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1 Abstract

This article describes the effort to find optimal stationary satellite constel-
lations with respect to the position dependent function DOP (Dilution of
Precision) for any given number of satellites. After investigating the pos-
sibilities to find an analytical solution, a simulation using the Simulated
Annealing algorithm is implemented in MATLAB. While refining the al-
gorithm, very simple arrangement rules become visible, which are further
investigated using the implemented simulation method and various plots.
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2 Introduction

2.1 Motivation

When the Global Positioning System (GPS) became fully operational in
February 1995, navigation finally started to become an everyday application,
available to anybody and usable at every spot on and around our planet.
Nowadays, many areas fully depend on the availability of global naviga-
tion, be it personal travel, logistics, aviation, or even emergency services.
Many more applications have recognized the rich set of possibilities available
through GPS: Hikers use its pathfinding capabilities in unknown terrain, ge-
ologists and geodesists gain precise position information from the satellites
above them; and even electronic toll systems on highways trust blindly on
GPS’ availability, integrity and accuracy. Soon, Europe will run its own
and independent system for global navigation, the upcoming Galileo; and
although the total number of Global Satellite Navigation Systems (GNSS)
is unlikely to increase significantly after Galileo’s start, research and devel-
opment on the subject itself is still far from being completed.

With all those applications, the task of maximizing the robustness and
quality of the delivered service becomes crucial for a systems’ success. The
service quality again is a function of several different factors; one of those
factors is the satellites’ constellation from the user’s point of view. Said in
short, the result will always be better if the satellites visible by the user
are reasonably distributed in the sky. If all satellite signals arrive from
roughly the same direction, positioning accuracy will be poor. Although
this interrelation is probably self-explanatory to the reader, an explicit and
simple term for describing the optimal constellation for a given number of
visible satellites is not known yet.

The assignment addresses the issue of finding an optimal constellation
of satellites regarding the best possible positioning accuracy with a given
number of satellites.

2.2 Related work

Finding an optimal constellation can also be an important task when so-
called pseudolite setups are used for precise positioning in geodesy or other
application.

In [PM97], a setup inverse to the usual GPS-like arrangements is used
to gain accurate position information about a plane carrying navigation fa-
cilities to be tested. In this research, a moving plane carries one transmitter
(pseudolite), while several receiver stations situated on the ground measure
their pseudoranges to the plane simultaneously. The collected data is then
processed to estimate the position of the plane. Again, the challenge was
to optimize the positions of the receiving stations such that the achieved
accuracy is maximized; but with only a restricted set of receiver positions
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available, the resulting set of equations is likely to perform much worse than
in a regular GPS setup.

The paper proposes the condition of the geometry matrix as an alter-
native cost function; and the correlation between the matrix condition and
DOP is investigated. This cost function will also be examined in this work.

Weighting the individual satellites’ contribution when computing the
position estimate is a way to prevent satellites with a known degradation of
their signal quality from influencing the estimate too much. This approach is
described in [WE95], where it is used for integrity monitoring. In the present
work, the weighted position solution constitutes a basis for an alternative
cost function, the weighted estimate accuracy.

2.3 Overview

In this thesis, optimal GNSS satellite constellation with respect to DOP
are found. The optimization problem in general is explained in Section 3;
furthermore, basic methods of position estimation using ranging signals as
well as the derivation of DOP from the satellite positions is shown.

Section 4 covers the first part of the assignment, which is the effort to
minimize the cost function by solving it analytically.

The subsequent simulation was implemented in a numerical software
package. This approach is functionally explained in detail in Section 5,
which covers the explanation of the simulation algorithms, and details about
the implementation as well. Alternative cost functions are also discussed in
this section.

In Section 6, the results of the simulation are presented and discussed.
As a closing thought, a conclusion on the present work can be found in

Section 7.
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3 Problem description

3.1 Measurement accuracy in GNSS2

The accuracy of a position estimate using ranging sources such as GPS or
Galileo is determined by two major factors. One of those two factors are
measurement errors in the involved systems, which can make the measured
position deviate from the true position. These measurement errors typically
consist of delays due to atmospheric effects (ionospheric delay, tropospheric
delay), as well as multipath propagation, clock offsets and receiver noise. In
the following, their combined contribution will be referred to as σUERE

3.
However, the impact of these measurement errors on the overall posi-

tioning accuracy is not constant. The second factor is determined by the
satellite constellation, which plays an important role on how exact the user’s
position can be estimated. Depending on where the satellites are, the re-
sulting positioning inaccuracy can theoretically be more than hundred times
higher than the underlying measuring uncertainty. In reality, though, such
a constellation occurs rarely because the satellite orbits are chosen carefully
to prevent this.

As it will be demonstrated later on in Section 3.3, this factor impacting
the overall accuracy is a numeric value called the Dilution of Precision, or
DOP. The DOP can be obtained from the geometry matrix H, which in
turn contains the arguments of elevation and azimuth of all satellites used
for the estimate.

Hence, a knowledge of both measuring error and DOP is essential for
knowing how accurate the positioning is. The measuring error can be mod-
eled through a statistical process in the receiver — its components are well
known and examined — and the DOP can easily be gained in the process
of position estimation. This is shown in the following sections.

3.2 Position estimation using ranging

This section gives a short overview about how positioning can be done with
GPS. The comprehension of those basic formulae is needed to understand
how the numeric value DOP is derived from the satellite positions. The
following overview is adopted from [ME01], pages 176 et sqq.

The calculation of the user’s position in GPS is done by measuring the
distance to the available satellites; this procedure is called ranging. As
stated before, different measurement errors are introduced in this process,
but several of them can be corrected by means of error estimation or external
data. The measured distance is called pseudorange to distinguish it from
the real range to the satellite.

2GNSS: Global Navigation Satellite System
3UERE: User Equivalent Range Error
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For the satellite k, the pseudorange can be written as

ρ(k)(t) = r(k)(t, t−τ)+c[δtu(t)−δt(k)(t−τ)]+I(k)(t)+T (k)(t)+ε(k)
ρ (t) (1)

where r(k)(t, t − τ) is the real range to the satellite k; δtu is the user clock
offset, δt(k) is the kth satellite’s clock offset; and I, T and ε are errors
superposed to the measurement which are introduced through ionospheric
delay, tropospheric delay and residual unspecified effects, respectively.

For ionospheric propagation delay, a correction can be done either by
dual frequency receivers — the delay is frequency dependent and thus can
be calculated if two frequencies are used simultaneously. Tropospheric cor-
rection data is either estimated, or gained from DGPS4 messages together
with other correction data. The satellite’s clock offset can be read from
the satellite’s navigation message. Thus, the corrected pseudorange can be
denoted as

ρ(k)
c = r(k) + c · δtu + ε̃(k)

ρ , (2)

where residual errors are summarized in ε̃
(k)
ρ .

The range r(k) will now be represented by the vector difference between
the satellite position and the user position; and the temporal deviation intro-
duced through the user clock offset c ·δtu is transformed to a spatial offset b:

ρ(k)
c =

∥∥∥x(k) − x
∥∥∥ + b + ε̃(k)

ρ , (3)

where x(k) is the position vector of satellite k, and x is the user’s position.
An East-North-Up coordinate system is used in the local context of the user,
where the x axis is assigned to East, the y axis to the North, and the z axis
upwards, pointing into the zenith.

3.2.1 Linear model

In (3), the unknowns to be determined are x and b. This makes a total
of four unknowns in a nonlinear equation. To unambiguously estimate the
user’s position, at least four of those equations are needed, corresponding to
a total of at least four satellites visible to the user (K ≥ 4) .

In order to solve the equation system, a good approach is to linearize
them about an estimated position and time using Newton’s Method, and let
the system converge to the solution in iterations.

As a starting point, a first pseudorange ρ0 is calculated out of the initial
guesses x0 and b0:

ρ
(k)
0 =

∥∥∥x(k) − x0

∥∥∥ + b0, (4)

4DGPS: Differential GPS; ground based or satellite supported additional data to in-
crease accuracy
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and the difference between the (measured) corrected pseudorange ρc and ρ0

is plugged into (3):

δρ(k) = ρ(k)
c − ρ

(k)
0

=
∥∥∥x(k) − x

∥∥∥− ∥∥∥x(k) − x0

∥∥∥ + (b− b0) + ε̃(k)
ρ

=
∥∥∥x(k) − x0 − δx

∥∥∥− ∥∥∥x(k) − x0

∥∥∥ + (b− b0) + ε̃(k)
ρ (5)

≈ − (x(k) − x0)∥∥∥x(k) − x0

∥∥∥ · δx + δb + ε̃(k)
ρ

= −l(k) · δx + δb + ε̃(k)
ρ

To make this transformation understandable, it has to be noted that it
applies a Taylor series approximation of a vector norm. It then leads to
the estimated line-of-sight vector l(k) pointing from the estimated position
towards satellite k.

3.2.2 The geometry matrix H

If (5) is used to set up a system of K linear equations, the whole set can be
written as

δρ =


δρ(1)

δρ(2)

...
δρ(k)

 =


(−l(1))T 1
(−l(2))T 1

...
(−l(K))T 1


︸ ︷︷ ︸

H

·
[

δx
δb

]
+ ε̃ρ , (6)

where we have assigned the symbol H to the matrix containing the line-
of-sight unit vectors −l. The fourth column is multiplied with the spatial
equivalent of the user clock offset — since the direction of the incoming
satellite ranging signals does not affect the user clock offset’s impact on the
measured pseudorange, this column contains only ones.

The resulting matrix H is called geometry matrix, because it contains the
geometric information about the satellite constellation. The coordinates x(k)

of each satellite can also be described in terms of their azimuth and elevation
angles. The term azimuth is normally used for the angle of orientation of the
satellite; its reference direction is defined to be North, and its orientation is
clock wise. For the computations in the geometry matrix, and for coordinate
transformations which are used later on, however, an angle referring to the
primary axis x, with a counter clockwise orientation, is more appropriate.
Therefore, the identifier Φ is now assigned to the angle known as azimuth,
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whereas Φ′ is defined to be the angle referring to East, orientated in the
opposite direction. It can be stated as

Φ′ =
π

2
− Φ . (7)

Then, the new line-of-sight vectors, now called ek, can be written as

e T
k =

[
cos Ek cos Φ′

k cos Ek sinΦ′
k sinEk

]
, (8)

and the geometry matrix H is

H =


−e1x −e1y −e1z

−e2x −e2y −e2z
...

...
...

−eKx −eKy −eKz︸ ︷︷ ︸
−e T

K

1
1
...
1


; (9)

Here, Ek denotes the kth satellite elevation from the horizon and Φ′
k the

angle computed from the azimuth in (7). Again, the 1 is connected to the
temporal impact of the satellite position, which is neutral. The line-of-sight
vectors still have the same orientation: from the user position towards the
satellite. This notation will become more important later on, when DOP is
parameterized with the satellite positions.

If the set of equations (6) is now resolved for the unknowns δx̂ and δb̂,
the resulting equation [

δx̂
δb̂

]
=

(
HTH

)−1
HT δρ (10)

can be used to calculate the new estimate for the next iteration step:

x̂ = x0 + δx̂

b̂ = b0 + δb̂. (11)

3.2.3 Correlation of measurements

Up to now, all ranging measurements are assumed to be completely uncorre-
lated, and it is supposed that they can be used at an equal basis to determine
the estimated user position. In reality, however, correlation between the
satellites exists strongly: Ionospheric effects as well as residual tropospheric
delay have always a quite common impact on the visible satellites’ signals;
especially if their associated line-of-sight vectors are particularly similar.
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Also, a certain dependency between the quality of the signal and the
satellite’s position in the sky is evident. This addresses the satellite’s eleva-
tion in special — if a satellite is very close to the horizon, the corresponding
errors introduced through atmospheric effects are much larger — and that
fact can be taken into account by weighting the individual satellites’ contri-
bution to the position estimation accordingly. This is described in particular
in [WE95]. In contrast to that, minimizing the sum of the squared residu-
als as done above implies that all residing errors are worth the same, and
therefore, the same effort is undertaken to minimize a satellite’s error with
respect to the global solution, no matter how qualified its signal is.

This impact on the signal quality can also be included in the cost func-
tion for the optimization problem that is subject to this thesis. Such an
alternative cost function to obtain the perfect satellite constellation will be
introduced in Section 5.4.1.

Correlation between the measurements, however, is usually completely
neglected. The reason for this does not lie in the complicated procedure
of taking it into account; it is because characterization of such correlation
is too complex to do it within a reasonable amount of work. Furthermore,
the original GPS SA5 signal was in fact downgraded artificially by means
of overlaying an uncorrelated error with zero-mean and a variance of 25m.
This errors did absolutely dominate all the system-inherent errors; hence
the assumption to neglect correlations was even more appropriate when SA
was still active.

Under the stated assumption, the measurement error expextation and
covariance can be modeled as

E(ε̃ρ) = 0

Cov(ε̃ρ) = E(ε̃ρε̃
T
ρ ) = σ2

UEREI, (12)

where I denotes the identity matrix and σUERE is the standard deviation of
the user range error.

3.3 Derivation of DOP

3.3.1 Example: position estimation in 2-D

The following simplified example shows the difference between the quality of
a measured signal and the resulting quality of the gained position estimate.
It is taken from [ME01], pg. 182.

In this example, a user determines his position in two dimensions by
measuring the range to two available satellites, S1 and S2. His position has
to be located on one of the intersection points of the circles drawn around S1

5Selective Availability: artificial errors were superposed to the signal to degrade civil
positioning until May 2000
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and S2, with the circles’ radii set to the measured distances. It is assumed
that the user has a-priori knowledge about which of the two intersections is
the right one.

However, if the intersections are points, the measurements are to be
perfect and not degraded by any uncertainty. In contrast, for a measurement
of radii r1 and r2 with an uncertainty of ±ε each, the user’s position is no
more defined by a simple intersection of two circle lines; instead, it is now
only known to be within an area defined by two pairs of circles: One pair
around satellite S1, with their radii of r1 − ε and r1 + ε, and the other pair
of circles around S2, with radius of r2 − ε and r2 + ε, respectively.

Here, the geometric arrangement of the two points S1, S2 around U be-
comes important. Figure 1 shows three distinct positionings, which greatly
affect the area of uncertainty of the resulting position estimate. It is identi-
fiable that, for large radii, the area of uncertainty can be approximated by
the norm of the cross product:

A ≈ ‖~e1 × ~e2‖, (13)

with the vectors ~e1 and ~e2 defined by

~ei = ε ·
~U − ~Si

‖~U − ~Si‖
; i ∈ {1; 2}; ε = ‖~ei‖ � ri (14)

The vectors’ norms are ε, while their directions are defined by the line-
of-sight vectors between the user and the corresponding satellite Si.

S2

ε
ε ε

ε

S1

ε
ε(c)

S1

(a) (b)

S2

θ

S2

S1

Figure 1: Positioning in the plane with three different satellite settings

In case (a), the satellites appear under an acute angle θ. Thus, the
resulting area has a shape close to a rhombus. (The rhombus, in fact, is
obtainable for infinite radii. In reality, under the assumption ri � ε, the
shape will be much closer to a rhombus than in this example.)

In case (b), a right angle lies between S1 and S2. The area’s resulting
shape is, again under the assumption ri � ε, quadratic and has a signifi-
cantly smaller area than in case (a).
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In case (c), the two satellites are almost vis-a-vis — the angle is obtuse.
The resulting shape has a very large area, resulting from the combination of
two effects: The two intersection points are so close that together that the
measurement uncertainty makes the two resulting areas of possible location
join to one interconnected area; therefore a distinction made out of a priori
knowledge such as the last position can not be taken into account anymore.

As it appears, for the special constellation of two satellites in two di-
mensions, the ideal angle is 90 ◦, leading to a quadratic shape which has
the lowest possible area of all rhombic shapes with edges of the length ε.
In the next section, this basic principle will be extended to a more general
setup of satellites, using linear algebraic expressions already provided by the
positioning approach explained before.

3.3.2 Covariance and DOP

The principle derived from the example above can be applied to position
estimation in 3-D as well. We revert to the assumption made in (12) which
stated that the measurement errors are zero-mean; this leads to the fact
that also the user’s position estimation error is zero mean:

E(∆x) = E(x̂− x) = 0

E(∆b) = E(b̂− b) = 0 (15)

Furthermore, under the assumption of common variance in the uncorre-
lated measurements, the estimates’ covariance can be stated as:

Cov

[
∆x
∆b

]
= Cov

[
x̂
b̂

]
= σ2

UERE(HTH)−1 (16)

If every component is analyzed independently, the variances for the po-
sition estimates in the three axes and in the time domain can be written
as

σ2
E = σ2

UERE ·
{

(HTH)−1
}

11
;

σ2
N = σ2

UERE ·
{

(HTH)−1
}

22
;

σ2
V = σ2

UERE ·
{

(HTH)−1
}

33
;

σ2
T = σ2

UERE ·
{

(HTH)−1
}

44
; (17)

The new subscripts E,N and V refer to the three axes in the local ENU
coordinate system. while T refers to the local “time axis”. With resulting
the positioning accuracies defined as
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E(∆u∆uT ) =:


σ2

E • • •
• σ2

N • •
• • σU •
• • • σ2

T

 , (18)

and the four basic DOP values as

(HTH)−1 =:


EDOP2 • • •

• NDOP2 • •
• • VDOP2 •
• • • TDOP2

 , (19)

the positioning accuracy can now be written as

σ2
E = σ2

UERE · EDOP;
σ2

N = σ2
UERE ·NDOP;

σ2
V = σ2

UERE ·VDOP;
σ2

T = σ2
UERE · TDOP; . (20)

The components noted as (•) are left unspecified.

3.4 DOP types

Depending on what kind of positioning is done, different types of DOP
become applicable. From the user’s point of view, four values define his
position: The eastern and northern component (longitude and latitude) of
his position on the ground, his height and the exact time. The importance of
the latter for an exact position estimate might not be clear at first; however,
it is needed in the process of determining the signal’s traveling time, which
is the basis for the measurement of the signal range. Thus, a very exact
knowledge of the current time is crucial, and positioning is always done in
four dimensions, regardless of whether the measuring time is relevant to the
application or not. The time base obtainable from GPS even creates its own
applications and is frequently used where an exact time is needed, providing
an alternative to the ground based time signal radio stations.

For each of the four axes, one DOP type is declared; in addition, three
more parameters combine different sets of the first four values - HDOP com-
bines EDOP and NDOP; the “position” PDOP combines all three spatial
DOPs EDOP, NDOP and VDOP; and the “global” or “geometry” GDOP
combines all four basic DOPs. An overview is given in Table 1.

In ground navigation applications such as car navigation, the most decid-
ing parameter is usually HDOP, which combines NDOP and EDOP. Height
information is of no importance in most en route navigation scenarios be-
cause map data is only provided in two dimensions. As opposed to this, the
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height information can have as much as or even more importancy as lati-
tude and longitude in aviation applications; for example when performing
an instrumental landing approach, where GPS acts as a navigation aid.

A coarse overview about typical DOP values can be obtained from Fig-
ure 2. In this plot, all DOP values introduced are shown for setups from 4
to 20 satellites, where one satellite stays at the zenith, while the remaining
ones are deployed equidistantly on the horizon. It is very likely that, at
least for some of the DOPs and small k, some constellations come close to
or reach the minimally possible DOP.

3.5 Optimization of DOP

It is clearly visible that, in order to have an accurate position estimate,
the user depends heavily on the geometry of the satellites that supply the
ranging signals. The quality of the available geometry can be stated in
terms of DOP, which can be derived from the geometry matrix H. A lower
DOP results in better accuracy, so the ambition of the following research is
minimizing a function that maps the satellite positions to DOP:

ft(P) : P → DOPt (21)

Here, the matrix P contains all the satellites’ positions in terms of eleva-
tion Ek and the orientation angle Φ′

k. Hence, in an environment of k visible
satellites, P is a (k×2) matrix. The subscripts t in ft and DOPt accentuate
that this mapping can be done for all different types of DOP.
P contains the elevation and orientation arguments for every satellite 1 . . . k:

P =


E1 Φ′

1

E2 Φ′
2

...
...

Ek Φ′
k

 , (22)

Table 1: DOP types

Name (Desc.) Affected accuracy σ

EDOP (East) longitude σE

NDOP (North) latitude σN

VDOP (Vertical) altitude σV

TDOP (Time) local time σT

HDOP (Horizontal) planar accuracy σH

PDOP (Positional) 3D accuracy σP

GDOP (Global) overall accuracy, in-
cluding time domain

σG
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Figure 2: DOP values for different numbers of equidistantly arranged satel-
lites

where Ei and Φi are limited to the following bounds:

Ei ∈
[
0 . . .

π

2

[
Φ′

i ∈
[
0 . . . 2π

[
0 ≤ i ≤ k (23)

While only stationary constellations are considered in the scope of this
paper, it should not remain unstated that in “real life”, the satellite locations
will typically be distributed all over the visible area of the sky above the
user. The knowledge of the stationary optimum could indeed be used to
optimize GNSS satellite orbits with respect to optimal DOP — but other
factors like the probability of masking in near-horizon positions or orbital
constraints will probably still impact those considerations on a higher level.

