency simulations were also carried for validation of the results. The new
mathematical representation of the correlation process gives high inspiration for
an accurate measurement model to be used in an Extended Kalman Filter (EKF)
tracking system. Accordingly an enhanced EKF is developed and compared to
various EKF carrier tracking system available in the literature. The proposed so-
lution shows its ability to withstand the most severe dynamics situations amongst
other EKF solutions with simpler measurement models. Furthermore, while other
solutions do not benefit from the second order EKF implementation whose aim is
to reduce the linearization error, the enhanced measurement form shows a further
improvement in a second order Kalman filter scheme. EKF tracking was stud-
ied further with Numerically Controlled Oscillators (NCO) of higher order and it
was shown that the frequency controlled NCO remains the most suitable solution.
Additionally, the EKF tracking solution is compared to the PLL solution on a
fair basis, where the noise bandwidth of the PLL was chosen to promote its best
performance. The EKF shows a generally better performance for weak signals
than that of PLL tracking. Precisely, in low dynamics situations with a carrier to
noise ratio weaker than 24 dB-Hz the proposed EKF is better, while the PLL per-
formance is better with higher carrier to noise ratios. Moreover, in high dynamics
situations the margin where EKF tracking outperforms PLL tracking extends to
higher values of carrier to noise ratio.
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Chapter 1

Introduction

Rapidly changing receiver dynamics are known to deteriorate the tracking perfor-
mance of traditional Global Navigation Satellite Systems (GNSS) receivers. While
current systems use PLL for tracking, they are suboptimal in compromising the
effects of noise and dynamics simultaneously. The purpose of this study was ini-
tially to develop a PLL simulator to analyze the tracking performance of Phase
Locked Loops (PLL) in high dynamics scenarios. In doing so, it was observed
that an Extended Kalman Filter (EKF) may be a more optimal solution in high
acceleration scenarios and performs well with higher order dynamics.

After the acquisition stage, the initial code phase and carrier frequency offset
are estimated by the receiver. Nevertheless, these parameters are time changing
and must be tracked. Several reasons stand behind this time varying aspect of
the channel. First and most importantly is the receiver motion making the line
of sight dynamics rapidly varying. In several case the receiver motion can result
in sever consequences as is it sometimes hard to predict. Secondly is the satellite
motion in addition to the changing atmospheric conditions leading to a varying
doppler shift. However these later effects are smaller and more predictable.

Although both the carrier and the code experience the same effects, the code
sequence, suffers from a much milder fashion. The effects on the code are reduced
because the doppler shift is inversely proportional to the wave length. This makes
the effects on the code, which has a much larger wavelength, much smaller than
it is on the carrier .

In section 1.1 of this chapter a signal model including the dynamics is pre-
sented. In section 1.2 a performance measure is presented and it parameters are
defined. Chapter 2 discusses the effect of high dynamics on the code tracking while
in chapter 3 a simulation model for high dynamics is built in order to compare the
loop performance in several noise and dynamics situation. The developed PLL
simulation model gives a high inspiration for an actual carrier tracking solution
using EKF. The EKF solution is discussed in chapter 4. Finally this work is
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Figure 1.1: Typical scenario of high dynamics

concluded in chapter 5.

1.1 High Dynamics and signal model

Line of Sight (LOS) changes in the signal will be considered, reducing the focus of
this work to a single channel of a stand alone receiver. This simplification is valid
under the considerations and purpose of this study. In fact, dynamics taking place
in the LOS direction are the most intense, hence making the LOS dynamics more
interesting to look at. Indeed it is, because consider otherwise the case where the
dynamics happen in the orthogonal direction to the LOS vector, then they will
not be be seen by the receiver and have no effect on the tracking performance.
However, a LOS dynamics model would not be sufficient when more sophisticated
tracking techniques are to be considered. For instance, joint tracking would require
the understanding of the whole geometry of the constellation instead of focusing
on a single tracking channel. These multichannel tracking methods are left outside
the scope of this work, hence giving the advantage of simplifying the signal model
to a LOS model.

A Taylor series expansion for the carrier phase term around t = 0 is presented
in what follows. For convenience, we first separate the contribution of the receiver
dynamics from other effects. We then merge them together for desired simplicity
in the model.

3



Φrcv(t) =
2π

λ
(r0 + v0t +

a0

2
t2 +

j0

6
t3 + ...) (1.1)

Φsv(t) = φ0sv + ωD0t +
ω̇D0

2
t2 +

ω̈D0

6
t3 + ...) (1.2)

S(t) = cos(ωct + Φrcv(t) + Φsv(t)) (1.3)

Where equation (1.1) describes the receiver’s dynamics and equation (1.2) de-
scribes dynamics counterpart due to satellite position and movements in addition
to the atmospheric effects which are implicitly included in ωD0 and its derivatives.
In both equations (1.1) and (1.2), the derivatives of the frequency equivalent terms
are considered to additionally include the change of the frequency component due
to the change in the direction of the LOS vector. For instance if the receiver’s
absolute velocity is constant but it is experiencing a change in its direction, such
the case is in figure 1.1, then the rate of change of the LOS velocity would be
considered as acceleration, jerk and higher order terms.

Nevertheless, as our aim of this work is to analyze the effect of high dynamics,
the low dynamics coming from the SV, expressed in Φsv(t), can be neglected. The
minor shortcoming in doing so is that any numerical mention of the LOS receiver
dynamics is not accurate in the sense that the receiver motion is not the only
contributor in the stated LOS value. This becomes important when generating a
receiver data sheet for example where the maximum allowed dynamics are stated.
If this is the case, worst case values of ω̇D0 and ω̇D0 should be subtracted. After
profiling a high amount of simulated GPS signal, such a worst case value of ω̇D0 is
around 5 ∼ 6Hz/s. ω̈D0 is expected to be negligible as the satellite dynamics are
slow. Moreover, this simplification can be further backed up by the fact the impact
of receiver dynamics is much higher especially on acceleration and higher order
term. For instance, a propeller driven aircraft performing a 10 seconds horizontal
loop would experience a maximum doppler change rate of 400Hz/s equivalent to
a0 = 12.5m/s2, that is well higher then the aforementioned figure of 5 ∼ 6Hz/s.
Cars changing direction more rapidly experience also high equivalent a0.

Having that said, we now merge Φrcv(t) and Φsv(t) as follows, reaching the
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LOS dynamics model presented in equations (1.4) and (1.5).

Φ(t) = Φrcv(t) + Φsv(t) = φ0 + ω0t +
ω̇0

2
t2 +

ω̈0

6
t3 + ... (1.4)

φ0 =
2π

λ
r0 + φ0sv

ω0 =
2π

λ
v0 + ωD0

ω̇0 =
2π

λ
a0 + ω̇D0

ω̈0 =
2π

λ
j0 + ω̈D0

S(t) = cos(ωct + Φ(t)) (1.5)

Finally, for more convenience, it might happen that we mention in what follows
of this document the terms acceleration and jerk. Hence, otherwise stated, these
terms will be considered to include the channel dynamics as well.

1.2 Tracking Loops Performance

Tracking loops usually face two limiting factors. The first factor is the low Carrier
to Noise ratio C/N0 and the second is the disturbance created by high and chang-
ing dynamics conditions. Unfortunately, a solution that solves both problems
simultaneously is impossible as there is always a need for some kind of compro-
mise depending on the situation. For instance, in a traditional Phase Locked Loop
(PLL), the loop bandwidth Bn is a parameter that can be used to such adapta-
tion in situations where we have knowledge about the noise. Precisely, in noisy
scenarios a tight bandwidth is needed, however this comes at a price of a limited
resistance to dynamics stress. Oppositely, a large bandwidth will help the loop
remaining in lock state with higher dynamics stress conditions, but this will of
course require a low enough noise level.

The performance of tracking loops is then assessed based on these two factors.
The immunity to noise is measured by the phase error jitter. Whereas the immu-
nity to dynamics stress is determined by the order and intensity of the dynamics.
The higher the loop order is, the more orders of dynamics become transparent to
the loop. Namely, velocity is transparent to a second order loop whereas accel-
eration is transparent to a third order loop. Furthermore, for a third order loop,
the amount of jerk stress allowed could serve as a measuring factor for the immu-
nity to dynamics stress. It is important here to distinguish between the effect of
noise, which increases the jitter (i.e. standard deviation of the error) in the phase
estimate, and the effect of high dynamics (e.g. jerk stress), which would lead to a
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Figure 1.2: An example of the cycle slip phenomenon

bias in the estimate. At the end of the loop performance analysis, the jitter and
the bias should both add up to a phase error value less than a specific threshold,
discussed further in the next paragraph.

For a non-modulated sinusoidal signal, the loop is said to maintain the lock
whenever the replica generated by the Numerically Controller Oscillator (NCO)
has a phase that is close to the phase of the incoming signal by significantly less
than one cycle. Here comes the notion of the 3-sigma threshold. This threshold
uses a probabilistic approach and basically suggests that the 3-sigma jitter should
not increase one fourth of the PLL pull in range as follows

3 · σPLL = 3 · σi + θe ≤ 90◦ (1.6)

where:
σi = 1-sigma phase jitter from all sources except the dynamics stress. This

means in our case the thermal noise as the jitter due to oscillator is also out of
the scope of our study. θe = dynamics stress error in the PLL

In some cases, especially when a noisy signal experiences an extra burst of
noise for a very short period of time, the estimated phase error increases up to
more than one cycle. However the loop regains the lock state directly afterwards.
This is known as a cycle slip. Algorithms that detect cycle slips have been subject
to many studies, but they remain outside the scope of this discussion. When cycle
slips become more frequent, it is highly probable that the loop will lose the lock
completely. An example of a case with frequent cycle slips is shown in figure 1.2

Furthermore, for a sinusoidal signal modulated with binary data, a flip in the
sign of the incoming waveform should be expected at anytime. To accomplish an
phase error estimate which regardless of the sign, the loop is usually equipped
with an atan(·) discriminator. This later has a period of half a cycle, making the

6



requirement on the the 3-sigma threshold to be

3 · σPLL = 3 · σi + θe ≤ 45◦ (1.7)

In fact, as the pull-in range of the atan(·) discriminator is half a cycle, the
same slips effect described before is now called half-cycle slips. In fact, this is
what figure 1.2 shows.
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Chapter 2

Code Tracking Loop

The code tracking loop, also known as Delay Locked Loop (DLL), is one counter-
part of the signal tracking in a GNSS receiver. Hence, it constitutes along with
the carrier tracking loop the most critical component, that is the signal tracking
module. Although the two loops are highly coupled, the DLL usually receives
Doppler aiding from the carrier tracking. Using this information the DLL adjust
its replica code rate accordingly to compensate for this effect. In this chapter we
study the effect of acceleration and jerk on the isolated DLL for a single accumu-
late and dump period where specifically the correlation procedure is investigated.
The result we will come to in this chapter shows that the effects are negligible.
The conclusions can be made without the burden of going into further analysis of
the closed loop.

The results derived here are not surprising. In fact the code rate is much lower
than the carrier, the impacts of high dynamics are expected to be milder on code
tracking than it is on carrier tracking. The latter is to be studied later.

