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Abstract

The success of satellite navigation in the mass consumer market will depend greatly on the

service availability in urban canyons and moderate indoor environments. In order to meet

these requirements the reception sensitivity of GPS and Galileo receivers will have to be

substantially enhanced. This thesis introduces new ranging techniques that have been shown

to improve the reception sensitivity and positioning accuracy of GPS and Galileo receivers.

These can be implemented with low complexity and in addition to existing methods. The

sensitivity enhancements are based on differential correlation techniques that utilize the

statistical properties of Galileo/GPS signals and also permit the estimation of important

signal parameters with low complexity. The probability density functions of the signals are

algebraically derived at each processing step. Extensive simulations are provided to analyze

the performance of the algorithms and architectures developed for this theses.

All techniques presented rely on the differential correlation which serves as a replacement

for the state-of-the-art noncoherent integration. The differential correlation improves the

reception sensitivity and positioning accuracy since it multiplies statistically independent

signal samples, while noncoherent integration squares identical samples. In order to mitigate

the limiting effect of the out-of-phase autocorrelation values, a mechanism is devised to

adapt the detection threshold as a function of the statistical properties of the differential

correlation. The differential correlation provides an elegant way to estimate the residual

Doppler frequency offset with very little effort. This in turn allows for the incremental

reduction of the frequency offset during the differential correlation process, leading to a

further increase in reception sensitivity and positioning accuracy. The frequency adjustment

causes phase fluctuations in the differential correlation function, which are compensated by

another mechanism. As a result, the major part of the correlation power is accumulated in

the inphase component, which can then be leveraged for simplified receiver architectures with

reduced implementation expenses. The reduced frequency offset furthermore allows for an

incremental extension of the coherent integration intervals during the differential correlation

process. The combined benefit of these techniques is a Galileo/GPS receiver which enhances

the reception sensitivity by up to 17.3 dB and increases the range measurement accuracy by

up to 483 % as compared to the noncoherent integration.
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Chapter 1

Introduction

The Global Positioning System (GPS) has become the prerequisite for a wide range of appli-

cations. Many emerging applications of GPS require positioning in deep urban and moderate

indoor environments. Current GPS receivers only provide limited service availability in these

environments. This thesis aims at improving the situation with new signal estimation tech-

niques targeted to enhance the positioning availability and accuracy in urban and indoor

environments.

The key to increasing the availability is enhancing the reception sensitivity. The attenua-

tion, shadowing, and multipath fading effects in urban canyons and indoor areas frequently

degrade the received GPS signal power by 30 dB or more [1, 2, 3]. While the minimum

reception levels for indoor coverage of GSM and UMTS mobile phones are specified as

-102 dBm and -117 dBm respectively, Galileo and GPS signals with 30 dB attenuation have

around -158 dBm signal power 1 [4, 5].

Chapter 2 summarizes the current techniques for GPS reception with enhanced sensitivity.

The reception sensitivity of a Galileo/GPS receiver can generally be increased by extend-

ing the observation period and thus collecting more signal energy. Doubling the coherent

integration time potentially increases the reception sensitivity by around 3 dB. However,

the maximum coherent integration period is limited by the residual frequency deviation, the

stability of the local oscillator, and the coherence time of the propagation channel. The state-

of-the-art technique to further enhance the reception sensitivity is noncoherent integration,

which can extend the observation period indefinitely without further limiting the frequency

deviation. The squaring process of the noncoherent integration, however, increases the noise

level and hence yields an inferior sensitivity gain. Doubling the noncoherent integration

period increases the reception sensitivity only by around 1.5 dB.

Chapter 3 introduces the differential correlation technique. It can also extend the obser-

vation period indefinitely without having to reduce the residual frequency deviation. Differ-

ential correlation multiplies statistically independent noise samples instead of squaring them.

The noise level is hence not being raised as much as by the squaring process of the noncoher-

ent integration. The resulting sensitivity gain of the differential correlation technique versus

1 signal power C in dBm refers to C = 10 log(C̃/(1mW)), where C̃ is the power measured in W.
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the noncoherent integration method is algebraically derived and verified by simulations using

GPS and Galileo signals in the L1/E1 frequency band. Differential correlation furthermore

yields a positioning accuracy improvement, which is also algebraically derived and verified

by simulations using L1/E1 GPS and Galileo signals.

In order to fully leverage the potential of enhanced sensitivity Galileo/GPS reception

in highly dynamic environments, a technique to adaptively adjust the detection threshold

is required. Chapter 4 derives such a mechanism, which yields a substantial sensitivity

improvement.

The differential correlation technique furthermore provides an elegant way to estimate

the residual frequency offset between the received signal and the down-conversion frequency.

Chapter 5 utilizes this property to introduce a technique to estimate and adaptively correct

the residual frequency offset. The benefit is not only a gain in reception sensitivity, but an

improvement in positioning accuracy as well.

The adaptive correction of the residual frequency offset, however, introduces phase fluc-

tuations within the differential correlation process. Chapter 6 presents a technique to com-

pensate for these fluctuations with the merit of further enhancing reception sensitivity and

positioning accuracy.

Since the residual frequency derivation is incrementally reduced, it is furthermore possible

to iteratively increase the coherent integration time. Chapter 7 hence presents a mechanism,

which dynamically adjusts the coherent integration period once the residual frequency devia-

tion is sufficiently low. This process increases reception sensitivity and positioning accuracy

even more.

Satellite navigation, in deep urban and moderate indoor environments, not only has to ad-

dress the signal attenuation but also the multipath fading effects. In a standard Galileo/GPS

receiver architecture, the multipath fading might result in excessive false acquisitions. In

order to suppress this behavior, Chapter 8 extends the adaptation technique of Chapter 4

to dynamically adjust the detection threshold as a function of both the signal-to-noise ratio

and the fading characteristics. It is shown to reduce the false acquisition probability to the

desired level.

Finally, the appendix presents some details of a microchip design with the differential

correlation technique. The appendix compares the quantization noise, silicon area, and

power consumption of differential correlation versus noncoherent integration.

The relevance of this work has its roots in the rising demand for mobile phone positioning.

Almost all wireless carriers are planning to implement location based services in order to

participate in the predicted multi-billion dollar market [6, 7, 8]. Moreover, virtually all

manufacturers of mobile phones have decided to utilize satellite navigation [9, 10, 11].
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Chapter 2

Known Methods to Enhance

Sensitivity

The reception sensitivity of a Galileo/GPS receiver is usually defined as the minimum signal

power required to achieve a certain probability of detection. Positioning, in deep urban and

moderate indoor environments, requires increased sensitivity due to signal attenuation by

walls and ceilings, shadowing by buildings, and multipath fading caused by reflections [3, 12,

13]. This chapter summarizes state-of-the-art techniques to enhance reception sensitivity.

All but one of the presented methods serve as a foundation and will be incorporated in the

new approaches described later on. The noncoherent integration method, however, will be

replaced by techniques based on differential correlation. It serves as reference to quantify

the sensitivity gain of the new developments.

2.1 Assisted Satellite Navigation

Aiding the satellite navigation with assistance data can improve reception sensitivity sub-

stantially. Assistance protocols are specified for most mobile communication standards

[14, 15, 16]. Reference receivers continuously track all satellite signals and maintain a

database of relevant signal parameters. The entire navigation data messages of the satellite

signals can then be supplied via the wireless communications link, such that the Assisted-

Galileo/GPS receiver only needs to perform signal acquisition [17, 18]. The subsequent signal

tracking for the navigation messages becomes redundant.

The receiver only needs to estimate the spreading code phases so that its location can

be calculated with the help of assistance data [19, 20]. This method substantially reduces

the power consumption, another key requirement for emerging Galileo/GPS applications

[21, 22]. The acquisition search space and thereby the acquisition time is also reduced by a

narrower Doppler frequency uncertainty. Longer coherent integration times, which yield

higher reception sensitivities at the expense of narrower frequency search bins, are also pos-

sible with good Doppler frequency estimates. The supplied navigation data messages also

allow observation times in excess of the data bit period, effectively improving the reception
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Figure 2.1: Satellite and receiver time lines for single shot positioning.

sensitivity. The increased reception sensitivity allows the reception of more satellite signals,

which in turn improves the positioning accuracy.

2.2 Single Shot Positioning

Assisted satellite navigation enables single shot positioning by providing the navigation mes-

sage via a communications link. Single shot positioning as opposed to conventional position-

ing works with just signal acquisition and no signal tracking [19, 20]. The time-consuming

signal tracking until the ephemeris and almanac data are received can be skipped to reduce

power consumption and positioning latency. Strongly attenuated signals also do not permit

navigation message extraction, since the observation period has to be increased beyond the

data bit boundaries [21, 23]. Assisted satellite navigation combined with single shot po-

sitioning hence allows positioning with increased observation times, which yields enhanced

reception sensitivity [24].

Without loss of generality, it shall be assumed that all signals are received simultaneously

at time t. When the receiver only estimates the code phase without tracking the signal,

the transmission time t
(κ)
0 of the received signal remains unknown. The index κ ∈ {1, ... KS}

represents the different visible satellites and KS the number of visible satellites. Fig. 2.1

illustrates time lines at a satellite and the receiver. The transmission time can be expressed

as an integer multiple ς(κ)∈ Z of the spreading code period LTc plus the code phase τ (κ) and

the clock difference between satellite and system time t
(κ)
ǫ

t
(κ)
0 = ς(κ) LTc + τ (κ) + t(κ)

ǫ . (2.1)

The spreading code length is denoted by L and the spreading chip period by Tc. When the

signal is transmitted from the satellite at time t
(κ)
0 , the code phase τ (κ) has an arbitrary value.