All research was done in consideration of all DOP types shown in Table 1;
for a better readability, similar results are summarized and described under
the label “DOP” in the following sections.
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4 Analytic approach

4.1 Manual solution of (HTH)−1

As it can be seen in Section 3.3, an elementary DOP value can be read off
directly as the square root of an element of the matrix (HTH)−1, so the
primary goal is to minimize those elements. It would be nice if we could
just set its first derivative with respect to the position matrix P to zero and
find the minimum:

∂

∂P

√{
(HTH)−1

}
xx

!= 0 ; (24)

with the subscript xx denoting the diagonal element of the matrix which con-
tains its particular elementary DOP value EDOP, NDOP, VDOP or TDOP.
For the combined values HDOP, PDOP and GDOP, a sum of the correspond-
ing matrix elements would be plugged in instead of the single element. The
cost function DOPx of type x, which is to be minimized, is then given by

arg min
P

(DOPx) = arg min
P

√ ∑4

i=1
ai ·

{
(HTH)−1

}
ii

(25)

Table 2: Coefficients ai for Equation (25)

x a1 a2 a3 a4

EDOP 1 0 0 0
NDOP 0 1 0 0
VDOP 0 0 1 0
TDOP 0 0 0 1
HDOP 1 1 0 0
PDOP 1 1 1 0
GDOP 1 1 1 1

It is very likely that the input values for any found minima will touch
their boundaries, especially the horizon. If this happens, setting the deriva-
tive to zero will, most probably, not result in any valid set of positions.
This correlation can be easily observed for a constellation of four satel-
lites: In general, the best available GDOP will probably be achieved for
satellites that are distributed equally around the user in a fully accessible
three-dimensional space. For a number of 4 satellites, the resulting shape
will be a tetrahedron. However, the lower semi-sphere is not valid for any
satellites; it is therefore quite likely that at least some of them will have their
best valid position on the horizon, where the derivative of the resulting DOP
cost function is not zero yet.
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Apart from that, the effort’s expected result was hoped to be a simplistic
term, which could lead to a deeper understanding on how the positioning
impacts the resulting DOP. If the term (HTH)−1 is calculated for a set of
four satellites and leads to a clear “best positioning”, which could be read
off easily, maybe this would indicate the right direction to have the same
principles applied to any set of K satellites.

4.1.1 Coordinate System

In Section 3.2.2, the content of the geometry matrix H was denoted by
line-of-sight vectors pointing from the satellites to the users and 1 for the
temporal contribution. For this application, it is sufficient to look at the
whole problem set in an ENU6 context, so there is no need to consider
the users real position in an earth centered (ECEF7) coordinate system. We
assume that the users’ position is known to be in the center of our coordinate
system, with the x axis pointing towards East, the y axis pointing towards
the North, and the z axis pointing up in the zenith, right above the user.
Figure 3 shows one satellite in the ENU coordinate system. U denotes the
user’s position in the coordinate system’s origin; Sk is satellite k; Ek is its
elevation angle. Φ denotes the satellite azimuth, whereas Φ′

k is the angle of
orientation referred to the x axis (East), in counter-clockwise direction.

Sk

zUP

NORTH

y

x

EAST

Ek

Φ′
k

U

Φk

Figure 3: Local ENU coordinate system used in the problem

6East-North-Up
7Earth Centered/Earth-Fixed
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4.1.2 The components of HTH

With the line-of-sight vectors ~ek given with respect to elevation and azimuth
arguments, as shown in (8), the geometry matrix can also be written as

H =


− cos E1 cos Φ′

1 − cos E1 sinΦ′
1 − sinE1 1

− cos E2 cos Φ′
2 − cos E2 sinΦ′

2 − sinE2 1
...

...
...

...
− cos Ek cos Φ′

k − cos Ek sinΦ′
k − sinEk 1

 , (26)

where Φ′ is derived from the azimuth according to (7).
The multiplication of the transpose of H with H leads to a symmetric

(4× 4) matrix with the positional arguments of the satellites well mixed up
throughout the whole matrix. For simplification and in favor of readability,
HTH is presented as a sum in the following equation (27).

HTH =
K∑

k=1


cos2 Ek cos2 Φ′

k cos2 Ek cos Φ′
k sinΦ′

k

cos2 Ek cos Φ′
k sinΦ′

k cos2 Ek sin2 Φ′
k

cos Ek cos Φ′
k sinEk cos Ek sinΦ′

k sinEk

− cos Ek cos Φ′
k − cos Ek sinΦ′

k

· · ·

· · ·

cos Ek cos Φ′
k sinEk − cos Ek cos Φ′

k

cos Ek sinΦ′
k sinEk − cos Ek sinΦ′

k

sin2 Ek − sinEx

− sinEx 1


(27)

4.1.3 The Inverse (HTH)−1

As it can be seen from (27), the desired inverse of HTH is probably quite
complex. Basically, there are two possibilities to compute the inverse of
a non-singular symmetric matrix: One is the procedure known as the Co-
Factor Method; the other method is called the Gauss-Jordan Method or
Jacobi Method.

The Co-Factor Method defines the Inverse A−1 by calculating every
single element of it following the rule

{A−1}ij =
(−1)i+jDji

detA
, (28)

where Dji denotes the sub-determinant that results from deleting the row i
and the column j from det A.

For a (4 × 4) matrix, this involves computing 16 sub-determinants and
the determinant itself, which also involves the usage of four of the sub-
determinants. Each (3×3) sub-determinant can be computed directly using
the formula
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det A = a11a22a33 + a12a23a31 + a13a21a32−
a13a22a31 − a11a23a32 − a12a21a33

(29)

Every element of the initial matrix HTH contains a k-fold sum of several
sine and cosine functions — although the computation is supposed to be
straight-forward, complexity and available paper sheet sizes put a limit to
this effort.

The Jacobi Method uses the Gauss algorithm to convert the matrix
A into an identity matrix. If the same conversion steps are applied to an
identity matrix, the resulting matrix is the inverse to A.

[A|I] =

 a11 · · · a1n 1 · · · 0
...

. . .
...

...
. . .

...
an1 · · · ann 0 · · · 1

 ∼

∼

 1 · · · 0 b11 · · · b1n
...

. . .
...

...
. . .

...
0 · · · 1 bn1 · · · bnn

 = [I|B]

⇒ B = A−1

(30)

For this method to succeed, one must find the right conversion steps to
result in an identity matrix, starting from the original matrix A, or in our
case, HTH. This effort has been made, but also considered as too complex
to be finished within a reasonable amount of time.

4.1.4 Conclusion to the manual approach

As calculation of (HTH)−1 is quite complex, a manual minimization of only
one of its components in respect of any of its arguments Φk or Ak would
exceed the allocated editing time for this work. Thus, a computer aided
approach seemed more feasible in order to find an optimal constellation.

4.2 Computer based analytic solution

The abilities to process symbolic equations, provided by add on packages to
mathematical software as MATLAB, give the possibility to let the computer
calculate the inverse of our self-multiplied geometry matrix H. Therefore, all
the input values have been introduced as symbolic values into a MATLAB
matrix H. (HTH)−1 has been calculated and examined. The resulting term
fills tens of screen pages, and could not be simplified with any of the available
mechanisms.



22 4 ANALYTIC APPROACH

4.3 Conclusions to the analytic approach

Obviously, the approach of resolving the requested cost functions manually
wrt the satellite elevations and azimuths does not easily lead to the desired
results. The term of the cost function, containing all position arguments, is
too complex to simply read off the best satellite positions. A simulation may,
however, find optimal constellations without knowing the cost function’s
inner details. This approach is described in the next section.
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5 Optimization with Simulated Annealing

5.1 Simulation requirement

This section describes the reason why the optimization problem can be
solved by means of simulation, and what attributes are required to be ful-
filled for the simulation algorithm.

As shown in Section 4, the analytic approach did not render results
satisfying the initial problem description — the term is too complex to
derive a “best solution” by just looking at it; and computational methods
do not give the wanted results either. Thus, the problem is now examined
numerically. A method has to be found, which can resolve a number of 2K
unknown variables such that the cost function becomes minimal.

Optimizing this problem could be done by searching the complete input
domain. This would mean calculating the examined DOP value for every
single combination of possible satellite positions, and saving the best value
along with its belonging satellite positions. The position space for K satel-
lites is, as we know, 2K-dimensional, if the satellites’ positions are described
by their arguments of azimuth and elevation. A reasonably low granularity,
in other words, large steps between the possible positions of one satellite,
could keep the amount of computational work small. But the characteris-
tics of the examined cost function are not known very well — there could
be a global minimum hidden in between jump discontinuities, which would
remain undiscovered if the step width of the search did not allow going there.

A more intelligent approach would start at an arbitrary set of satellite
positions, and let the elevation and azimuth values move such that the cost
function always returns a better value than before. This method is known
as downhill simulation and is guaranteed to lead to a minimum, if there
is one accessible directly from the starting position. However, the goal is
to find the global minimum, which is unaccessible to such an algorithm if
it is “hidden” behind a region that would require the simulation to move
upwards. Since we cannot tell how the cost function exactly looks like, this
attribute makes the downhill algorithm unacceptable for the application.

Hence, the simulation algorithm that is needed for this problem must be
able to

� take care of local minima, while

� performing better than a “full search”.

The following section describes such an algorithm.

5.2 The Simulated Annealing algorithm

This section describes why the Simulated Annealing algorithm is chosen for
the simulation. It points out its fundamental idea and how the algorithm
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works. In this analysis, two different ways of “Simulated Annealing” were
implemented — they are both introduced, and the main difference between
them is depicted.

5.2.1 Principle of the algorithm

The Simulated Annealing algorithm was first published by S. Kirkpatrick
et al. in 1983 [KJV83]. It is based on an algorithm of Metropolis et al.
[MRR+53] and belongs to the class of heuristic optimization methods. Those
methods generate, in contrast to exact methods such as full search, a com-
putational requirement which is proportional to only small powers of the
problem’s complexity N .

The ability to find a global minimum to a problem such as the optimiza-
tion of navigation satellite positions, while keeping the computational cost
low, makes it a good choice for the simulation. In fact, the algorithm does
not guarantee finding a global minimum; this is what the class of so-called
exact algorithms can do. The quality of the result depends on many factors,
but if applied reasonably, the probability to find a global minimum is quite
high.

The main idea behind this algorithm is to apply the principles of statis-
tical mechanics to a problem of combinatoric optimization. The term “An-
nealing” origins in metallurgy and describes the process of cooling down a
(metallic) material very slowly in order to increase the size of the produced
crystal structures. Crystal structures represent an energetic minimum for
the involved atoms. If the whole material cools down to a monocrystal, the
system is settled in a global minimum.

Atoms in heated material do not inevitably change their states towards
lower energy all the time; instead, there is a certain probability that they will
accept a higher energetic state as well. This probability depends strongly on
the temperature of the material. If the temperature is reasonably high, the
movement of the atoms is approximately random, in total disregard of any
energetic gradient. In contrast, when the temperature reaches the vicinity
of absolute zero, the probability to accept a worse state also converges to
zero. Then, the material behaves in analogy to what was explained as the
downhill algorithm in Section 5.1 — any state change will only happen if
the energetic difference is negative; in other words, if it leads to a lower
energetic level.

Any other temperature in between results in an equilibrium of the spec-
ified material, where a certain part of the atoms are settled at a state of
minimal energy, contributing to a crystal structure; while other atoms are
not linked and still retain to their significantly higher energy state. This
balance can be described mathematically through a transition probability
equation introduced in Metropolis’ Algorithm [MRR+53]. It assigns the
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probability of 1 to an atom state transit towards an energetically lower level
as 1, and a temperature dependent probability for a transit to a higher level:

P (∆E) =

{
1 if ∆E ≤ 0

e−
∆E
kBT if ∆E > 0

(31)

where ∆E is the energetic difference of the transition, kB is the Boltzmann
constant, and T is the absolute temperature in Kelvin; P denotes the prob-
ability of accepting this transition.

If the temperature of the material is lowered very slowly and carefully,
it is very likely that each of the atoms in the system will remain in the
lowest energetical state possible, making the whole system rest in its global
minimum. If the temperature decay is too fast, more atoms do not have the
probabilistic chance to find an energetically profitable molecular binding,
and stay in a state of higher energy. This makes the system’s (or material’s)
overall energy stay higher as well. Although this is a minimum as well —
some of the atoms are in states out of which they can only get by absorbing
energy — it is not a global, but only a local one. The global minimum
system energy can only be reached by first heating the whole material, and
then cooling it down again.

This physical principle can be easily applied to any mathematical prob-
lem by finding the correct analogies between the two worlds. The energetic
states of the individual atoms can mostly be easily mapped to states of the
elements in a problem. The energetic difference assigned to an atom transit
between two states has to be substituted by an appropriate cost function
very specific to the problem — the cost is normally predefined by the prob-
lem itself, as it is the parameter to be minimized. The probability to transit
into a new state is defined by the temperature in “real life”; hence, a simu-
lation temperature has to be introduced and scheduled properly throughout
the simulated time period. A difficult part can be finding the neighbors of a
state, which means deciding upon possible edges in the state network of the
problem. This is especially difficult, if the simulation model has an infinite
number of states.

In the context of optimizing satellite constellations with respect to
DOP, definitions have been made to assign the required parameters in the
following manner:

The output function to be minimized is the demanded DOP value. The
state belonging to a specific DOP is defined as the set of satellite positions.
Among other things, this means that every position set, where at least one
satellite’s position differs, represents another state. Neighbor states are
defined as all states where at least one, but usually all satellite positions
differs from the originating state within a certain distance. The distance
between the old and the new positions is picked by a random process with
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normal distribution. The position change takes place on the surface of a unit
sphere; hence, a two-dimensional random number is the basis of the random
step. This step is then transformed into the arguments of elevation and
azimuth. The complete procedure is described in detail in Section 5.3.4 An
additional cut-off mechanism filter deviations that would exceed a position
alteration of more than 45 degrees.

Letting the positions change in such a way makes the number of possible
neighbors infinite. This means that the neighbors can not just be tested for
transiting in a sequential or random order, but we have to assume that only
one random neighbor is picked at a time. The decision on transiting leads
either to a new state, or the whole loop starts over from the beginning, with
the original state. Each satellite is allowed to travel independently, and the
decision upon transition is made after each satellites move. Satellites are
moved cyclically.

The simulating temperature is defined abstractly, and is used to influ-
ence the state transition probability as well as the mean distance between
a originating state and a neighbor state. As mentioned, the step width is
given as a standard deviation to a two-dimensional Gaussian random pro-
cess. Coupling the standard deviation to temperature lets the simulation
run faster, in general, when the chaotic contribution is still high, while al-
lowing a finer granularity when temperature drops and the system starts
heading towards the states of minimal cost.

With the simulation parameters defined like this, the satellites would
move around randomly in the hemisphere of possible positions, as long as
the temperature is high enough. When the simulation temperature is cooled
down slowly, the satellite behavior changes into seeking better and better
positions, until at last, they will remain in states that hopefully constitute
the global optimum for the examined cost function.

5.2.2 Alternative implementation

Annealing can also be described in a slightly different way. One drawback of
the above algorithm is that its movements have no orientation by themselves
throughout the whole simulation process. Only the decision upon accepting
a new state gives a guide towards a lower energetic state, but for a large
number of satellites, the chance of randomly selecting a better state at all
becomes more and more improbable. For a low temperature, the simulation
might get stuck, because all state candidates that are picked do not meet
the requirement of resulting in a lower cost function output.

The classical problems associated with the Metropolis algorithm and the
method of Simulated Annealing, like the traveling salesman problem, feature
a finite number of neighbor states, which avoid above complications more
effectively.

With the current definition of neighbor states, a finite number could only
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be accomplished by letting the positions of the satellites change only in a
predefined step width, each argument independently. For K satellites, there
would be 4K neighbors to each state, because each of every satellite’s two
arguments (elevation and azimuth) could only be altered up- or downwards
by a fixed number. But then, the search space would be severely narrowed,
probably eviting minima that are desirable as solutions. On the other hand,
if the step width was lowered to avoid this, simulation speed would degrade.
It is mandatory to check whether the algorithm’s functionality is not affected
by a modification that allows it to handle an infinite number of neighbors.

The alternative implementation simply divides each subsystem’s move-
ment into two parts, of which each is weighted differently throughout the
simulation. One part of the movement is the downhill part, which tries to
drag the state to a place where the resulting cost will be lower. The second
part applies random noise to the first position deviation, thus disturbing
the downhill movement. The downhill contribution depends on the cost
function’s slope at the position, whereas the random noise is coupled to the
simulation temperature. The physical analogon can be seen in atoms trying
to reach lower states, but disturbed by the Brownian motion.

The strength of the random noise with respect to the downhill force has
to be adjusted such that for a reasonably high enough temperature, the
downhill force’s contribution to the overall movement can be neglected. For
zero temperature, the random noise must also be zero.

For this to work, the gradient of the cost function with respect to every
input parameter must be known. In this simulation, the overall system state
can be separated into subsystems of individual satellites, and the gradient
can be calculated with respect to each satellite’s elevation and azimuth.
The satellite is then moved on the unit sphere towards the optimum, and a
random noise is superposed afterwards.

Differences between the two implementations imply, first of all, the
lack of a decision in the second one. The satellites move in every simulation
cycle, except if there is no better position to go. Depending on the temper-
ature, this movement is then disturbed by “thermal noise”. In contrast to
that, the original Simulated Annealing method tends to get stuck in envi-
ronments where many worse neighbor states and only a few better ones are
available, while the temperature is too low to let the worse be accepted.

It can be assumed that the “Noisy Downhill” algorithm will converge
faster, but on the other hand, it might be more vulnerable to a steep local
minimum. This assumption is motivated by the following consideration:
If the state (or a sub-state, say, one satellite of the system) runs into a
local minimum which is very steep, the downhill force has a substantial
contribution to the satellites further movements, whereas the random noise
is fixed in its maximum strength by the simulation temperature. If the



28 5 OPTIMIZATION WITH SIMULATED ANNEALING

minimum is too steep, and the temperature is already too low, downhill
movement will always overvote the random part, making the satellite unable
to escape from the local minimum until simulation time ends. It is possible,
though, that the downhill part results in a movement far enough to kick
the state out of the minimum on the opposite side, but the point remains
that under normal circumstances, the chance to leave the pit are zero, if the
minimum is steep and the temperature is low enough.

The original Simulated Annealing, however, has still a small probability
to climb up, since it is possible that several consecutive steps lead uphill,
as long as the temperature is not completely zero. The downhill movement
does not depend on the slope of the underlying cost function, because the
accepting probability in such cases is always one.

In order to analyze the specific pros and cons of both implementations,
they have to be implemented and watched closely during simulation runs.
The implementation details are described in the following section.

5.3 Description of the implementation using mathematical
software

This section describes the steps necessary to implement the simulation and
points out some details that needed special attention, such as the correct
mapping of random distributions in the context of a satellite position on the
virtual sky view hemisphere.

5.3.1 Functional overview

Figure 4 gives a coarse overview on how the Simulated Annealing algorithm
was implemented. The main simulation loop is located in SimAnn, from
where also the setup is initiated. RandomSatelliteSetup returns a position
matrix with satellites equally distributed over the virtual sky-view semi-
sphere (see also Section 5.3.3). For the purpose of creating a sky view plot,
SetupSkyView is called. A row vector containing the temperature for every
particular simulation time is returned by the function TempSchedule.

SimAnn then enters the main simulation loop and calls the simulation cy-
cle function periodically. The simulation cycle function is set as a function
handler, and can either point to SimCycle SimAnn for Simulated Annealing,
or to SimCycle NoisyDownhill for the Noisy Downhill algorithm. If a po-
sition change is reported back, the SkyView function is called to update the
screen.

If the Kirkpatrick simulation algorithm is defined as the simulation
method, the invoked function SimCycle SimAnn loops through satellites 1
to K for every invocation. It calls RandomSatStep in order to have the par-
ticular satellite’s position changed. The satellite position is checked for not
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Figure 4: Functional chart of the Simulated Annealing implementation

exceeding the defined boundaries in CorrectPositionMatrix. The decision
making function SimAnn Transition is responsible for determining whether
the new state will be accepted or not. Therefore, the new DOP has to be
calculated in DOP, and the cost difference is provided to the decision function.
If the new state is accepted, an orientation of the matrix is performed in
OrientPositionMatrix, meaning that one satellite points to the East. This
makes the graphical output nicer, helps avoiding duplicity in the solutions
and makes the evaluation of the collected data easier.

If the “Noisy Downhill” method is used for simulation, the func-
tion SimCycle NoisyDownhill is invoked. The new state is defined in two
steps: First, the function NeighborState Grad moves each satellite’s po-
sition towards a better resulting DOP individually. The required gradient
is approximated by a differential quotient implemented in DopGradient DQ.
Then, the new positions are again changed by superposing a random noise in
NeighborState Random. After the new state has been completed, the new
DOP value is calculated by calling DOP. Corrections are made every time
after shifting the positions, whereas the orientation of the solution is only
done once, at the end of the state creating process.
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The main loop in SimAnn updates simulation time and takes care of some
parallel output on the console. When the simulation time is over, the loop
terminates and the results are printed to the console. If the simulation states
do not change during a predefined amount of simulation time, the result is
considered stable and the simulation terminates as well.

5.3.2 Implementation platform

As implementation platform for the simulation algorithm, the plots and the
evaluation scripts, MATLAB was chosen. It provides easy accessibility to
matrix-like data structures, and lots of methods to visualize the results.
With the Symbolic Math package installed, it can also resolve symbolic
problems, as it was done in Section 4.

5.3.3 Setup

To initialize the simulation, a random setup of k satellites is preferred in
the most cases. For further investigation of certain situations, however, a
predefined setup can be supplied as well.

In this implementation, the MATLAB function returns a position matrix

POS=RandomSatelliteSetup(NumberOfSatellites )

as described in Equation (22) on page 16.

Uniformly distributed random setup
In the software model, each satellite’s position is represented by its eleva-

tion and its azimuth. If both azimuth and elevation are chosen directly by
a random process with a uniformly distributed probability density function,
then the resulting distribution of satellites over the available surface of the
sky-view hemisphere will not be uniform. The satellites will rather concen-
trate around the zenith. A random setup of a large number of satellites is
shown in Figure 5.

It should be noted that, by projecting a spherical surface into a circle,
the observed distortion effect is even amplified. Still, if the presentation
form was a sphere instead of a sheet of paper, the accumulation of satellites
around the zenith would be still noticeable.

The reason for the concentration of the satellites in Figure 5 is obviously
the uniform distribution of the randomly chosen elevation and azimuth an-
gles for each satellite — the concentration appears to be dependent only
from elevation, but not from the azimuth. Since a uniform distribution of
the satellites with respect to area is desired, the correlation between eleva-
tion and its corresponding surface element on the sphere has to be known.
This connection is to be examined in this section.
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Figure 5: Random satellite setup with uniform elevation distribution
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Figure 6: Infinitesimal surface element on the sphere

Let ~r in Figure 6 be a satellite position on the virtual sky-view hemi-
sphere with radius 1, described in spherical coordinates:

~r =

 1
E
Φ′

 (32)

For better readability, the prime denoting the reference and orientation
of Φ′ is neglected subsequently for all small differential angles in this section.