2.1 The Effect of High Dynamics on the Auto-

correlation

The code generated at the SV can be written as a function of time as follows:

Csv(t) =

N
∑

k=1

ckRect

(

t − kTc

Tc

)

(2.1)

Where Rect(·) is the rectangular1 function

1Rect(x) =

{

0 if x < 0 or x ≥ 1

1 if 0 ≤ x < 1

8



With ck being the value of the kth chip (±1), Tc being the chip duration and N
the code length in chips. The code is seen at the receiver at time t with is delayed
by d(t) = x0 + v0t + a0

2
t2 + j0

6
t3

With d(t) being the line of sight dynamics including an initial distance x0,
velocity v0, acceleration a0 and jerk j0. Hence the code seen at the receiver can
be written as:

Cr(t) = Csv(t −
d(t)

c
) =

N
∑

k=1

ckRect
(t(1 − v0

c
− a0

2c
t − j0

6c
t2) − kTc − x0

c

Tc

)

(2.2)

Note that x0 is nothing but the pseudorange shift resolved by synchronizing
the code and its replica so it can be neglected.Moreover, v0

c
is nothing but the

doppler shift which is perfectly known from the tracking loop. In fact, in the
carrier aided code loop, the code replica is sampled according to this value which
means that it can also be neglected. Therefore, 2.2 becomes:

Cr(t) =

N
∑

k=1

ckRect
(t(1 − a0

2c
t − j0

6c
t2) − kTc

Tc

)

=

N
∑

k=1

ckRect

(

t − kTc

(1−
a0

2c
t−

j0
6c

t2)

Tc
1

(1−
a0

2c
t−

j0
6c

t2)

) (2.3)

Using the approximation

1

1 − x
≈ 1 + x for x ≪ 1 with x =

a0

2c
t +

j0

6c
t2 (2.4)

we get a chip length seen at the receiver of

T ′

c =
Tc

1 − a0

2c
t − j0

6c
t2

≈ Tc

(

1 +
a0

2c
t +

j0

6c
t2
)

(2.5)

Assuming the tracking loop is tracking the dynamics perfectly then this value
will accumulate only for one coherent integration duration. Thus, the maximum
chip length will be Tc

(

1 + a0

2c
T + j0

6c
T 2
)

. Where T is the coherent integration
duration.

For instance, for a 1023 chips long C/A code, choosing a typical the integration
time of T = 20 ms with acceleration a0 and jerk j0 leads to a maximum increase
(last chip) in the chip duration by 3.33·a0·10−11+2.22·j0·10−13 chips. Furthermore,
the total shift of the code measured at the last chip will be ρ and is given as

ρ =
a0

2c
Tc

(N + 1)N

2
+

j0

6c
T 2

c

N(N + 1)(2N + 1)

6
(2.6)

= a0 × 3.41 10−7 + j0 × 1.5505 × 10−3 chips (2.7)

= a0 × 10−4 + j0 × 0.455 m

9
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Tc
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Figure 2.1: Received code with LOS acceleration (dashed) and code replica (solid)

Looking for a lower bound of the correlation output, lets conservatively assume
low autocorrelation properties of the code, meaning that the code is an alternation
of +1 and −1. This choice helps in the simplicity of the derivation and is enough
for a tight bound as we shall see next.

Consider the received code and the locally generated replica, as shown in figure
4, to be synchronized at the start point of the integration duration. Let us also
consider the quantity Ck to be the contribution to the correlation coming only
from the kth chips. Relying on the figure we can write what follows:

C1 = t1 − (t1 − Tc) = Tc

C2 = t2 − t1 − (t2 − 2Tc) = 2Tc − t1

C3 = t3 − t2 − (t3 − 3Tc) = 3Tc − t2

Ck = kTc − tk−1 = kTc −
k−1
∑

l=1

Tl

R′(0) ≥
N
∑

k=1

Ck =

N
∑

k=1

(

kTc −
k−1
∑

l=1

Tl

)

+ ǫ

Where R′(0) is the correlation value with acceleration considering a zero initial
time shift. ǫ ≪ Tc is a small quantity rising from the fact that the integration
takes place till the end of the local replica of the code and not the received one.
Hence, it can be dropped as it doesn’t help much tightening the approximation.

Next, using 2.5 with t = tk =
∑k−1

l=1 Tl with Tl = Tc

(

1 + a0

2c
lTc + j0

6c
(lTc)

2
)

we
calculate the ratio of the correlation R′(0)with acceleration to the correlation R(0)
without acceleration as follows.
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R′(0)

R(0)
=

R′(0)

NTc

≥ 1

N

N
∑

k=1

k − 1

N

N
∑

k=1

k−1
∑

l=1

(

1 +
a0

2c
Tcl +

j0

6c
T 2

c l2
)

=
1

N

N
∑

k=1

k − 1

N

N
∑

k=1

[

k − 1 +
a0

2c
Tc

(k − 1)k

2
+

j0

6c
T 2

c

(k − 1)k(2k − 1)

6

]

= 1 − a0

4c
Tc

1

N

N
∑

k=1

(k2 − k) − j0

36c
T 2

c

N
∑

k=1

(2k3 − 3k2 + k)

= 1 − a0

4c
Tc

[

(N + 1)(2N + 1)

6
− N + 1

2

]

− j0

36c
T 2

c

[

N + 1

2
− (N + 1)(2N + 1)

2
+

N(N + 1)2

2

]

= 1 − a0

12c
Tc(N + 1)(N − 1) − j0

72c
T 2

c (N + 1)(N − 1)N

= 1 − a0

12c
Tc(N

2 − 1) − j0

72c
T 2

c (N2 − 1)N

(2.8)

Plugging in N = 20 × 1023 which is equivalent to the maximal integration
time of 20 ms with initial acceleration a0 = 1000 m/s2 and jerk j0 = 1000 m/s3

representing ultra hight dynamics we get:

R′(0)

R(0)
≥ 0.999886 (2.9)

Nevertheless, the degradation values are expected to be even less due the good
autocorrelation properties of the C/A code. In the next we investigate this effect
and we look further in the errors generated by the early late discriminator due to
dynamics.

2.2 The effect of Integration Duration

Simulating the actual correlation process looks impractical. Therefore we extended
the approximation above using Matlab

r to account for the pseudo-randomness
of C/A codes. In this section we show these results along with the relationship to
T the accumulate and dump duration.
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Figure 2.2 show the autocorrelation for the BOC(1,1) C/A pilot code of the
GIOVE-A satellite. Because the difference in the autocorrelation for several accel-
eration values cannot be graphically emphasized in figure 2.2, we show in figures 2.3
and 2.4 the error between autocorrelation plots for two different high acceleration
values and two different accumulate and dump durations the the autocorrelation
plot corresponding to zero acceleration. Additionally, an important aspect to ob-
serve is the constant error over the whole linear region, which is our region of
interest. This leads us to measure the absolute tracking error.

Figures 2.8 and 2.9 summarize the code tracking error for the GIOVE-A and
GPS-PRN-1 SVs. This error is evaluated for a range of accelerations and inte-
gration duration T . The first, observation is that the error increases linearly with
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Figure 2.7: Discriminator error in meters
for two different acceleration values (T =
100ms)

acceleration. However for the same acceleration the degradation with increased
accumulate and dump period is more dramatic. This result could help opening
some eyes on the limitations of long integration durations for the forthcoming
Galileo pilot signals where the code tracking error could reach 3.5 cm in cases of
very high acceleration.

Finally, even in the extreme cases considered, the degradation can still be ne-
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glected. A loss of lock, for instance, would require an error to be a considerable
fraction of a chip. The results here show this is improbable to happen even with
extreme cases of dynamics. Therefore a conclusion can be made from this discus-
sion that dynamics stress is transparent to carrier aided code loops. Therefore,
the rest of this work focuses only on carrier tracking.
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Chapter 3

Digital Phase Locked Loop

3.1 Overview

Analogue PLLs have proven to have a robust performance in several applications
ranging from frequency and phase tracking to FM demodulation. After the evo-
lution of CMOS technology and embedded systems, even the most time critical
operation can be done digitally. Because of its robustness, digitizing the analogue
PLL seemed to be the most agreeable approach targeting the tracking problem.

In fact some components do not witness any change in behavior when trans-
forming the loop from analog to digital. Namely, discriminator hold the same
characteristics except for minor quantization errors. The behavior of the loop fil-
ter is as well not expected to change from analogue to digital. However, both the
NCO, used to be denoted as VCO, and the low pass filter do change the behav-
ior. The accumulate and dump period , equivalently denoted as signal correlation
duration, restrict the system to a given period T . T can be thought of as the
sampling frequency at which the continuous PLL model is sampled, and a correct
choice of this duration is critical for the stability of the loop, and generally of any
transformation from a continuous to a discrete system. It is important however
to distinguish here between T and Ts, the sampling period of the incoming signal.
T is a design parameter that also determines how long should we correlate the
incoming signal with the locally generated replica. Thus a very short T , although
good for the responsiveness and immunity of the loop against dynamics stress,
should take into consideration the noise factor. This is simply because the higher
the correlation duration the better is the noise reduction. In other words, given
a random variable, the additive noise in this case, if more instances are averaged
then this average will be closer to the mean.

On the other side, the signal replica generated by the NCO has to have a con-
stant frequency during one T duration, as the NCO input is updated once every
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Figure 3.1: The effect of acceleration on the sinusoidal signal

T . Therefore, in contrast to the analogue PLL whose NCO frequency was continu-
ously changed to adapt as best a possible to the incoming signal in hand, a digital
PLL does not match the higher order component of the signal in its replica. To
clarify the previous point, with an NCO that takes as input the frequency incre-
ments, the Doppler change rate, equivalently acceleration, and higher order terms
will not be accurately modeled in the replica, however that does not necessarily
mean that they are not accounted for by the lower order component of the NCO.
Similarly , an NCO that takes the frequency change rate as input will act similarly
with respect to jerk and higher order dynamics.

3.2 Linearized Loop Model

The linearized loop model, for both analogue and digital PLLs is a very handy
tool for predicting the behavior of the PLL under certain conditions. The transfer
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Figure 3.2: Linearized Loop Model

function of the first is expressed in the s-domain whereas in the z-domain for the
latter. The main catch in the model is that it transforms the loop from the signal
domain into the phase domain dropping out the actual signal-replica correlation
process and the burden of its element by element multiplication. In addition to its
usefulness in understanding analytically the loop behavior, it is also useful to build
loop simulations that can run quickly with a high computational efficiency. Figure
3.2 shows the linearized loop model where the discriminator, loop filer and NCO
are denoted by Kd, F (z) and N(z) respectively. In this model the discriminator is
only a gain factor Kd. In fact linearization of the discriminator is the crucial step
in the linearized model because most types of discriminator include trigonometric
fuction such the atan(·) of the Costas loop. This linearization is valid and can
be traced back to a sin(δφ) discriminator model which may be approximated by
sin(∆φ) ≈ ∆φ.

Figure 3.3 represents the linearized model augmented for the purpose of simu-
lating a Loop with an atan(·) discriminator, more precisely the Costas Loop. GI(·)
and GQ(·) are the core component of the model, they simulate the accumulate and
dump period providing In and Qn as a function of the phase difference between the
phase of the signal and the phase of the replica. In other terms they are transforms
of the correlation from the signal domain to the phase domain. Furthermore, as we
shall see in the derivation of GI(·) and GQ(·) will also depend on the frequency of
the replica generated by the NCO as this gives better approximation. The inputs
ω0,i and α0,i are external inputs which are thought of as a constants, whereas φ0,i

could be either a constant to simulate non changing dynamics or can be varied ac-
cording to the simulation requirements. A useful simulation is to vary it according
to phase profile modeling an acceleration random walk. We will tackle this point
later in section 3.4. The input α0,i, is however disregarded in section 3.2.1.