However, when the signal is received later at time t, the code phase still has the same value
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τ (κ). Each satellite clock difference t
(κ)
ǫ relative to the system time t is supplied as assistance

data. The distance between the receiver location pr∈ R
3 and each satellite location p

(κ)
s ∈ R

3

can be expressed as

ρ(κ) =
∥∥p(κ)

s − pr

∥∥
2

= c
(
t − t

(κ)
0

)
, (2.2)

where c is the speed of light and ‖ · ‖2 the Euclidian norm.

An approximate location pa ∈ R
3 and time ta can be supplied with the assistance data

and utilized to calculate the integer multiple ς(κ). Solving (2.2) and (2.1) for ς(κ) yields

ς(κ) =
1

LTc

(
t
(κ)
0 − τ (κ) − t(κ)

ǫ

)
=

1

LTc

(
t − ρ(κ)

c
− τ (κ) − t(κ)

ǫ

)
. (2.3)

Inserting the approximate distance between each satellite and the receiver

ρ(κ) ≃
∥∥p(κ)

s − pa

∥∥
2

, (2.4)

as well as the approximate time

t ≃ ta (2.5)

into (2.3) and rounding to the nearest integer, denoted by 〈 · 〉, resolves the ambiguity

ς(κ) =

〈
1

LTc

(
ta −

∥∥p(κ)
s − pa

∥∥
2

c
− τ (κ) − t(κ)

ǫ

)〉
. (2.6)

The tolerable errors for the approximate location and time are
∣∣∣∣∣ ta −

∥∥p(κ)
s − pa

∥∥
2

c
− t +

ρ(κ)

c

∣∣∣∣∣ <
LTc

2
. (2.7)

Since c LTc equals 300 km for the GPS L1-C/A code, the cell location of the mobile phone and

an approximate time with some 100µs accuracy is already sufficient. This timing accuracy

can be provided by most cellular communication networks [25]. The longer Galileo spreading

codes yield further relaxed requirements on the approximate location and time. A sufficiently

accurate approximate time ta can also be obtained if just one satellite signal is strong enough

to align the navigation message from the assistance data with the navigation message from

the satellite signal.

The precise system time t is typically unknown. If KS > 4 satellites are visible, the

receiver position pr and time t can be estimated with the nonlinear Weighted Least Square

Error (WLSE) estimation

(
p̂r, t̂

)
= argmin

p̂r∈R
3

t̂∈R

KS∑

κ=1

1

σ2
ρ̂ (κ)

(
ρ̂ (κ) −

∥∥p(κ)
s − p̂r

∥∥
2

)2

= argmin
p̂r∈R

3

t̂∈R

KS∑

κ=1

1

σ2
ρ̂ (κ)

(
c
(
t̂ − t

(κ)
0

)
−
∥∥p(κ)

s − p̂r

∥∥
2

)2

(
p̂r, t̂

)
= argmin

p̂r∈R
3

t̂∈R

KS∑

κ=1

1

σ2
ρ̂ (κ)

(
c
(
t̂ − ς(κ) LTc − τ (κ) − t(κ)

ǫ

)
−
∥∥p(κ)

s − p̂r

∥∥
2

)2
.

(2.8)
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The variance of the estimated satellite to receiver distance is denoted by σ2
ρ̂ (κ) and can be

estimated by the receiver, e.g. with signal-to-noise ratio measurements [26]. The receiver

time t̂ and location p̂r are calculated with (2.8). The integer multiples ς(κ) are calculated

with (2.3). The satellite clock differences t
(κ)
ǫ and the satellite locations p

(κ)
s are supplied

with the assistance data. The only task left for the Assisted-Galileo/GPS receiver is hence to

estimate the code delays τ (κ) [19, 20]. In order to provide high high availability for emerging

applications in urban environments, the code phase estimations have to be performed for

low signal-to-noise ratios. The more code delays can be estimated, the more accurate the

position fix.

2.3 Highly Parallel Correlation

The code phase τ (κ) can be approximated as uniformly distributed within [0, L Tc]. If the

received thermal noise is additionally modelled as white Gaussian noise, the Minimum

Mean Squared Error (MMSE) estimation

τ̂ (κ) = argmin
τ̂ (κ)∈[0, L Tc]

∫ Ti

0

∣∣r(t) − x(κ)
(
t − τ̂ (κ)

)∣∣2 dt (2.9)

corresponds to the Maximum A Posteriori (MAP) and the Maximum Likelihood (ML) esti-

mation [27, 28]. The coherent integration time Ti is usually a multiple of LTc. The received

Galileo/GPS signal is expressed by r(t) and a local replica of the transmitted signal by

x(κ)(t).

The ML estimation of the code phase can be achieved by maximizing the correlation

τ̂ (κ) = argmin
τ̂ (κ)∈[0, L Tc]

∫ Ti

0

|r(t)|2 − 2ℜ
{
r(t) x∗(κ)

(
t − τ̂ (κ)

)}
+
∣∣x(κ)

(
t − τ̂ (κ)

)∣∣2 dt

= argmax
τ̂ (κ)∈[0, L Tc]

∫ Ti

0

ℜ
{
r(t) x∗(κ)

(
t − τ̂ (κ)

)}
dt

(2.10)

of the received signal r(t) with the complex conjugate of the locally generated replica of

the signal x∗(κ)
(
t − τ̂ (κ)

)
[27, 28]. If the received signal phase is assumed to be random

and uniformly distributed, and the thermal noise is modelled as zero-mean white Gaussian

noise, then the optimal estimation evaluates the magnitude or the squared magnitude of the

correlation [27, 28]

τ̂ (κ) = argmax
τ̂ (κ)∈[0, L Tc]

∣∣∣∣
∫ Ti

0

r(t) x∗(κ)
(
t − τ̂ (κ)

)
dt

∣∣∣∣
2

. (2.11)

The squared magnitude usually causes less implementation expense.

The spreading code length of the GPS L1-C/A signal is 1023 chips. The GPS orbits at

an altitude of 20,183 km combined with the carrier frequency of fc = 1575.42 MHz cause

Doppler frequency shifts in the range of approximately ±6 kHz [29]. Fig. 2.2 and 2.3 il-

lustrate the code/frequency search space for the GPS L1-C/A signal. Fig. 2.2 shows the
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Figure 2.2: GPS L1-C/A search space for 2 dB signal attenuation and Ti = 1 ms.
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Figure 2.3: GPS L1-C/A search space for 11 dB signal attenuation and Ti = 8 ms.

search space for the short coherent integration period Ti = 1 ms and just 2 dB signal at-

tenuation. Doubling the coherent integration interval potentially increases the reception

sensitivity by 3 dB. Fig. 2.3 shows the search space for a signal that is 11 dB attenuated. In

order to achieve the sensitivity enhancement of 3 × 3 dB, the coherent integration period in

Fig. 2.3 has been doubled three times to Ti = 8 ms. It can be observed that the correlation

peak is separated from the noise floor by a similar distance. In order to produce a local

replica x(κ)(t) of the received signal r(t), the receiver has to determine which of the satellites

are currently visible, which Doppler frequency shifts they expose, and finally which code

delays are correct. The receiver has to narrow down the code delay and Doppler frequency

shift to an extend where Fig. 2.2 and 2.3 show the correlation peak. While Fig. 2.2 presents

the search space for a receiver with the short coherent integration period Ti = 1 ms, Fig. 2.3
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Figure 2.4: Highly parallel correlation technique.

illustrates the longer coherent integration period Ti = 8 ms. It can be observed that the cor-

relation peak becomes narrower in the dimension of the frequency deviation as the coherent

integration period increases. The exact mathematical relationship will be derived in the next

chapter in Section 3.3. The narrow correlation peak, in turn, requires a more fine-grained

search in the frequency dimension. Increasing the coherent integration period, reduces the

size of the search bins in the frequency dimension and hence increases the number of bins

to be searched. Conventional GPS receivers sequentially perform correlations with differ-

ent code delays, Doppler shifts, and spreading codes until they hit the correlation peak

[30, 31]. This is very time consuming, drains batteries and challenges the user’s patience

[21]. Furthermore, the sequential search times increases quadratically with the increase in

coherent integration period, since doubling the integration period also doubles the number

of frequency search bins. The result is that the achievable reception sensitivity of sequential

search is low, because long coherent integration times Ti per search bin are not affordable

[23, 32].

The solution for this problem are highly parallel correlation techniques, as illustrated in

Fig. 2.4. They can calculate a large number of correlation results simultaneously and hence

acquire weak signals with sufficiently low latency [22, 23, 32]. Parallel correlation techniques

provide the possibility to scan the inflated search space due to extended coherent integration

intervals more effectively. The receiver architecture in Fig. 2.4 performs the subsequently

described operations. The radio frequency (RF) front-end converts the received signal to

intermediate frequency and samples it at time instances ν Ts, where Ts denotes the sample
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period. The digital down-conversion with

Ω(κ) = 2 π f
(κ)
LO Ts , κ ∈ Y , (2.12)

where f
(κ)
LO is the local oscillator frequency, implements the frequency search of Y frequency

bins in parallel and yields the baseband samples r
(κ)
ν . The parallel search of D code phase

bins is indexed with ι. The code phase of the receiver path number ι is hence denoted τ̂ι.