The vectors ~r′dE and ~r′dΦ result from rotating the original vector ~r by
infinitesimally small angles dΦ and dE:
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~r′dE =

 1
E + dE

Φ′


~r′dΦ =

 1
E

Φ′ + dΦ

 (33)

For infinitesimally small dE and dΦ, the resulting area element dA can
be approximated by the cross product of the two vector differences

dA = |(~r′dE − ~r)× (~r′dΦ − ~r)| = sinα · |(~r′dE − ~r)| · |(~r′dΦ − ~r)|, (34)

where the angle α is 90◦, so the sine term can be neglected. With the
vector differences expressed by the parameters dΦ and dE, the area dA can
be approximated as

dA ≈ dE︸︷︷︸
|(~r′dE−~r)|

· cos E dΦ︸ ︷︷ ︸
|(~r′dΦ−~r)|

, (35)

where both vector lengths are approximated by their small angle approx-
imation

sin dE ≈ dE

sin dΦ ≈ dΦ . (36)

The cosine term in (35) takes account of the fact that ~r′dΦ lies on a small
circle parallel to the xy plane, which has a circumference that is scaled down
with respect to the great circle’s circumference of 2π that is used for the
vector ~r′dE :

C = 2π

c = 2π cos E (37)

Given the above connection, the ratio of an area dAE , located at an
arbitrary elevation E, and dA0 located at the horizon is

dAE = cos E · dA0 . (38)

The requirement for the satellite distribution is, that the probability
to have a satellite present at a particular spot on the semi-sphere is equal
through the whole defined area. In other words, the probability P(S) for a
surface element to contain the randomly chosen satellite position shall be
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proportional to the surface element’s area. With respect to E, it can be
written as

P (S ∈ AE) =
dAE

2π
= cos E · dA0

2π︸︷︷︸
const.

, (39)

where the areas are normalized to the overall area 2π of the semi-sphere
with radius 1.

With P (S) desired to be uniformly distributed, the distribution for E
must therefore follow a cosine shaped random distribution. Since this custom
distribution is not available in MATLAB, an available distribution has to
be transformed by a mapping function such that the resulting distribution
has the desired cosine shape. The easiest way to achive this is to start from
a uniform distribution, which is also readily available in most programming
languages.

In order to get a continuous probability density function of arbitrary
shape, random values from the input function P (X) have to be mapped to
values in the domain of the output function P (Y ). The distribution of the
input function is known; in this case we have a uniform distribution, which
is given in its cumulative probability distribution function by

P (X < xi) = xi . (40)

In order to map each value gained from the stochastic process X to a
value in Y such that the probability distribution P (Y ) is met, each value xi

in the input function must be assigned to a value yi in the output function,
where the probabilities

P
(
X ∈ [xi;xi+1[

)
!= P

(
Y ∈ [yi; yi+1[

)
∀xi; (41)

match for all intervals. Then, the value pairs (xi, yi) define the mapping
function f(x) : x 7→ y, so the objective is describing yi by xi.

For the input function, the probability density given in (40) is uniform;
for the output, it is required to be cosine shaped, where the overall sum
must be 1:

P (Y < yi) :=
∫ yi

0
cos Y ′ dY , (42)

where the total probability sums up to 1:

P (Y ∈ [0;
π

2
]) =

∫ π
2

0
cos Y ′ dY =

[
sinY

] pi
2
0

!= 1 (43)

If we plug the probabilities into (41), we can rearrange the resulting
equation
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P (X < xi) = P (Y < yi)

xi =
∫ yi

0
cos Y ′ dY

xi = sin yi

yi = arcsin xi (−1 ≤ xi ≤ 1) (44)

Consequently, the arcsine of a uniformly distributed random variable X
can be used to pick a sample elevation angle e

e = E = arcsinX with P (X) ≡ 1 , (45)

where the cumulative probability density function of the generated random
variable E is given by

P (E < Ei) =
∫ Ei

0
cos E′

i dEi. (46)

P (X ∈ [xi; xi+1[) =
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Figure 7: Transformation of random variables

Figure 7 demonstrates the transformation of the random variable X to
E. The uniformly distruted X is drawn in the bottom, divided into intervals
by an equally distributed set of xi. The resulting probability masses Ui are
therefore equal (U1 = U2 = . . . = U8). The transformation function arc-
sin maps each xi to its corresponding interval boundary in the Y domain,
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yi. The resulting areas Vi between the interval boundaries are also equal
(V1 = V2 = . . . = V8), and sum up to 1 in total. In the figure, they are
approximated by rectangles of the dimensions Ui = (yi−yi−1) · cos(yi−yi−1

2 ).

Using the described transformation for elevation angles, a histographic
accumulation of several hundred randomly created setups in a sky-view re-
sults in a evenly distributed field of satellites like Figure 8.

0

180

30

210

60

240

90270

120

300

150

330

N

E

S

W

Figure 8: Random satellite setup with the fitted elevation distribution
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5.3.4 Random stepping of satellite positions

When a satellite should perform a random step on the sphere, it is desirable
that the average step width, which is referenced to the covered distance on
the sphere surface, is fixed and does not depend on parameters such as eleva-
tion. As in Section 5.3.3, the description in terms of azimuth and elevation
does not simply allow to assign uniformly distributed random numbers to
these two parameters, but instead, a coordinate transformation has to take
place.

In order to accomplish this, a two-dimensional movement in a fixed (and
Cartesian) coordinate system is created by two random numbers, and is
then transformed by means of vector rotation into the place of the desired
originating satellite position vector.

The random movements of satellites were decided to have a two-dimensional
Gaussian distribution X ∼ N 2(0, σ2), with the default standard deviation
set to 22.5◦.

The random stepping vector

δ~ryz =

 0
Xx

Xy

 (47)

is first created in the y-z-plane, as it can be seen in Figure 9. It corre-
sponds to a random step for a position vector at (1 0 0)T , and is thus normal
to the x axis. This vector now has to be pitched into the elevation E by
rotating it about the y-axis; the resulting vector is denoted as δ~ryE . Then,
the rotation of Φ′ is done about the z-axis. After this two-step rotation, the
resulting stepping vector δ~rEΦ is normal to the position vector ~r.

The new position vector ~rnew can then be obtained by adding the step-
ping vector to the old position, and dividing the result through its vector
norm in order to have a unit vector — the result of the vector addition must
have a norm greater than one, since the two vectors are normal. Because the
new position has to be known in terms of elevation and azimuth, the nor-
malization is in fact done by converting the vector to spherical coordinates
and neglecting the radius.

The rotation can be described with the rotation matrix

Ryz =

 cos Φ′ cos E − sinΦ′ cos Φ′ sinE
sinΦ′ cos E cos Φ′ sinΦ′ sinE
− sinE 0 cos E

 , (48)

so the resulting vector ~r′ (not normed) can be calculated by

~r′ = ~r + (Rδ~ryz) = ~r + δ~rEΦ (49)
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Figure 9: Rotation of the random satellite step vector

5.3.5 Correction and orientation of satellite positions

When random steps are applied to the satellite positions, the position matrix
is always checked for boundary violations after the random movements have
been added to the old position vectors.

For the elevation, the argument must not become negative on the one
hand, and must not exceed π

2 on the other hand. In the case of using the
weighted positioning solution, an elevation of 0 is even already forbidden,
because it makes the satellite’s weighting coefficient zero and thus, the ge-
ometry matrix is likely to become singular, especially for small numbers of
satellites. When the elevation argument falls below the lower bound, it is
simply set to it. When it exceeds the zenith, the elevation excess is sub-
tracted from π

2 , and the azimuth is flipped around by π. In the case of
satellite azimuths, the boundary values are actually only to keep the values
within a nice region. Azimuth arguments are kept within their bounds with
the modulus operation. Both of the arguments are taken care of in the func-
tion CorrectPositionMatrix, which is invoked once after every alteration
to the position.

To make different simulation results comparable to each other, fight in-
finite solution duplicity, and in order to bring some stability to the position
sets, the whole constellation can be oriented towards a fixed point. Except
for the EDOP and NDOP cost function, the azimuthal orientation of the
system in whole does not play a role at all — all positions resulting from
turning every satellite by the same azimuth result in the same DOP. Thus, it
was decided to orient the position matrix by fixing one satellite’s azimuth to
zero degrees, corresponding with east in the used ENU coordinate system.
This is done by subtracting the “Orientation Satellite”’s azimuth from all
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azimuths every time a new position set is completed. A special mechanism
transfers the role of the orientation satellite to a new satellite whenever the
old one rises to high. This is done because satellites were found out to tend
to center in the zenith if they get close enough, and a satellite in the zenith
changes its azimuth very chaotically. When this happens, all other azimuth
angles follow the movement and the orientation mechanism does not work
any more.

The number of the orientation satellite is kept in a global variable called
EASTSAT. The function name to orient the position matrix is called
OrientPositionMatrix. If the cost function is EDOP, NDOP, σE or σN ,
the orientation is skipped.

5.3.6 Computation of DOP

One of the central parts of the simulation is the cost function. Since most of
the desired cost functions are obtained quite similarly, all required function-
ality was put into the function DOP. A string parameter is passed along with
the position matrix to decide which cost function to apply. Valid functions
are all seven DOPs, the corresponding estimate accuracies σ, when weighted
positioning is used (see Section 5.4.1); and the matrix condition (see Sec-
tion 5.4.2). It turned out that the symbolic computation does not lead to a
gain in computation speed, thus the required inverse on the geometry ma-
trix product (HTH)−1 is computed numerically every time the function is
invoked.

5.3.7 Simulation cycles and neighbor states

Each simulation cycle needs to pick a neighbor state to the present satellite
constellation. The big difference between the two introduced simulation
algorithms is that Simulated Annealing may reject the new state in favor of
the old one, while the Noisy Downhill algorithm will always change to the
new state. Naturally, the mechanisms for obtaining such a neighbor state
are quite different.

In Simulated Annealing, the new state is obtained by moving a satel-
lite around randomly. The function RandomSatStep takes care about that.
Afterwards, a decision for the new state is done in SimAnn Transition,
according to the cost difference and a random contribution depending on
simulation temperature. During first simulations, it was observed that, for
low temperatures, the states were unlikely to ever change, if all satellites
were moved at once and the decision was done only after that. Hence, the
simulation cycle was modified to move each satellite individually and decide
for each “sub-state” with only one satellite position altered. This lead to a
more vivid simulation characteristic for small temperatures.
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Noisy Downhill neighbor states are obtained in two steps, as described
before. First, a down-hill movement of each satellite is executed in
NeighborState Grad. Therefore, the function DopGradient DQ linearizes
the cost function at the given position, and computes the differential quotient
of the free parameter. The result is distorted by applying an arcustangens to
it in order to circumvent too high gradients, which would have to be trapped
later otherwise. After the downhill movement, a random noise generated by
NeighborState Random is superposed to new position. The variance of the
noise is temperature dependent and converges to zero during the simulation
process, meaning that at the end, only the downhill movement will still have
an impact on the positions, which is crucial for finding the minima precisely.

5.3.8 Temperature schedule

In order to find good minima, the simulation temperature has to be low-
ered carefully throughout the simulation process. It has also been discussed
whether an intermediate re-heating of the system would benefit the resulting
found minima, but the results of first simulations made the author believe
that a monotonously falling temperature would cope with the used cost
functions.

Experience shows that a schedule following a negative exponential func-
tion suits best. The simulation was also tried with linearly falling temper-
atures, but it is easy to see that most of the important position arranging
is done when the temperature is really low. Compared with the physical
counterpart, the numerical value used here is already the product of the
Boltzmann constant kB and the arbitrary simulation temperature, showing
up as the denominator in the probability equation for the uphill transition
probability:

P (∆E) = e−
∆E
kBT (50)

To provide some numbers for kBT , a value of 10 provides enough “heat”
to let the satellite positions move around completely chaotically in both
simulation algorithms. Values below 1 lead to a very weak convergence
towards a minimum, and below 0.1, the states show a strong convergence
without any noticable uphill movements.

5.3.9 Plots

In order to examine the implementation as well as the simulation results,
different plot functions are provided.

DOP plot for equidistantly placed satellites
In order to easily validate the implementation of the DOP function, the

different resulting DOP values for equidistantly set up satellites in numbers
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between 4 and 20 were plotted, and the result was compared to an existing
plot from [Gün05]. Figure 2 in section 3.4 shows the result.

SkyView
The sky view is a figure showing the satellite’s line-of-sight vectors relative

to the user, projected into a plane. A sky-view shows the zenith above the
user as a point in the middle of the figure, and the horizon around the
user as a circle concentric to the zenith. For a given satellite position,
its argument of elevation is transformed linearly to the distance from the
horizon, heading towards the zenith. The sky view is an azimuthal projection
type and is therefore distance-preserving, but not shape- and size preserving.
This leads to an additional distortion when a random distribution is shown,
as it is discussed in Section 5.3.3. Figure 10 shows a sky-view for a randomly
chosen setup of five satellites.

Although the term “Sky View” might usually associate a figure showing
the view of the sky from the user’s point of view, the sky views used in
literature ([ME01]) as well as the one used in the author’s GPS handheld
receiver show the sky from above, hence assigning the left side West and the
right side East. This orientation has therefore been adopted for the work.
It can be seen as a “map” of satellites, centered on the user.
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Figure 10: Sky view for a random setup of 5 satellites

Simulation Panel
When the simulation is running, it is sometimes desirable to watch the
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evolution of the satellites azimuths and elevations together with their re-
sulting cost. This was implemented in the “Simulation Panel”, which is
integrated into the main loop in SimAnn. The updating behavior of the
panel can be set to either update every 50th simulation step, every single
step, only once after the simulation, or not to be drawn at all (for batched
simulations). A typical run of the curves can be seen in Figure 11 for a
GDOP simulation with four satellites. The characteristical slow-down of
the simulation parameter movements, including the cost function GDOP,
can be seen.
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Figure 11: Simulation panel for a 4 satellites GDOP simulation

Surface plot for one free satellite
To get a deeper insight to the different cost functions’ anatomies, special

scenarios are investigated in Section 6.1.4, where only one satellite is allowed
to travel, whereas the other satellites are fixed to their predefined positions.
In this case, a real simulation can be omitted in favor of a full search over
the allowed elevation and azimuth range for the free satellite. The result is
displayed in a surface plot similar to a sky view, but with the z axis assigned
to the resulting cost. Some of the surface plots can be seen in Appendix C.
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Other plots include the plot for the resulting weighting function and the
comparison of GDOP to σG using weighted positioning, both introduced in
Section 5.4.1, as well as the comparison of GDOP to the matrix condition
cond(HTH)−1 (see Section 5.4.2).

5.3.10 Simulation wrappers

In order to easily process lots of simulation runs automatically, the func-
tions MultiSim and SimulationCampaign can be used. MultiSim takes the
number of simulation runs as an argument and runs that number of simu-
lations with the same parameters, handing back the simulation results in a
cell array. The SimulationCampaign script processes several of those multi-
ple simulations for different parameter sets, and saves each parameter set’s
resulting cell array in a file, along with the set parameters.

The resulting files can be re-read by a function called
DisplayCampaignResults, which outputs the resulting sky views for each
run, and characterizes the overall result by means of categorizing the satel-
lite positions into groups and computing statistical values like means and
variances of elevations, azimuthal spacings etc. It can then decide upon dif-
ferent interesting resulting factors, like the stability of the solution for the
parameter set or for subsets of the solution.

5.4 Alternative cost functions

5.4.1 Introducing weighted positioning as a basis for an alterna-
tive cost function

First simulations with the described implementation showed that in most of
the cases, a certain number of satellites is likely to move onto the horizon line,
resulting in zero elevation satellites. This behavior is easily explained when
we remember that the satellites are located best, when they are located all
around the user, that is, also beneath the horizon. The line of zero degrees
is an artificial boundary to the mathematical system, created by the natural
environment the GPS is supposed to work in. It is, furthermore, neither very
likely that a satellite on the horizon will be receivable by the user, nor that
the satellite will provide a very good signal suitable for positioning under
these conditions.

The concept of the weighted position solution can take account of this
fact. In the classical approach of minimizing the residual square error of the
position solution with more than four satellites, and/or imperfect measure-
ments, every satellite’s signal contributes equally strongly to the computed
position estimate. As already touched in Section 3.2.3, the signal quality
rapidly degrades the nearer the satellite gets to the horizon. This is consti-
tuted by fact that the signal has to travel much longer distances through
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the atmospheric layers, which disperse the signal. Also, distortions to the
signal caused by multipath get stronger.

The weighted position solution described in [WE95] combines the ge-
ometrical contribution with an elevation dependent measurement error vari-
ance into a new characteristical matrix. Because of the unequal weighting,
the DOP can not be computed separately anymore. Instead, the weighted
product of the measurement accuracy and the observed DOP is minimized.
Therefore, the simulation has to be provided with typical measurement ac-
curacy values. The values in this implementation are mean values obtained
from the North American WAAS8; they are taken from the paper [WE95],
where the simulation was also run with these parameters.

The weighted least squares position solution is found by minimizing

x = (HT ·W ·H)−1HTW · y , (51)

where the product HTH has been provided with the (K × K) weighting
matrix W. This matrix contains the inverse satellite covariances in the di-
agonal elements, and zeros in all other elements — cross correlation between
the satellites’ errors is continuously neglected

W =


1
σ2
1

0 · · · 0

0 1
σ2
2

...
...

. . . 0
0 · · · 0 1

σ2
k

 (52)

The interesting values are not DOPs anymore, but the expected po-
sitioning accuracy or confidence for the three coordinate axes, and their
combinations respectively. For example, the vertical accuracy can now be
written as

σv =
√{

(HTWH)−1
}

33
; (53)

and can be used as a cost function to be minimized in the simulation.

The weighting function for computing the elements of W considers
the elevation dependent error variance contributions of the troposphere and
ionosphere, the multipath degradation and also the SNR contribution in the
following form for the user equivalent range error:

8Wide Area Augmentation System: DGPS Network providing correction data for the
United States
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σ2
UERE,k = σ2

UDRE,k + F2(E)σ2
UIV E,k + σ2

SNR,k +
σ2

m45

tan2 E
+

σ2
trv

sin2 E
; (54)

where the subscript k denotes the satellite number k. The individual factors
are given in Table 3.

Table 3: Variances for the weighting function
Identifier Value Variance for

σ2
UDRE,k 0.5m ionosphere-free and tropo-free pseudor-

ange correction
σ2

UIV E,k 0.5m vertical ionosphere correction
σ2

SNR,k 0.22m receiver noise
σ2

m45 0.22m multipath contribution at 45 degrees
σ2

trv 0.15m vertical tropospheric delay estimate

The obliquity function F(E) converts the provided vertical-referenced
ionospheric contribution into slant:

F(E) =
1√

1− cos2 E
(

RE
RE+h

)2
(55)

The weighting curve resulting from (54) shows that below an elevation of
around 5◦, the error variance increases significantly and thus, the satellite’s
contribution to the solution can be more or less neglected.
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Figure 12: Pseudorange uncertainty as function of elevation angle

Using the weighted positioning uncertainty will then degrade the “qual-
ity” of locations near the horizon such that the satellites’ observed drive
towards lower elevations is confronted with an opposite force, driving them
back higher in the sky. The result was observed to be a circle of satellites
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at a certain elevation, where the satellites were stuck to the horizon using
the conventional DOP cost functions. Depending on the type of positioning
uncertainty, the mean elevation of these circles changes. The sky views in
Figure 13 show the simulation result of a 4 satellite setup using GDOP, and
the same setup using the global positioning uncertainty σG respectively.
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S
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G

Figure 13: Sky views showing a GDOP and a weighted σG simulation result

5.4.2 Matrix condition as a measure for the constellation quality

As a measure of the position solution’s quality, another possible can be
the condition of the geometry matrix. This approach is taken in [PM97],
where the geometry of a navigation reference system is to be optimized. The
condition of a matrix A is defined as the ratio of the largest and smallest
singular values of A:

cond(A) =

√
max λ(ATA)
min λ(ATA)

, (56)

with λ(•) denoting the eigenvalues of the matrix. It gives an indication about
how close the matrix is to singularity. A singular geometry matrix means
that the satellite positions lie in a plane, and thus do not suffice for a three-
dimensional position solution. For such a position set, the computation of
a cost function like DOP is not possible and does not make sense either,
because the under-determined position solution can not be solved, anyway.

In fact, the DOP value GDOP, which can also be written as the square
root of the trace of (HTH)−1



46 5 OPTIMIZATION WITH SIMULATED ANNEALING

GDOP =
√

tr{(HTH)−1} (57)

is strongly correlated to the condition of the matrix H. The plot in Fig-
ure 14 shows cond(H) against GDOP for a number of 500 randomly selected
position sets with 4, 6 or 10 satellites each. It can be seen that, although
the minimally achievable GDOP is smaller for a higher number of satellites,
the corresponding matrix condition does not fall below a constant value
of about 3. Apart from that, the correlation between the two functions
is almost linear. Therefore, cond(H) can be a substitute cost function for
GDOP. Simulations have shown that the optimal results for both of them
are the same for all examined simulation setups.

Detailed results using all discussed cost functions will be presented in
the following Section.
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Figure 14: Comparison of GDOP and matrix condition for random satellite
position sets
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6 Simulation results and result characterization

6.1 Result inspection for different parameter sets

6.1.1 General observations

For almost every possible parameter setup, the satellite positions can be
divided into two classes — those that are close to or at the horizon, and
those in the zenith. For larger numbers of satellites K, the zenith position
is often crowded by multiple satellites; if there are two satellites in the zenith,
it is likely that they arrange vis-a-vis at an elevation of around 85°.

6.1.2 The cost function’s impact on the result

Of course, there are special cost functions that lead to a different picture.
The cost functions without vertical contribution, namely EDOP, NDOP and
their combination HDOP, lack the satellite in the zenith. It is obvious that,
in order to have the best possible geometry for horizontal positioning, the
satellites’ positions must be on the ground as well, hence have zero elevation.
This, however, contradicts with the fact that the geometry matrix H is
needed to be full-rank in order to have an equation system that can be
solved. The resulting product HTH would be singular; the inverse could
not be computed.