In section 3.2.1 we show the traditional simulation model widely used in the
domain of satellite tracking. Following, in section 3.2.2, we show a variation of this
model where we introduce the effect of acceleration in the signal-replica correlation
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process.

3.2.1 Simulation Model without Acceleration

This simulation models the linear PLL for constant frequency and phase offsets
ω0 and φ0 respectively. Equivalently this model applies only if the line of sight
acceleration is zero. Following these considerations, the signal model y(t) will be:

y(t) = cos(ωct + ω0,nt + φ0,n) (3.1)

The locally generated replicas are:

yI,n(t) = cos(ωct + ω̂nt + φ̃n) (3.2)

yQ,n(t) = − sin(ωct + ω̂nt + φ̃n) (3.3)

Where φ̃0 is some starting phase that guarantees that the phase of the NCO is
always continuous. Writing down the correlation equations we get the following
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forms for In and Qn:

In =
1

T

∫ nT

(n−1)T

y(t)yI,n(t) dt

=
1

T

∫ nT

(n−1)T

cos(ωct + ω0,nt + φ0,n) cos(ωct + ω̂nt + φ̃n) dt

=
1

2T

∫ nT

(n−1)T

cos
(

(ω0,n − ω̂n) t + φ0,n − φ̃n

)

dt + double freq term

=
−1

2T (ω0,n − ω̂n)

[

sin
(

(ω0,n − ω̂n) (n − 1)T + φ0,n − φ̃n

)

− sin
(

(ω0,n − ω̂n) nT + φ0,n − φ̃n

)]

= −sin
(

−T
2

(ω0,n − ω̂n)
)

T (ω0,n − ω̂n)
cos

(

(ω0,n − ω̂n) (n − 1)T + (ω0,n − ω̂n)
T

2
+ φ0,n − φ̃n

)

=
1

2
· sinc1

(

T

2
(ω0,n − ω̂n)

)

× cos

(

(ω0,n − ω̂n) (n − 1)T + (ω0,n − ω̂n)
T

2
+ φ0,n − φ̃n

)

(3.4)

Qn =
1

T

∫ nT

(n−1)T

y(t)yQ,n(t) dt

=
1

T

∫ nT

(n−1)T

cos(ωct + ω0,nt + φ0,n) ×− sin(ωct + ω̂nt + φ̃n) dt

=
1

2T

∫ nT

(n−1)T

sin
(

(ω0,n − ω̂n) t + φ0,n − φ̃n

)

dt + double freq term

=
1

2T (ω0,n − ω̂n)

[

cos
(

(ω0,n − ω̂n) (n − 1)T + φ0,n − φ̃n

)

− cos
(

(ω0,n − ω̂n)nT + φ0,n − φ̃n

)]

= −sin
(

−T
2

(ω0,n − ω̂n)
)

T (ω0,n − ω̂n)
sin

(

(ω0,n − ω̂n) (n − 1) T + (ω0,n − ω̂n)
T

2
+ φ0,n − φ̃n

)

=
1

2
· sinc

(

T

2
(ω0,n − ω̂n)

)

× sin

(

(ω0,n − ω̂n) (n − 1)T + (ω0,n − ω̂n)
T

2
+ φ0,n − φ̃n

)

(3.5)

Now we proceed to find φ̃n. A frequency jump will guarantee a continuous phase
if the resulting phase at the end of one integration period to be equal to the phase
at the beginning of the next one. Thus the following condition must be satisfied:

(ω0,n − ω̂n) (n − 1)T + φ̃n = (ω0,n−1 − ω̂n−1) (n − 1)T + φ̃n−1 (3.6)

1sinc(x) = sin(x)
x
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φ̃n = ((ω0,n−1 − ω̂n−1) − (ω0,n − ω̂n)) (n − 1)T + φ̃n−1

= ((ω0,n−1 − ω̂n−1) − (ω0,n − ω̂n)) (n − 1)T

+ ((ω0,n−2 − ω̂n−2) − (ω0,n−1 − ω̂n−1)) (n − 2)T + φ̃n−2

= − (ω0,n − ω̂n) (n − 1)T + (ω0,n−1 − ω̂n−1) T + (ω0,n−2 − ω̂n−2) (n − 2)T + φ̃n−2

...

= − (ω0,n − ω̂n) (n − 1)T +

n−1
∑

k=1

(ω0,k − ω̂k) T

= − (ω0,n − ω̂n) (n − 1)T + φ̂n

(3.7)

Where φ̂n =
∑n−1

k=1 (ω0,k − ω̂k)T is the starting phase of the replica in the nth

interval, given that the starting NCO phase is zero.
With

δφ̂n = φ0,n − φ̂n (3.8)

δω̂n = ω0,n − ω̂n (3.9)

and replacing the result of 3.7 in equations 3.4 and 3.5 we get:

In = G
(1)
I (δφ̂n, δω̂n) = sinc (δω̂nT ) × cos

(

δω̂n

T

2
+ δφ̂n

)

(3.10)

Qn = G
(1)
Q (δφn, δω̂n) = sinc (δω̂nT ) × sin

(

δω̂n

T

2
+ δφ̂n

)

(3.11)

This will lead to a discriminator output

Dn = atan

(

Qn + ηQ,n

In + ηI,n

)

= atan





sinc (δω̂nT ) × sin
(

δω̂n
T
2

+ δφ̂n

)

+ ηQ,n

sinc (δω̂nT ) × cos
(

δω̂n
T
2

+ δφ̂n

)

+ ηI,n





(3.12)

When the noise terms ηI and ηQ vanish the atan(·) discriminator output becomes:

Dn = δω̂n

T

2
+ δφ̂n (3.13)

Equation (3.13) shows us that the atan(·) discriminator estimates the phase error
by averaging the phase error over the whole integration interval n.

Because of its simplicity to be implemented and its reduced complexity, this
model is very useful when we aim at simulating the effect of noise on the PLL.
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However, neglecting the Doppler change rate term in the actual signal implies that
acceleration cannot be directly simulated. In other terms, the signal dynamics are
represented only by the initial phase and frequency offsets. Therefore, in a lock
state the only factor that can make the PLL loose lock or cause cycle slips is noise.

Nevertheless, one can use the aforementioned approach to simulate a constant
acceleration and/or a constant jerk dynamics, which is adding the accumulated
phase change caused by the acceleration (and/or jerk dynamics) in a single interval
to the external phase input φ0,n. Moreover while ω0,n is kept constant to ωd the
initial Doppler shift. Nevertheless, in order to generate a plausible stream of
φi,n values, one would need to model the system according to some linear model
including disturbances. This is provided later in section 4.2. The drawback of this
approach is in simulating very high dynamics. A high and constant acceleration
for example would create a step-wise changing doppler in steps every T . This will
bias the simulation result as it will be hard to distinguish whether a loss of lock is
due to noise or the transient effect due these doppler steps. To conclude, we will
only retrain to use this model for cases with no acceleration or higher dynamics.

3.2.2 Simulation Model with Acceleration

In nowadays digital tracking loops, the NCO generates a constant a frequency
signal during one integration period. Thus the carrier replica cannot perfectly
match the acceleration signal. Hence, in order to study the effect of acceleration on
jitter, we need to simulate the exact behavior of the integrate and dump step. And
therefore, in contrast to the previous model, we add here a constant acceleration
term to the signal phase. The derivation carried in the previous section will now
look as follows:

y(t) = cos(α0,nt2 + ωct + ω0,nt + φ0,n) with α0,n =
2π

λ

a0

2
(3.14)
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The locally generated replicas are the same as before and they are given by (3.2)
and (3.3). The accumulated In Becomes:

In =
1

T

∫ nT

(n−1)T

y(t)yI,n(t) dt

=
1

T

∫ nTi

(n−1)T

cos(α0,nt2 + ωct + ω0,nt + φ0,n) cos(ωct + ω̂nt + φ̃n) dt

=
1

2T

∫ nT

(n−1)T

cos
(

α0,nt2 + (ω0,n − ω̂n) t + φ0,n − φ̃n

)

dt + double freq term

=
1

T
√

α0,n

cos

(

φ0,n − φ̃n − (ω0,n − ω̂n)
2

4α0,n

)

C

(

α0,nt + (ω0,n−ω̂n)

2√
α0,n

)

− 1

T
√

α0,n

sin

(

φ0,n − φ̃n − (ω0,n − ω̂n)2

4α0,n

)

S

(

α0,nt +
(ω0,n−ω̂n)

2√
α0,n

)∣

∣

∣

∣

∣

nT

(n−1)T

=
1

T
√

α0,n

cos

(

φ0,n − φ̃n − (ω0,n − ω̂n)
2

4α0,n

)

.

[

C

(

α0,nnT + (ω0,n−ω̂n)

2√
α0,n

)

− C

(

α0,n (n − 1) T + (ω0,n−ω̂n)

2√
α0,n

)]

− 1

T
√

α0,n

sin

(

φ0,n − φ̃n − (ω0,n − ω̂n)2

4α0,n

)

.

[

S

(

α0,nnT +
(ω0,n−ω̂n)

2√
α0,n

)

− S

(

α0,n (n − 1)T +
(ω0,n−ω̂n)

2√
α0,n

)]

(3.15)

Where C(x) =
∫ x

0
cos t2 dt and S(x) =

∫ x

0
sin t2 dt are the Fresnel integrals. Further

details and special properties of Fresnel integrals are included in Appendix A.
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Using δφ̃n = φ0,n − φ̃n yields to the following form of GI(·)

In = G
(2)
I (δφ̃n, δω̂n, α0,n) =

1

T
√

α0,n

cos

(

δφ̃n − δω̂2
n

4α0,n

)

.

[

C

(

α0,n (n + 1)T + δω̂n

2√
α0,n

)

− C

(

α0,nnT + δω̂n

2√
α0,n

)]

− 1

T
√

α0,n

sin

(

δφ̃n − δω̂2
n

4α0,n

)

.

[

S

(

α0,n (n + 1) T + δω̂n

2√
α0,n

)

− S

(

α0,nnT + δω̂n

2√
α0,n

)]

(3.16)

Similarly we derive Qn as follows:

Qn =
1

T

∫ nT

(n−1)T

y(t)yQ,n(t) dt

=
1

T

∫ nTi

(n−1)T

cos(α0,nt
2 + ωct + ω0,nt + φ0,n) ×− sin(ωct + ω̂nt + φ̃n) dt

=
1

2T

∫ nT

(n−1)T

sin
(

α0,nt2 + (ω0,n − ω̂n) t + φ0,n − φ̃n

)

dt + double freq term

=
1

T
√

α0,n

cos

(

φ0,n − φ̃n − (ω0,n − ω̂n)2

4α0,n

)

S

(

α0,nt + (ω0,n−ω̂n)

2√
α0,n

)

+
1

T
√

α0,n

sin

(

φ0,n − φ̃n − (ω0,n − ω̂n)
2

4α0,n

)

C

(

α0,nt +
(ω0,n−ω̂n)

2√
α0,n

)∣

∣

∣

∣

∣

nT

(n−1)T

=
1

T
√

α0,n

cos

(

φ0,n − φ̃n − (ω0,n − ω̂n)2

4α0,n

)

.

[

S

(

α0,nnT +
(ω0,n−ω̂n)

2√
α0,n

)

− S

(

α0,n (n − 1)T +
(ω0,n−ω̂n)

2√
α0,n

)]

+
1

T
√

α0,n

sin

(

φ0,n − φ̃n − (ω0,n − ω̂n)2

4α0,n

)

.