The receiver in Fig. 2.4 despreads the received signal with all D possible code phases of the

reference code c⌊(ν Ts+τ̂ι)/Tc⌋. The subsequent coherent accumulation of N samples yields the

predetection values

s(κ)
µ,ι =

µN∑

ν=(µ−1)N+1

r(κ)
ν c

(κ)
⌊(ν Ts+τ̂ι)/Tc⌋

, (2.13)

with 〈 · 〉 being the floor function for rounding to the nearest integer less or equal. The

decision statistic for the code phase estimation is then

Λ(κ)
ι =

∣∣s(κ)
µ,ι

∣∣2 . (2.14)

Depending on the system configuration and which hardware resources are available, the

parallel correlation results may either be calculated in the time domain or the frequency

domain. The correlation in the time domain corresponds to a multiplication in the frequency

domain. The frequency domain approach can be implemented with efficient hardware and

software techniques, such as different variations of the Fast Fourier Transform (FFT)

[23, 33, 34]. A big benefit of it is that the correlation values of all code delays can be

calculated simultaneously [35, 36, 37]. Other proprietary techniques can be applied for

efficient correlation in the time domain [32, 38]. The benefit of time domain correlation

is that the correlation values can be continuously monitored, enabling the integration time

Ti to rise until the signal-to-noise ratio is sufficiently large [39, 40]. More details on the

implementation aspects of an enhanced sensitivity Galieo/GPS receiver are covered in the

appendix.

2.4 Noncoherent Integration

Enhanced reception sensitivity is a key requirement for successful mobile phone positioning

and location based services. A longer coherent integration time Ti in (2.11) leads to a higher

reception sensitivity. However, the maximum coherent integration time is limited by different

factors.

Firstly, the size of each frequency search bin is inversely proportional to the coherent

integration time Ti. Fig. 2.2 and Fig. 2.3 show the GPS L1-C/A code/frequency search

space for Ti = 1 ms and Ti = 8 ms, respectively. It can be observed that the correlation peak

becomes narrower in the frequency dimension. Thus, doubling the coherent integration time

Ti doubles the number of frequency search bins, which either increases the time-to-fix or

doubles the required number of parallel correlation channels.
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Figure 2.5: Highly parallel correlation technique with the noncoherent integration method.

Secondly, consumer market receivers have oscillators with limited frequency stability. This

causes variations in the down-conversion factor Ω(κ) and effectively limits the maximum

coherent integration time Ti. Each frequency bin has to be kept wide enough to contain the

fluctuation of the down-conversion frequency.

Thirdly, the coherence time of the signal propagation channel can also be a limiting

factor, particularly for high user motion, such as vehicular environments. Variations in the

user motion cause fluctuations in the Doppler frequency shift. The Doppler fluctuations

add to the fluctuations of the down-conversion frequency and the width of the frequency

bins has to be sufficient to contain this sum.

Noncoherent integration, on the other hand, can extend the observation period indefi-

nitely without affecting the size of the frequency search bins. For positioning in deep urban

and moderate indoor environments, where enhanced reception sensitivity is a prerequisite,

noncoherent integration has become the state-of-the-art technique [21, 22, 23]. Fig. 2.5 shows

the corresponding signal flow. The only difference to the receiver architecture in Fig. 2.4 is

the additional accumulation block, which performs the operation

Λ(κ)
ι =

M∑

µ=1

∣∣s(κ)
µ,ι

∣∣2 , (2.15)

where the coherently integrated predetection values s
(κ)
µ,ι are defined in (2.13) [36, 41]. Fig. 2.6

and 2.7 demonstrate that the width of the correlation peak is independent of the noncoherent
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Figure 2.6: GPS L1-C/A search space for 6.5 dB signal attenuation, Ti = 1 ms, and M = 8.

Code phase difference
τ−τ̂

Tc

Frequency deviation fd [kHz]

D
ec

is
io

n
st

at
is

ti
c

Λ
[n

W
]

Figure 2.7: GPS L1-C/A search space for 11 dB signal attenuation, Ti = 1 ms, and M = 64.

integration number M . The number of frequency bins hence does not increase with an

increasing noncoherent integration number M [32, 34]. However, it can also be observed in

Fig. 2.6 and 2.7 that the noise floor rises with an increasing noncoherent integration number

M . This effect is caused by the squaring of the zero-mean additive noise samples, which

turns them into non-zero-mean noise samples. The subsequent accumulation of the non-zero-

mean noise samples raises the noise floor, which results in decreased sensitivity gain. While

doubling the coherent integration period increases the reception sensitivity by approximately

3 dB, doubling the noncoherent integration number increases the reception sensitivity only

by approximately 1.5 dB [21, 32]. The noncoherent integration number M = 8 in Fig. 2.6

achieves a sensitivity gain of around 3× 1.5 dB. In order to obtain a sensitivity gain of 9 dB

as in Fig. 2.3, around M = 64 as in Fig. 2.7 is required. Unlike Fig. 2.3, the correlation peak
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is still wide in Fig. 2.7. The noncoherent integration does not increase the complexity of the

frequency search. The price for this benefit is a substantial increase in required observation

time. The sensitivity gain that is achieved in 8 ms in Fig. 2.3 takes 64 ms in Fig. 2.7.

2.5 Combined Galileo and GPS Reception

Mobile phone positioning benefits greatly from the combined use of Galileo and GPS signals.

The GPS satellite visibility in urban environments is limited, with only three or less satellites

above 30◦ elevation 80 % of the time [11, 42, 43]. However, as shown in Section 2.2, four

satellites are required for three-dimensional (3D) positioning. Even when four GPS satellites

are visible, the satellite geometry often remains poor, resulting in a degraded positioning

accuracy. Simulations for the combined constellations of GPS and Galileo show that seven

or more satellites are visible all the time with a 30◦ masking angle [11]. A total of 11–20 GPS

and Galileo satellites are visible above 10◦ elevation [13, 44]. While neither GPS nor Galileo

alone can provide accurate 3D positioning at a 30◦ masking angle, the combination of both

allows positioning with horizontal and vertical errors within 12 m and 30 m respectively, for

95 % of the measurements [11, 42].

In high-rise urban environments, GPS is reported to provide a 20 m horizontal accu-

racy in just 15 % – 30 % of the sites [42, 43, 45]. This improves to 80 % – 90 % for com-

bined Galileo/GPS reception. The remaining 10 % – 20 % of the sites can then be served

with a combined trilateration of Galileo, GPS, and mobile telephone signals [41, 43]. The

availability in low-rise urban areas improves from around 70% to 100 % for the combined

Galileo/GPS reception. Even for suburban environments, the horizontal accuracy of the

combined Galileo/GPS reception is simulated to improve by around 400 % to less than 8 m,

while 3 m appear achievable in open sky environments [11, 42, 45].

It is therefore essential for future satellite navigation receivers in urban environments

to support simultaneous reception of Galileo and GPS. Since the GPS L1-C/A signal is

transmitted with the same carrier frequency as the Galileo E1-B/C signals, a combined

receiver for these signals requires only a single radio frequency front-end [4, 5]. This work

hence provides simulation results for the reception of the GPS L1-C/A and the Galileo

E1-B/C signals.

2.6 Conclusion

Enhancing the reception sensitivity is a prerequisite for many emerging Galileo/GPS ap-

plications in deep urban and moderate indoor environments. At the same time, low posi-

tioning latency is also required. Assistance data provides aiding information to support the

acquisition of weak signals. When the observation period is extended beyond the data bit

boundaries to collect more signal energy, the navigation messages of the Galileo/GPS signals

cannot be received any more. The combination of assistance data and single shot position-

ing allows calculating the navigation solution in this situation. The task of the Galileo/GPS
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receiver can then be reduced to the measurement of the spreading code phases. Sequential

acquisition search with an extended observation period leads to unacceptable delays. The

positioning latency can be substantially reduced by parallelizing the signal processing to

calculate the correlation result for multiple code phases simultaneously. The maximum co-

herent integration interval is limited, as it increases the size of the acquisition search space.

The stability of the local oscillator and the coherence time of the propagation channel are

further limiting factors. The state-of-the-art technique for GPS reception in deep urban and

moderate indoor environments is noncoherent integration, as it allows to extend the obser-

vation period without increasing the size of the acquisition search space. The drawback of

noncoherent integration is that it raises the noise floor. The sensitivity gain from doubling

the noncoherent integration interval is only around 1.5 dB, as opposed to the 3 dB gain from

doubling the coherent integration interval. Both, Galileo and GPS receivers suffer from poor

visibility in urban canyons. The best choice in urban environments is to combine both for

improved service availability.
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Chapter 3

Differential Correlation

This chapter introduces the differential correlation technique as a potential replacement for

the noncoherent integration. The state-of-the-art method for GPS reception in deep urban

and moderate indoor areas is noncoherent integration [22, 23, 32]. It can extend the ob-

servation period indefinitely without reducing the size of the frequency bins. Differential

correlation has the same property, as will be shown subsequently. Noncoherent integration

raises the noise floor by squaring the received noise samples. Differential correlation mul-

tiplies subsequent noise samples, which are statistically independent. The resulting noise

power of differential correlation is therefore less than that of noncoherent integration.

The following sections derive the probability distributions of the decision statistics for

differential correlation and noncoherent integration. These distributions are then evaluated

for GPS and Galileo signals in the E1/L1 frequency band with various receiver settings and

various Doppler frequency shifts. It is shown that differential correlation provides improved

reception sensitivity over the whole range of frequency shifts and receiver settings. The

findings are verified by extensive simulations. In order to evaluate the positioning accuracy,

the standard deviations of the estimated distances between receiver and satellites are also

derived for differential correlation and noncoherent integration. These standard deviations

are evaluated for various E1/L1 Galileo/GPS receiver parameters and frequency offsets.

The results show that differential correlation not only improves reception sensitivity, but

also increases positioning accuracy.