Hence, the horizontal cost functions make the simulation produce results
where some of the satellites are set off the horizontal position just a little,
so the geometry matrix becomes full-rank again. The same behavior can be
observed for the horizontal weighted positioning accuracies σH , σE and σN ,
where all this happens at a particular elevation between the horizon and the
zenith.

Figure 15 shows a result for a HDOP simulation. The two satellites on
the horizon can be easily distinguished from the two satellites at a elevation
of about 5°.

6.1.3 Satellite partitioning

One interesting number is the ratio of satellites in the zenith to those on
the horizon. There seems to be a certain ratio that is always tried to be
approximated by the solution, no matter how many satellites exist in the
simulation. In fact, this assumption is true for almost every setup, although
the ratio’s value depends on the particular cost function.

6.1.4 Scenarios with K − 1 fixed satellites

In some scenarios, one satellite seems to be pulled back and forth between
multiple good positions. In order to have a graphical means of visualizing
the cost function for that particular satellite in a context of pre-defined
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Figure 15: HDOP simulation result with 4 satellites

remaining satellite positions, a surface plot over the available positions was
found to be helpful. This plot shows the cost function as a z-axis surface
over the area as it is seen in a sky view.

The plot can be used to get to a deeper understanding of the correlations
in the geometry matrix, but also to examine the corner case of satellites that
show a very chaotic behavior in the simulation.

One scenario where this plot can show valuable information is the TDOP
cost function. As it can be seen in the results in Section 6.2.2, there is always
one “free satellite” moving around randomly, even for lowest temperature.
The corresponding surface plot in Figure 17 in Appendix C shows that the
TDOP (plotted as an inverse 1

TDOP here) is completely flat. In comparison
with that, Figure 18 shows that the GDOP cost function has a well-defined
minimum in the middle (highest point in the invertedly plotted surface).
The corresponding sky view shows the positions of the 3 fixed satellites.

It can also be seen that positions that lie on or near a plane with the
other satellites result in a much worse cost for all cost functions. Figure 19
shows an equidistant setup with an elevation of 25°. The free satellite creates
a very high DOP for positions that are on the circle defined by the fixed
satellites. Planes not parallel to the ground create an elliptic track on the
sky view, which is made visible in Figure 20.

With the weighted positioning accuracy as a cost function, the weighting
function’s impact on the satellite elevations also can be seen off the plot.
Notably, the DOP increases really fast if the satellite’s elevation gets close
to zero. Figure 21 shows the 25° setup again, but for the σG cost function.
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6.2 Characterization of the simulation results

In order to have significant results available to the simulations with different
cost functions and numbers of satellites, each simulation type was run mul-
tiple times, and the resulting data was saved to disk. Multiple simulation
runs with the same starting configuration could then be compared among
themselves. The gained data is processed by different statistical methods, in
order to characterize solutions for different scenarios. The main aim of this
simulation campaign is to find out which resulting characteristics stay the
same for a field of configuration values, and which change. It is also tried
to interpret the reasons for the observed behavior using this data.

6.2.1 Characteristics

In the following tables, some interesting characteristic values can be read
off easily for each constellation size out of K ∈ {4; 5; 6; 7; 8; 10; 12; 14} satel-
lites. Therefore, the large number of available statistical values which are
computed from the simulation data have been compressed into significant
“markers”. Those markers will be described below. Some of the markers
refer to the whole solution, while other exist for each class of satellites. For
the latter, the subscript H, M, or Z assigns them to their particular class.

These classes are used as a means to divide the provided position solution
into distinguishable parts. It was observed before, that the returned satellite
positions tend to be located either near the horizon, or near the zenith;
alternatively, the horizon positions move a little bit away from the horizon
when the weighted position solution is used. Therefore, each satellite is
assigned to one of three classes H, M, or Z, depending on its elevation. Good
thresholds were found to be 1◦ for the upper limit of “Horizon” satellites,
and 80◦ for the lower limit of “Zenith” satellites. The latter value might
appear quite distant from the real zenith; however, satellites sharing their
position in the zenith frequently arrange on a small circle around the zenith,
making the elevation fall below 85◦ if enough satellites share the spot.

To understand the markers and their statement on the characteristics of
the individual simulation setup, the overview below gives some explanations
to the abbreviated markers used in the tables.

K: The total number of satellites available in this setup.

Rows H, M and Z: Each satellite position is put into one of three classes
— the Horizon Class (H), if the satellite has a very low elevation
(E ∈ [0 1◦]); the Zenith Class (Z), if its elevation is close to the zenith
(E ∈ [80◦ 90◦]); and the so-called Medium Class (M) for all remaining
satellites (E ∈]1◦ 80◦[). Different examinations are then done per-
class.
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KH , KZ and KM : Number of satellites per class. The value is given as
the mean calculated over all simulation runs.

CC: Stability of the class counts. If the satellite count within a particular
class changes between individual simulation runs, the overall result can
be considered less stable. The marker is derived from the sum of the
variances of KH , KM and KZ . It can be set to “S” if the class count
is considered stable (low variance); “U” if it is considered unstable
(high variance); and “M” for a marginally stable result, when only
one simulation result differs from all the others. The thresholds have
been picked such that a marginal stability is usually indicated, if only a
small portion of the simulations result in a different position (statistical
outlier), to distinguish that from cases where the partitioning is really
unstable.

Emean,{H|M |Z}: Mean elevation in each class: Describess the average angle
elevation of the classes’ satellites. This value is especially interesting
when weighted positioning variances is used as the cost function.

ELST{H|M |Z}: Stability of the Elevation. This marker shows if the mean
elevation of a classes’ satellites stays the same between simulation runs.
It can be considered another indicator of the solution’s stability; its
values are again “U”,“S” or “M”. A dash “-” denotes that a marker
is not applicable, because no satellites are found in this class. The
marker’s setting is based on the evaluation of the variance over the
simulation-run-wise elevation mean; its most interesting use lies in
examining the M class satellites, naturally. However, it can also give
information about the other classes’ satellites’ behavior.

ELUN{H|M |Z}: Elevation uniformity per simulation run. This marker is
derived from each simulation run’s elevation variance in the particular
class. It says “S” if all satellites are at the same elevation, or “U” for
solutions where not all satellites in the class have the same elevation.
“M” denotes the edge case, again.9

AZSP{H|M |Z}: Stability of the azimuth spacing: The variance of the az-
imuth difference between satellites in a class describes if they are de-
ployed equidistantly on their circular line. Generally, this is more likely
to be the case when the number of satellites is low.

COST: Stability of the least cost value. The marker is based on the re-
sulting cost’s variance.

9“Unstable” elevation uniformity will happen if there are no satellites in other classes,
for instance with HDOP — otherwise the matrix would become singular.
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STEP: Stability of elapsed simulation steps. The SimAnn algorithm ter-
minates automatically, when it considers the system in a stable state.
Thus, the variance on the elapsed steps can give information about
whether the simulations run similarly every time, or whether random
influences disturb it a lot.

The analysis was done individually for each subset of the two simulation
parameters “Number of satellites” and ”Cost function“. It was observed
that a number of ten passes for each setup was enough to find out about the
general characteristics. For the unstable cases like TDOP, further investiga-
tion could use a larger number of simulation passes to generate more exact
statistical values. The feature of instability, however, is obvious already
after ten simulations.

It was observed that the choice of the simulation algorithm did not
change the results in any case. Since the Simulated Annealing algorithm
terminates itself when stability is reached, its use was preferred in the sim-
ulation campaign. Random samples with the Noisy Downhill algorithm
showed that this assumption was correct. Since the resulting positions were
the same. they are not demonstrated here.

6.2.2 Simulation results with DOP cost functions

In the following, a tabular overview of all simulation runs is given for every
cost function that was implemented. Since NDOP shows the behavior of
EDOP turned by π

2 , NDOP will be neglected in this overview. The same
does apply for the discussion of the weighted positioning accuracy σN .

The first cost function being examined is GDOP. It combines all diag-
onal elements of the inverted matrix, so it gives a good rating about the
general quality of a satellite constellation in terms of geometry. Table 4
shows a quite stable partitioning property for all values of K. If only 4
satellites are visible, the best geometry is obtained with one satellite at the
zenith, and three distributed equidistantly at the horizon. For 5 satellites,
the most likely situation is two satellites in the zenith. The marker AZSPH

shows that the two satellites are equally spaced at an elevation of around
83°.

The azimuth spacing behavior of the horizon satellites is stable for K <
8. For 8 or more satellites, they line up more chaotically, which can be at-
tributed to the better geometry in general, making the cost function flatter.
This is probably also the reason for one satellite assigned to the M class in
one single simulation for K = 7.

The reader is encouraged to view the detailed simulation results with the
provided MATLAB function DisplayCampaignResults(FILENAME). The func-
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tion plots all resulting sky views, and gives the numerical statistics as well
as the derived markers. The simulation results used for this overview are
located in the subfolder SimCampaign/.

Table 4: Simulation Results for GDOP

K CC
COST
STEP

KZ

KM

KH

Emean,Z

Emean,M

Emean,H

ELSTZ

ELSTM

ELSTH

ELUNZ

ELUNM

ELUNH

AZSPZ

AZSPM

AZSPH

GDOP
4 S 1 89.8◦ S - -

S 0 n/a - - -
S 3 0◦ S S S

5 M 1.9 83.3◦ M S S
S 0 n/a - - -
S 3.1 0◦ S S S

6 S 2 89.7◦ S S S
S 0 n/a - - -
M 4 0◦ S S S

7 M 2 89.4◦ M M S
M 0.1 1.3◦ S - -
M 4.9 0.0163◦ S S S

8 M 2.4 88.8◦ M M U
M 0 n/a - - -
M 5.6 0◦ S S U

10 S 3 89.8◦ S S U
S 0 n/a - - -
M 7 0◦ S S U

12 S 4 89.8◦ S S U
S 0 n/a - - -
M 8 0◦ S S U

14 M 4.2 89.8◦ S S U
M 0 n/a - - -
M 9.8 0◦ S S U

The PDOP cost function (Table 5) can be compared to GDOP very
well; in fact it only lacks the time component, which is always set to one by
definition (see Section 3.4). The resulting characteristics should not differ
too much therefore. Surprisingly, the overall stability of the setup appears
a little worse than with GDOP; it is not fully understood why this is the
case. One outstanding feature is that in two cases, a ”lost satellite“ in the
M class is quite likely for K = 7 and K = 10, in 4 of 10 cases for the former,
and 1 of 10 cases for the latter constellation size (KM = 0.4 and KM = 0.1,
respectively).
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Table 5: Simulation Results for PDOP

K CC
COST
STEP

KZ

KM

KH

Emean,Z

Emean,M

Emean,H

ELSTZ

ELSTM

ELSTH

ELUNZ

ELUNM

ELUNH

AZSPZ

AZSPM

AZSPH

PDOP
4 S 1 89.9◦ S - -

S 0 n/a - - -
M 3 0◦ S S S

5 M 1.7 83.1◦ M S S
M 0.2 69.9◦ S M S
M 3.1 0◦ S S S

6 S 2 89.7◦ S S S
S 0 n/a - - -
M 4 0◦ S S S

7 U 1.8 88.3◦ M S S
M 0.4 71.6◦ M M S
M 4.8 0◦ S S S

8 M 2.5 89.5◦ M M U
S 0 n/a - - -
M 5.5 0◦ S S M

10 M 3 89.4◦ M M U
M 0.1 75.9◦ S - -
M 6.9 0◦ S S U

12 S 4 89.8◦ S S U
S 0 n/a - - -
M 8 0◦ S S U

14 S 5 89.7◦ S S U
S 0 n/a - - -
M 9 0◦ S S M

HDOP is the combined DOP type which contains only the horizontal
contributions EDOP and NDOP (Table 6). Geometry will be considered
good, if the satellites are on low elevations. A satellite in the zenith does
not contribute anything to horizontal accuracy. Therefore, it is no surprise
that the mean elevation of all satellites for the HDOP optimization lies be-
low 5°. Still, the satellites do not all have 0°elevation. This behavior roots in
the contradiction between perfect geometry and the need for a determined
equation system. If all satellites lie in the horizon plane, the resulting matrix
HTH becomes singular, and no position solution can be found at all. In the
results, the overall mean of the ratio KM

KH
is 1 : 1, although it varies a lot

between the constellation sizes. This value, however, can be considered non-
significant because of the small elevation difference between the two classes.
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The azimuth spacing is only stable for very low numbers of satellites.

Table 6: Simulation Results for HDOP

K CC
COST
STEP

KZ

KM

KH

Emean,Z

Emean,M

Emean,H

ELSTZ

ELSTM

ELSTH

ELUNZ

ELUNM

ELUNH

AZSPZ

AZSPM

AZSPH

HDOP
4 S 0 n/a - - -

S 2 4.89◦ M S S
M 2 0.00443◦ S S S

5 M 0 n/a - - -
S 3.2 4.33◦ M M U
M 1.8 0.11◦ S M S

6 U 0 n/a - - -
S 3.4 4.42◦ M M U
M 2.6 0.0763◦ M S M

7 U 0 n/a - - -
S 2.7 4.34◦ M M U
M 4.3 0.081◦ S M U

8 U 0 n/a - - -
S 3.3 4.19◦ M M U
M 4.7 0.044◦ S S U

10 U 0 n/a - - -
S 4.2 3.84◦ M M U
M 5.8 0.0761◦ S S U

12 U 0 n/a - - -
S 3.9 3.84◦ M M U
M 8.1 0.0546◦ S S U

14 U 0 n/a - - -
S 4.4 3.45◦ M M U
M 9.6 0.0627◦ S S U

The cost function EDOP results in a very special constellation — since
the resulting cost describes only the geometry’s quality wrt the x axis (see
4.1.1), the resulting satellite positions line up nearly linearly in an East-
West axis. The need for a determined equation system inhibits a fully linear
setup, again. All the satellites are equally allocated to two mid-size areas
located on the horizon, in the very east and in the very west, respectively.
This assumption holds for all constellation sizes (see sky view in Figure 16)).
Roughly, half of the satellites stick to the horizon, while the rest is elevated
by around 5°.

The same assumptions can be made to the NDOP cost function, where
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the whole system is rotated by π
2 in azimuth. Hence, the table for NDOP

does not show up here; still, the results are proven to be the same.

Table 7: Simulation Results for EDOP

K CC
COST
STEP

KZ

KM

KH

Emean,Z

Emean,M

Emean,H

ELSTZ

ELSTM

ELSTH

ELUNZ

ELUNM

ELUNH

AZSPZ

AZSPM

AZSPH

EDOP
4 M 0 n/a - - -

S 2.9 6.28◦ M M U
M 1.1 0.0547◦ S S S

5 U 0 n/a - - -
S 3.2 5.53◦ M M U
M 1.8 0.203◦ S M U

6 U 0 n/a - - -
M 3.5 4.71◦ M M U
M 2.5 0.0848◦ S M U

7 U 0 n/a - - -
S 3.3 4.92◦ M M U
M 3.7 0.0874◦ S M U

8 U 0 n/a - - -
M 4.4 4.38◦ M M U
M 3.6 0.0832◦ S M U

10 U 0 n/a - - -
M 5.7 4.1◦ M M U
M 4.3 0.0366◦ S S U

12 U 0 n/a - - -
S 5.4 4.62◦ M M U
M 6.6 0.0794◦ S M U

14 U 0 n/a - - -
S 5.7 3.93◦ M M U
S 8.3 0.0747◦ S M U

VDOP needs only a good vertical geometry. This would, if the whole
surroundings of the user were available, result in a quasi-linear arrangement
over and below the user position, similar to the EDOP/NDOP. However,
negative elevations are forbidden; so the satellites dedicated to provide the
lower contribution get stuck on the horizon (Table 8). For K = 4, this results
in a linear arrangement similar to EDOP, but with two satellites near the
zenith. Again, they keep a certain distance to each other to prevent the
matrix from becoming singular. For K > 4, the lower satellites arrange first
equidistantly spaced, and then randomly to the horizon for higher K.
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Figure 16: Sky View plots for Simulated Annealing with EDOP and 4 satel-
lites

The last DOP cost function to be discussed is TDOP. The simulation
results are summarized in Table 9. Here, no spatial orientation has pref-
erence to the others. For K = 4, three satellites arrange equidistantly at
the horizon (AZSPH=S), while the fourth satellite is totally randomly posi-
tioned somewhere in the sky. It seems that the cost function for this ”free“
satellite is completely flat over the whole sky area, except the horizon areas.
Thus, the class count is completely stable and the class ratio is 1 : (K − 1)
for all examined K. From the STEP marker, we can see that the simulation
always terminates after the same number of simulation steps — in fact, it
is canceled after the hard maximum of simulation steps has been reached,
because the free satellite keeps on moving.
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Table 8: Simulation Results for VDOP

K CC
COST
STEP

KZ

KM

KH

Emean,Z

Emean,M

Emean,H

ELSTZ

ELSTM

ELSTH

ELUNZ

ELUNM

ELUNH

AZSPZ

AZSPM

AZSPH

VDOP
4 U 1.9 86.2◦ M M S

M 0.3 26.5◦ S U S
S 1.8 0◦ S S S

5 M 2.2 89.1◦ M M S
S 0 n/a - - -
M 2.8 0◦ S S S

6 M 2.9 88.9◦ M M U
M 0 n/a - - -
M 3.1 0◦ S S U

7 M 3.3 89.8◦ S S U
S 0 n/a - - -
M 3.7 0◦ S S U

8 M 3.8 89.7◦ M M U
M 0 n/a - - -
M 4.2 0◦ S S U

10 M 4.8 89.8◦ S S U
M 0 n/a - - -
M 5.2 0◦ S S U

12 M 5.4 89.8◦ S S U
M 0 n/a - - -
M 6.6 0◦ S S U

14 M 6.7 89.9◦ S S U
S 0 n/a - - -
M 7.3 0◦ S S U
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Table 9: Simulation Results for TDOP

K CC
COST
STEP

KZ

KM

KH

Emean,Z

Emean,M

Emean,H

ELSTZ

ELSTM

ELSTH

ELUNZ

ELUNM

ELUNH

AZSPZ

AZSPM

AZSPH

TDOP
4 S 0 n/a - - -

S 1 32.1◦ M - -
S 3 0◦ S S S

5 S 0 n/a - - -
S 1 24.3◦ M - -
S 4 0◦ S S U

6 S 0 n/a - - -
S 1 30.7◦ M - -
S 5 0◦ S S U

7 S 0 n/a - - -
S 1 31◦ M - -
S 6 0◦ S S U

8 S 0 n/a - - -
S 1 35.5◦ M - -
S 7 0◦ S S U

10 S 0 n/a - - -
S 1 28.8◦ M - -
S 9 0◦ S S U

12 S 0 n/a - - -
S 1 39.4◦ M - -
S 11 0◦ S S M

14 M 0 n/a - - -
S 0.9 29.8◦ M - -
S 13.1 0.00033◦ S S U
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6.2.3 Simulation results with other cost functions

This section describes the simulation results using the positioning accuracy
of a weighted position solution and the matrix condition.

The weighted positioning accuracy renders results that are obviously
closely related to those gained with DOP as a cost function. The main
difference is, that where satellites are positioned on the horizon for a DOP,
they stay away from too low elevation angles because of the σ cost functions.
The reason is the influence of the weighting function, which acts contrary
to the force dragging the satellite down to the horizon.

For σG, the horizon satellites from GDOP moved to an average elevation
of 22°(Table 10). It should be noted that the average partition ratio between
zenith and horizon has changed — a larger part of the satellites stays down.
This can be connected to the weighting function’s influence, which greatly
reduces the contribution of lower satellites to the overall position solution,
and thus, also to the accuracy. Thus, more satellites are needed at lower
elevation angles than in the zenith.

The σP cost function (Table 11) features a slightly higher mean elevation
of the M class satellites, compared to σG. However, the individual satellites’
elevation angles are very simular (ELUNM ), thus the equilibrium of geo-
metric influence and weighting is pretty stable. The azimuthal spacing gets
unstable for K ≥ 8.

The horizontal accuracy σH creates a constellation consisting of circu-
larly arranged satellites at a mean elevation of 38°. Notably, the elevation
uniformity ELUNM shows ”M“ for all K — the satellites can not all have
the same elevation, as the zenith satellite is missing here and they would
otherwise all lie in one plane. Table 12 shows the resulting characteristics.

σE, the weighted variant of EDOP, produces results that also look like
a resized version of its relative EDOP. The arrangement is quasi-linear, but
the satellites now rest at an elevation of 38°. Again, the neighbor satellites
keep a certain distance between them, to prevent the matrix from becoming
singular.

Where the mean elevation for the best horizontal accuracy was quite
high, it is really low for σV. The importance of having an antipole for the
zenith satellite is obviously stronger. Also, the ratio KZ

KM
is again lower than

KZ
KH

in the VDOP result, meaning that more satellites are needed to provide
the contribution needed from low-elevation positions.
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Table 10: Simulation Results for σG

K CC
COST
STEP

KZ

KM

KH

Emean,Z

Emean,M

Emean,H

ELSTZ

ELSTM

ELSTH

ELUNZ

ELUNM

ELUNH

AZSPZ

AZSPM

AZSPH

σG

4 S 1 89.7◦ S - -
S 3 22.2◦ S S S
M 0 n/a - - -

5 S 1 89.4◦ M - -
M 4 21◦ M M M
S 0 n/a - - -

6 M 1.4 89.7◦ M S S
M 4.6 21.6◦ M S S
S 0 n/a - - -

7 M 1.7 89.7◦ S S S
M 5.3 21.8◦ M S M
M 0 n/a - - -

8 S 2 89.7◦ S S S
S 6 22.2◦ S S U
M 0 n/a - - -

10 M 2.1 89.7◦ S S U
M 7.9 21.3◦ M S M
M 0 n/a - - -

12 M 2.8 89.8◦ S S U
M 9.2 21.8◦ M S U
M 0 n/a - - -

14 S 3 89.8◦ S S U
S 11 21.5◦ S S M
M 0 n/a - - -

The σT results exhibit an interesting change compared to TDOP: The
”free satellite“ that was always somewhere in the sky is now dragged to
the zenith for all values of K. This behavior can be explained through the
influence of the weighting function, which now makes the satellites position
most valuable for a maximum angle of elevation. For high values of K, the
probability to have two satellites in the zenith also increases, because the
lower positions are weighted less.