[

C

(

α0,nnT +
(ω0,n−ω̂n)

2√
α0,n

)

− C

(

α0,n (n − 1)T +
(ω0,n−ω̂n)

2√
α0,n

)]

(3.17)
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This yields to the following form of GQ(·)

Qn = G
(2)
Q (δφ̃n, δω̂n, α0,n) =

1

T
√

α0,n

cos

(

δφ̃n − δω̂2
n

4α0,n

)

.

[

S

(

α0,n (n + 1)T + δω̂n

2√
α0,n

)

− S

(

α0,nnT + δω̂n

2√
α0,n

)]

+
1

T
√

α0,n

sin

(

δφ̃n − δω̂2
n

4α0,n

)

.

[

C

(

α0,n (n + 1)T + δω̂n

2√
α0,n

)

− C

(

α0,nnT + δω̂n

2√
α0,n

)]

(3.18)

The integrals in (3.15) and (3.17) are evaluated using (A.9) and (A.10) respec-
tively.

Furthermore, because the NCO model remains the same as in section 3.2.1 the
phase continuity is maintained using φ̃n as shown in equation (3.7).

The discriminator output used is again:

Dn = atan

(

Qn + ηQ,n

In + ηI,n

)

(3.19)

Hence, we have built a new PLL simulation model. Although it cannot simulate
arbitrary dynamics, nevertheless for a constant acceleration, it has the advantage
of accurately computing the In an Qn outputs of the accumulate and dump pro-
cedure. This simulator was verified to exactly match the Intermediate Frequency
(IF) model described in section 3.3 for zero jerk stress or higher order dynam-
ics. One other use of this simulator is simulating the maximum allowed LOS
acceleration stress for second order Loops.

Another interesting aspect for this part is observing the relation of dynamics
to the noise behavior. In other words, we know that for third order loop that
acceleration is transparent to the phase output. We also know that an allowable
acceleration causes a constant phase shift. Therefore it is always thought that
dynamics, a constant acceleration for instance, would only affect the mean whereas
jitter is exclusively affected by noise (including oscillator noise). Verifying this
analytically seems to be a tedious task. Hence, this simulator can be used for
this purpose, and figure 3.6 reveals as expected, that acceleration is transparent
to jitter.
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3.2.3 C/N0 and the Noise Power

In the previous two sections 3.2.1 and 3.2.2 ηI,n and ηQ,n represent two identical
and independent additive white gaussian noise processes with variance σ2

η . We
now proceed finding the relation between σ2

η and C/N0(dB − Hz).
To start off we consider the original model then we trace it down into our

model. We first assume that the amplitude A of the incoming signal is equal to
unity. This will not harm the simulation model with the correct choice of σ2

η we
are looking at. As provided in [1], the raw signal coming from the satellite having
a white noise with one sided power spectral density of N0 will yield to a noise
ns(t) such that

ns(t) = nQ(t). cos(ωIFt) + nI(t). sin(ωIFt) (3.20)

The noise termsnc(t) and ns(t) in (3.20) have the same variance denoted σ2
s .

Moreover the variance of ns(t) is also equal to σ2
s because the multiplication with

cos(·) and sin(·) equally split the power to half on each of the I and Q channels.
Taking into consideration that the original signal has a power of A2

2
= 1

2
results in

σ2
s =

A2

2
× N0

2
× 1

Ts

=
N0

4.Ts

(3.21)
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=
1

4.Ts. · C/N0

(rad2) (3.22)

with Ts the sampling frequency of the incoming signal in the original IF tracking
loop.

Nevertheless, in sections 3.2.1 and 3.2.2 the noise sources are modeled to be
adding to the In and Qn after the signal correlation process. With N being the
number of samples during the correlation period the variance of the in-phase In and
quadrature Qn components of the correlation output can be computed, refereing
to appendix B we get:

σ2
η,I = σ2

η,Q =
2

N
σ2

s = 2 × σ2
s ×

Ts

T
=

1

2T · C/N0

(rad2) (3.23)

This relation non surprisingly coincides with the results of [2] although the
system is definition along with the approach used are different.

Figure 3.4 shows the jitter measurements of a second order PLL. The plot
shows a match between the measured values and the theoretical values given by
[3] in the following relation

σPLL =
360

2π

√

Bn

·C/N0

(

1 +
1

2T · C/N0

)

(deg) (3.24)

3.3 Intermediate Frequency Implementation

The Intermediate Frequency (IF) implementation follows the model of figure 3.5.
This is in fact what is typically done in most receivers. The implementation is
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similar to the simulation model of section 3.2.2 in terms of the discriminator and
the loop filter. However, in contrast to the simulation, this model implements
the accumulate and dump as it is. In other words, it takes the sampled signal
as input, not only the coefficients of its LOS dynamics polynomial. The signal is
separately generated and could be an actual GPS IF signal for instance. Therefore,
this model is exact and helps to accurately simulate a carrier tracking PLL with
randomly varying dynamics. Although this model is the most accurate because
it implements an actual Costas loop, in some cases of simulating very long input
sequences, it is impractical due to the computationally demanding accumulate and
dump stage.

3.4 Simulation and Results

At the first place consider the effect of a constant acceleration on the PLL. We
suspect that although acceleration is transparent to a third order loop, high ac-
celeration values could have a noise-like effect due to the attenuation they cause
in the signal correlation step. Nevertheless, figure 3.6 shows that this effect does
not exist for accelerations up to 100 m/s2. It is obvious that the phase jitter is
constant regardless how big the acceleration is. Moreover, if the mentioned effect
was causing serious attenuation in the I and Q values, all the plots should have
shown an increasing tendency with the same slope, clearly this is not the case. It
is also possible that the third order loop filter which is aware of acceleration is
counteracting for the attenuation effect automatically.

Secondly, we consider two different scenarios of random walk acceleration. The
exact process describing the signal will be presented later in section 4.2 of chapter
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Figure 3.7: Low and high dynamics random walk acceleration profiles considered
in simulations

4. The first scenario represents a low intensity of dynamics variation while the
second represents a high intensity variation in dynamics, with the intensity metrics
σRW = 10 m/s3 and 100 m/s3 respectively. The unit (m/s3) belongs to the stan-
dard deviation of the with gaussian jerk causing this random walk. Please refer to
appendix C for more details. The generated acceleration signals are shown in 3.7.
It is important to mention that exactly the same two random walk acceleration
profiles are used over the several simulation runs in order to guarantee fairness in
the comparison with systems developed later in chapter 4.

Simulations of a third order PLL with different carrier to noise ratio C/N0

and loop bandwidth Bn values were carried for both random walk scenarios. The
simulations took place over 100 runs and then results were averaged. However,
in some low C/N0 cases fewer values were able to maintain lock, this can be seen
in the non conforming plots of low C/N0. Figures 3.8 and 3.9 summarize these
results. Next, the results were further used to find the optimal noise bandwidth
which can be found in figure 3.10. This approach was previously used by [4]. As
also observed by the author, one can notice that the optimal loop bandwidth is
linearly increasing with C/N0. Nevertheless, it is not the case for some low C/N0

for the lack of measurements. Finally figure 3.11 shows the best possible jitter
performance of the third order PLL in each of the two dynamics scenarios. It can
be seen in this figure that with the highly changing dynamics environment the
performance of the PLL drops down. In fact, in low dynamics the loop abides
to the 15◦ 3-sigma rule for signals no weaker then 21 dB-Hs whereas under high
dynamic the PLL needs at least 25 dB-Hz. This result is interesting in the sense
that rapid changes in the dynamics environment have an effect similar to noise. In
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other words, the higher the dynamics the higher is the optimal noise bandwidth.
Hence, although the noise bandwidth is optimally and simultaneously adapting
to both the random noise and the random variation in the signal dynamics, more
noise is permitted by the loop filter and accordingly the PLL witnesses additional
phase jitter cause by this combined effect.
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Chapter 4

Extended Kalman Filter Tracking

In this chapter we present a different approach to the tracking problem, that is the
Extended Kalman filter solution. We first present a description of the LOS signal
dynamics process. Once the system is defined in section 4.2 we proceed with the
tracking loop design.

The Kalman Filter tracking loop is constituted from three components. The
first is the measurement component which implements one of several possible
measurement models. In the measurement stage needed information about the
signal are extracted. Precisely, the exact integrate and dump process used in
PLLs is adopted here. The measured In and Qn, or a combination of them, serve
then as a measurement to be fed into the state estimation block.

The second component is the state estimation block. One key feature of the
Kalman filter state estimation is its real time iterative approach. It works by
predicting the next state of the system based on the process description it is aware
of while making use of the measurement to correct the predicted state. The filter
decides in real time the level of trust given to each prediction and correction. This
trust weighting factor is decided by the Kalman gain. This gain factor is designed
to minimize the mean square error in the state estimate, making the Kalman filter
a very suitable solution to the tracking problem. In other words, if we consider
the phase of the incoming signal to be one of the states describing the system in
hand, then this strictly means that the mean square phase error is minimum. This
however requires a perfect knowledge of the process description. In section 4.3 we
present a first order Extended Kalman Filter (EKF) state estimation. Several
forms of the filter are shown depending on the chosen measurement model. We
then show the second order filter as well, which uses a second order Taylor series
expansion of the measurement model for more accuracy in the correction stage.

The third component of the EKF tracking loop is the control law. The control
law is a factor in the behavior of the loop. It is mainly critical for the stability
of the loop. Furthermore an appropriate choice of the control gain matrix or
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equivalently, an appropriate pole placement will determine the characteristics of
the loop such the maximum overshoot and settle time. Moreover, the control law
will vary depending on the NCO order.

4.1 Background

The topic of Kalman filter tracking of the carrier frequency and phase originates
back to the 1980’s. Using the results of [5] the authors of [6] carry a comparison
for different carrier frequency estimation techniques for high dynamics trajectories.
In this work, the systems subject of comparison are: an approximate maximum
likelihood, an Extended Kalman filter, a cross product automatic frequency control
loop and a PLL. In what matters to our research, the PLL outperforms the EKF
for carrier to noise ratios above 26 dB-Hz while the latter shows lower frequency
estimation error near the region of 23 dB-Hz where they both lose lock.

A Hybrid Minmax Kalman tracking filter was devised by [7]. This work tackles
the problem that a Kalman filter requires a perfect knowledge about the noise from
the designer. It is solved by weighting its gain with another gain factor provided
by the Minmax filter. As the latter does not require any prior knowledge about the
noise, the hybrid combination, although has worse overall tracking performance is
claimed to be a good compromise.

More recent research in the subject was done by M. Psiaki in [8] and [9].
The authors present a combined code and carrier tracking loop based on the
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extended Kalman filter. The measurements used in the carrier tracking EKF
for state correction update is the atan(·) discriminator output originally used in
Costas Loop. While the measurement model is considered to be the average phase
in one integration integral. This combination forms a likelihood function that
is iteratively minimized by the EKF. The adopted EKF takes the iterated and
Square root form. The iterated filter helps reducing the linearization error as it
iteratively refines the measurement estimate based on the corrected estimate of the
states. The Square root filter however was adopted as it is more computationally
robust. In addition to code and carrier tracking the work was also extended to
detect bit transition using a special probabilistic (bayesian) treatment.

Similar work was presented in [10] with the use of the Linear Qdratic Regu-
lator (LQR) to implement the EKF. The filter was compared to the traditional
PLL tracking method. The work concludes that EKF tracking provides some
benefits over PLL tracking. The ground that brings the two systems into a valid
comparison is a steady state noise equivalent bandwidth metric suggested by the
authors.