Fig. 3.1 provides an overview of the receiver architecture for differential correlation. Each

of the signal processing steps will be described subsequently and the probability density

function of the signal will be derived at each processing stage. While the noncoherent in-

tegration method squares the predetection samples sµ, the differential correlation technique

multiplies each predetection sample with the complex conjugate of the previous predetection

sample. This technique is inspired by the differential demodulation method in digital com-

munications [46, 47]. The important distinction to noncoherent integration is the additional

delay element, denoted by z−1 in Fig. 3.1. The complex conjugate operation is denoted by

the symbol ( · )∗. As will be shown in Section 3.4, the improved reception sensitivity of the

differential correlation originates from the fact that subsequent predetection samples are sta-

tistically independent. The products of the statistically independent predetection samples

have a lower variance than that of the squared predetection samples.
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Figure 3.1: Highly parallel reception with the differential correlation technique.

3.1 Galileo/GPS Signal Specification

The Galileo and GPS signals are spread spectrum signals. They are characterized by their

carrier frequency fc, carrier power C, data bit stream dµ, data bit period Td, spreading code

cν , chip period Tc, code length L, square-wave subcarrier q(t), and spreading pulse form p(t).

A generalized formulation of the Galileo/GPS transmit signals can be expressed in lowpass

equivalent notation as

x(t) =
√

2 C

∞∑

µ=−∞

dµ

G−1∑

ν=0

cν q(t) p(t − µ Td − ν Tc) , (3.1)

with

G =
Td

LTc

. (3.2)

Table 3.1 summarizes the values of the parameters for the Galileo and modernized GPS sig-

nals [4, 5, 48]. The Galileo E1-B/C signals use the Binary Offset Carrier (BOC) modulation,

which utilizes the square-wave subcarrier

q(t) = sign

[
sin

(
2 π t

Tc

)]
, (3.3)
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Component
name

Modulation
scheme

Carrier
frequency
fc [MHz]

Carrier
power

C [dBm]

Spreading
chip period

Tc [µs]

Primary
code length
L [chips]

Secondary
code length
U [chips]

Data bit
period
Td [ms]

Galileo E1-B BOC(1, 1) 1575.42 -130 1/1.023 4092 none 4

Galileo E1-C BOC(1, 1) 1575.42 -130 1/1.023 4092 25 pilot

Galileo E5a-I BPSK(10) 1176.45 -128 1/10.23 10230 20 20

Galileo E5a-Q BPSK(10) 1176.45 -128 1/10.23 10230 100 pilot

Galileo E5b-I BPSK(10) 1207.14 -128 1/10.23 10230 4 4

Galileo E5b-Q BPSK(10) 1207.14 -128 1/10.23 10230 100 pilot

Galileo E6-B BPSK(5) 1278.75 -128 1/5.115 5115 none 1

Galileo E6-C BPSK(5) 1278.75 -128 1/5.115 5115 100 pilot

GPS L1-C/A BPSK(1) 1575.42 -128.5 1/1.023 1023 none 20

GPS L2-CM BPSK(1) 1227.60 -130 1/1.023 10230 none 20

GPS L2-CL BPSK(1) 1227.60 -130 1/1.023 767250 none pilot

GPS L5-I BPSK(10) 1176.45 -127.9 1/10.23 10230 10 10

GPS L5-Q BPSK(10) 1176.45 -127.9 1/10.23 10230 20 pilot

Table 3.1: Galileo and modernized GPS civilian signal parameters [4, 5, 48].
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Figure 3.2: Average E1/L1-band power density spectrum for the approximation of cν , gµ

and dκ as zero-mean white noise processes and p(t) as rectangular pulse.

where sign( · ) is the signum function. The signals modulated with Binary Phase Shift Keying

(BPSK) are modeled with q(t) = 1. Some signals are modulated with a secondary spreading

code, which has a chip period equal to the full primary code period [5, 48]. The pilot signals

contain no data message and are modelled as dµ = 1. Fig. 3.2 presents the average E1/L1-

band Power Spectral Density (PSD)1 for the approximation of cν and dµ as zero-mean white

noise processes and p(t) as a rectangular pulse. It can be observed that the zero-to-zero

bandwidth for the GPS L1-C/A signal is B = 2.046 MHz, while it is B = 4.092 MHz for the

Galileo L1-B/C signal.

When the Galileo/GPS signals reach the earth surface, they also display a propagation

1 P (f) in dBm/Hz refers to P (f) = 10 log(P̃ (f)/(1mW/Hz)), where P̃ (f) is the power spectral density
measured in W/Hz.
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Figure 3.3: Receiver channel with the differential correlation technique.

delay Tp, Doppler frequency shift fD, carrier phase ϕc, and additive thermal band-pass

noise nbp(t). The received signals can therefore be expressed in bandpass notation as

rbp(t) = x(t − Tp) cos[2 π (fc + fD) (t − Tp) + ϕc] + nbp(t) . (3.4)

3.2 Down-Conversion and Doppler Compensation

It is shown in Section 2.2 that instead of estimating the propagation time Tp it is sufficient

to estimate the code phase τ within a single code sequence period [0, L Tc]. The single shot

positioning algorithm of Section 2.2 can determine how many integer multiples ς of the chip

period have passed at the time the signal was transmitted. The transmission time therefore

is

t0 = t − Tp = ς L Tc + τ ; ς ∈ Z ; τ ∈ [0, L Tc] . (3.5)

Section 2.3 concludes that the code phase τ can be best estimated by maximizing the squared

magnitude of the correlation between the received signal and a locally generated replica of

the signal.

Before the correlation value can be calculated, the Doppler frequency shift of the

received signal has to be compensated. This is typically accomplished with the down-

conversion to baseband. Subsequently, a single channel of the differential correlation re-

ceiver in Fig. 3.1 with one down-conversion factor Ω, one reference code c⌊(ν Ts+τ̂)/Tc⌋, and

one subcarrier q⌊(ν Ts+τ̂)/Tc⌋ is analyzed. The corresponding signal processing stages of the

single channel are presented in Fig. 3.3. The Radio Frequency (RF) front-end converts the

received signal to the intermediate frequency fIF and samples it at time instances ν Ts, where

Ts denotes the sampling period. The spreading pulse form is approximated as the rectangular

function

p(t) ≃ rect

(
t

Tc

− 1

2

)
. (3.6)

The digital down-conversion with

Ω = 2 π fLO Ts (3.7)

yields the baseband samples rν . However, the exact Doppler frequency shift fD is generally

unknown. It is searched for with a discrete frequency grid. The center frequency of each

frequency search bin is applied as the down-conversion frequency fLO. If the subsequent cor-

relation is successful, then the correct frequency bin has been found. This discrete frequency

search is not generally able to exactly compensate for the unknown Doppler frequency

shift. The sampled baseband Galileo/GPS signal

rν =
√

2 C d⌊(ν Ts+τ)/Td⌋ c⌊(ν Ts+τ)/Tc⌋ q⌊(ν Ts+τ)/Tc⌋ ej [2 π fd (ν Ts+τ)+ϕc] + nν (3.8)
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is hence left with the residual frequency deviation

fd = fIF + fD − fLO . (3.9)

The possible range of the residual frequency deviation depends on the size of the frequency

search bins.

The lowpass equivalent received thermal noise nν can be modelled as complex-valued

zero-mean white Gaussian noise, which has the probability distribution

pn(ℜ{n}, ℑ{n}) =
1

π σ2
n

exp

(
−ℜ{n}2

σ2
n

− ℑ{n}2

σ2
n

)
, (3.10)

where ℜ{ · } denotes the real part and ℑ{ · } the imaginary part [28, 49]. The noise variance

is

σ2
n = E

{
|n|2
}

= 2 E
{
ℜ{n}2

}
= 2 E

{
ℑ{n}2

}
= 2N0 B F , (3.11)

where E{ · } is the operator for the expectation value,

N0 = k T0 (3.12)

denotes the noise Power Spectral Density (PSD), B the noise bandwidth, F the front-end

noise figure, k = 1.381×10−23 W s/K the Boltzman constant, and T0 the noise temperature

[29, 50]. The real and imaginary part of nν are uncorrelated [49]

E{ℜ{n}ℑ{n}} = 0 . (3.13)

The noise temperature T0 = 290 K and the front-end noise figure F = 3 dB are applied for

all subsequent simulations, as they are typical values used in literature.

3.3 Despreading and Coherent Integration

As introduced in Section 2.3, the baseband signal is despread with the spreading code

c⌊(ν Ts+τ̂)/Tc⌋ and the subcarrier q⌊(ν Ts+τ̂)/Tc⌋, where τ̂ is the estimated code phase. Since

the primary spreading code repeats every LTc/Ts samples, the code phase is estimated

within the range [0, L Tc] and the integer multiples of the code period are determined with

the single shot positioning algorithm in Section 2.3. The predetection values are obtained

by the despreading and coherent accumulation of N samples

sµ =

(µ+1) N−1∑

ν=µ N

rν c⌊(ν Ts+τ̂)/Tc⌋ q⌊(ν Ts+τ̂)/Tc⌋ = yµ + wµ . (3.14)

The deterministic signal component is denoted by

yµ =
√

2 C

(µ+1) N−1∑

ν=µ N

[
d⌊(ν Ts+τ)/Td⌋ c⌊(ν Ts+τ)/Tc⌋ q⌊(ν Ts+τ)/Tc⌋

× c⌊(ν Ts+τ̂)/Tc⌋ q⌊(ν Ts+τ̂)/Tc⌋ ej [2 π fd (ν Ts+τ)+ϕc]
]

(3.15)
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and the zero-mean white Gaussian noise component by

wµ =

(µ+1) N−1∑

ν=µ N

nν c⌊(ν Ts+τ̂)/Tc⌋ q⌊(ν Ts+τ̂)/Tc⌋ . (3.16)

If the sampling rate does not exceed the Nyquist rate with

Ts =
1

B
, (3.17)

then the subsequent noise samples are uncorrelated

E
{
nν n∗

ν+1

}
= 0 . (3.18)