The condition of the matrix shows almost the same behavior as GDOP.
The typical partitioning has twice the satellites at the horizon than at the
zenith, and for small K, the horizon satellites are equally spaced. For higher
satellite quantities, the horizontal distributions get more and more chaotic.
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Table 11: Simulation Results for σP

K CC
COST
STEP

KZ

KM

KH

Emean,Z

Emean,M

Emean,H

ELSTZ

ELSTM

ELSTH

ELUNZ

ELUNM

ELUNH

AZSPZ

AZSPM

AZSPH

σP

4 S 1 89.8◦ S - -
S 3 23.5◦ S M S
S 0 n/a - - -

5 S 1 89.3◦ M - -
M 4 22.4◦ M M S
M 0 n/a - - -

6 M 1.8 89.1◦ M S S
M 4.2 24.2◦ M M S
S 0 n/a - - -

7 S 2 89.6◦ S S S
S 5 24.2◦ S S S
S 0 n/a - - -

8 S 2 89.7◦ S S S
S 6 23.5◦ S S U
M 0 n/a - - -

10 M 2.5 89.7◦ S S U
M 7.5 23.4◦ M S M
S 0 n/a - - -

12 S 3 89.7◦ S S U
S 9 23.5◦ S S U
M 0 n/a - - -

14 M 3.7 89.8◦ S S U
M 10.3 23.8◦ M S M
M 0 n/a - - -
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Table 12: Simulation Results for σH

K CC
COST
STEP

KZ

KM

KH

Emean,Z

Emean,M

Emean,H

ELSTZ

ELSTM

ELSTH

ELUNZ

ELUNM

ELUNH

AZSPZ

AZSPM

AZSPH

σH

4 S 0 n/a - - -
M 4 38.8◦ M M S
M 0 n/a - - -

5 S 0 n/a - - -
S 5 38.4◦ M M S
M 0 n/a - - -

6 S 0 n/a - - -
S 6 38.2◦ M M U
M 0 n/a - - -

7 S 0 n/a - - -
S 7 38.5◦ M M U
S 0 n/a - - -

8 S 0 n/a - - -
S 8 38◦ M M U
M 0 n/a - - -

10 S 0 n/a - - -
S 10 38.1◦ M M M
M 0 n/a - - -

12 S 0 n/a - - -
S 12 38.1◦ M M M
M 0 n/a - - -

14 S 0 n/a - - -
S 14 38.4◦ M M M
M 0 n/a - - -
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Table 13: Simulation Results for σE

K CC
COST
STEP

KZ

KM

KH

Emean,Z

Emean,M

Emean,H

ELSTZ

ELSTM

ELSTH

ELUNZ

ELUNM

ELUNH

AZSPZ

AZSPM

AZSPH

σE

4 S 0 n/a - - -
M 4 37.3◦ M M U
M 0 n/a - - -

5 S 0 n/a - - -
S 5 37.6◦ M M U
S 0 n/a - - -

6 S 0 n/a - - -
M 6 37.4◦ M M U
S 0 n/a - - -

7 S 0 n/a - - -
M 7 38.1◦ M M U
M 0 n/a - - -

8 S 0 n/a - - -
M 8 38.2◦ M M U
M 0 n/a - - -

10 S 0 n/a - - -
M 10 37.6◦ M M U
M 0 n/a - - -

12 S 0 n/a - - -
M 12 38.2◦ M M U
M 0 n/a - - -

14 S 0 n/a - - -
S 14 38.5◦ M M U
M 0 n/a - - -
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Table 14: Simulation Results for σV

K CC
COST
STEP

KZ

KM

KH

Emean,Z

Emean,M

Emean,H

ELSTZ

ELSTM

ELSTH

ELUNZ

ELUNM

ELUNH

AZSPZ

AZSPM

AZSPH

σV

4 S 1 88.4◦ M - -
M 3 15.1◦ M M S
M 0 n/a - - -

5 M 1.3 89.5◦ M S S
M 3.7 15.2◦ M S U
S 0 n/a - - -

6 M 1.7 89.2◦ M S S
M 4.3 17.2◦ M M U
M 0 n/a - - -

7 M 2.1 89.7◦ S S U
M 4.9 16◦ M S U
M 0 n/a - - -

8 M 2.2 89.8◦ S S U
M 5.8 15.6◦ M S U
M 0 n/a - - -

10 M 3.2 89.8◦ S S U
M 6.8 16.3◦ M S U
M 0 n/a - - -

12 M 3.6 89.8◦ S S U
M 8.4 16◦ M S U
M 0 n/a - - -

14 M 4.2 89.8◦ S S U
S 9.8 16◦ M S U
M 0 n/a - - -
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Table 15: Simulation Results for σT

K CC
COST
STEP

KZ

KM

KH

Emean,Z

Emean,M

Emean,H

ELSTZ

ELSTM

ELSTH

ELUNZ

ELUNM

ELUNH

AZSPZ

AZSPM

AZSPH

σT

4 S 1 89.6◦ M - -
S 3 18.7◦ S S S
S 0 n/a - - -

5 S 1 89.5◦ M - -
S 4 18◦ S M U
S 0 n/a - - -

6 S 1 89.8◦ S - -
S 5 17.5◦ S S U
M 0 n/a - - -

7 S 1 89.8◦ S - -
S 6 17◦ S S U
S 0 n/a - - -

8 S 1 89.8◦ S - -
S 7 16.5◦ S S U
M 0 n/a - - -

10 M 1.4 89.8◦ S S S
M 8.6 16.7◦ M S U
M 0 n/a - - -

12 M 1.7 89.8◦ S S S
S 10.3 16.8◦ M S U
M 0 n/a - - -

14 M 1.9 89.9◦ S S U
M 12.1 16.7◦ M S U
M 0 n/a - - -
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Table 16: Simulation Results for COND

K CC
COST
STEP

KZ

KM

KH

Emean,Z

Emean,M

Emean,H

ELSTZ

ELSTM

ELSTH

ELUNZ

ELUNM

ELUNH

AZSPZ

AZSPM

AZSPH

COND
4 S 1 89.8◦ S - -

S 0 n/a - - -
S 3 0◦ S S S

5 S 2 89.7◦ S S S
S 0 n/a - - -
M 3 0◦ S S S

6 S 2 89.7◦ M S S
S 0 n/a - - -
S 4 0◦ S S M

7 M 2.2 89.7◦ S S U
M 0 n/a - - -
M 4.8 0◦ S S U

8 M 2.9 89.4◦ M M U
M 0 n/a - - -
M 5.1 0◦ S S U

10 M 3.4 89.8◦ S S U
M 0 n/a - - -
M 6.6 0◦ S S U

12 M 4.1 89.8◦ S S U
M 0 n/a - - -
M 7.9 0◦ S S U

14 M 4.8 89.8◦ S S U
M 0 n/a - - -
M 9.2 0◦ S S U
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7 Conclusion

The scope of this assignment was to find optimal satellite positions in a
GNSS, with respect to the various DOP functions. The first approach was to
analyze the geometry matrix manually and to find out which constellations
are good for DOP ”by inspection“. This attempt, as it turned out, was too
complicated to be finished; it would have taken thousands of operations and
probably months to calculate the inverse of a geometry matrix manually,
for only one constellation size. Symbolic computation done in MATLAB
showed that even with the computed inverse, there is no easy way to find
good position sets. Computers can do these investigations much faster, and
this was done in a simulation using the Simulated Annealing algorithm.

With the resulting optimal position constellations of all DOP cost func-
tions, and for constellation sizes between 4 and 14 satellites, the cost func-
tions could be investigated more closely. It can be stated that the assumed
complexity of DOP does not exist that strongly; instead, the preliminary es-
timations of optimal constellations such as the equidistant setup were indeed
confirmed with the simulation results.

However, some characteristics of the solutions could not be anticipated;
it was, for instance, not supposed that the aggregation of multiple satellites
on one single spot, namely the zenith, could result in a cost minimum. By
contrast, the situation of many satellites stuck to the horizon was foreseen
and is now approved. This optimum is only of a theoretical value; in reality,
very low elevation will lead to satellite masking in nearly every case; and
other side effects like strong multipath and atmospheric errors make the
situation even worse.

In order to examine also cost functions with practical value, the estimate
accuracy derived with a weighted position solution was examined. The re-
sults could be compared to those gained from DOP simulations, with the
big difference that the lower satellites have their best elevation somewhere
between 15°and 35°, depending on the cost function. Other small character-
istical changes in behavior due to the weighting function could be especially
seen for the temporal estimate accuracy σT .

As a third cost function, the matrix condition of the geometry matrix was
examined briefly. It exhibits a simulation behavior that is almost identical
with the one known from GDOP. The correlation between both of them for
a large set of random positions fortifies this observation. In fact, these two
cost functions have a strong mathematical similarity, which is responsible
for the congeneric results.

The results showed that the assumptions about good and bad satellite
constellations, based on gut feeling could be approved in the Simulated
Annealing algorithm. Furthermore, the best satellite positions seemed to
be a very determined state in all analyzed cases; this could be seen from
the simulation series which returned very stable minima. The algorithms
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capable of avoiding local minima, however, were probably the best choice to
get those results.

In addition to the printed version in the appendix, the simulation’s source
code is provided on CD, along with the simulation results that were dis-
cussed. Every function can provide a help text which should be, together
with the description in the present document, sufficient information to start
own investigations on optimal satellite locations.
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B Source code

B.1 CorrectPositionMatrix

1 function pos=CorrectPositionMatrix(pos)
2 % CORRECTPOSITIONMATRIX catch bound violations of satellite

positions and correct
3 % POS=CORRECTPOSITIONMATRIX(POS)
4 % checks for all elevation and azimuth arguments in POS and
5 % corrects them if they are out of bounds.
6 % The matrix is NOT oriented.
7 % See also ORIENTPOSITIONMATRIX
8

9 global ELEV LOWLIMIT
10

11

12 % correct bound violations (too high/low elevation or azimuth)
13 for i=1:size(pos,1)
14 % check for too high elevation
15 if pos(i,1)>pi/2
16 % flip over the azimuth (+pi)
17 pos(i,2)=pos(i,2)+pi;
18 % correct the elevation
19 pos(i,1)=pi−pos(i,1);
20 end
21 % check for too low elevation (beyond horizon)
22 if pos(i,1) < ELEV LOWLIMIT
23 pos(i,1)= ELEV LOWLIMIT;
24 end
25

26 % azimuth
27 if (pos(i,2)<0) | | (pos(i,2)≥2*pi)
28 pos(i,2)=mod(pos(i,2),2*pi);
29 end
30 end
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B.2 deg2rad

1 function rad=deg2rad(deg)
2

3 rad=deg*pi/180;
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B.3 DOP

1 function DOPValue = DOP(positions, doptype)
2 % DOP compute the DOP value to a given set of satellite

positions
3 %
4 % DOPVALUE=DOP(POSITION VECTOR, DOPTYPE)
5 % returns the DOP value
6 % of the specified type.
7 % These include
8 % DOP: EDOP, NDOP, VDOP, TDOP, or one of
9 % the combined values HDOP, PDOP or GDOP

10 % SGM: SGME, SGMN, SGMV, SGMT, SGMH, SGMP, SGMG
11 % cost function using weighted positioning
12 % COND: Matrix condition cond(H) as a measure for the
13 % constellation quality.
14 % ALL: returns a row vector of all DOP types
15 %
16 % POSITION VECTOR = [ E1 A1 ; E2 A2 ; ... En An ]
17 % contains the positions of the satellites in elevation and
18 % azimuth, one in a row. The values must be radian within

the
19 % bounds 0≤A<pi for all azimuths, and 0≤E≤pi/2 for

elevation.
20 %
21 % DOPTYPES
22 % DOP can return the specified scalar DOP value if a DOPTYPE

is
23 % given. If the DOPTYPE value is left out, DOP returns the

vector
24 % DOPValue = [ EDOP NDOP VDOP TDOP HDOP PDOP GDOP ]
25 %
26 % With the concept of the weighted position solution implemented

,
27 % further DOPTYPEs include ’SGMX’, where X can be E,N,V,T,H,P,

or G.
28 % In this case, DOP does not return a real DOP value, but

a standard
29 % deviation σ, which contains the particular DOP as well as a
30 % standardized term of error contributions. The point is,

that in this
31 % case, the elevation of the particular satellite is

considered as a
32 % measure for the error, and thus, satellites closer to the

horizon do
33 % not contribute as much to the position solution as the

higher ones do.
34 % Minimizing the returned value wrt position returns

positions optimized
35 % for weighted positioning.
36 %
37 % −−−−− BEGIN PARAM CHECK −−−−−
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38 error(nargchk(1,2,nargin,’struct’));
39 num satellites=size(positions,1);
40 %if num satellites < 4
41 % % to few satellite parameters given − we need at least 4
42 % disp(’please supply a larger number of satellites (at least

4)!’)
43 % return
44 %end
45 if size(positions,2)6=2
46 disp(’wrong number of arguments in the positon matrix!’)
47 disp(’the desired form is:’)
48 disp(’positions =’)
49 disp(’ E1 A1’)
50 disp(’ E2 A2’)
51 disp(’ .. ..’)
52 disp(’ En An’)
53 disp(’ n≥4’)
54 return
55 end
56 % check bounds of positions
57 %if min(positions(:,1))<0
58 % disp(’One of the satellites has an elevation less than 0

degrees!’)
59 % return
60 %end
61 %if max(positions(:,1))>(pi/2)
62 % disp(’One of the satellites has an elevation greater than 90

degrees!’)
63 % return
64 %end
65 %if min(positions(:,2))<0
66 % disp(’One of the satellites has an azimuth less than 0

degrees!’)
67 % return
68 %end
69 %if max(positions(:,2))≥2*pi
70 % disp(’One of the satellites has an azimuth equal or greater

than 360 degrees!’)
71 % return
72 %end
73

74 % check the requested doptype
75 if nargin==2
76 switch lower(doptype)
77 case {’ndop’,’edop’,’vdop’,’tdop’,’hdop’,’pdop’,’gdop’,’all’,’

cond’}
78 % conventional DOP or condition
79 weighted=false;
80 case {’sgmn’,’sgme’,’sgmv’,’sgmt’,’sgmh’,’sgmp’,’sgmg’}
81 weighted=true;
82 otherwise
83 disp(’No valid DOP type selected!’)
84 disp(’See help for SIMANN’)
85 return
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86 end
87 else
88 doptype=’all’;
89 weighted=false;
90 end
91 % −−−−− END PARAM CHECK −−−−−
92

93 % −−−−− BEGIN COMPUTATION −−−−−
94 %tic
95

96 % set up the geometry matrix
97 H=zeros(num satellites,4);
98 for l=1:num satellites
99 % pos(l,1) is elevation of sat. #l

100 % pos(l,2) is azimuth
101 H(l,:)=[ cos(positions(l,1))*cos(positions(l,2)) ...
102 cos(positions(l,1))*sin(positions(l,2)) ...
103 sin(positions(l,1)) ...
104 1 ];
105 end
106

107 %if weighted positioning is requested, compute the satellites’
variances

108 % into W. Otherwise, W is the identity matrix so we dont have to
change

109 % anything else below.
110

111 if weighted==true
112 Ref SSQ=Weighted SigmaSQ(pi/2);
113 for l=1:num satellites
114 E=positions(l,1);
115 % trap for singularity with zero−elevation sats
116 if E6=0
117 W(l,l)=1/(Weighted SigmaSQ(E)/Ref SSQ);
118 else
119 % variance would be inf, so we set its inverse to

zero.

120 % this means that in the calculation of (HT WH)−1

121 % below, the particular satellite is canceled out.
122 W(l,l)=0;
123 end
124 end
125 else
126 W=eye(num satellites,num satellites);
127 end
128

129 % The inverse is always computed with the covariance matrix
included

130 if ¬strcmp(lower(doptype),’cond’)
131 HtH inv=inv(transpose(H)*W*H);
132 end
133

134 switch lower(doptype)
135 case {’edop’,’sgme’}
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136 DOPValue=sqrt(HtH inv(1,1));
137 case {’ndop’,’sgmn’}
138 DOPValue=sqrt(HtH inv(2,2));
139 case {’vdop’,’sgmv’}
140 DOPValue=sqrt(HtH inv(3,3));
141 case {’tdop’,’sgmt’}
142 DOPValue=sqrt(HtH inv(4,4));
143 case {’hdop’,’sgmh’}
144 DOPValue=sqrt(HtH inv(1,1)+HtH inv(2,2));
145 case {’pdop’,’sgmp’}
146 DOPValue=sqrt(HtH inv(1,1)+HtH inv(2,2)+HtH inv(3,3));
147 case {’gdop’,’sgmg’}
148 DOPValue=sqrt(HtH inv(1,1)+HtH inv(2,2)+ ...
149 HtH inv(3,3)+HtH inv(4,4));
150 case ’all’
151 DOPValue= [ sqrt(HtH inv(1,1)) ...
152 sqrt(HtH inv(2,2)) ...
153 sqrt(HtH inv(3,3)) ...
154 sqrt(HtH inv(4,4)) ...
155 sqrt(HtH inv(1,1)+HtH inv(2,2)) ...
156 sqrt(HtH inv(1,1)+HtH inv(2,2)+HtH inv(3,3)) ...
157 sqrt(HtH inv(1,1)+HtH inv(2,2)+ ...
158 HtH inv(3,3)+HtH inv(4,4)) ];
159 case ’cond’
160 DOPValue=cond(H);
161 end
162 %toc
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B.4 DopGradient DQ

1 % DOPGRADIENT DQ return the numerical gradient in respect to a
specified

2 % parameter
3 % Uses a numerically determined difference quotient
4 % GRADIENT = DOPGRADIENT DQ(POS,PARAMETER,DOPTYPE)
5 %
6 % where POS denotes the position matrix (k x 2)
7 % PARAMETER contains the "position" of the parameter for which
8 % to find the gradient as a vector denoting row and column,
9 % e.g. [1 2] for azimuth (2nd col) of the first satellite (1

st row)
10 % DOPTYPE is a string giving the type of cost function to use.

It can be
11 % ’EDOP’,’NDOP’,’VDOP’,’TDOP’,’HDOP’,’PDOP’,’GDOP’
12 %
13

14 function gradient = DopGradient DQ(pos,parameter,doptype)
15

16 % find the difference quotient to requested parameter
17 % we compute it in both directions and return the average, so in

case
18 % of a local extremum, the returned value is likely to be zero
19

20 DELTA=pi/18000; % 1/100 degree
21

22 % position ’right’ of the original one − add DELTA to the free
parameter

23 posplus=pos;
24 posplus(parameter(1),parameter(2))=pos(parameter(1),parameter(2))+

DELTA;
25

26 % same for the ’left’ side
27 posminus=pos;
28 posminus(parameter(1),parameter(2))=pos(parameter(1),parameter(2))

−DELTA;
29

30 % compute the function values for every position
31 yplus=DOP(posplus,doptype);
32 yminus=DOP(posminus,doptype);
33

34 % return the gradient
35 gradient=(yplus − yminus) / ( 2 * DELTA );
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B.5 EquidistantSetup

1 % EQUIDISTANTSETUP build a uniform satellite constellation
2 %
3 % POS = EQUIDISTANTSETUP (NUMSATS [,ELEVATION]) returns a matrix

containing
4 % the satellite setup of one satellite at the zenith plus
5 % NUMSATS−1 satellites equally spaced on the horizon.
6 %
7 % An optional second argument 0 ≤ ELEVATION < (pi/2) denotes
8 % the elevation of the satellites (excluding the one at the
9 % zenith), which is otherwise set to zero.