Another code and carrier tracking filter was studied and developed by N.
Ziedan et. al. in [11]. A square root implementation was adopted as well to
circumvent numerical errors associated with the Kalman filter. A first and a sec-
ond order EKF tracking methods are presented. The measurements considered in
this work is the accumulated Q for the first order EKF and both I and Q values
for the second. Along with the signal dynamics the model also estimates the am-
plitude of the incoming signal and has the ability to adjust the integration time.
The measurement model is a simplified one that only considers the amplitude
estimate and the phase error estimate. Furthermore the Jacobian and Hessian
matricides used to calculate the first and second order components of the mea-
surement estimate take a time invariant form. In 4.3.1 some of these approaches
will be considered and compared.

4.2 Process Description

The process describing the signal dynamics takes the form of state transitions
driven by a discrete-time white noisy disturbance:

xn+1 = Φxn + νn (4.1)

The signal phase, frequency and frequency change rate are nothing but the
scaled distance, velocity and acceleration respectively. Therefore, the signal phase
and its derivatives are the appropriate choice of states that accurately model the
LOS dynamics. Let us then consider the state vector to be xn = [φn ωn αn]T .
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Since consecutive components of the state vector are integrals of the succeeding
ones, repeated integration over the sampling period yields to

αn+1 = αn + νj,n (4.2)

ωn+1 = ωn + Tαn + να,n (4.3)

φn+1 = φn + Tωn +
T 2

2
αn + νω,n (4.4)

Where

νk,n =

∫ nT

(n−1)T

(nT − τ)3−k

(3 − k)!
Y (τ) dτ, k = 1, 2, 3 standing for ω, α and j (4.5)

The subscript j denotes the jerk dynamics while Y (t) denotes the third derivative
of the continuous version of the phase. Assuming Y (t) is a zero-mean white process
with one-sided power spectral density Nj , or equivalently that the disturbance is
a zero-mean white Gaussian jerk stress, we get

E[ν2
j,n] =

NjT

2
= σ2

j T
2 (4.6)

Using equations (4.2) through (4.5) we get process transition matrix Φ. Further-
more, we show the resulting process disturbance covariance matrix Qνν . The exact
derivation of Qνν is however shown in Appendix C.

Φ =





1 T T 2/2
0 1 T
0 0 1



 (4.7)

Qνν = σ2
j





T 6/20 T 5/8 T 4/6
T 5/8 T 4/3 T 3/2
T 4/6 T 3/2 T 2



 (4.8)

4.3 EKF State Estimation

The first order extended Kalman filter is described as follows

EKF time update equation (a priori state prediction)

x̂−

n = Φx̂n−1 + Γun−1 (4.9)

P−

n = ΦPn−1Φ
T + Qνν (4.10)
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EKF measurement update equation (a posteriori state correction)

Kn = P−

n HT
n (HnP

−

n HT
n + Rϑϑ)

−1 (4.11)

x̂n = x̂−

n + Kn(zn − h(x̂−

n , 0)) (4.12)

Pn = (I − KnHn)P−

n (4.13)

un = −Kxx̂n (4.14)

x: is the state vector. Even though one may choose the states to be the same
as the ones describing the process shown in section 4.2, we will consider here the
following state vector

xn =





δφn

δωn

δαn



 =





φn − φNCO,n

ωn − ωNCO,n

αn − αNCO,n



 (4.15)

Where φNCO,n, ωNCO,n and αNCO,n correspond to the signal replica generated
by the NCO. More precisely, they describe it at the time instance exactly at the
beginning of the nth epoch. Thus, as we have a perfect knowledge of the NCO
signal, the state vector shown in (4.15) is sufficient to describe our dynamics
system.

h(x,u): is the measurement function mapping the measurement zn into the
state space as follows

zn = h(xn,u) + ϑn (4.16)

Hn: is the linearized measurement model mapping the states into the measure-
ment space. The subscript n is used to emphasize that H can be time varying. In
general, where h(x,u) is nonlinear, Hn is the Jacobian matrix of h(x,u) evaluated
at the predicted states x̂−

n

Hn =













∂h1(x,u)

∂x1
· · · ∂h1(x,u)

∂xn
...

. . .
...

∂hm(x,u)

∂x1
· · · ∂hm(x,u)

∂xn













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(x,u)=(x̂−

n ,0)

(4.17)

In some cases the mapping function h(x, 0) can be linearized, if that is the
case the H matrix is used for measurement prediction. The measurement update
equation (4.12) becomes

x̂n = x̂−

n + Kn(zn − Hnx̂
−

n ) (4.18)
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(4.19)

u: is the NCO control input
Γ: is the control driving matrix, which maps the effect of the control input

into the state space.
Note that u and Γ will be tackled later in section 4.5
Qνν : is the process disturbance covariance matrix given by (4.8).
Rϑϑ: is the measurement noise covariance matrix which will be defined later,

differently for every measurement model.

4.3.1 Measurement Models

Several measurement models have been previously used, most widely adopted is

zn = atan
(

In

Qn

)

mainly for two reasons. These are the simplicity of a single

measurement model and the similarity with the conventional PLL it gives to the
problem. Another measurement model could be simply Q. This model is also
simple and treats zn = Qn as the error between the signal and the replica to
be controlled down to zero. The most comprehensive measurement model is zn =
[In Qn]T . If the state estimator is designed appropriately, this measurement model
guarantees the most information about the incoming signal. Indeed, because the
two aforementioned models measure either part of the available information or a
non-linear combination of it, that is the atan operation. In sections 4.3.1.1, 4.3.1.2
and 4.3.1.3 we describe these models, each with its corresponding measurement
estimate scheme needed for state estimation.

4.3.1.1 The Quadrature Component Qn-only Measurement Model

Although a mapping from the state space into Qn was derived in the previous
chapter, in equation (3.11) or (3.18). This model, adopted in the carrier tracking
EKF described in [11] assumes ẑn = [Q̂n] = δφ̂−

n . This leads to a time invariant
H = [1 0 0]

Therefore the measurement update equation (4.12) becomes

x̂n = x̂−

n + Kn(Qn − δφ̂−

n ) (4.20)

This assumption implicitly says that steering δφ to zero is equivalent to steering
the quadrature component to zero, as this will shift all the power to the in-phase
channel. The assumption can be expressed using the following approximations

Q̂n ≈ sin δφ̂−

n ≈ δφ̂−

n (4.21)

The measurement covariance matrix is simply as scalar given by (3.23) in the
form Rϑϑ = ση,Q.
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This model is highly simple as it does not require extra computational burden
for computing x̂−

n and Hn. However it is expected to have a poor performance.

4.3.1.2 The Average Phase Difference Measurement Model

zn = Qn (4.22)

zn = atan

(

Qn

In

)

(4.23)

This model considers a single measurement that is ẑn = [∆φ] ≈ atan
(

Qn

In

)

.

where ∆φ represents the average phase difference over the whole integration in-
terval n.

The predicted measurement ẑn is then

ẑn = ∆φ = δφ̂−

n +
T

2
.δω̂−

n +
T 2

6
.δα̂−

n (4.24)

This yields to the following form of the measurement update equation

x̂n = x̂−

n + Kn

(

atan

(

Qn

In

)

− Hx̂−

n

)

(4.25)

with H =

[

1
T

2

T 2

6

]

(4.26)

The relation between the measurement and C/N0 also used by [10], is based
on (3.24) provided in [2] which determines the variance of the output of an atan(·)
discriminator as:

Rϑϑ = σ2
δφ =

1

2T · C/N0

(

1 +
1

2T · C/N0

)

rad2 (4.27)

This model is similar to the previous one in the sense that a single measurement
is considered. In addition, H is also time invariant. Nevertheless, this model is
expected to have a better performance as it has better approximation for the
measurement prediction ẑn.

4.3.1.3 The In and Qn Measurement Model

In this section we will consider the raw measurement zn = [In Qn]T without
any prior manipulation or simplifications such the treatments showed in sections
4.3.1.1 and 4.3.1.2. Indeed using the raw measurement leaves us with the high-
est possible degrees of freedom in order to develop a measurement model that
accurately defines h(x,u).
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This measurement model is highly inspired from sections 3.2.1 and 3.2.2, where
in fact using the functions GI(·) and GQ(·) define the state-to-measurement map-
ping functions as follows

h(x̂−

n , 0) =

[

GI(x̂
−

n )
GQ(x̂−

n )

]

(4.28)

Additionally, the Jacobian matrix Hn is to be calculated using (4.17). And the
measurement update equation becomes:

x̂n = x̂−

n + Kn

([

In

Qn

]

−
[

GI(x̂
−

n )
GQ(x̂−

n )

])

(4.29)

The measurements will have a variance ση,I and ση,Q previously provided in
(3.23), and the measurement noise covariance matrix will be

Rϑϑ =

[

ση,I 0
0 ση,Q

]

(4.30)

In the following two possibilities to evaluate h(·) and Hn are described. The first
represents the mapping in terms of the first two states whereas the second describe
it in terms of all three states.

The Traditional Model: Without Acceleration A simple measurement
model, used in [x], only relies on the relation of the measurements In and Qn

to the phase error δφ̂n, that is

ẑn =

[

cos δφ−

n

sin δφ−

n

]

(4.31)

with

Hn =

[

− sin δφ−

n 0 0
cos δφ−

n 0 0

]

(4.32)

We, however, provide an equivalent but more exact model using the following

ẑn =

[

G
(1)
I (δφ̂−

n , δω̂−

n )

G
(1)
Q (δφ̂−

n , δω̂−

n )

]

(4.33)

where G
(1)
I (·) and G

(1)
Q (·) are derived in (3.10) and (3.11) respectively.
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The resulting Hn will be

Hn =











∂G
(1)
I (δφ, δω)

∂δφ

∂G
(1)
I (δφ, δω)

∂δω
0

∂G
(1)
Q (δφ, δω)

∂δφ

∂G
(1)
Q (δφ, δω)

∂δω
0











∣

∣

∣

∣

∣

∣

∣

∣

∣

δφ̂−

n ,δωω−

n

=





− sin
(

δφ̂−

n + δω̂−

n .T
2

)

−T
2
. sin

(

δφ̂−

n + δω̂−

n .T
2

)

0

cos
(

δφ̂−

n + δω̂−

n .T
2

)

T
2
. cos

(

δφ̂−

n + δω̂−

n .T
2

)

0





(4.34)

where for simplicity the multiplier ’sinc (δω̂nT )’ term was dropped because it is
very close to one.

This measurement model imposes higher computational burden than the pre-
ceding ones because Hn is computed in real-time . Nevertheless this method is
supposed to show better noise performance than those using a single measurement.

The Enhanced Model: With Acceleration This measurement model is de-
rived to be the most accurate among all other models shown in previous sections.
Similarly to the model of 4.3.1.3, it uses the raw In and Qn. Moreover, the es-
timated third state, namely the estimated acceleration δφ−

n is also used in the
measurement update. In other words

ẑn =

[

G
(2)
I (δφ̂−

n , δω̂−

n , δα̂−

n )

G
(2)
Q (δφ̂−

n , δω̂−

n , δα̂−

n )

]

(4.35)

where G
(2)
I (·) and G

(2)
Q (·) are derived in (3.16) and (3.18) respectively.

Note that δφ̂n = δφ̃n in this case. This is correct if we consider the integration
bounds to be zero to T . Indeed, this applies to the case here because the estimated
states are ready at the beginning of every integration period. This guarantees
that the effects of the signal dynamics on correlation to manifest only within that
period. For the same reason, it is also important to tweak equations (3.16) and
(3.18) setting the time arguments of the Fresnel integrals to 0 and T instead of
(n − 1)T and nT respectively.