The accumulated noise variance results in

σ2
w = E

{
|w|2

}
= 2 E

{
ℜ{w}2

}
= 2 E

{
ℑ{w}2

}
= N σ2

n = 2 Nk T0 B F . (3.19)

Subsequent predetection noise samples are then also uncorrelated

E
{
wµ w∗

µ+1

}
= 0 . (3.20)

If the coherent integration takes place within the data bit boundaries and the estimated

code phase τ̂ equals the actual code phase τ , then the deterministic component equals the

geometric series

yµ

∣∣
τ̂=τ

=
√

2 C ds,µ

(µ+1) N−1∑

ν=µ N

ej [2 π fd (ν Ts+τ)+ϕc]

=
√

2 C ds,µ

(
1 − ej 2 π fd (µ+1) N Ts

1 − ej 2 π fd Ts
− 1 − ej 2 π fd µ N Ts

1 − ej 2 π fd Ts

)
ej (2 π fd τ+ϕc)

=
√

2 C ds,µ ej (2 π fd τ+ϕc)
ej 2 π fd µ N Ts − ej 2 π fd (µ+1) N Ts

1 − ej 2 π fd Ts

=
√

2 C ds,µ ej (2 π fd [(µ+1/2) N Ts+τ ]+ϕc)
e−j π fd N Ts − ej π fd N Ts

1 − ej 2 π fd Ts

(3.21)

with the data stream

ds,µ = d⌊(µ N Ts+τ)/Td⌋ . (3.22)

The term ej 2 π fd Ts can expressed by the Taylor series

ej 2 π fd Ts =
∞∑

ν=0

(j 2 π fd Ts)
ν

ν!
= 1 + j 2 π fd Ts +

(j 2 π fd Ts)
2

2
+

(j 2 π fd Ts)
3

6
+ ... . (3.23)

For the relevant cases, the argument j 2π fd Ts has a magnitude much smaller than one,

since the receiver has to ensure that the signal phase ej [2 π fd (ν Ts+τ)+ϕc] does not rotate by

more than around π within the coherent integration period N Ts > LTc. The case of

Tc = 1/1023 ms, Ts = Tc/2 and |fd| 6 500 Hz yields |j 2 π fd Ts| 6 0.00156. The receiver
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Figure 3.4: Correlation peak for BPSK and BOC(1, 1) modulation.

partitions the frequency search space into search bins and within the correct bin, the term

ej 2 π fd Ts can be well approximated by the first two terms of its Taylor series

ej 2 π fd Ts ≃ 1 + j 2 π fd Ts . (3.24)

Substituting (3.24) into (3.21) yields

yµ

∣∣
τ̂=τ

≃
√

2 C ds,µ ej (2 π fd [(µ+1/2) N Ts+τ ]+ϕc)
e−j π fd N Ts − ej π fd N Ts

−j 2 π fd Ts

≃
√

2 C ds,µ N sinc(fd N Ts) ej (2 π fd [(µ+1/2) N Ts+τ ]+ϕc)

(3.25)

with the normalized sinc-function

sinc(α) =
sin(π α)

π α
. (3.26)

The coherent integration time N Ts should be chosen as a multiple of the primary spread-

ing code period LTc. The deterministic component for a frequency deviation of zero and an

arbitrary code phase τ̂ 6= τ

yµ

∣∣
fd=0

=
√

2 C ds,µ R(τ − τ̂) ej ϕc (3.27)

can then be described with help of the correlation function

R(τ − τ̂) =
N−1∑

ν=0

[
c⌊(ν Ts+τ)/Tc⌋ q⌊(ν Ts+τ)/Tc⌋ c⌊(ν Ts+τ̂)/Tc⌋ q⌊(ν Ts+τ̂)/Tc⌋

]

≃ 1

Ts

∫ N Ts

0

c(t + τ) q(t + τ) c(t + τ̂) q(t + τ̂) dt

, (3.28)

where c⌊(ν Ts+τ)/Tc⌋ denotes the sampled spreading code, q⌊(ν Ts+τ)/Tc⌋ the sampled subcar-

rier, c(t) the time-continuous spreading code, and q(t) the time-continuous subcarrier. The

time-continuous correlation function in (3.28) can be well approximated with digital signal

processing by utilizing non-commensurate sampling rates [51]. Fig. 3.4 shows the correlation

peaks for BPSK and BOC(1, 1) modulated signals in the center at τ − τ̂ ∼ 0. It can be

observed how the subcarrier of the BOC signal narrows the correlation peak and leads to
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Figure 3.5: Comparison of the approximate of yµ in (3.31) for GPS L1-C/A versus the precise
result in (3.15).

negative side-peaks. The possible correlation values of BPSK modulated Gold codes of

length L at code phase differences of multiple chips are [52]

R(τ − τ̂)
∣∣∣τ−τ̂=ν Tc
ν∈Z

∈
{

N,
(β − 2) N

L
, −N

L
, −β N

L

}
, (3.29)

with

β = 1 + 2⌊(log2(L+1)+2)/2⌋ . (3.30)

The GPS L1-C/A signals utilize Gold codes of length L = 1023, where the correlation

values R(τ − τ̂)|τ−τ̂=ν Tc = −(65 N)/1023 and R(τ − τ̂)|τ−τ̂=ν Tc = (63 N)/1023 each have a

12.5 % occurrence rate [29]. The Galileo signals utilize spreading codes that have been found

by computer simulation. The maximum out-of-phase autocorrelation value for despreading

the Galileo E1-B/C signals with the Galileo E1-B codes or the the Galileo E1-C codes is

Rm = 0.094 N [5].

By combining the previous results for sufficiently low frequency deviations fd, the deter-

ministic component of the predetection samples can be approximated by

yµ ≃
√

2 C ds,µ R(τ − τ̂) sinc(fd N Ts) ej (2 π fd [(µ+1/2) N Ts+τ ]+ϕc) . (3.31)

Fig. 3.5 compares the approximation of |yµ| in (3.31) versus the exact result in (3.15). The

correlation peak is visible in the middle and the out-of-phase autocorrelation values to the
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left and right of the peak. It can be seen that the approximations for the correlation peak

and the average of the out-of-phase correlation values match with a sufficiently high degree

of accuracy. The nonzero out-of-phase correlation values limit the reception sensitivity, since

the detection threshold has to be higher than the out-of-phase correlation plus the added

thermal noise.

3.4 Differential Correlation Mean

As illustrated in Fig. 3.1 the distinction of differential correlation as opposed to noncoher-

ent integration is the additional delay element. As formulated in (3.32), each coherently

integrated predetection sample is multiplied with the complex conjugate of the previous

predetection sample. This results in a sensitivity gain when compared to noncoherent inte-

gration, since subsequent predetection samples are uncorrelated. These products are then

further accumulated to form the differential correlation result

Ψ =
M−1∑

µ=1

sµ s∗µ−1 = mΨ + u + v , (3.32)

mΨ =
M−1∑

µ=1

yµ y∗
µ−1 , (3.33)

u =
M−1∑

µ=1

(
wµ y∗

µ−1 + yµ w∗
µ−1

)
, (3.34)

v =
M−1∑

µ=1

wµ w∗
µ−1 , (3.35)

where sµ, yµ, and wµ are defined in (3.14), (3.31), and (3.16), respectively. The probability

density function of the differential correlation result Ψ is subsequently derived.

It can be concluded from (3.10) and (3.16) that the noise wµ is zero-mean Gaussian

distributed and complex-valued. It follows from (3.13) that the real and imaginary parts of

wµ are statistically independent with

E{ℜ{w}ℑ{w}} = 0 . (3.36)

It can be seen in (3.18) that subsequent samples of wµ are statistically independent with

E
{
wµ w∗

µ−1

}
= 0 (3.37)

since the noise samples are derived from disjoint intervals. The expectation value of the
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differential correlation result is

mΨ = E{Ψ} = E

{
M−1∑

µ=1

sµ s∗µ−1

}
= E

{
M−1∑

µ=1

(yµ + wµ) (y∗
µ−1 + w∗

µ−1)

}
=

M−1∑

µ=1

yµ y∗
µ−1

=
M−1∑

µ=1

[√
2 C ds,µ R(τ − τ̂) sinc(fd N Ts) ej [(2 µ+1) π fd N Ts+ϕc]

×
√

2 C ds,µ−1 R(τ − τ̂) sinc(fd N Ts) e−j [(2 µ−1) π fd N Ts+ϕc]
]

mΨ = 2 C R2(τ − τ̂) sinc2(fd N Ts) ej 2 π fd N Ts

M−1∑

µ=1

ds,µ ds,µ−1 .

(3.38)

It can be observed in (3.38) that data bit transitions may lead to a degradation of the

differential correlation result. The data bit value in the µ-th integration interval is denoted by

ds,µ. However, as shown in Table 3.1, there are various GPS and Galileo pilot signals without

navigation data, which gives ds,µ = 1. The sequence of a secondary spreading code on the

other hand is known a-priori, such that it can be acquired just like the primary spreading

code. Furthermore, as shown in Section 2.1, the navigation data streams are supplied by

assistance data, such that they can be compensated. In order to reduce the acquisition

complexity, the secondary spreading code phase could also be supplied as assistance data.

Once the data stream is known, the coherent predetection results sµ can be multiplied with

the data bit value, resulting in

mΨ|ds,µ=1 = 2 (M − 1) C R2(τ − τ̂) sinc2(fd N Ts) ej 2 π fd N Ts . (3.39)

If the differential correlation technique is applied to the data modulated GPS L1-C/A signal

with the coherent integration time N Ts = 1 ms, the bit transitions only occur in average on

2.5 % of the products ds,µ ds,µ−1. This translates to a degradation of the signal power by just

0.22 dB. The degradation is so low, because only opposite signs of ds,µ and ds,µ−1 reduce the

correlation power. No matter what sign the two have, their product is always positive as

long as the signs are equal.