10 %
11 % See also RANDOMSATELLITESETUP
12

13 function POS=EquidistantSetup(SatNumber,Elevation)
14 if nargin==1
15 Elevation=0;
16 else
17 if (Elevation<0) | (Elevation≥(pi/2))
18 disp(’ERROR: Elevation is out of bounds!’)
19 return
20 end
21 end
22 if SatNumber<2
23 disp(’ERROR: at least 2 satellites are required’)
24 return
25 end
26

27 for i=1:SatNumber−1
28 Azimuth=(i−1)*2*pi/(SatNumber−1);
29 POS(i,:)=[ Elevation Azimuth ];
30 end
31 % add the satellite in the zenith
32 POS=[ POS; pi/2 0 ];
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B.6 Geometry Matrix

1 function H=Geometry Matrix(POS)
2 % GEOMETRY MATRIX compute the geometry matrix to a position

matrix
3 %
4 % H = GEOMETRY MATRIX(POS)
5 %
6

7 % set up the geometry matrix
8 H=zeros(size(POS,1),4);
9 for l=1:size(POS,1)

10 % pos(l,1) is elevation of sat. #l
11 % pos(l,2) is azimuth
12 H(l,:)=[ cos(POS(l,1))*cos(POS(l,2)) ...
13 cos(POS(l,1))*sin(POS(l,2)) ...
14 sin(POS(l,1)) ...
15 1 ];
16 end
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B.7 MultiSim

1 function SimResults = MultiSim(NumPasses)
2

3 % MULTISIM batched simulation wrapper
4 %
5 % SIMRESULTS = MULTISIM(NUMPASSES)
6 %
7 % simulates NUMPASSES times without graphical outputs. The

simulation
8 % results (optimal position and corresponding cost) are

returned in
9 % the cell array SIMRESULTS, one sim result per row:

10 % SIMRESULTS =
11 % [ BESTPOS 1 BESTCOST 1 SIMTIME 1 ]
12 % [ BESTPOS 2 BESTCOST 2 SIMTIME 2 ]
13 % [ .. .. .. ]
14 % [ BESTPOS N BESTCOST N SIMTIME N ]
15 %
16 % where SIMTIME contains the simulation duration the pass

took.
17 %
18 % All configuration regarding the individual simulations,

such as
19 % cost function, number of satellites, can be provided

directly to
20 % SIMANN via the global config options mechanisms.
21 %
22 % See also SIMANN
23

24 global SIMANN LIVEUPDATES;
25 SIMANN LIVEUPDATES=’NONE’;
26

27 SimResults=cell(NumPasses,3);
28

29 for pass=1:NumPasses
30 disp([’−−−−−−−−−−−−−−−−−−−−−− SIMULATION ’ num2str(pass) ’ OF

’ num2str(NumPasses) ’ −−−−−−−−−−−−−−−−−−−−−−’])
31 [foo bar SimResults{pass,1} SimResults{pass,2} SimResults{pass

,3}] = SimAnn;
32 end
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B.8 NeighborState Grad

1 function returnPosition = NeighborState Grad(pos,doptype)
2 % NEIGHBORSTATE GRAD return better neighbor state to a

satellite position set
3 %
4 % RETURNPOSITION = NEIGHBORSTATE GRAD(POS,DOPTYPE)
5 %
6 % returns a position matrix of the same dimensions as the given
7 % position POS.
8 % For each argument, the cost gradient is computed individually.
9 % The argument is then shifted towards a lower cost. If the

derivative is zero,
10 % argument the position is kept.
11 % For a nonzero derivative, the position is shifted linearly

with the derivative.
12 %
13 % See also NEIGHBORSTATE RANDOM
14

15 % init variable
16 returnPosition=zeros(size(pos,1), size(pos,2), ’double’);
17

18 % coefficient for the movement speed
19 MOVINGSPEED=0.05;
20

21 % for every argument, move towards a better solution
22 % we can only do this sequentially by computing the gradient at

the current
23 % position in respect to one of the arguments, and move that

argument downhill.
24 for i=1:size(pos,1)
25 EGradient=DopGradient DQ(pos,[i 1],doptype);
26 AGradient=DopGradient DQ(pos,[i 2],doptype);
27 % compute the new position. atan is used to prevent too high
28 % gradients from messing up the new position. High gradients

may occur
29 % if the matrix is nearly singular.
30 returnPosition(i,:)=[ pos(i,1)−atan(EGradient)*MOVINGSPEED ...
31 pos(i,2)−atan(AGradient)*MOVINGSPEED ];
32 end
33

34 returnPosition=CorrectPositionMatrix(returnPosition);
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B.9 NeighborState Random

1 function returnPosition = NeighborState Random(pos,stddev)
2 % NEIGHBORSTATE RANDOM return random neighbor state to a

satellite position set
3 %
4 % RETURNPOSITION = NEIGHBORSTATE RANDOM(POS,SIGMA)
5 %
6 % returns a position matrix of the same dimensions as the given
7 % position POS, which is randomly chosen around POS using a
8 % gaussian probability density function.
9 % The parameter SIGMA controls the average distance between

given
10 % position and returned neighbor position. The standard

deviation
11 % is kept independent from elevation and azimuth of the given

positions.
12 %
13 % See also NEIGHBORSTATE GRAD
14

15 returnPosition=zeros(size(pos,1),size(pos,2),’double’);
16

17 % avoid too high stepwidths.
18 % 3 sigma < 45 degrees
19 SIGMABOUND=pi/12;
20 if stddev>SIGMABOUND
21 stddev=SIGMABOUND;
22 end
23

24 % put up the new position
25 for i=1:size(pos,1)
26 % get a random "step vector", rotated into position
27 d=RotateVector( [0; tan(randn*stddev); tan(randn*stddev) ] ,

...
28 −pos(i,1),pos(i,2));
29

30 % [px py pz] is the cartesian (old) position vector
31 [px py pz]=sph2cart(pos(i,2), pos(i,1), 1);
32

33 % add to position (in cartesian coords)
34 newvector cart=[px; py; pz] + d;
35

36 % convert back to spherical coordinates
37 [ A, E, R ] = cart2sph(newvector cart(1), newvector cart(2),

newvector cart(3));
38

39 % we need only elevation and azimuth back from that
40 returnPosition(i,:)=[E A];
41 end
42

43 % Correct again because orientation will shift azimuths
44 % second: orient corrected position



82 B SOURCE CODE

45 % first: correct
46 returnPosition=CorrectPositionMatrix(...
47 OrientPositionMatrix(...
48 CorrectPositionMatrix(returnPosition)));
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B.10 OrientPositionMatrix

1 % ORIENTPOSITIONMATRIX orient a position matrix
2 %
3 % POS=ORIENTPOSITIONMATRIX(POS)
4 % modifies the position matrix such that the first satellite’s

azimuth
5 % is always zero
6

7 % The global variable EASTSAT is the number of the satellite that
is used for

8 % orientation. It may be changed by the function when the old
satellite

9 % walks into the zenith.
10 function pos=OrientPositionMatrix(pos)
11

12 global EASTSAT;
13 % trap external calls, where EASTSAT is not defined as global
14 if isempty(EASTSAT)
15 EASTSAT=1;
16 end
17

18 if EASTSAT>size(pos,1)
19 EASTSAT=1;
20 end
21

22 if EASTSAT>0 % correct only if not zero (used for EDOP/NDOP/...)
23 % if the satellite’s elevation is too high
24 if pos(EASTSAT,1)>deg2rad(75)
25 % calculate the "distance" from the north horizon
26 % the tangens is added to cancel out the highly al
27 eastdistances=abs(mod((pos(:,1)+pi),2*pi) −pi )+0.85*tan(

pos(:,2));
28 % set the nearest satellite to be used for orientation
29 [FOO EASTSAT] = min(eastdistances);
30 %disp([’Changed orientation satellite to No. ’ EASTSAT]);
31 end
32

33 % set the first azimuth to the north
34 pos(:,2)=pos(:,2)−pos(EASTSAT,2);
35 end
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B.11 Plot Comparison GDOP COND

1 function FH = Plot Comparison GDOP COND (varargin)
2 % PLOT COMPARISON GDOP COND plot GDOP and COND for a set of

randomized
3 % sat constellations
4 %
5 % FIGUREHANDLE = PLOT COMPARISON GDOP COND ([ NUMSATS [, NUMSETS]

])
6 %
7 % returns a figure handle to the created plot.
8 %
9 % NUMSATS defines the number of satellites to consider,

optionally.
10 % Defaults to 4.
11 %
12 % NUMSETS defines the number of satellite constellations to

calculate.
13 % It defaults to 500 and can only be defined as second

parameter.
14

15

16 % parameter handling
17 if nargin≥1
18 NumSats=varargin{1};
19 else
20 NumSats=4;
21 end
22

23 if nargin≥2;
24 NumSets=varargin{2};
25 else
26 NumSets=500;
27 end
28

29 MarkerColor=[’b’ ’r’ ’g’ ’m’ ’c’ ...
30 ’b’ ’r’ ’g’ ’m’ ’c’ ...
31 ’b’ ’r’ ’g’ ’m’ ’c’ ...
32 ’b’ ’r’ ’g’ ’m’ ’c’ ...
33 ’b’ ’r’ ’g’ ’m’ ’c’ ...
34 ’b’ ’r’ ’g’ ’m’ ’c’ ...
35 ’b’ ’r’ ’g’ ’m’ ’c’ ...
36 ’b’ ’r’ ’g’ ’m’ ’c’ ...
37 ’b’ ’r’ ’g’ ’m’ ’c’ ];
38 MarkerShape=[’o’ ’x’ ’d’ ’p’ ’h’ ...
39 ’o’ ’x’ ’d’ ’p’ ’h’ ...
40 ’o’ ’x’ ’d’ ’p’ ’h’ ...
41 ’o’ ’x’ ’d’ ’p’ ’h’ ...
42 ’o’ ’x’ ’d’ ’p’ ’h’];
43

44 % allocate the vars first
45 GDOPS=NaN(1,NumSets);
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46 CONDS=NaN(1,NumSets);
47

48 FH=figure;
49 if size(NumSats)==1
50 title([’Plot of matrix condition against GDOP for ’ int2str(

NumSets) ’ sets of ’ int2str(NumSats) ’ random satellite
positions’]);

51 else
52 title([’Plot of matrix condition against GDOP for ’ int2str(

NumSets) ’ sets of random satellite positions’]);
53 end
54 hold on;
55

56 for P=1:length(NumSats )
57

58 % compute NumSets value pairs (GDOP,COND)
59 for SatSet=1:NumSets
60 Pos=RandomSatelliteSetup(NumSats(P));
61 GDOPS(SatSet)=DOP(Pos,’GDOP’);
62 CONDS(SatSet)=DOP(Pos,’COND’);
63 end
64

65 MED GDOPS=median(GDOPS);
66 MED CONDS=median(CONDS);
67

68 %text(MED GDOPS,MED CONDS,[num2str(NumSats(P)) ’ satellites’])
;

69

70 lshandle(P)=plot(GDOPS,CONDS,[MarkerColor(P) MarkerShape(P)]);
71

72 maxxscale(P)=2*fix(median(GDOPS));
73 maxyscale(P)=2*fix(median(CONDS));
74

75 xlabel(’GDOP’);
76 ylabel(’cond (H)’);
77 set(lshandle(P),’DisplayName’,[num2str(NumSats(P)) ’

satellites’]);
78 end
79

80 axis([0 median(maxxscale) 0 median(maxyscale)]);
81 legend(’Location’,’EastOutside’);
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B.12 Plot DOP surf

1 % PLOT DOP SURF create a DOP plot for one free satellite
2 %
3 % FIGHANDLE = PLOT DOP( POS [, DOPTYPE])
4 %
5 % plots a 3−D surface of the value of DOP if the last satellite
6 % in POS is moved around any possible locations. All but the

last
7 % satellite stay fixed at their given spots.
8 %
9 % DOPTYPE may specify any valid computation type and is simply

10 % handed over to DOP.
11 %
12

13 function returnfigurehandle=Plot DOP surf(pos,doptype)
14

15 if nargin==1
16 doptype=’all’;
17 end
18

19 % create a new figure
20 returnfigurehandle=figure;
21

22 title(’inverse DOP plot for one free satellite’)
23

24 % basic plot grid
25 X=−1:0.02:1;
26 Y=−1:0.02:1;
27 if strcmp(lower(doptype),’all’)
28 EDOP=zeros(length(X),length(Y));
29 NDOP=zeros(length(X),length(Y));
30 VDOP=zeros(length(X),length(Y));
31 TDOP=zeros(length(X),length(Y));
32 HDOP=zeros(length(X),length(Y));
33 PDOP=zeros(length(X),length(Y));
34 GDOP=zeros(length(X),length(Y));
35

36 % create six plots and select upper left
37 skyviewhandle=subplot(4,2,1);
38 else
39 Z=zeros(length(X),length(Y));
40

41 % create two subplots, select left one
42 skyviewhandle=subplot(1,2,1);
43

44 end
45 % show the positions of the satellites
46 skyviewhandle=SetupSkyView(skyviewhandle);
47 title(skyviewhandle,’Positions of the fixed satellites’)
48 SkyView(pos(1:end−1,:));
49
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50 % the last satellite is now altered
51

52 for xcount=1:length(X)
53 for ycount=1:length(Y)
54 [TH R]=cart2pol(X(xcount),Y(ycount));
55 % check whether inside the circle
56 if R≤1
57 % substitute satellite
58 pos(end,:)=[(1−R)*pi/2 TH];
59 % calculate cost
60 if strcmp(lower(doptype),’all’)
61 dopval=dop(pos);
62 EDOP(xcount,ycount)=dopval(1);
63 NDOP(xcount,ycount)=dopval(2);
64 VDOP(xcount,ycount)=dopval(3);
65 TDOP(xcount,ycount)=dopval(4);
66 HDOP(xcount,ycount)=dopval(5);
67 PDOP(xcount,ycount)=dopval(6);
68 GDOP(xcount,ycount)=dopval(7);
69 else
70 Z(xcount,ycount)=DOP(pos,doptype);
71 end
72 else
73 if strcmp(lower(doptype),’all’)
74 EDOP(xcount,ycount)=NaN;
75 NDOP(xcount,ycount)=NaN;
76 VDOP(xcount,ycount)=NaN;
77 TDOP(xcount,ycount)=NaN;
78 HDOP(xcount,ycount)=NaN;
79 PDOP(xcount,ycount)=NaN;
80 GDOP(xcount,ycount)=NaN;
81 else
82 Z(xcount,ycount)=NaN;
83 end
84 end
85 end
86 end
87

88 if strcmp(lower(doptype),’all’)
89 % GDOP upper right
90 plothandle=subplot(4,2,2);
91 surf(plothandle,X,Y,GDOP,’FaceColor’,’interp’,’EdgeColor’,’

none’,’FaceLighting’,’phong’);
92 set(plothandle,’ZScale’,’log’);
93 %set(plothandle,’CLim’,[0 20]);
94 %set(plothandle,’CLimMode’,’manual’);
95 title(plothandle,’GDOP for the free satellite’);
96 text(0,1.05,0,’NORTH’);
97 text(1.05,0,0,’EAST’);
98 text(0,−1.05,0,’SOUTH’);
99 text(−1.05,0,0,’WEST’);

100

101

102 % 2nd row left: NDOP
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103 plothandle=subplot(4,2,3);
104 surf(plothandle,X,Y,NDOP,’FaceColor’,’interp’,’EdgeColor’,’

none’,’FaceLighting’,’phong’);
105 set(plothandle,’ZScale’,’log’);
106 %set(plothandle,’CLim’,[0 20]);
107 %set(plothandle,’CLimMode’,’manual’);
108 title(plothandle,’NDOP for the free satellite’);
109 text(0,1.05,0,’NORTH’);
110 text(1.05,0,0,’EAST’);
111 text(0,−1.05,0,’SOUTH’);
112 text(−1.05,0,0,’WEST’);
113

114 % 2nd row, right: EDOP
115 plothandle=subplot(4,2,4);
116 surf(plothandle,X,Y,EDOP,’FaceColor’,’interp’,’EdgeColor’,’

none’,’FaceLighting’,’phong’);
117 set(plothandle,’ZScale’,’log’);
118 %set(plothandle,’CLim’,[0 20]);
119 %set(plothandle,’CLimMode’,’manual’);
120 title(plothandle,’EDOP for the free satellite’);
121 text(0,1.05,0,’NORTH’);
122 text(1.05,0,0,’EAST’);
123 text(0,−1.05,0,’SOUTH’);
124 text(−1.05,0,0,’WEST’);
125

126

127 % 3rd row left: HDOP
128 plothandle=subplot(4,2,5);
129 surf(plothandle,X,Y,HDOP,’FaceColor’,’interp’,’EdgeColor’,’

none’,’FaceLighting’,’phong’);
130 set(plothandle,’ZScale’,’log’);
131 %set(plothandle,’CLim’,[0 20]);
132 %set(plothandle,’CLimMode’,’manual’);
133 title(plothandle,’HDOP for the free satellite’);
134 text(0,1.05,0,’NORTH’);
135 text(1.05,0,0,’EAST’);
136 text(0,−1.05,0,’SOUTH’);
137 text(−1.05,0,0,’WEST’);
138

139 % 3nd row, right: PDOP
140 plothandle=subplot(4,2,6);
141 surf(plothandle,X,Y,PDOP,’FaceColor’,’interp’,’EdgeColor’,’

none’,’FaceLighting’,’phong’);
142 set(plothandle,’ZScale’,’log’);
143 %set(plothandle,’CLim’,[0 20]);
144 %set(plothandle,’CLimMode’,’manual’);
145 title(plothandle,’PDOP for the free satellite’);
146 text(0,1.05,0,’NORTH’);
147 text(1.05,0,0,’EAST’);
148 text(0,−1.05,0,’SOUTH’);
149 text(−1.05,0,0,’WEST’);
150

151

152 % 4th row left: VDOP
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153 plothandle=subplot(4,2,7);
154 surf(plothandle,X,Y,VDOP,’FaceColor’,’interp’,’EdgeColor’,’

none’,’FaceLighting’,’phong’);
155 set(plothandle,’ZScale’,’log’);
156 %set(plothandle,’CLim’,[0 20]);
157 %set(plothandle,’CLimMode’,’manual’);
158 title(plothandle,’VDOP for the free satellite’);
159 text(0,1.05,0,’NORTH’);
160 text(1.05,0,0,’EAST’);
161 text(0,−1.05,0,’SOUTH’);
162 text(−1.05,0,0,’WEST’);
163

164 % 4th row right: TDOP
165 plothandle=subplot(4,2,8);
166 surf(plothandle,X,Y,TDOP,’FaceColor’,’interp’,’EdgeColor’,’

none’,’FaceLighting’,’phong’);
167 set(plothandle,’ZScale’,’log’);
168 %set(plothandle,’CLim’,[0 20]);
169 %set(plothandle,’CLimMode’,’manual’);
170 title(plothandle,’TDOP for the free satellite’);
171 text(0,1.05,0,’NORTH’);
172 text(1.05,0,0,’EAST’);
173 text(0,−1.05,0,’SOUTH’);
174 text(−1.05,0,0,’WEST’);
175

176

177

178 else % only one plot
179 % select right subplot
180 plothandle=subplot(1,2,2);
181 %contour(plothandle,X,Y,Z,50);
182 surf(plothandle,X,Y,1./Z,’FaceColor’,’interp’,’EdgeColor’,’

none’,’FaceLighting’,’phong’);
183 %set(plothandle,’ZLim’,[0 20]);
184 %set(plothandle,’ZLimMode’,’manual’);
185 %set(plothandle,’ZScale’,’log’);
186 %set(plothandle,’CLim’,[0 20]);
187 %set(plothandle,’CLimMode’,’manual’);
188 plottitle=[’\textsf{ 1

’ upper(doptype) ’
for the free satellite}’ ];

189 titlehandle=title(plothandle,plottitle);
190 set(titlehandle,’Interpreter’,’latex’);
191 text(0,1.05,0,’NORTH’);
192 text(1.05,0,0,’EAST’);
193 text(0,−1.05,0,’SOUTH’);
194 text(−1.05,0,0,’WEST’);
195 end
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B.13 Plot EquiDistZeroElevation

1 % PLOT EQUIDISTZEROELEVATION plots the DOPs for equidistantly
spaced

2 % satellites on the horizon, for different numbers of
satellites.

3 %
4 % FigureHandle=Plot EquiDistZeroElevation(lowbound,hibound,doptype

)
5 %
6 % lowbound
7 % is the number of satellites to start with
8 % hibound
9 % is the maximum number of satellites

10 % doptype
11 % is handed over to the DOP() function. If it is set to ’all

’,
12 % all DOPs are plotted
13

14 function FigureHandle=Plot EquiDistZeroElevation(lowbound,hibound,
doptype)

15 if nargin6=3
16 disp(’ERROR: Wrong number of arguments! See help’);
17 return;
18 end
19 % compute the DOP values
20 for SatNumber=lowbound:hibound
21 pos=EquidistantSetup(SatNumber);
22 dops(SatNumber,:)=DOP(pos,doptype)’;
23 end
24

25 for SatNumber=1:lowbound−1
26 if lower(doptype)==’all’
27 dops(SatNumber,:)=[ NaN NaN NaN NaN NaN NaN NaN ];
28 else
29 dops(SatNumber)=NaN;
30 end
31 end
32

33 % plot the figure
34 FigureHandle=figure;
35 if lower(doptype)==’all’
36 plot(dops);
37 title(’DOP for k satellites (1 at zenith / (k−1) at horizon)’)

;
38 xlabel(’k’);
39 ylabel(’DOP’);
40 %legend(’EDOP’,’NDOP’,’VDOP’,’TDOP’,’HDOP’,’PDOP’,’GDOP’, ...
41 % ’Location’,’NORTHEAST’);
42 DOPTYPES={’EDOP’ ’ / NDOP’ ’VDOP’ ’TDOP’ ’HDOP’ ’PDOP

’ ’GDOP’};
43 for i=1:7
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44 dops(5,i)
45 DOPTYPES{i}
46 text(5,dops(5,i)+0.03,DOPTYPES{i})
47 end
48 grid ON;
49 axis( [ 0 hibound 0 ceil(max(max(dops)))] );
50 else
51 plot(dops);
52 title({doptype,’ for k satellites (zenith/horizon)’});
53 xlabel(’k’);
54 ylabel(upper(doptype));
55 axis([lowbound hibound 0 ceil(max(dops))]);
56 grid ON;
57 end
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B.14 Plot EquiElev HDOP SGMH

1 function fighandle = PLOT EQUIELEV DOP WSGM(num sats,doptype,
sigmatype,varargin)

2 % PLOT EQUIELEV DOP WSGM plot the DOP and the corresponding
weighted

3 % sigma
4 % FIGHANDLE = PLOT EQUIELEV DOP WSGM( NUM SATS, DOPTYPE, SIGMATYPE

[, SCOPE] )
5 %
6 % plot the DOP and the corresponding weighted \sigma for

equidistant
7 % setups with k−1 satellites elevated increasingly, while sat k is

at zenith
8 % if SCOPE = [MIN MAX] is given, it defines the plot’s X axis

minimum
9 % and maximum. Else, the plot goes from 1 degree to 90

degrees.
10

11 if nargin≥4
12 bounds=varargin{1}
13 XSTART=bounds(1);
14 XSTOP=bounds(2);
15 else
16 XSTART=pi/180;
17 XSTOP=pi/2−pi/180;
18 end
19

20 granlty=pi/180; % 1 degree
21 i=0;
22

23 % skip 0 and 90 degrees (singular matrix)
24 for elevation=XSTART:granlty:XSTOP
25 i=i+1;
26 pos=EquidistantSetup(num sats,elevation);;
27 dops(:,i)=[ elevation; ...
28 DOP(pos,doptype); ...
29 DOP(pos,sigmatype) ];
30 end
31

32 % plot the result
33 fighandle=figure;
34 plot(rad2deg(dops(1,:)),dops(2,:),’b’,rad2deg(dops(1,:)),dops(3,:)

,’r’);
35 grid on
36 legend(upper(doptype),upper(sigmatype),’Location’,’North’);
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B.15 Plot Weighting Function

1 function [FH WEIGHTINGFACTORS] = PLOT WEIGHTING FUNCTION
2 % PLOT WEIGHING FUNCTION Plot the weighing function
3

4 WEIGHTINGFACTORS=zeros(2,90);
5

6 % reference to normalize the variances to DOP (make comparable)
7 %Ref SSQ=Weighted SigmaSq(pi/2);
8 Ref SSQ=1;
9

10 i=0;
11 for E=pi/180:pi/180:pi/2
12 i=i+1;
13 WEIGHTINGFACTORS(:,i)=[E; sqrt(Weighted SigmaSQ(E)/Ref SSQ) ];
14 end
15

16 FH=figure;
17 plot(rad2deg(WEIGHTINGFACTORS(1,:)),WEIGHTINGFACTORS(2,:));
18 axis([0 90 0 5]);
19 grid on;
20 xlabel(’Elevation E (deg)’)
21 ylabel(’\sigmaˆ2 {UERE} (m)’)
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B.16 rad2deg

1 function deg=rad2deg(rad)
2

3 deg=rad*180/pi;

B.17 RandomSatStep

1 function returnPosition = RandomSatStep(pos,stddev)
2 % RANDOMSATSTEP return random neighbor state to a single satellite

position
3 %
4 % RETURNPOSITION = RANDOMSATSTEP(POS,SIGMA)
5 %
6 % returns a position vector describing a satellite LOS
7 % which is randomly chosen around POS using a gaussian

probability
8 % density function.
9 % The parameter SIGMA controls the average distance between

given
10 % position and returned neighbor position. The standard

deviation
11 % is kept independent from elevation and azimuth of the given

positions.
12 % SIGMA is to be kept below pi/12 to avoid too high values
13 %
14 % In contrast to NEIGHBORSTATE RANDOM, this function only steps

a single
15 % satellite, and not a whole set. Thus, the input POS should

be of size (1x2).
16 %
17 % See also NEIGHBORSTATE RANDOM
18

19 % 3 sigma < 45 degrees
20 SIGMABOUND=pi/12;
21 if stddev>SIGMABOUND
22 stddev=SIGMABOUND;
23 end
24

25 % get a random "step vector", rotated into position
26 d=RotateVector( [0; tan(randn*stddev); tan(randn*stddev) ] ,...
27 −pos(1,1),pos(1,2));
28

29 % [px py pz] is the cartesian (old) position vector
30 [px py pz]=sph2cart(pos(1,2), pos(1,1), 1);
31

32 % add to position (in cartesian coords)
33 newvector cart=[px; py; pz] + d;
34

35 % convert back to spherical coordinates
36 [ A, E, R ] = cart2sph(newvector cart(1), newvector cart(2),
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newvector cart(3));
37

38 % we need only elevation and azimuth
39 % position is corrected before returned (bounds, flipovers)
40 returnPosition=CorrectPositionMatrix( [E A] );
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B.18 RandomSatelliteSetup

1 % RANDOMSATLELITESETUP returns a position vector with (valid)
random values.