The resulting Hn will be

Hn =











∂G
(1)
I (δφ, δω, δα)

∂δφ

∂G
(1)
I (δφ, δω, δα)

∂δω

∂G
(1)
I (δφ, δω, δα)

∂δα
∂G

(1)
Q (δφ, δω, δα)

∂δφ

∂G
(1)
Q (δφ, δω, δα)

∂δω

∂G
(1)
Q (δφ, δω, δα)

∂δα











∣

∣

∣

∣

∣

∣

∣

∣

∣

δφ̂−

n ,δωω−

n ,δωα−

n

(4.36)
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Q-only the model using Q only as a measurement.
atan(·) the model using the atan output as a measurement.

I&Q-a the model using both I and Q only as a measurement with G(1)(·) map-
ping which does not consider the acceleration effect.

I&Q-b the model using both I and Q only as a measurement with G(2)(·) map-
ping which does consider the acceleration effect.

Table 4.1: List of naming conventions of the presented measurement models
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Figure 4.2: Acceleration scenario
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Figure 4.3: Phase Error of the I&Q-a and
I&Q-b

Refer to appendix D for the exact form of Hn.
This filter is the highly complex compared to the previous ones, not only

because Hn is computed in real time but also because of the excessive need to
numerically evaluate the Fresnel integrals. Nevertheless, it is supposed to show
an excellent performance compared to previously described ones.

4.3.2 Comparison of Measurement Models

In this section we will show comparison results of the several measurement models.
The parameters related to the control law, discussed later in 4.5, are equivalent
in all models. Moreover, a list of abbreviations making it easier to refer to the
models is shown in table 4.1.

Figure 4.2 shows a devised high dynamic scenario used to compare the mea-
surement models ”I&Q-a” and ”I&Q-b”. The phase error is shown in figure 4.3.
It can be seen that the enhanced model show a smaller phase bias initially caused
by the jerk. In fact, the mean phase error is θe ≃ 10◦ whereas the first model
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Figure 4.5: Random walk acceleration and the estimated acceleration by the dif-
ferent systems

shows a phase bias of θe ≃ 20◦. On the other hand the enhanced system shows a
slightly larger jitter value. As can be seen in the figure, the error has a bigger vari-
ance in the case of ”I&Q-b”. Numerical values for this scenario where calculated
over repeated simulations and the result is a jitter of σφ = 6.81◦ for ”I&Q-a” and
a σφ = 7.64◦ for ”I&Q-b”. This slight deterioration in performance is the price
paid for using the sophisticated measurement model as it increases the numerical
instabilities and linearization errors of the EKF based on the Fresnel integrals.
Nevertheless, in this specific scenario, applying the 3-sigma rule yields that the
enhanced system maintains a lock within the desired threshold of 45◦ whereas the
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Figure 4.6: Phase jitter vs. C/N0 for the measurement models with the low (left)
and high (right) dynamics profiles

system that ignores the effect of acceleration in its measurement estimate fails to
abide to this threshold. It is also important to mention that all other systems
failed to maintain lock in this scenario.

The response of the several models was studied with an acceleration step of 5
m/s2 at a very high carrier to noise ratio. Figure 4.4 shows that the EKF that uses
the Q-only measurement model is performing the worst while the atan(·) show a
similar performance to I&Q-a whereas the best performance, thanks to including
the acceleration estimate in the measurement mapping, is for I&Q-b.

A more general simulation was carried using an acceleration random walk sig-
nal. The generation of the random signal follows the process described in 4.2.
Moreover the assumed jerk standard deviation leading to the random walk ac-
celeration shown figure 4.5 is σj = 100 m/s3. All described systems maintain
lock, nevertheless one can easily observe from the plots that the I&Q measure-
ment models show the higher responsiveness in estimating the acceleration. This
difference translate to a better jitter performance of these models when compared
to the Q-only and the atan(·) models. A thorough jitter analysis will be pro-
vided in the next paragraph. This result can be justified by simply arguing that
a two measurements input guarantees to the EKF, a better measurement update
than would a single measurement input consisting to some combination of the two
measurement we started with. This will not be true however unless the state-to-
measurement mapping used by the EKF is good enough in the I&Q case, which
we believe is true for both presented I&Q model. In contrast to (deterministic)
scenario discussed above, the difference between the two I&Q models cannot be
seen in this scenario for two reasons. This first is that the dynamics are not high
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enough to emphasize it. Second, and most importantly, the bias θe caused by the
randomly varying dynamics is also random and averaging it over the whole time
frame of the simulation would be misleading.

Finally, a thorough simulation of 100 repeated runs is conducted using the
exact two random walk acceleration profiles used in 3.4 and shown in fiure 3.7.
The purpose of this simulation is to compare the measurement models in terms
of their effect on phase jitter. Figure 4.6 summarizes the results. As expected,
the models with dual measurements I&Q show the best performance. Moreover,
I&Q-a and I&Q-b have an equivalent jitter performance. This point was analyzed
previously where the gain of using I&Q-b is reducing the phase bias θe caused
by high dynamics whereas the jitter is supposed to be of a slight disadvantage
to the enhanced I&Q-b model. The Q-only measurement model shows the least
performance in the low dynamics scenario. This result is expected considering its
single approximation-based measurement model. Furthermore, the performance
of the atan(·) model show a severe degradation with the increased dynamics. In
theory this model is expected to remain better than Q-only model since it has
a Costas like structure and make more accurate phase estimate than the latter.
It is suspected however that this inconsistency is caused by the choice of the
noise covariance value σδφ which was adopted from [10]. In fact, when comparing
equation (3.24) to equation (4.27) one can notice that the chosen Bn parameter
do not take into consideration any equivalent Bn used by the control law. The
control law discussion will be carried however in section 4.5. Furthermore, for the
all measurement models the jitter performance is degraded with higher intensity
of the varying dynamics.

4.4 Second Order EKF

In this section we discuss a second order Kalman filter developed for the purpose
of minimizing the linearization error of the mapping function h(x,u). Just as the
first order filter, the second order EKF make use of the Taylor series expansion of
h(·) around x̂n−. But in contrast to the first order filter, the second order EKF
makes use of the second order differential element as well. This can expressed as

h(xn,un) = h(x̂−

n ,un) +
∂h

∂x

∣

∣

∣

∣

x̂
−

n

(xn − x̂−

n ) +
1

2

m
∑

i=1

ǫi(xn − x̂−

n )T ∂2h

∂x2

∣

∣

∣

∣

x̂
−

n

(xn − x̂−

n )

= h(x̂−

n ,un) + Hn(xn − x̂−

n ) +
1

2

m
∑

i=1

ǫi(xn − x̂−

n )T Di,n(xn − x̂−

n )

(4.37)
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Where m = 2 is the number of measurements, ǫ1 = [1 0]T and ǫ2 = [0 1]T . With
Di,n being the Hessian matrices of h(xn). Note here that although we consider

the more exact form of h(·) given in (4.28) with the G
(2)
I (·) and G

(2)
Q (·). We

will consider, for simplicity, in deriving Di,n the simpler form of h(·) given by

G
(1)
I (·) and G

(1)
Q (·). This will in other words, neglect the acceleration effect in the

second order term of the Taylor expantion of h(·) while keeping it for the first
order. This assumption is expected to maintain the gain coming from reducing
the linearization error. As a result we will end up with the following forms of Di,n

D1,n(1, 1) = − cos(δφ̂−

n +
T

2
δω̂−

n )

D1,n(2, 2) = −T 2

4
cos(δφ̂−

n +
T

2
δω̂−

n )

D1,n(1, 2) = D1,n(2, 1) = −T

2
cos(δφ̂−

n +
T

2
δω̂−

n )

D1,n(1, 3) = D1,n(2, 3) = D1,n(3, 1) = D1,n(3, 2) = D1,n(3, 3) = 0

(4.38)

D2,n(1, 1) = − sin(δφ̂−

n +
T

2
δω̂−

n )

D2,n(2, 2) = −T 2

4
sin(δφ̂−

n +
T

2
δω̂−

n )

D2,n(1, 2) = D2,n(2, 1) = −T

2
sin(δφ̂−

n +
T

2
δω̂−

n )

D2,n(1, 3) = D2,n(2, 3) = D2,n(3, 1) = D2,n(3, 2) = D2,n(3, 3) = 0

(4.39)

The time-predict equations are left intact as in (4.9) and (4.10), as our sys-
tem description itself is linear, thus no need for higher order Taylor expansions.
However, the measurement update equations, as provided by [12], will be:
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Second order EKF measurement update equation (a posteriori state correction)

Λn(i, j) =
1

2
· Tr(Di,nP

−

n Dj,nP
−

n ) (4.40)

Kn = P−

n HT
n (HnP−

n HT
n + Rϑϑ + Λn)−1 (4.41)

Πn =
1

2
Kn

m
∑

i=1

ǫiTr(Di,nP
−

n ) (4.42)

x̂n = x̂−

n + Kn(zn − h(x̂−

n , 0)) − Πn (4.43)

Pn = (I − KnHn)P−

n (4.44)

un = −Kxx̂n (4.45)

where
Λn: is the gain correction matrix.
Πn: is the correction vector for posteriori state estimate.
Similarly to the enhanced first order filter, this model is even more complex

due to the need to evaluate the Hessian matrices. Just like the enhanced first
order filter it is expected to have an excellent performance with an extra boost
due the reduced linearization error.

4.4.1 Comparison of First and Second order EKF

For the measurements model I&Q-a, which does not take into consideration the
acceleration effect in the correlation, a second order EKF shows exactly the same
performance as the first order EFK. Furthermore, we considered the correcting
vector Π as a metric to measure the contribution of the second term in the Taylor
expansion of the mapping function. Accordingly, Π = 0 for I&Q-a. This result
suggests that the model is close to linear and that the linearzation errors occurring
are minimal or at least they do not exist in the second derivatives of the mapping
function G(1)(·).

On the other hand, when I&Q-b is considered along with its mapping function
G(2)(·) and the Fresnel integrals it contains, the second order filter proved that
it can further improve the performance by reducing the linearization error of the
more sophisticated mapping function G(2)(·). The effect was studied under the
same deterministic high dynamics scenario introduced in section 4.3.2 shown once
more in figure 4.7. Figure 4.8 shows that the bias θe caused by the dynamics is
further reduced while the jitter is the same. As expected EKF does not improve the
performance of I&Q-a. The Π metric is provided for this scenario in figure 4.9 and
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Figure 4.7: Acceleration scenario
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Figure 4.9: The state linearization cor-
rection vector Π for the second order
EKF with the I&Q-b EKF:2 measure-
ment model

shows the amount of correction added to the states over time. It is obvious that
with increasing acceleration values the correction becomes higher. Furthermore,
this effect seems to be linearly related to the acceleration.

The same two acceleration random walk profiles used previously, were consid-
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Figure 4.10: Phase jitter vs. C/N0 for the first and second order EKF with the
low (left) and high (right) dynamics profiles

ered for the purpose of comparing the first and second order EKF implementa-
tions in regards to the phase jitter. The results presented by figure 4.10 show the
same jitter performance for both systems regardless the intensity of the dynamics.
Again, this is due to the same reason stated above. Namely, the second order
correction of the states comes as a shift whose value is directly related to the
acceleration.