3.5 Differential Correlation Variance

The second component u of the differential correlation result Ψ in (3.32) originates from the

multiplication of the deterministic predetection result yµ and the zero-mean white Gaussian

variable wµ. The differential correlation interval is µ ∈ [0, M − 1]. Using

y−1 = yM = 0 , (3.40)

the accumulation of the zero-mean white Gaussian noise component in (3.32) is rearranged

into

u =
M−1∑

µ=1

(
wµ y∗

µ−1 + yµ w∗
µ−1

)
=

M−1∑

µ=0

(
wµ y∗

µ−1 + w∗
µ yµ+1

)
. (3.41)
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Since the noise samples wµ are statistically independent for different sample indices µ, the

variance of the inphase component of the zero-mean white Gaussian noise component is

calculated as

E
{
(ℜ{u})2

}
= E






(
ℜ
{

M−1∑

µ=0

(
wµ y∗

µ−1 + w∗
µ yµ+1

)
})2






=
M−1∑

µ=0

E
{(

ℜ
{
wµ y∗

µ−1 + w∗
µ yµ+1

})2}
=

M−1∑

µ=0

E
{

(ℜ{wµ (yµ−1 + yµ+1)
∗})2
}

=
M−1∑

µ=0

[
E
{
(ℜ{wµ})2

}
(ℜ{ yµ−1 + yµ+1})2 + E

{
(ℑ{wµ})2

}
(ℑ{ yµ−1 + yµ+1})2

]

=
σ2

w

2

M−1∑

µ=0

|yµ+1 + yµ−1|2

= σ2
w C R2(τ − τ̂) sinc2(fd N Ts)

[
2 +

M−2∑

µ=1

∣∣ds,µ+1 ej 2 π fd N Ts + ds,µ−1e
−j 2 π fd N Ts

∣∣2
]

.

(3.42)

The quadrature variance correspondingly results in

E
{
(ℑ{u})2

}
= E






(
ℑ
{

M−1∑

µ=0

(
wµ y∗

µ−1 + w∗
µ yµ+1

)
})2






=
M−1∑

µ=0

E
{(

ℑ
{
wµ y∗

µ−1 + w∗
µ yµ+1

})2}
=

M−1∑

µ=0

E
{

(ℑ{wµ (yµ−1 − yµ+1)
∗})2
}

=
M−1∑

µ=0

[
E
{
(ℜ{wµ})2

}
(ℜ{ yµ−1 − yµ+1})2 + E

{
(ℑ{wµ})2

}
(ℑ{ yµ−1 − yµ+1})2

]

=
σ2

w

2

M−1∑

µ=0

|yµ+1 − yµ−1|2

= σ2
w C R2(τ − τ̂) sinc2(fd N Ts)

[
2 +

M−2∑

µ=1

∣∣ds,µ+1 ej 2 π fd N Ts − ds,µ−1e
−j 2 π fd N Ts

∣∣2
]

.

(3.43)

The third component v of the differential correlation result Ψ in (3.32) originates from

multiplications of two statistically independent zero-mean Gaussian variables wµ and wµ−1.

The product γ = α β of two uncorrelated real-valued zero-mean Gaussian variables α and

β with equal variances σ2
w/2 obeys the normal product distribution [53]

pγ(γ) =

∫ ∞

−∞

∫ ∞

−∞

exp
(

−α2

σ2
w

)

√
π σw

exp
(

−β2

σ2
w

)

√
π σw

δ(α β − γ) dα dβ =
2 K0

(
2 |γ|
σ2

w

)

π σ2
w

, (3.44)

where δ( · ) is the Dirac delta distribution and

K0(α) =

∫ ∞

0

cos(α sinh(β)) dβ (3.45)



3.5. Differential Correlation Variance 25

P
ro

b
ab

il
it
y

d
en

si
ty

p
γ
(γ

)
Random variable γ

−2σ2
w −σ2

w σ2
w 2σ2

w

1

σ2
w

2

σ2
w

3

σ2
w

0
0

Figure 3.6: Normal product distribution.

the modified Bessel function of the second kind and zero order [54]. Fig. 3.6 illustrates the

normal product distribution. The variance of the normal product distribution is

E
{
γ2
}

=

∫ ∞

−∞

γ2 pγ(γ) dγ =

∫ ∞

−∞

∫ ∞

−∞

α2 β2
exp
(

−α2

σ2
w

)

√
π σw

exp
(

−β2

σ2
w

)

√
π σw

dα dβ

=

∫ ∞

−∞

α2
exp
(

−α2

σ2
w

)

√
π σw

dα

∫ ∞

−∞

γ2
exp
(

−β2

σ2
w

)

√
π σw

dβ =
σ2

w

2

σ2
w

2
=

σ4
w

4
.

(3.46)

The last summand in (3.32) constitutes an accumulation of the four normal product dis-

tributed variables

v =
M−1∑

µ=1

wµ w∗
µ−1 =

M−1∑

µ=1

[
ℜ{wµ}ℜ{wµ−1} + ℑ{wµ}ℑ{wµ−1}

+ j (ℑ{wµ}ℜ{wµ−1} − ℜ{wµ}ℑ{wµ−1})
]
.

(3.47)

Using the central limit theorem, for a sufficiently large M , the variable v converges to a

zero-mean Gaussian variable with the variance

E
{
|v|2
}

= E






∣∣∣∣∣

M−1∑

µ=1

wµ w∗
µ−1

∣∣∣∣∣

2



 =
M−1∑

µ=1

E
{(

ℜ
{
wµ w∗

µ−1

})2
+
(
ℑ
{
wµ w∗

µ−1

})2}

= (M − 1) σ4
w .

(3.48)

Fig. 3.7 compares the Gaussian approximation of v in (3.47) to simulation results where

v is precisely calculated. It can be seen that the approximation holds with a high degree

of accuracy even for low values of the noncoherent integration number M in the order of

10. However, large values of M in the order of 100–1000 are typical for enhanced sensi-

tivity Galileo/GPS reception and result in virtually no difference between the Gaussian

approximation and the precise result.

By combining (3.42), (3.43), and (3.48), the differential correlation result Ψ in (3.32) can

be approximated for sufficiently large M as Gaussian distributed with the mean given in

(3.39). The inphase and quadrature components are statistically independent. The inphase
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Figure 3.7: Comparison of the Gaussian approximation of v in (3.47) versus the simulation
results.

variance is

σ2
Ψ,I = E

{
ℜ{Ψ − E{Ψ}}2

}
=

(M − 1) σ4
w

2
+ σ2

w C R2(τ − τ̂) sinc2(fd N Ts)
[
2 +

M−2∑

µ=1

∣∣ds,µ+1 ej 2 π fd N Ts + ds,µ−1e
−j 2 π fd N Ts

∣∣2
]

(3.49)

and the quadrature variance is

σ2
Ψ,Q = E

{
ℑ{Ψ − E{Ψ}}2

}
=

(M − 1) σ4
w

2
+ σ2

w C R2(τ − τ̂) sinc2(fd N Ts)
[
2 +

M−2∑

µ=1

∣∣ds,µ+1 ej 2 π fd N Ts − ds,µ−1e
−j 2 π fd N Ts

∣∣2
]

. (3.50)

The variables σ2
w, R(τ − τ̂), fd, and ds,µ are specified in (3.19), (3.28), (3.9), and (3.22),

respectively. Using y−1 = yM = 0, the combined inphase and quadrature variance is

σ2
Ψ = E

{
|Ψ − E{Ψ}|2

}
= σ2

Ψ,I + σ2
Ψ,Q

= (M − 1) σ4
w +

σ2
w

2

M−1∑

µ=0

|yµ+1 + yµ−1|2 +
σ2

w

2

M−1∑

µ=0

|yµ+1 − yµ−1|2

= (M − 1) σ4
w + σ2

w

M−1∑

µ=1

(
|yµ|2 + |yµ−1|2

)

= (M − 1) σ4
w + 2 σ2

w C R2(τ − τ̂) sinc2(fd N Ts)

M−1∑

µ=1

(∣∣ds,µ ej 2 π fd N Ts
∣∣2 +

∣∣ds,µ−1e
−j 2 π fd N Ts

∣∣2
)

σ2
Ψ = (M − 1) σ4

w + 4 (M − 1) σ2
w C R2(τ − τ̂) sinc2(fd N Ts) .

(3.51)

As elaborated in Section 3.4, the new pilot signals without data stream offer the advantage

of extended coherent integration intervals to enhance the reception sensitivity. The data
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streams of the non-pilot signals can be provided as assistance data for the same reason. If

the modulation by the navigation data is eliminated or the received signal is a pilot signal

such that ds,µ = 1, then (3.49) and (3.50) can be simplified to

σ2
Ψ,I

∣∣
ds,µ=1

=
(M − 1) σ4

w

2
+ 2 σ2

w C R2(τ − τ̂) sinc2(fd N Ts)
[
1 + 2 (M − 2) cos2(2 π fd N Ts)

] , (3.52)

and

σ2
Ψ,Q

∣∣
ds,µ=1

=
(M − 1) σ4

w

2
+ 2 σ2

w C R2(τ − τ̂) sinc2(fd N Ts)
[
1 + 2 (M − 2) sin2(2 π fd N Ts)

] . (3.53)

It can be observed that the variances of the inphase and quadrature components differ. For

mathematical simplicity and since it is advantageous for indoor reception, the pilot signals

or signals with eliminated navigation data stream are subsequently considered.