2 % MYPOS = RANDOMSATELLITESETUP(NUMBEROFSATELLITES)
3

4 function positions = RandomSatelliteSetup(number)
5 randmat=rand(number,2);
6 % catch 1.000 values in the random numbers
7 while max(max(randmat))==1
8 randmat=rand(number,2);
9 end

10

11 % sort order: Elevation, Azimuth
12 positions=sortrows([ asin(randmat(:,1)) randmat(:,2)*2*pi ],[1

2]);
13

14 % orient the returned matrix to the north
15 positions=OrientPositionMatrix(positions);
16

17 % perform correction (azimuths will be shifted after orientation)
18 positions=CorrectPositionMatrix(positions);
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B.19 RotateVector

1 % ROTATEVECTOR rotate a 3 dimensional vector by elevation and
azimuth

2 %
3 % [ XN; YN; ZN ] = ROTATEVECTOR([X; Y; Z], E, A)
4 %
5 % where X, Y, Z gives the cartesian coordinates of the vector to

be
6 % translated.
7 % E is the elevation of the rotation
8 % A is the azimuth of the rotation
9

10 function vector=RotateVector(vector,e,a)
11 R=[ cos(a)*cos(e) −sin(a) cos(a)*sin(e) ;...
12 sin(a)*cos(e), cos(a) sin(a)*sin(e) ;...
13 −sin(e) 0 cos(e) ];
14 vector=R*vector;
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B.20 SetupSkyView

1 function figureHandle = SetupSkyView(varargin)
2 % SETUPSKYVIEW Setup Skyview figure.
3 % SETUPSKYVIEW([FIGHANDLE]) plots a Skyview
4 % diagram for the display of satellites’ positions as seen
5 % from the user.
6 % The circular diagram shows the zenith in the middle, and
7 % the horizon as seen from the user’s position at the circle
8 % edges.
9 % It returns a handle to the figure created, which must be

handed
10 % over to SkyView() when plotting data.
11 %
12 % An optional handle to an existing figure may be provided

in
13 % FIGHANDLE. Otherwise, a new figure is created.
14 %
15 % See also SKYVIEW
16 error(nargchk(0,1,nargin,’struct’))
17 % figure handle provided?
18 if nargin==0
19 % create a new figure and set some defaults
20 figureHandle=figure;
21 ScreenSize=get(0,’ScreenSize’);
22 posx=ScreenSize(3)/2−200;
23 posy=ScreenSize(4)−420;
24 %set(figureHandle,’Name’,’Skyview’);
25 set(figureHandle,’Position’,[ posx posy 400 400 ]);
26 set(figureHandle,’ToolBar’,’none’);
27 else
28 figureHandle=cell2mat(varargin(1));
29 end
30 % draw the circles
31 horizon=0:pi/180:2*pi;
32 horX=cos(horizon);
33 horY=sin(horizon);
34 % horizon line
35 plot(horX,horY,’k’);
36 axis image off;
37 hold on;
38 % 60 degree line
39 plot(horX/3,horY/3,’:k’);
40 % 30 degree line
41 plot(2*horX/3,2*horY/3,’:k’);
42 for diagonals=0:pi/6:pi−pi/6
43 plot( [cos(diagonals) −cos(diagonals)], ...
44 [sin(diagonals) −sin(diagonals)], ’:k’);
45 % text( cos(diagonals)*1.05, sin(diagonals)*1.1, ...
46 % num2str(rad2deg(diagonals)));
47 % text( −cos(diagonals)*1.05−0.1, −sin(diagonals)*1.1, ...
48 % num2str(rad2deg(diagonals+pi)));
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49 end
50 texthandle=text( 1.1, 0, ’E’);
51 set(texthandle,’HorizontalAlignment’,’center’);
52 texthandle=text( 0, 1.1, ’N’);
53 set(texthandle,’HorizontalAlignment’,’center’);
54 texthandle=text(−1.1, 0, ’W’);
55 set(texthandle,’HorizontalAlignment’,’center’);
56 texthandle=text( 0, −1.1,’S’);
57 set(texthandle,’HorizontalAlignment’,’center’);
58

59 % corners to avoid wrong scaling for prints
60

61 %plot(1.1,1.1);
62 %plot(−1.1,−1.1);
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B.21 SimAnn

1 function [PosTrack CostTrack returnpos returndop SimSteps
SimDuration] = SimAnn

2 % SIMANN Simulation to determine optimal GNSS satellite
configurations

3 %
4 % [ POSTRACK COSTTRACK BESTPOS BESTCOST SIMSTEPS SIMDURATION ] =

SIMANN()
5 %
6 % If NUM SATS is omitted, the simulation is run with 4

satellites.
7 %
8 % The simulation returns the cost track, the best obtained

position and the
9 % corresponding cost function’s value.

10 %
11 % POSTRACK is a 3−D matrix of size (NUM SATS,2,SIMTIME+1)

containing
12 % all the positions.
13 %
14 % COSTTRACK is a (1,SIMTIME+1) sized row vector, containing all

the
15 % simulation costs consecutively.
16 %
17 % BESTPOS contains the position matrix of the best value

found.
18 % BESTCOST contains the corresponding cost.
19 % SIMSTEPS contains the number of simulation steps executed.
20 % SIMDURATION contains the time it took.
21 %
22 %
23 % GLOBAL CONFIG OPTIONS
24 %
25 % The behavior of SimAnn can be fine tuned by setting global

variables
26 % prior to invoking SIMANN().
27 %
28 % List of global configuration options
29 %
30 % SIMANN ALGO CHAR ARRAY
31 % Algorithm to be used. Can be ’SIMANN’ or ’NOISYDOWNHILL’.
32 % Defaults to ’SIMANN’.
33 %
34 % SIMANN COSTF
35 % Cost function. Possible values are:
36 % EDOP East DOP
37 % NDOP North DOP
38 % VDOP Vertical DOP
39 % TDOP Time DOP
40 % HDOP Horizonal DOP
41 % PDOP Position DOP
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42 % GDOP Geometry (Global) DOP
43 % SGME East Weighted Position Solution Error
44 % SGMN North Weighted Position Solution Error
45 % SGMV Vertical Weighted Position Solution Error
46 % SGMT Time Weighted Position Solution Error
47 % SGMH Horizonal Weighted Position Solution Error
48 % SGMP Position Weighted Position Solution Error
49 % SGMG Geometry Weighted Position Solution Error
50 % Defaults to GDOP.
51 %
52 % SIMANN DURATION
53 % Maximum simulation time, if not finished before. Defaults
54 % to 10000.
55 %
56 % SIMANN LIVEUPDATES
57 % Controls updates of the plots. ’FULL’ updates every

simulation
58 % step, ’SEMI’ updates every 50th step. ’ONCE’ plots only

after
59 % finishing. ’NONE’ does not output anything graphical at

all and is
60 % intended for use in batched environments. Defaults to ’

SEMI’.
61 %
62 % SIMANN NUMSAT
63 % Number of satellites to simulate. Defaults to 4 and is

ignored
64 % if SIMANN POS is set.
65 %
66 % SIMANN POS
67 % Position matrix of satellites. If not set, a random setup

is
68 % created. If set, SIMANN NUMSAT is ignored. Format of the

matrix:
69 % SIMANN POS =
70 % EL1 AZ1
71 % EL2 AZ2
72 % .. ..
73 % ELk AZk
74 %
75 % SIMANN STEPWIDTH
76 % Average stepwidth for random satellite steps. The random

step is
77 % implemented as a 2−D gaussian normal distribution,

SIMANN STEPWIDTH
78 % defines the standard deviation. Defaults to pi/60.
79 %
80 % SIMANN STUCKLIMIT
81 % Maximum number of consectutive steps without a state

change to
82 % allow, before simulation is ended. Note that for algo
83 % ’NOISYDOWNHILL’, this option has no effect, since it does

not
84 % decide upon accepting a new state or not.
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85 % Defaults to 500.
86 %
87 % SIMANN TEMPSCHED
88 % Temperature schedule parameters. Data structure with

fields
89 % Type: ’LIN’ or ’EXP’, default: ’EXP’. Shape of

the
90 % temperature curve. EXP is recommended.
91 % InitTemp: Initial temperature, defaults to 10.
92 % HoldingTime: How long to keep the initial temperature,

before
93 % starting to lower it. Default: 400
94 % DecaySpeed: Speed factor for the temperature decay.

Defaults to
95 % 0.005.
96 %
97 % If a global option is set, but empty, or if the value does not

make
98 % sense or is of the wrong type, SIMANN will silently ignore it

and use
99 % the default. Any successfully read config option will be

prompted to
100 % the console.
101 %
102 % Default values can be loaded from the MAT file
103 % CONFIG OPTS DEFAULT, while a set of empty globals can be

loaded from
104 % CONFIG OPTS EMPTY.
105 %
106

107 % ============== GLOBAL CONFIG OPTIONS ==============
108 % − these options can be set by defining the particular

globals in the
109 % workspace before invoking SimAnn
110

111 % COST FUNCTION
112 global SIMANN COSTF;
113 if ¬isempty(SIMANN COSTF)
114 CostF=SIMANN COSTF;
115 else
116 CostF=’GDOP’;
117 end
118 clear SIMANN COSTF;
119

120 % number of the satellite used for orientation
121 % must be defined before parsing global opts
122 global EASTSAT;
123 if strcmp(upper(CostF),’EDOP’) | ...
124 strcmp(upper(CostF),’NDOP’) | ...
125 strcmp(upper(CostF),’SGME’) | ...
126 strcmp(upper(CostF),’SGMN’) % | ...
127 %strcmp(upper(CostF),’VDOP’) | ...
128 %strcmp(upper(CostF),’SGMV’)
129 EASTSAT=0; % do not orient the matrix since it disturbs
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130 % the simulation here!
131 else
132 EASTSAT=1;
133 end
134

135 % POSITION AND NUMBER OF SATS
136 global SIMANN POS;
137 if ¬isempty(SIMANN POS) % SIMANN POS set?
138 Pos=SIMANN POS
139 NumSat=size(SIMANN POS,1);
140 else
141 global SIMANN NUMSAT;
142 if ¬isempty(SIMANN NUMSAT) % SIMANN NUMSAT set?
143 NumSat=SIMANN NUMSAT;
144 else
145 NumSat=4;
146 end
147 clear SIMANN NUMSAT;
148 % set up the satellites randomly
149 Pos=RandomSatelliteSetup(NumSat);
150 end
151 clear SIMANN POS;
152

153 % STEPWIDTH FOR RANDOM STEPS
154 global SIMANN STEPWIDTH;
155 if ¬isempty(SIMANN STEPWIDTH)
156 stddev=SIMANN STEPWIDTH
157 else
158 stddev=pi/60;
159 end
160 clear SIMANN STEPWIDTH;
161

162 % SIMULATION ALGORITHM
163 global SIMANN ALGO;
164 if ¬isempty(SIMANN ALGO)
165 if strcmp(upper(SIMANN ALGO),’NOISYDOWNHILL’)
166 SimCycleHandle=@SimCycle NoisyDownhill;
167 SimType=’noisy’;
168 else
169 SimCycleHandle=@SimCycle SimAnn;
170 SimType=’simann’;
171 end
172 else
173 SimCycleHandle=@SimCycle SimAnn;
174 SimType=’simann’;
175 end
176 clear SIMANN ALGO;
177

178 % SIMULATION DURATION
179 global SIMANN DURATION;
180 if ¬isempty(SIMANN DURATION)
181 StopTime=SIMANN DURATION
182 else
183 StopTime=10000;
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184 end
185 clear SIMANN DURATION;
186

187 % TEMPERATURE SCHEDULE
188 global SIMANN TEMPSCHED;
189 % check for correct data structure
190 if ¬isempty(SIMANN TEMPSCHED) & ...
191 isstruct(SIMANN TEMPSCHED)
192 if isfield(SIMANN TEMPSCHED,’Type’) & ¬isempty(

SIMANN TEMPSCHED.Type)
193 if strcmp(upper(SIMANN TEMPSCHED.Type),’LIN’)
194 ScheduleType=’lin’
195 else
196 ScheduleType=’exp’
197 end
198 else
199 ScheduleType=’exp’; % if field is missing, set silently
200 end
201 if isfield(SIMANN TEMPSCHED,’InitTemp’) & ¬isempty(

SIMANN TEMPSCHED.InitTemp)
202 ScheduleInitTemp=SIMANN TEMPSCHED.InitTemp
203 else
204 ScheduleInitTemp=10;
205 end
206 if isfield(SIMANN TEMPSCHED,’HoldingTime’) & ¬isempty(

SIMANN TEMPSCHED.HoldingTime)
207 ScheduleHoldingTime=SIMANN TEMPSCHED.HoldingTime
208 else
209 ScheduleHoldingTime=400;
210 end
211 if isfield(SIMANN TEMPSCHED,’DecaySpeed’) & ¬isempty(

SIMANN TEMPSCHED.DecaySpeed)
212 ScheduleDecaySpeed=SIMANN TEMPSCHED.DecaySpeed
213 else
214 ScheduleDecaySpeed=0.005;
215 end
216 else
217 % default values
218 ScheduleType=’exp’;
219 ScheduleInitTemp=10;
220 ScheduleHoldingTime=400;
221 ScheduleDecaySpeed=0.005;
222 end
223 clear SIMANN TEMPSCHED;
224

225 % LIMIT OF CONSECUTIVE NON CHANGING STATES TO ABORT SIMULATION
226 global SIMANN STUCKLIMIT
227 if ¬isempty(SIMANN STUCKLIMIT)
228 StuckLimit=SIMANN STUCKLIMIT
229 else
230 StuckLimit=500;
231 end
232

233 % LIVE UPDATING OF PLOTS
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234 global SIMANN LIVEUPDATES
235 if ¬isempty(SIMANN LIVEUPDATES)
236 if strcmp(upper(SIMANN LIVEUPDATES),’FULL’)
237 LiveUpdate=true;
238 SemiLiveUpdate=false;
239 NoGUI=false;
240 elseif strcmp(upper(SIMANN LIVEUPDATES),’SEMI’)
241 LiveUpdate=false;
242 SemiLiveUpdate=true;
243 NoGUI=false;
244 elseif strcmp(upper(SIMANN LIVEUPDATES),’ONCE’)
245 LiveUpdate=false;
246 SemiLiveUpdate=false;
247 NoGUI=false;
248 elseif strcmp(upper(SIMANN LIVEUPDATES),’NONE’)
249 LiveUpdate=false;
250 SemiLiveUpdate=false;
251 NoGUI=true;
252 else
253 LiveUpdate=false;
254 SemiLiveUpdate=true;
255 NoGUI=false;
256 end
257 else
258 SemiLiveUpdate=true;
259 LiveUpdate=false;
260 NoGUI=false;
261 end
262

263 % END OF GLOBAL CONFIG OPTS
264

265 MarkerColor=[’b’ ’r’ ’g’ ’m’ ’c’ ...
266 ’b’ ’r’ ’g’ ’m’ ’c’ ...
267 ’b’ ’r’ ’g’ ’m’ ’c’ ...
268 ’b’ ’r’ ’g’ ’m’ ’c’ ...
269 ’b’ ’r’ ’g’ ’m’ ’c’ ...
270 ’b’ ’r’ ’g’ ’m’ ’c’ ...
271 ’b’ ’r’ ’g’ ’m’ ’c’ ...
272 ’b’ ’r’ ’g’ ’m’ ’c’ ...
273 ’b’ ’r’ ’g’ ’m’ ’c’ ];
274

275 % configure the lower limit for elevation here (in radians)
276 global ELEV LOWLIMIT;
277 if isempty(strfind(upper(CostF),’SGM’)) % => DOP
278 ELEV LOWLIMIT=0; % 0 degrees
279 else % => SIGMA
280 ELEV LOWLIMIT=pi/180; % 1 degree to avoid zero−weighted sats
281 end
282

283 Tvec=TempSchedule(ScheduleType,ScheduleInitTemp,...
284 ScheduleHoldingTime,ScheduleDecaySpeed,StopTime);
285

286 LastDOP=DOP(Pos,CostF);
287
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288 SimTime=0;
289

290 BestPos=Pos;
291

292 BestLevel=LastDOP;
293

294 BestLevelTime=SimTime;
295

296 % contains the costs for the whole simulation (upper row time,
lower row

297 % cost)
298 CostTrack=[LastDOP NaN(1,StopTime)];
299

300 % saves all the position matrices
301 % this is a 3−dimensional array where the 3rd dim is simulation
302 % time, while the first two are the same than in Pos
303 PosTrack=NaN(size(Pos,1),size(Pos,2),StopTime+1);
304 PosTrack(:,:,1)=rad2deg(Pos);
305

306 % true when simulating, false when not.
307 SimState=true;
308 userexit=false;
309

310 % stuck counter to be incremented for every no−change
311 StuckCounter=0;
312

313 % print some information to the console
314 disp([’Starting ’ upper(SimType) ’ Simulation with cost function ’

CostF ...
315 ’ and ’ int2str(NumSat) ’ satellites’])
316

317 % INITIALIZATION OF PLOTS
318 if ¬NoGUI
319 % initialize panel
320 fh=figure;
321 if strcmp(SimType,’simann’)
322 set(fh,’Name’,[’Simulated Annealing with ’ num2str(size(

Pos,1)) ’ satellites’]);
323 else
324 set(fh,’Name’,[’Noisy Downhill Simulation with ’ num2str(

size(Pos,1)) ’ satellites’]);
325 end
326 % set the figure size to something reasonable
327 winsz=get(0,’ScreenSize’);
328 winsz=fix([0.1.*winsz(:,3:4) 0.8.*winsz(:,3:4)]);
329 set(fh,’Position’,winsz);
330

331 % set up the cost plot
332 CostTrackHandle=subplot(NumSat+1,2,1);
333 CostTrackLSOHandle=plot(CostTrack);
334 title([’Cost function ’ upper(CostF)]);
335 axis([0 100 0 20]);
336 grid on;
337 % prepare plot updates
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338 set(CostTrackLSOHandle,’YDataSource’,’CostTrack’);
339

340 % set up temperature plot
341 TempTrackHandle=subplot(NumSat+1,2,2);
342 TempTrackLSOHandle=plot(Tvec);
343 title(’Simulation temperature schedule’);
344 grid on;
345

346 % plot the satellites’ paths
347 for sat=1:size(Pos,1)
348 ElevationPath=squeeze(PosTrack(sat,1,:));
349 AzimuthPath=squeeze(PosTrack(sat,2,:));
350

351 % plot the satellites elevation plot and set some
preferences

352 PosTrackHandle(sat,1)=subplot(NumSat+1,2,2*sat+1);
353 PosTrackLSOHandle(sat,1)=plot(squeeze(PosTrack(sat,1,:)),

MarkerColor(sat));
354 set(PosTrackLSOHandle(sat,1),’YDataSource’,’ElevationPath’

);
355 title([’Elevation path of satellite ’,num2str(sat)]);
356 axis([0 100 0 90]);
357 grid on;
358