4.5 NCO Order and The Control Law

.
For all measurement models shown in section 4.3.1 all the states of the system

are observable. The observability matrix given by

ζO =





H
HΦ
HΦ2



 (4.46)

can be easily checked to be full rank for the first two measurement models of 4.3.1.1
and 4.3.1.2. Additionally, although the derivation of the observability matrix, is
not strait forward for the dual In and Qn measurement model, one can argue that
the states are definitely observable as they were shown to be observable with less
accurate observation models.

In the following the control law for several NCO orders will be shown.
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4.5.1 Second Order NCO

In a second order NCO one can control the frequency of the generated replica
signal, keeping in mind that the phase is maintained continuous between epoch
transitions. Therefore, the control input and the control driving matrix are chosen
to be

(4.47)

un = ωNCO,n − ωNCO,n−1 and Γ =





0
−1
0



 (4.48)

With a second order NCO the system is not fully controllable. In fact only the
first two states are only controllable. This can be seen in (4.56) as the controllably
matrix ζC is rank deficient.

ζC =
[

Γ ΦΓ Φ2Γ
]

= −





0 T 2T
1 1 1
0 0 0



 (4.49)

For this reason a partial controllability on a reduced system model scheme is
derived with reduced states x = [δφ δω]T as follows

xn = Φ′xn−1 + Γ′un

=

[

1 T
0 1

]

xn−1 +

[

0
−1

]

(ωNCO,n − ωNCO,n−1)
(4.50)

The design of a control law lies in the choice of the control gain matrix Kx

where u = −Kxx.
As devised in [13] the hypothetical regulator system has the following charac-

teristic equation

∣

∣

∣

∣

zI −
[

1 T
0 1

]

+

[

0
−1

]

Kx

∣

∣

∣

∣

= 0

or z2 − (k2 + 2)z − Tk1 + k2 + 1 = 0

(4.51)

Two poles z1 and z2 must be appropriately chosen before we solve for Kx. For
stability the poles should lie inside the unit circle more over their value will affect
the characteristics of the system in terms of settle time and maximum overshoot.
An excellent choice is z1 = z2 = 0 which was validated experimentally to guarantee
fast lock (around 5 T samples).
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Although the configuration of a double pole at zero showed good performance.
The pole placement could be also systematically designed in analogy with the
linearized PLL model. That is by simply using the using the discreet time transfer
function of the second order PLL which can be found in [14]:

HPLL =
4ξωnT + (ωnT )2 + 2(ωnT )2z−1 + (ωnT )2 − 4ξωnT )

(4 + 4ξωnT + (ωnT )2) + (2(ωnT )2 − 8)z−1 + (4 + 4ξωnT + (ωnT )2)z−2

(4.52)

where:
ξ is the damping ratio of the PLL.
ωn = 8ξBn

4ξ2+1
is the natural frequency of the PLL.

Finally equating the denominator of (4.52) with the characteristic equation
given in (4.51) yields to the desired values of Kx = [k1 k2]

Because the acceleration is not a controllable state of the system, acceleration
will lead to a constant bias in the phase error. Nevertheless, this bias can be
reduced by a smart way to update the control input using the extra information
we know about the acceleration. In fact, acceleration could be understood as
a disturbance on the reduced system. Thus the control input update equation
becomes

un = −
[

k1 k2 kd

]





δφ̂n

δω̂n

δα̂n



 (4.53)

Where the gain kd is the disturbance gain. It can be shown, using [15], that

for a system with a disturbance d and disturbance driving matrix Ψ =

[

T 2

2

T

]

such

that:

xn = Φ′xn−1 + Γ′un + Ψd

=

[

1 T
0 1

]

xn−1 +

[

0
−1

]

(ωNCO,n − ωNCO,n−1) +

[

T 2

2

T

]

α̂n

(4.54)

the gain kd minimizing the disturbance can be found using:

Kd = −(ΓT Γ)−1ΓT Ψ

= T
(4.55)

however a better value of Kd = 1.58 × T was determined experimentally and
guaranteed a phase error extremely close to zero for constant accelerations.

The results shown in section 4.6 which are related to EKF tracking based on
a second order NCO are obtained using a double pole at zero, that is equivalent
to k1 = 1

T
and k2 = 2. Additionally, kd = 1.58T was adopted.
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4.5.2 Third Order NCO

A third order NCO is simply an oscillator that generates a sinusoidal signal at a
specified frequency change rate. Moreover, The phase and frequency of the output
signal, are maintained continuous.

For a third order NCO the first three states are controllable and therefore the
system described in (4.1) is fully controllable. That can be seen by verifying that
the controllability matrix is full rank, where the controllability matrix ζC is given
by:

ζC =
[

Γ ΦΓ Φ2Γ
]

= −





0 T 2

2
2T 2

0 T 2T
1 1 1



 (4.56)

The control law is un = −Kxxn with x = [δφ δω δα]T and Kx could be
found solving the characteristic equation

∣

∣

∣

∣

∣

∣

zI −





1 T T 2

2

0 1 T
0 0 1



+





0
0
−1



Kx

∣

∣

∣

∣

∣

∣

= 0 (4.57)

With two of the three poles obtained from (4.52) and a third pole at zero.
Nevertheless, the choice of the first two poles is more delicate here than it is in
the case for a second order NCO. A bandwidth value Bn not smaller than 10 Hz
guarantees stability and lock for scenarios of high dynamics. It is important to
note here that the value chosen for Bn does not directly affect the noise behavior
in contrast to a PLL where it used to explicitly decide the bandwidth of the
loop filter. Although for the EKF the choice of Qνν and Rϑϑ determine the noise
behavior, Bn still has an implicit effect and therefore we will consider the same
value of Bn in order to build an equal ground of comparison among our systems.

4.5.3 Fourth Order NCO

A fourth order NCO is an oscillator that generates a sinusoidal signal according
to a depicted change rate of ”frequency change rate”, which is in other words a
jerk equivalent term.

In order to achieve this implementation the process model was augmented with
one additional state, namely jerk. The augmented system is highly similar to the
third order NCO system, and therefore the details will be omitted here. It should
be noted however that the fourth pole was chosen at zero.
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Figure 4.11: Acceleration estimate with
an acceleration step as input
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Figure 4.12: Acceleration estimate with
the low intensity acceleration random
walk as input

Additionally, the process model in the previously described systems with lower
NCO order were also augmented. The augmented versions of these systems will
be used whenever a direct comparison with the fourth order NCO is carried.

4.5.4 Comparison of NCOs with Different Order

In both figures 4.11 and 4.12 we observe that the acceleration component of the
third and fourth order NCO is highly noisy. It can be concluded from figure
4.11 that this high variation start after a change in the dynamics and is not
initiated by the random noise. This leaves us with the plausible conclusion that
the control of the system becomes harder with higher NCO orders. Fortunately,
this extra noise present in the acceleration estimate will drop out when estimating
the phase as the process includes a double integration which is equivalent to low
pass filtering this noise. Nevertheless, figure 4.13 shows that the phase jitter is
higher for higher order NCO. Precisely, the system equipped with a third order
NCO shows a slight degradation in jitter performance when compared to a system
with second order NCO. In the low dynamics situation, the fourth order suffers
severely from degradation where it even fails to lock in the high dynamics scenario.
We conclude this analysis that the higher order NCO systems need to be carefully
designed as they are more vulnerable to instabilities.
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Figure 4.13: Phase jitter vs. C/N0 for the second, third and fourth order NCO
using the I&Q-b measurement model with the low (left) and high (right) dynamics
profiles

4.6 Comparison of the EKF solution and the

third order PLL with optimal PLL noise Band-

width

In this section we import the phase jitter results of the PLL simulated with the
optimal noise bandwidth Bn and compare it the the first order EKF using the
I&Q-b measurement model. Again, the results refer to the two of low and high
random walk acceleration profiles shown in 3.7.

The EKF has a complete knowledge about the process and the statistics of the
disturbances involved. On the other hand, since the optimal PLL noise bandwidth
was derived specifically for each of dynamics scenarios, the PLL is considered to
have to a certain extent, awareness about the intensity of these dynamics. In other
words, this setup is the most fair basis that can be made in order to compare the
two systems.

The results in figure 4.14 show that the EKF solution has a better performance
than the PLL for weak signals. Nevertheless, the traditional PLL outstands the
EKF system for high C/N0 signals. Moreover, the EKF provides a higher ability
to cope with rapidly changing dynamics. This can be seen in the increase of the
C/N0 level that decides the better performing system. For instance, the EKF
system outperforms the PLL for weak signals ranging until C/N0 = 24 dB-Hz in
the low dynamics scenario, while this C/N0 separating level increases up to 34
dB-Hz in the case of the high dynamics scheme. This can be understood as the
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Figure 4.14: Phase jitter vs. C/N0 for the third order PLL with optimal Bn and
the EKF with I&Q-b measurement model and an EKF tracking system equiped
with a second order NCO and I&Q-b measurement model. Comparisons are with
the low (left) and high (right) dynamics profiles

EKF has a complete knowledge about the signal dynamics process while the PLL,
although it has a customized noise bandwidth for the specific dynamic scenario,
has a limited knowledge about the process. Therefore, with increasing dynamic
disturbances the PLL estimation errors increase. Because the disturbance process
is statistically described in the EKF, the phase estimation errors of the EKF also
increase due to disturbance. Nevertheless, these estimation errors are much more
severe in the PLL leading to a increasing shift in the C/N0 separation level of
performance.

This result shows that there is a benefit in the EKF solution. Additionally,
both systems have a tuning parameter against dynamic stress. Namely Bn for the
PLL and the intensity factor of the disturbance covariance matrix for the EKF.
Nevertheless, it is easier to come up with a compromising Bn value for the PLL
than it is the case choosing the intensity factor of the EKF.
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Chapter 5

Conclusion

5.1 Summary

The effect of high dynamics on the GNSS receiver tracking performance was stud-
ied. The focus of this work was to exploit this effects in the code and signal
correlation processes that take places in both code and carrier tracking loops.

Although dynamics affect the code loop, these effect can be neglected as they do
not induce the loop to loosing code lock. Furthermore this effect was determined
to be in the order of a tenth of a millimeter in realistic dynamic situations.

A Simulation model to study the effect of high dynamics on PLL tracking was
developed based on the conventional linearized model. Analytical formulation
of the signal correlation stage was needed to empower the model with a more
accurate simulation of the of correlation procedure under high accelerations. It
was shown that PLL jitter is affected by changing dynamic conditions while high
constant accelerations values have negligible effect on the PLL performance. The
optimal noise bandwidth for two different random walk dynamic scenarios was
obtained. The results show that the optimal noise bandwidth is higher when the
dynamic variations are more intense in order to compensate for dynamic stress.
Additionally the results of the simulation were validated using an intermediate
frequency implementation.

The derivation exploiting the effect of acceleration on signal correlation was
used as an observation model in an EKF tracking system. The proposed sys-
tem showed that it is able to cope with high dynamics by increasing the margin of
maximum allowed dynamic stress, nevertheless the result was not clearly validated
with randomly varying dynamics. Different measurement models were also pre-
sented and compared. The measurement models using both accumulated in-phase
and quadrature measurement showed the best performances with respect to single
measurement models.
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The second order EKF implementation was also studied, and the EKF config-
ured with the enhanced measurement model showed improvement and potential
to benefit from reduction in the linearization errors.

Different control laws were investigated specifically by increasing the NCO
order. Frequency controlled (second order) oscillators showed that they are the
simplest and most robust to control the system and provided better stability and
performance.

The EKF system was generally compared to the traditional PLL on ”as fair as
possible” comparison basis and the EKF shows benefits over PLL especially with
increasing dynamic variations.