3.6 Synchronization Detection

The differential correlation result Ψ as specified in (3.39), (3.52), and (3.53) is complex-

valued, has an unknown signal phase, and is buried in zero-mean complex-valued white

Gaussian noise. As derived in Section 2.3, the estimation of the unknown code phase τ

is best accomplished by maximizing the magnitude or squared magnitude of the differential

correlation result [27, 28]

Λ = |Ψ|2 = ℜ{Ψ}2 + ℑ{Ψ}2 . (3.54)

The squared magnitude usually causes less implementation expenses. The corresponding

signal processing flow is illustrated in Fig. 3.3.

The real and imaginary components of Ψ are Gaussian distributed and have a nonzero

mean. Squaring them leads to a noncentral Chi-squared distributed variable with two

degrees of freedom [28, 55]. The decision statistic Λ is thus the sum of two statistically inde-

pendent noncentral Chi-squared distributed variables with different variances. It therefore

obeys the probability density [56]

pΛ(Λ) =
1

2 σΨ,I σΨ,Q

exp

(
− Λ

2 σ2
Ψ,I

− ℜ{mΨ}2

2 σ2
Ψ,I

− ℑ{mΨ}2

2 σ2
Ψ,Q

)
∞∑

α=0

∞∑

β=0

[
Γ
(

1
2

+ α + β
)

α! β! Γ
(

1
2

+ β
)

×
(√

Λℑ{mΨ}2 σ2
Ψ,I

2ℜ{mΨ}σ4
Ψ,Q

)β (√
Λ
(
σ2

Ψ,Q − σ2
Ψ,I

)

ℜ{mΨ}σ2
Ψ,Q

)α

Iα+β

(√
Λℜ{mΨ}

σ2
Ψ,I

)]
,

(3.55)

where

Γ(α) =

∫ ∞

0

βα−1 exp(−β) dβ (3.56)

is the Gamma function and

Iκ(α) =
1

π

∫ π

0

exp[α cos(β)] cos(κ β) dβ (3.57)
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is the modified Bessel function of the first kind and order κ [53, 54]. The mean value mΨ,

the inphase variance σ2
Ψ,I, and the quadrature variance σ2

Ψ,Q are specified in (3.39), (3.52),

and (3.53), respectively. The corresponding cumulative distribution is [56]

PΛ(Λ) =
σΨ,I

σΨ,Q

exp

(
−ℑ{mΨ}2

2 σ2
Ψ,Q

)
∞∑

α=0

∞∑

β=0

(
Γ
(

1
2

+ α + β
)

α! β! Γ
(

1
2

+ β
)
(
ℑ{mΨ}2 σ2

Ψ,I

2 σ2
Ψ,Q

)β

×
(

σ2
Ψ,Q − σ2

Ψ,I

σ2
Ψ,Q

)α [
1 − Q1+α+β

(
ℜ{mΨ}

σΨ,I

,

√
Λ

σΨ,I

)])
,

(3.58)

where

QM(α, β) = exp

(
−α2 + β2

2

) ∞∑

κ=1−M

(
α

β

)κ

Iκ(α β) (3.59)

is the Marcum-Q function of order M [28].

The reception sensitivity can be approximated with a high degree of accuracy by sub-

stituting the inphase and quadrature variances σ2
Ψ,I and σ2

Ψ,Q by half of their combined

variance σ2
Ψ as specified in (3.51). Simulations of the precise probability of detection for the

differential correlation technique will be presented later in Section 3.8. The simulation feeds

the algorithm in (3.32) with the Gaussian distributed predetection samples sµ as specified

in (3.14), (3.19), and (3.31). There is no observable difference to the approximated result

for long observation periods M N Ts. In case of short observation periods, the approxima-

tion delivers slightly lower probabilities of detection Pd where Pd is low, but both match for

Pd = 90 %, which is typically used to express the reception sensitivity of navigation receivers.

The approximation of Λ obeys the noncentral Chi-squared distribution [28, 56]

pΛ(Λ) ≃ 1

σ2
Ψ

exp

(
−Λ + |mΨ|2

σ2
Ψ

)
I0

(
2
√

Λ |mΨ|2
σ2

Ψ

)
. (3.60)

The corresponding noncentral Chi-squared cumulative distribution is [28, 56]

PΛ(Λ) ≃ 1 − Q1

(√
2 |mΨ|2

σ2
Ψ

,

√
2Λ

σ2
Ψ

)
. (3.61)

3.7 Detection Threshold

The expectation value of the decision statistic Λ is maximal, if the estimated code phase τ̂

matches the actual code phase τ . However, the signal-to-noise ratio of Λ can become very

low if the satellite signal is heavily attenuated or blocked. The lower the signal-to-noise ratio

of Λ is, the higher the chance that an out-of-phase autocorrelation value combined with the

received noise exceeds the actual correlation peak plus noise. Due to the unknown signal

attenuation, it is not reliable to just determine the code phase τ based on the highest value

of Λ. Instead, the highest value of Λ also has to be sufficiently large, such that a correlation

peak can be assumed. It is therefore compared to a detection threshold λ. If Λ exceeds the
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Figure 3.8: Probability distributions of the decision statistic Λ for GPS L1-C/A with
T0 = 290 K, B = 4.092 MHz, F = 3 dB, N Ts = 4 ms, Pf = 10−5, and Pd = 90 %.

threshold, hypothesis H1 is assumed

Λ

H1

R
H0

λ . (3.62)

Hypothesis H1 represents the case where the estimated code phase τ̂ corresponds to the

actual code phase τ . Hypothesis H0 represents the out-of-phase correlation and is assumed

if Λ does not exceed the threshold.

The detection threshold λ of satellite navigation receivers is typically determined with

the Neyman-Pearson criterion [30, 31]. It maximizes the probability of detection Pd for

a given false detection probability Pf [27].

The probability of false detection

Pf = Pr{Λ > λ|H0} =

∫ ∞

λ

pΛ|H0(Λ) dΛ = 1 − PΛ|H0(λ) = Q1

(√
2 |mΨ,H0 |2

σ2
Ψ,H0

,

√
2 λ

σ2
Ψ,H0

)

(3.63)

with

mΨ,H0 = mΨ

∣∣
R2(τ−τ̂)=R2

m
, σ2

Ψ,H0
= σ2

Ψ

∣∣
R2(τ−τ̂)=R2

m
(3.64)

is the probability that the maximum out-of-phase autocorrelation value Rm leads to a false

detection [29]. The maximum out-of-phase autocorrelation values for zero frequency devi-

ation are Rm = 65 N/1023 for GPS L1-C/A and Rm = 0.094 N for Galileo E1-C [5, 29].

Fig. 3.8 illustrates the probability distributions of Λ for hypothesis H0 and H1. Since

Fig. 3.8.a and 3.8.b illustrate the distributions for different accumulation numbers M , dif-

ferent C/N0 values have been chosen to plot hypothesis H1. The C/N0 values have been

selected to illustrate the case for Pd ≃ 90 %. The detection thresholds λ are inserted for the

false detection probability of Pf = 10−5. Without a-priori information, the received signal

power C has to be assumed to be the line-of-sight signal power, as specified in Table 3.1.
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The receiver parameters in Fig. 3.8 are typical values frequently used in similar publica-

tions. The noise temperature T0 = 290 K is a typical indoor temperature. The front-end

filter bandwidth B = 4.092 MHz is the zero-to-zero bandwidth of the Gaileo E1-B/C signals.

The GPS L1-C/A zero-to-zero bandwidth is only half this value. However, the reception

sensitivity is not degraded by extending the bandwidth, as long as the Nyquist sampling

rate is met. The front-end noise figure F = 3 dB is a typical value for enhanced sensitivity

GPS receivers. A single shot positioning receiver typically requires a lower false detection

probability Pf per code phase search bin than a conventional tracking receiver. If false de-

tection occurs during the acquisition process of a tracking receiver, it will be discovered

during the tracking operation and reacquisition takes place until the correct code phase is

determined. However, a single shot positioning receiver only performs the acquisition pro-

cess and not the tracking operation. Based on the code phase estimates of the acquisition

process, it immediately calculates the position. Depending on the navigation algorithm and

the amount of code phase error, the false detection may thus go unnoticed, resulting in a

large positioning error. Experience indicates that a false detection probability in the order

of Pf = 10−5 offers a good trade-off for highly parallel correlation engines, which calculate

several 10,000 correlation results simultaneously. The probability of a false detection for the

complete search is the false detection probability per search bin times the total number of

search bins. The probability of detection Pd = 90 % is often cited in literature to compare

the reception sensitivity of different receiver techniques.

With (3.63), the optimal detection threshold

λ = P−1
Λ|H0

(1 − Pf) =
σ2

Ψ,H0

2

[
Q−1

1,β

(√
2 |mΨ,H0|2

σ2
Ψ,H0

, Pf

)]2

(3.65)

equals the inverse cumulative distribution of Λ for the false detection hypothesis P−1
Λ|H0

(·),
which can be obtained with the inverse first-order Marcum-Q function with respect to its

second argument Q−1
1,β(α, γ). The inverse Marcum-Q function can be solved by numerical

methods [57].

3.8 Differential Correlation Sensitivity

The probability of detection

Pd = Pr{Λ > λ|H1} =

∫ ∞

λ

pΛ|H1(Λ) dΛ = 1 − PΛ|H1(λ) = Q1

(√
2 |mΨ,H1 |2

σ2
Ψ,H1

,

√
2 λ

σ2
Ψ,H1

)

(3.66)

with

mΨ,H1 = mΨ

∣∣
R2(τ−τ̂)=N2 , σ2

Ψ,H1
= σ2

Ψ

∣∣
R2(τ−τ̂)=N2 (3.67)

is the probability that the decision statistic Λ is above the detection threshold λ when the

estimated code phase equals the actual code phase τ̂ = τ . Fig. 3.9 compares the resulting

theoretical probabilities of detection Pd to the precise simulation results without using the
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(b) GPS L1-C/A with fd = 60 Hz.