359 % plot the satellites azimuth plot and set some
preferences

360 PosTrackHandle(sat,2)=subplot(NumSat+1,2,2*sat+2);
361 PosTrackLSOHandle(sat,2)=plot(squeeze(PosTrack(sat,2,:)),

MarkerColor(sat));
362 set(PosTrackLSOHandle(sat,2),’YDataSource’,’AzimuthPath’);
363 title([’Azimuth path of satellite ’,num2str(sat)]);
364 axis([0 100 0 360]);
365 grid on;
366 end
367

368 % initialize skyview
369 SkyViewHandle=figure;
370 SetupSkyView(SkyViewHandle);
371 set(SkyViewHandle,’Name’,’SkyView’);
372 axh=SkyView(Pos);
373

374 end
375

376 tic;
377 % main loop:
378 while userexit==false
379

380 if SimState
381 % perform simulation cycle
382 [Pos LastDOP poschange]=SimCycleHandle(Pos,LastDOP,CostF,

Tvec(SimTime+1));
383

384 % save the values
385 CostTrack(SimTime+1)=LastDOP;
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386 PosTrack(:,:,SimTime+1)=rad2deg(Pos);
387

388 % only execute if the satellite positions have changed
389 if poschange==true
390 % update graphical output
391 if ¬NoGUI
392 SkyView(Pos,axh);
393 if LiveUpdate
394 for sat=1:size(Pos,1)
395 ElevationPath=squeeze(PosTrack(sat,1,:));
396 AzimuthPath=squeeze(PosTrack(sat,2,:));
397

398 refreshdata(PosTrackLSOHandle(sat,1),’
caller’);

399 refreshdata(PosTrackLSOHandle(sat,2),’
caller’);

400 % grey out azimuth if satellite in zenith
401 if Pos(sat,1)>1.56
402 get(PosTrackHandle(sat,2),’Type’);
403 set(PosTrackHandle(sat,2),’Color’,[0.8

0.8 0.8]);
404 else
405 set(PosTrackHandle(sat,2),’Color’,’w’)

;
406 end
407 end
408 refreshdata(CostTrackLSOHandle,’caller’);
409 end
410 drawnow;
411 end
412

413 % reset the StuckCounter
414 StuckCounter=0;
415 if LastDOP<BestLevel
416 BestLevel=LastDOP;
417 BestLevelTime=SimTime;
418 BestPos=Pos;
419 end
420 else
421 % StuckCounter counts how many simulation cycles the

position
422 % did not change any more. If the value hits a limit,

the
423 % simulation is stopped.
424 StuckCounter=StuckCounter+1;
425 end
426

427 % update simulation time
428 SimTime=SimTime+1;
429

430 % some output every 50 cycles
431 if mod(SimTime,50)==0
432 %disp([ ’Simulation Time: ’ num2str(SimTime) ])

;
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433 %disp([ ’Simulation Temperature: ’ num2str(Tvec(
SimTime+1))]);

434 %disp([ ’Best DOP value: ’ num2str(BestLevel)
]);

435 %disp(’ ’); % dirty hack for a CR/LF..
436

437 % semi−live data plotting
438 if ¬NoGUI
439 if SemiLiveUpdate
440 for sat=1:size(Pos,1)
441 ElevationPath=squeeze(PosTrack(sat,1,:));
442 AzimuthPath=squeeze(PosTrack(sat,2,:));
443

444 refreshdata(PosTrackLSOHandle(sat,1),’
caller’);

445 refreshdata(PosTrackLSOHandle(sat,2),’
caller’);

446 end
447

448 refreshdata(CostTrackLSOHandle,’caller’);
449 end
450

451 % update of axis scaling
452 if (LiveUpdate | | SemiLiveUpdate)
453 %TimeScale=2ˆceil(log2(SimTime*1.1))
454 TimeScale=SimTime+50;
455

456 axis(CostTrackHandle,[TimeScale−400 TimeScale
0 20]);

457 axis(TempTrackHandle,[TimeScale−400 TimeScale
0 20]);

458 for sat=1:NumSat
459 axis(PosTrackHandle(sat,1),[TimeScale−400

TimeScale 0 90]);
460 axis(PosTrackHandle(sat,2),[TimeScale−400

TimeScale 0 360]);
461 % grey out azimuth if satellite in zenith
462 if Pos(sat,1)>1.56
463 get(PosTrackHandle(sat,2),’Type’);
464 set(PosTrackHandle(sat,2),’Color’,[0.8

0.8 0.8]);
465 else
466 set(PosTrackHandle(sat,2),’Color’,’w’)

;
467 end
468 end
469 drawnow;
470 end
471 end
472

473 if LastDOP<BestLevel
474 BestLevel=LastDOP;
475 BestLevelTime=SimTime;
476 BestPos=Pos;
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477 % reset the StuckCounter
478 StuckCounter=0;
479 end
480 end
481

482 % interrupt conditions
483 if (SimTime≥StopTime) | | (StuckCounter≥StuckLimit)
484 % cut off the last STUCKCOUNTER simulations if

simulation was
485 % stopped due to this limitation
486 if StuckCounter≥StuckLimit
487 disp([’Simulation did not change states for ’ ...
488 num2str(StuckLimit) ’ consecutive steps!’

]);
489 disp(’Ending simulation and removing the trailing

non−changing steps.’);
490 EffectiveTrackSize=SimTime−StuckLimit+1;
491 CostTrack=CostTrack(1:EffectiveTrackSize);
492 PosTrack=PosTrack(:,:,1:EffectiveTrackSize);
493 SimTime=SimTime−StuckLimit;
494 end;
495 if ¬NoGUI
496 % update the axis scaling once more and draw the

plots
497 TimeScale=SimTime;
498

499 axis(CostTrackHandle,[0 TimeScale 0 20]);
500 axis(TempTrackHandle,[0 TimeScale 0 20]);
501 for sat=1:NumSat
502 axis(PosTrackHandle(sat,1),[0 TimeScale 0 90])

;
503 axis(PosTrackHandle(sat,2),[0 TimeScale 0

360]);
504 ElevationPath=squeeze(PosTrack(sat,1,:));
505 AzimuthPath=squeeze(PosTrack(sat,2,:));
506 refreshdata(PosTrackLSOHandle(sat,1),’caller’)

;
507 refreshdata(PosTrackLSOHandle(sat,2),’caller’)

;
508

509 % grey out azimuth if satellite in zenith
510 if Pos(sat,1)>1.56
511 set(PosTrackHandle(sat,2),’Color’,[0.8 0.8

0.8]);
512 else
513 set(PosTrackHandle(sat,2),’Color’,’w’);
514 end
515 end
516 refreshdata(CostTrackLSOHandle,’caller’);
517 drawnow;
518 end
519

520 SimState=false;
521 SimDuration=toc;
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522 disp([’Simulation finished in ’ num2str(SimDuration) ’
seconds!’])

523 disp(’Simulation time limit reached’)
524 SimSteps=SimTime;
525

526 returnpos=BestPos;
527 returndop=BestLevel;
528 userexit=true;
529 end
530 end
531 end
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B.22 SimAnn Transition

1 % SIMANN TRANSITION decide upon transition to new state
2 %
3 % RESULT=SIMANN TRANSITION(E,EN,T)
4 %
5 % returns FALSE or TRUE in RESULT, depending on the old energy E

,
6 % the new energy EN and the current simulation temperature T.
7

8

9 function result=SimAnn Transition(e,en,T)
10

11 % classical approach (Kirkpatrick et al): Probability is always 1
12 % if en<e, otherwise P=exp( (e−en)/T )
13

14 if en<e
15 result=true;
16 else
17 % compare to a random number
18 % e−en=0 => exp()=1 => condition is always true
19 % e−en −> inf => exp()−>0 => condition always false
20 result= ( rand ≤ (exp((e−en)/T)) );
21 end;
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B.23 SimCycle NoisyDownhill

1 % SIMCYCLE NOISYDOWNHILL perform a simulation cycle using a
2 % noise superposed downhill algorithm
3 % [ NEWPOS NEWDOP POSCHANGE ] = SIMCYCLE NOISYDOWNHILL(POS,DOPVAL,

DOPTYPE,T)
4 % executes a simulation cycle after an algorithm modified after

the
5 % original Simulated Annealing algorithm.
6 % Here, the position is moved towards the minimum for each

satellite
7 % independently.
8 % A temperature dependent gaussian noise is superposed to the

movement
9 % afterwards. The

10 % POS contains the current positions
11 % DOPVAL must contain the dop to POS
12 % DOPTYPE is a string containing the cost function to use (e.g.

’gdop’)
13 % T contains the current simulation temperature
14 %
15 % The function always returns POSCHANGE=TRUE here (kept for

compatibility
16 % with the SimAnn algo).
17 % NEWPOS and NEWDOP are set to POS and DOPVAL if no transition.
18

19

20

21 function [ newpos newdop poschange ] = SimCycle NoisyDownhill(pos,
dopval,doptype,T)

22

23

24 % move the position to an better level argument by argument. At
the moment

25 % the stepsize only depends on the gradient, not on the
temperature.

26 newpos=NeighborState Grad(pos,doptype); % compute better pos in
elevation

27

28 % add gaussian noise. Here, the temperature schedule has an
effect.

29 newpos=NeighborState Random(newpos,T);
30

31 newdop=DOP(newpos,doptype);
32

33 poschange=true;
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B.24 SimCycle SimAnn

1 % SIMCYCLE SIMANN perform a simulation cycle
2 %
3 % [ NEWPOS NEWDOP POSCHANGE ] = SimCycle SimAnn(POS,DOPVAL,DOPTYPE

,T)
4 % executes a simulation cycle after Kirkpatrick’s Simulated

Annealing
5 % algotrithm.
6 % POS contains the current positions
7 % DOPVAL must contain the dop to POS
8 % DOPTYPE is a string containing the cost function to use (e.g.

’gdop’)
9 % T contains the current simulation temperature

10 %
11 % The function returns POSCHANGE=TRUE if the new state was

accepted.
12 % NEWPOS and NEWDOP are set to POS and DOPVAL if no transition.
13

14 function [ newpos,newdop,poschange ] = SimCycle SimAnn(pos,dopval,
doptype,T)

15

16 newpos=pos;
17 newdop=dopval;
18 poschange=false;
19

20 % examine every single satellite on its own
21 for i=1:size(pos,1)
22 % random change of the ith satellite’s position
23 newpos(i,:)=RandomSatStep(pos(i,:),pi/24);
24 % get cost for this "sub−state"i
25 olddop=newdop;
26 newdop=DOP(newpos,doptype);
27

28 % decide upon accepting the new position
29 if SimAnn Transition(dopval,newdop,T)
30 % keep that position and set a reminder
31 poschange=true;
32 else
33 newpos(i,:)=pos(i,:);
34 newdop=olddop;
35 end
36 end
37

38 % if the position changed, do the orientation of the position
matrix here.

39 if poschange==true
40 newpos = CorrectPositionMatrix(OrientPositionMatrix(newpos));
41 end
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B.25 SimpleDownhillSimulation

1 function pos=SimpleDownhillSimulation(pos,stddev,doptype)
2

3 SetupSkyView;
4 newdop=dop(pos,doptype)
5 lsh=SkyView(pos);
6 drawnow;
7 while true
8 % cycle thru single satellites
9 for i=1:size(pos,1)

10 olddop=newdop;
11 oldpos=pos;
12 pos(i,:)=RandomSatStep(pos(i,:),stddev);
13 if i==1
14 % get the matrix newly oriented
15 pos=CorrectPositionMatrix(OrientPositionMatrix(pos));
16 end
17 newdop=dop(pos,doptype);
18 if newdop<olddop
19 bestdop=olddop
20 lsh=SkyView(pos,lsh);
21 drawnow;
22 else
23 newdop=olddop;
24 pos=oldpos;
25 end
26 end
27 end
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B.26 SimulationCampaign

1 function SimResults = SimulationCampaign(varargin)
2 % SIMRESULTS = SIMULATIONCAMPAIGN(PREFIX, ALGOS,
3 % COSTFUNCTIONS, CONSTELLATIONSIZES,

PASSES)
4 %
5 % performs multiple runs of simulations (PASSES times) for a

collection
6 % of parameter sets. The results are saved for each parameter

set
7 % individually
8 %
9 % PREFIX string Prefix for the filenames

10 % ALGOS cell array
11 % contains strings with the Algos −
12 % { ’SIMANN’ ’NOISYDOWNHILL’ }
13 % COSTFUNCTIONS cell array
14 % contains strings with the cost functions
15 % { ’EDOP’ ’HDOP’ ’SGME’ ’SGMH’ }
16 % CONSTELLATIONSIZES vector
17 % containing satellite quantities
18 % [ 4 6 8 10 15 ]
19 % PASSES number of passes for every parameter set
20

21 if nargin==0
22 Prefix=[date ’−’]
23 else
24 if isempty(varargin{1})
25 Prefix=’’;
26 else
27 Prefix=[varargin{1} ’−’]
28 end
29 end
30

31 %if nargin==5 % use parameters
32 % ALGOS=varargin{2}
33 % COSTFUNCTIONS=varargin{3}
34 % CONSTELLATIONSIZES=varargin{4}
35 % PASSES=varargin{5}
36 %else
37 % ALGOS={’SIMANN’};
38 % COSTFUNCTIONS={’EDOP’ ’VDOP’ ’TDOP’ ’HDOP’ ’PDOP’ ’GDOP’ ’

SMGE’ ’SGMV’ ’SGMT’ ’SGMH’ ’SGMP’ ’SGMG’ ’COND’};
39 % CONSTELLATIONSIZES=[4 5 6 7 8 10 12 14];
40 % PASSES=10;
41 %end
42 % dont care about that − load from file!
43 load CampaignOptions
44

45 ALGOS
46 COSTFUNCTIONS
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47 CONSTELLATIONSIZES
48 PASSES
49

50 SimResults=cell(length(ALGOS),length(COSTFUNCTIONS),length(
CONSTELLATIONSIZES));

51

52 global SIMANN ALGO;
53 global SIMANN COSTF;
54 global SIMANN NUMSAT;
55

56 for algorithm=1:length(ALGOS)
57 SIMANN ALGO=ALGOS{algorithm};
58 disp([’======== SIMULATION ALGORITHM: ’ SIMANN ALGO])
59 for costfunction=1:length(COSTFUNCTIONS)
60 SIMANN COSTF=COSTFUNCTIONS{costfunction};
61 disp([’================ COST FUNCTION: ’ SIMANN COSTF])
62 for constellation=1:length(CONSTELLATIONSIZES)
63 SIMANN NUMSAT=CONSTELLATIONSIZES(constellation);
64 disp([’================================ CONSTELLATION

SIZE: ’ num2str(SIMANN NUMSAT)])
65 SimResult=MultiSim(PASSES);
66 ResultsFilename=[Prefix ’SimulationResults ’

SIMANN ALGO ’−’ SIMANN COSTF ’−’ int2str(
SIMANN NUMSAT) ’−’ int2str(PASSES) ];

67 disp([’Saving results to ’ ResultsFilename])
68 disp(’ ’)
69 save(ResultsFilename,’SimResult’,’SIMANN ALGO’,’

SIMANN COSTF’,...
70 ’SIMANN NUMSAT’,’PASSES’);
71 SimResults{algorithm,costfunction,constellation}=

SimResult;
72 end
73 end
74 end
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B.27 SkyView

1 function positionHandles = SkyView(pos,lineserobj)
2 % SKYVIEW Plot position data in Skyview figure
3 % SkyView(POSITIONS,[LINESEROBJ])
4 % plots the position data of satellites given in POSITIONS

to
5 % the (previously set up) figure in FIGUREHANDLE.
6 %
7 % POSITIONS
8 % is a Nx2 matrix consisting of one row each satellite, with
9 % the radian elevation in the first column and the radian

10 % azimuth in the second one.
11 % Example for an equidistant setup of 4 satellites:
12 % POSITIONS =
13 %
14 % 1.5708 0
15 % 0 −2.0944
16 % 0 −0.0000
17 % 0 2.0944
18 %
19 % LINESEROBJ
20 % can be supplied to update previously plotted data.
21 % If it is ommitted, the lineseries is plotted in the
22 % current axes and will return a new object.
23 %
24 % H=SKYVIEW(POSITIONS,LINESEROBJ) returns a handle to the plotted
25 % positions, similar to plot().
26 %
27 % See also SETUPSKYVIEW
28

29 % definitions of satellite colors
30 MarkerColor=[’b’ ’r’ ’g’ ’m’ ’c’ ...
31 ’b’ ’r’ ’g’ ’m’ ’c’ ...
32 ’b’ ’r’ ’g’ ’m’ ’c’ ...
33 ’b’ ’r’ ’g’ ’m’ ’c’ ...
34 ’b’ ’r’ ’g’ ’m’ ’c’ ...
35 ’b’ ’r’ ’g’ ’m’ ’c’ ...
36 ’b’ ’r’ ’g’ ’m’ ’c’ ...
37 ’b’ ’r’ ’g’ ’m’ ’c’ ...
38 ’b’ ’r’ ’g’ ’m’ ’c’ ];
39

40 error(nargchk(1,2,nargin,’struct’));
41 % set up the coordinantes
42 PlotPositions=[ (1−(2*pos(:,1)./pi)).*cos(pos(:,2)) ...
43 (1−(2*pos(:,1)./pi)).*sin(pos(:,2)) ];
44 % new plot?
45 if nargin==1
46 % plot into a new set of data)
47 for sat=1:size(pos,1)
48 positionHandles(sat)=plot(PlotPositions(sat,1), ...
49 PlotPositions(sat,2),’o’);
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50 set(positionHandles(sat),’MarkerEdgeColor’,’k’);
51 set(positionHandles(sat),’MarkerFaceColor’,MarkerColor(sat

));
52 end
53

54 % or update data?
55 else
56 % get the data out of the lineseries object
57 %myxdata=get(lineserobj,’XData’);
58 for sat=1:size(pos,1)
59 set(lineserobj(sat),’XData’,PlotPositions(sat,1));
60 set(lineserobj(sat),’YData’,PlotPositions(sat,2));
61 end
62 positionHandles=lineserobj;
63 end
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B.28 TempSchedule

1 % TEMPSCHEDULE Compute the temperature schedule for the
simulation

2 %
3 % T=TEMPSCHEDULE(SCHEDULETYPE,SCHEDULEINITTEMP,SCHEDULEHOLDINGTIME

,SCHEDULEDECAYSPEED,ENDTIME)
4 % returns a vector T with temperatures for every step of the

simulation from 0 to ENDTIME
5 % size(T)=ENDTIME+1
6 %
7 % SCHEDULETYPE can be either ’lin’ or ’exp’.
8 % SCHEDULEINITTEMP defines the initial temperature
9 % SCHEDULEHOLDINGTIME initial temperature is held constant for

that time
10 % SCHEDULLEDECAYSPEED if linear, this parameter defines the

linear gradient of the temperature
11 % after the constant phase.
12 % if exponential, it is used as the coefficient a in

exp(−ax)
13 % ENDTIME to define the length of the returned vector
14 %
15 % NOTE: In linear mode, the function will not return any negative

temperature values, instead all of them
16 % will be set to zero.
17

18 function T=TempSchedule(ScheduleType,ScheduleInitTemp,
ScheduleHoldingTime,ScheduleDecaySpeed,EndTime)

19

20 switch lower(ScheduleType)
21 case ’lin’
22 % when does the temperature reach zero?
23 ZeroCrossingTime=floor(ScheduleInitTemp/ScheduleDecaySpeed +

ScheduleHoldingTime);
24 % constant until SchedHoldTemp (included), then decay linearly

till zero, then zeroes till end
25 T=[ ones(1,ScheduleHoldingTime+1)*ScheduleInitTemp ...
26 ScheduleInitTemp−ScheduleDecaySpeed * ( [

ScheduleHoldingTime+1:ZeroCrossingTime] −
ScheduleHoldingTime) ...

27 zeros(1,EndTime−ZeroCrossingTime) ];
28 case ’exp’
29 T=[ ones(1,ScheduleHoldingTime)*ScheduleInitTemp ...
30 ScheduleInitTemp*exp(−ScheduleDecaySpeed*( [

ScheduleHoldingTime:EndTime] −ScheduleHoldingTime)) ];
31 otherwise
32 T=0;
33 end
34 % cut back the vector if it is too long
35 if length(T)>EndTime+1
36 T=T(1:EndTime+1);
37 end
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B.29 Weighted SigmaSQ

1 function SIGMASQ = WEIGHTED SIGMASQ(E)
2 % WEIGHTED SIGMA return the elevation−weighted variance for a

satellite
3 %
4 % SIGMA = WEIGHTED SIGMA(E)
5 %
6 % returns a variance consisting of contribution by atmospheric

effects,
7 % multipath, SNR and residual effects. The tropospheric,

ionospheric
8 % and multipath contributions are elevation−dependent.
9 %

10 % The variance is needed in the weighting matrix W when using
the

11 % weighted navigation solution.
12

13 % contributing variances. The predefined values are average values
obtained

14 % from the north american WAAS network
15 % residual
16 sUDREsq=0.5ˆ2;
17 % ionospheric, vertical
18 sUIVEsq=0.5ˆ2;
19 % SNR
20 sSNRsq=0.22ˆ2;
21 % multipath at 45 degrees
22 sM45sq=0.22ˆ2;
23 % troposheric, vertical
24 sTRVsq=0.15ˆ2;
25

26

27

28 % this is ( Re
Re+h

)2

29 EarthFactor=(6378/6728)ˆ2;
30 % the squared obliquity factor Fsq(E)
31 Fsq=1/(1−EarthFactor*cos(E)ˆ2);
32

33 % this is the resulting variance
34 SIGMASQ = sUDREsq + Fsq*sUIVEsq + sSNRsq + ...
35 sM45sq/(tan(E)ˆ2) + sTRVsq/(sin(E)ˆ2);
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C Plots

Figure 17: TDOP surface plot for an equidistant setup of 4 satellites

Figure 18: GDOP surface plot for an equidistant setup of 4 satellites
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Figure 19: GDOP surface plot for a 25° elevated equidistant setup of 4
satellites

Figure 20: GDOP surface plot for 4 satellites, fixed satellites define a slanted
plane
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Figure 21: σG surface plot for a 25° elevated equidistant setup of 4 satellites