5.2 Future Work

For future work, the proposed EKF solution will be validated under several dy-
namic scenarios based on specific applications and dynamics profiles. Further-
more, a more precise derivation of the Hessian matrix of second order EKF should
be carried and its effect on performance should be analyzed. Additionally, the
implementation of a square root form of the filter is required to avoid potential
numerical errors associated with the Kalman filter. Finally, a heuristic approach
to update the EKF disturbance tuning factor based on the dynamic history and
instantaneous acceleration tendencies is currently under study.

57



Appendix A

Fresnel Integrals

C(x) and S(x), shown in figure A.1, are two transcendental functions named after
Augustin-Jean Fresnel, they are described by the following two integrals.

C(x) =

∫ x

0

cos(t2) dt (A.1)

S(x) =

∫ x

0

sin(t2) dt (A.2)
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1

x

C(x) =
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x

0
cos(t2)dt

S (x) =
∫

x

0
s in(t2)dt

Figure A.1: Plot of Fresnel integrals
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A.1 Useful Relations

The power series expansion of these functions are

S(x) =

∫ x

0

sin(t2) dt =
∞
∑

n=0

(−1)n x4n+3

(4n + 3)(2n + 1)!
(A.3)

C(x) =

∫ x

0

cos(t2) dt =
∞
∑

n=0

(−1)n x4n+1

(4n + 1)(2n)!
(A.4)

Their relation to the error funtion erf, presented in [16] is

S(x) =

√
π

4

(√
i erf 1

√
i x) +

√
−i erf(

√
−i x)

)

(A.5)

C(x) =

√
π

4

(√
−i erf(

√
i x) +

√
i erf(

√
−i x)

)

(A.6)

The symmetry relations are as follows

C(−x) = −C(x) (A.7)

S(−x) = S(x) (A.8)

A useful indefinite integral provided by [17] property is the following
∫

cos(ax2 + 2bx + c) dx =

√

π

2a

{

cos
ac − b2

a
C

(

ax + b√
a

)

− sin
ac − b2

a
S

(

ax + b√
a

)}

(A.9)
∫

sin(ax2 + 2bx + c) dx =

√

π

2a

{

cos
ac − b2

a
S

(

ax + b√
a

)

+ sin
ac − b2

a
C

(

ax + b√
a

)}

(A.10)

with a > 0

A.2 Approximation

An approximation for the integral provided by [18] was used for the purpose of
software implementation.

C′(x) =

∫ x

0

cos(
π

2
t2) dt (A.11)

1The error function, also known as Gauss error function given by erf(x) = 2
√

π

∫

x

0 e−t
2

dt
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S′(x) =

∫ x

0

sin(
π

2
t2) dt (A.12)

The integrals are evaluated by a power series for x < 1. For x ≥ 1 auxiliary
functions f(x) and g(x) are employed such that

C′(x) =
1

2
+ f(x) sin(

π

2
x2) − g(x) cos(

π

2
x2) (A.13)

S′(x) =
1

2
− f(x) cos(

π

2
x2) − g(x) sin(

π

2
x2) (A.14)

where the asymptotic power series expansion is used to approximate f(x) and
g(x).

It is worth mentioning that for computational feasibility only the first 7 terms
are considered for x < 1. For x ≥ 1, we should consider 11 terms to reach the
same accuracy. Moreover, simple addition of the terms would cause an arithmetic
overflow, therefore a common denominator form need to be evaluated resulting in
a polynomial which can be evaluated avoiding the overflow.

Next, in order to evaluate C(x) and S(x) the following property is used

C(x) =

√

π

2
× C′(

2

π
x) (A.15)

S(x) =

√

π

2
× S′(

2

π
x) (A.16)

The accuracy of the approximation is show in table A.1

Arithmetic function domain # trials peak rms

IEEE S(x) 0, 10 10000 2.0e-15 3.2e-16
IEEE C(x) 0, 10 10000 1.8e-15 3.3e-16

Table A.1: Accuracy of the approximation: relative error
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Appendix B

Noise Statistics After Correlation

The received signal and its statistics are:

Si = A cos(ωcti + φ) + ηi (B.1)

ηi = ηI,i cos ωcti + ηQ,i sin ωcti (B.2)

E{ηI,i} = E{ηQ,i} = E{ηI,i.ηQ,j} = 0 (B.3)

E{ηI,i.ηI,j} = E{ηQ,i.ηQ,j} = δ(i − j)σs (B.4)

After correlation we get:

I =
2

N

N
∑

i=0

Si cos(ωcti + φ̂) (B.5)

E{I} =
2

N

N
∑

i=0

E{Si} cos(ωcti + φ̂)

=
2

N

N
∑

i=0

A cos(ωcti + φ) cos(ωcti + φ̂)

=
2

N

N
∑

i=0

A

2
cos(φ − φ̂)

= A cos(φ − φ̂)

(B.6)

Var(I) = E{I2} − E{I}2 (B.7)
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E{I2} = E

{

2

N

N
∑

i=0

[A cos(ωcti + φ) + ηI,n cos(ωcti) + ηQ,i sin(ωcti)] . cos(ωcti + φ̂)

.
2

N

N
∑

j=0

[A cos(ωctj + φ) + ηI,j cos(ωctj) + ηQ,n sin(ωctj)] . cos(ωctj + φ̂)

}

=
4

N2

N
∑

i=0

N
∑

j=0

{[

A cos(ωcti + φ) cos(ωcti + φ̂)

+ηI,i cos(ωcti) cos(ωcti + φ̂) + ηQ,i sin(ωcti) cos(ωcti + φ̂)
]

.
[

A cos(ωctj + φ) cos(ωctj + φ̂)

+ηI,j cos(ωctj) cos(ωctj + φ̂) + ηQ,j sin(ωctj) cos(ωctj + φ̂)
]}

=
4

N2

(

N
∑

i=0

A cos(ωcti + φ) cos(ωcti + φ̂)

)

.

(

N
∑

j=0

A cos(ωctj + φ) cos(ωctj + φ̂)

)

+
4

N2

N
∑

i=0

σ2
s cos2(ωcti) cos2(ωcti + φ̂) +

4

N2

N
∑

i=0

σ2
s sin2(ωcti) cos2(ωcti + φ̂)

=
4

N2

[

N2A2

4
cos2(φ − φ̂) +

N
∑

i=0

σ2
s

1

4

(

cos(−φ̂) + cos(2ωcti + φ̂)
)2

+

N
∑

i=0

σ2
s

1

4

(

sin(−φ̂) + sin(2ωcti + φ̂)
)2
]

= A2 cos2(φ − φ̂)

+
1

N2
σ2

s

N
∑

i=0

(

cos2(−φ̂) + cos2(2ωcti + φ̂) + 2 cos(−φ̂) cos(2ωcti + φ̂)

+ sin2(−φ̂) + sin2(2ωcti + φ̂) + 2 sin(−φ̂) sin(2ωcti + φ̂)
)

= A2 cos2(φ − φ̂) +
1

N2
σ2

s

N
∑

i=0

2 + 2
�

�
�

�
�

�
�

��:
double freq

cos(2ωcti + 2φ̂)

= A2 cos2(φ − φ̂) +
2

N
σ2

s
(B.8)

⇒ Var(I) =
2

N
σ2

s (B.9)
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Appendix C

Covariance Matrix of Process
Disturbance

Assuming we have N states describing our system, the covariance matrix Qνν of
the process disturbance ν becomes a N ×N matrix and can be obtained as follows

Qνν = E





























ν1

ν2
...

νN











.
[

ν1 ν2 · · · νN

]



















(C.1)

We recall that

νk =

∫ nT

(n−1)T

(nT − τ)N−k

(N − k)!
Y (τ) dτ, k = 1, 2, 3, ..., N standing for ω, α and j ...

(C.2)

Therefore

Qνν(k, l) = E

{
∫ nT

(n−1)T

(nT − τ)N−k

(N − k)!
Y (τ) dτ.

∫ nT

(n−1)T

(nT − ρ)N−l

(N − l)!
Y (ρ) dρ

}

(C.3)

=

∫ nT

(n−1)T

∫ nT

(n−1)T

τN−l

(N − l)!

ρN−k

(N − k)!
.E {Y (τ).Y (ρ)} dτ dρ (C.4)

But since Y (t) is white random noise of dynamics order N + 1, for example it
would be a white jerk stress noise if N is 3, we have

E {Y (τ).Y (ρ)} =σ2
N .T 2.δ(τ − ρ) (C.5)
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Replacing above and using the integration property of the dirac delta we get

Qνν(k, l) = σ2
j .T

2

∫ nT

(n−1)T

(nT − τ)N−k.(nT − τ)N−l

(N − k)! × (N − l)!
dτ (C.6)

= σ2
j

T 2N−k−l+3

(2N − l − k + 1) × (N − l)! × (N − k)!
(C.7)
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Appendix D

Jacobian Matrix with
Acceleration

Hn =

[

h11 h12 h13

h21 h22 h23

]

(D.1)

We define the following terms:

A = δφ̃n − δω̂2
n

4α0,n

(D.2)

B1 =
δω̂n

2√
α0,n

(D.3)

B2 =
α0,nT + δω̂n

2√
α0,n

(D.4)

D1 =
ωn

4α
√

α
(D.5)

D2 =
αT + ωn

2

2α
√

α
(D.6)

(D.7)

The elements of Hn take the form:

h11 =
1

T
√

α
(sin (A) (C (B2) − C (B1)) + cos (A) (S (B2) − S (B1))) (D.8)

h21 =
−1

T
√

α
(sin (A) (S (B2) − S (B1)) − cos (A) (C (B2) − C (B1))) (D.9)
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h12 =
1

T
√

α

(

ω

2α
sin(A)

(

C(B2) − C(B2)
)

− 1

2
√

α
cos(A)

(

cos(B2
2) − cos(B2

1)
)

+
ω

2α
cos(A)

(

S(B2) − S(B2)
)

+
1

2
√

α
sin(A)

(

sin(B2
2) − sin(B2

1)
)

)

(D.10)

h22 =
−1

T
√

α

(

ω

2α
sin(A)

(

S(B2) − S(B2)
)

− 1

2
√

α
cos(A)

(

sin(B2
2) − sin(B2

1)
)

− ω

2α
cos(A)

(

C(B2) − C(B2)
)

− 1

2
√

α
sin(A)

(

cos(B2
2) − cos(B2

1)
)

)

(D.11)

h13 =
−1

2Tα
√

α

(

cos(A)
(

C(B2) − C(B1)
)

− sin(A)
(

S(B2) − S(B1)
)

)

+
1

T
√

α

(

(
ω

2α
)2 sin(A)

(

C(B2) − C(B1)
)

+ cos(A)(D2 cos(B2
2) − D1 cos(B2

1))

+ (
ω

2α
)2 cos(A)

(

S(B2) − S(B1)
)

− sin(A)
(

D2 sin(B2
2) − D1 sin(B2

1)
)

)

(D.12)

h23 =
1

2Tα
√

α

(

cos(A)
(

S(B2) − S(B1)
)

+ sin(A)
(

C(B2) − C(B1)
)

)

+
1

T
√

α

(

− (
ω

2α
)2 sin(A)

(

S(B2) − S(B1)
)

+ cos(A)
(

D2 sin(B2
2) − D1 sin(B2

1)
)

+ (
ω

2α
)2 cos(A)

(

C(B2) − C(B1)
)

+ sin(A)(D2 cos(B2
2) − D1 cos(B2

1))

)

(D.13)
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