Figure 3.9: Detection probability with the differential correlation technique for T0 = 290 K,
F = 3 dB, N Ts = 4 ms, and Pf = 10−5.

presented approximations. The dots denoted Simulation in Fig. 3.9 and all corresponding

subsequent figures represent actual simulation results without using any of the approxima-

tions introduced by this work. The dots represent simulations of the signal flow in Fig. 3.3,

where the Galileo/GPS signal plus additive white Gaussian noise samples are used as in-

put. These true simulations are supplied to validate the theoretical derivations of this work.

The solid and dashed lines in Fig. 3.9, on the other hand, are calculated with (3.66) using

(3.65). The sensitivity limit can be found in Fig. 3.9, where the detection probability sud-

denly decreases. The longer the coherent integration period M N Ts, the better the reception

sensitivity. To compare different receiver techniques, the C/N0 value for Pd = 90 % is often

quoted.

It can be observed that the theoretical result matches the simulation result with a very

high degree of accuracy. The detection probability of 90 % will be subsequently used to

characterize the reception sensitivity. In Fig. 3.9 there is no relevant difference between the

simulation and the theoretical derivation for Pd = 90 %. The applied receiver parameters

of T0 = 290 K, F = 3 dB, and Pf = 10−5 are reasonable values for enhanced sensitivity

reception. They are elaborated in Section 3.7 and found frequently in literature to compare

receiver algorithms. The reception sensitivity is independent of the front-end bandwidth B,

as long as the bandwidth is sufficiently wide to capture the signal energy, the corresponding

Nyquist sampling rate is applied, and no interference other than white thermal noise is

considered. The highest C/N0 value in Fig. 3.9 of 45.5 dBHz corresponds to the line-of-sight

signal power without attenuation. The lowest C/N0 value of 10 dBHz is reached by the

combination of all techniques subsequently presented in this work. The noise power spectral

density N0 is defined in (3.12) and does not include the noise figure F .

Fig. 3.10 summarizes the carrier-to-noise PSD values CD/N0, where the differential cor-

relation yields the detection probability Pd = 90 %. The range for CD/N0 is chosen equal

to the total dynamic range that is achieved by the correlation techniques in the subsequent

chapters. All figures summarizing the reception sensitivities in this work are plotted in the

same range of 10–35 dBHz to ease the comparison of the different techniques. The maximum

reception sensitivity in Fig. 3.10 appears to be bound. This effect is due to the out-of-phase

autocorrelation properties of the spreading code. The correlation functions for GPS and



32 Chapter 3. Differential Correlation

 

 

Observation time M N Ts [s]

N Ts = 1 ms, fd = 0
N Ts = 4 ms, fd = 0
N Ts = 20 ms, fd = 0

0 1 2 3 4 5 6 7 8 9
10

10

15

20

25

30

35

C
ar

ri
er

/n
oi

se
P

S
D

C
D

N
0

[d
B

H
z]

(a) GPS L1-C/A.

 

 

Observation time M N Ts [s]

N Ts = 4 ms, fd = 0
N Ts = 20 ms, fd = 0

0 1 2 3 4 5 6 7 8 9
10

10

15

20

25

30

35

C
ar

ri
er

/n
oi

se
P

S
D

C
D

N
0

[d
B

H
z]

(b) Galileo E1-C (pilot only).
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(c) GPS L1-C/A.
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(d) Galileo E1-C (pilot only).

Observation time M N Ts [s]

N Ts = 1 ms, fd = 480 Hz
N Ts = 4 ms, fd = 120 Hz
N Ts = 20 ms, fd = 24 Hz

0 1 2 3 4 5 6 7 8 9
10

10

15

20

25

30

35

C
ar

ri
er

/n
oi

se
P

S
D

C
D

N
0

[d
B

H
z]
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(f) Galileo E1-C (pilot only).

Figure 3.10: Reception sensitivity with the differential correlation technique for T0 = 290 K,
F = 3 dB, Pf = 10−5, and Pd = 90 %.

Galileo have been introduced in Section 3.3. The maximum out-of-phase correlation value

of the GPS L1-C/A spreading codes is Rm = 65 N/1023 [29]. The Galileo E1-B (data) and

E1-C (pilot) signals are transmitted jointly on the inphase component of a single carrier.

The maximum out-of-phase autocorrelation value for despreading the Galileo E1-B/C signals

with the Galileo E1-B or the Galileo E1-C codes is Rm = 0.094 N [5]. It is slightly larger

than for GPS L1-C/A due to cross-correlation between the Galileo E1-B and E1-C signals.

For this reason, the maximum reception sensitivity in Fig. 3.10 is slightly worse for Galileo

E1-C than for GPS L1-C/A. However, the next chapter will introduce an adaptive detection

threshold method, which allows the reception of significantly weaker signals. This technique

will also neutralize the difference between GPS and Galileo in Fig. 3.10.
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3.9 Coherent Integration Sensitivity

As summarized in Sections 2.3 and 2.4, current state-of-the-art GPS receivers utilize either

the squared magnitude of the predetection samples sµ in (3.14) or a noncoherent accumu-

lation of the squared magnitudes of the predetection samples as the decision statistic Λ.

This section compares the reception sensitivities of the differential correlation method to

the technique of long coherent integration.

The squared magnitude of the coherently integrated predetection samples

Λ = |sµ|2 = |yµ + wµ|2 (3.68)

obeys the noncentral Chi-squared distribution with the cumulative density function [28, 56]

PΛ(Λ) = 1 − Q1

(√
2 |yµ|2

σ2
w

,

√
2Λ

σ2
w

)
. (3.69)

The optimal detection threshold

λ = P−1
Λ|H0

(1 − Pf) =
σ2

w

2

[
Q−1

1,β

(√
2 |yµ,H0 |2

σ2
w

, Pf

)]2

(3.70)

with

yµ,H0 = yµ

∣∣
R(τ−τ̂)=Rm

(3.71)

can therefore be obtained with the inverse first-order Marcum-Q function with respect to

its second argument Q−1
1,β(α, Pf). The variables σ2

w and fd are specified in (3.19) and (3.9).

The resulting probability of detection is

Pd = Pr{Λ > λ|H1} = 1 − PΛ|H1(λ) = Q1

(√
2 |yµ,H1 |2

σ2
w

,

√
2λ

σ2
w

)
, (3.72)

with

yµ,H1 = yµ

∣∣
R(τ−τ̂)=N

. (3.73)

Fig. 3.11 illustrates the probabilities of detection Pd. For fd = 0 in Fig. 3.11.a, the

reception sensitivity increases with increasing coherent integration period. However, for

fd = 60 Hz in Fig. 3.11.b, the long integration N Ts = 20 ms is already too long and delivers

a worse performance than N Ts = 1 ms. The reason is that extending the coherent integration

reduces the size of the frequency search bins. The frequency deviation of 60 Hz is already

outside the search bin for N Ts = 20 ms.

Fig. 3.12 summarizes the achievable reception sensitivities for Pd = 90 %. This figure

shows the vulnerability of long coherent integration intervals to nonzero frequency deviations

fd, which makes it unsuitable for deep urban and moderate indoor reception. If the frequency

deviation fd leads to a signal phase in (3.8) which extends too far, then the term sinc(fd N Ts)

in (3.39) has a low value, such that the deterministic component of Λ becomes low. Thus,

the probability of detection may decrease with a growing integration period N Ts. It can be
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(b) GPS L1-C/A with fd = 60 Hz.

Figure 3.11: Detection probability with the long coherent integration method for T0 = 290 K,
F = 3 dB, and Pf = 10−5.
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(d) Galileo E1-C (pilot only).
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(b) Galileo E1-C (pilot only).

Figure 3.12: Reception sensitivity with the long coherent integration method for T0 = 290 K,
F = 3 dB, Pf = 10−5, and Pd = 90 %.

observed in Fig. 3.12 that the coherent integration periods N Ts = 1 ms, N Ts = 4 ms, and

N Ts = 20 ms are suitable for frequency deviations of up to fd = 480 Hz, fd = 120 Hz, and

fd = 24 Hz respectively. The differential correlation technique introduced earlier does not

show this vulnerability to nonzero frequency deviations fd. It can extend the observation

period indefinitely without degrading the reception sensitivity, as illustrated in Fig. 3.10.
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3.10 Noncoherent Integration Sensitivity

Section 2.4 outlines the noncoherent integration as the current state-of-the art method for

enhanced sensitivity reception. As opposed to very long coherent integration intervals, the

noncoherent integration can sustain a certain degree of frequency deviation. Since sµ is a

nonzero-mean white Gaussian variable, the decision statistic of the noncoherent integration

Λ =
M∑

µ=1

|sµ|2 =
M∑

µ=1

|yµ + wµ|2 (3.74)

obeys the noncentral Chi-squared distribution with the cumulative probability density

function [28, 56]

PΛ(Λ) = 1 − QM

(√
2 M |yµ|2

σ2
w

,

√
2Λ

σ2
w

)
. (3.75)

The detection threshold

λ =
σ2

w

2

[
Q−1

M,β

(√
2 M |yµ,H0 |2

σ2
w

, Pf

)]2

(3.76)

can be calculated for a given false detection probability

Pf = Pr{Λ > λ|H0} = 1 − PΛ|H0(λ) = QM

(√
2 M |yµ,H0 |2

σ2
w

,

√
2 λ

σ2
w

)
(3.77)

with the inverse M -th order Marcum-Q function with respect to its second argument

Q−1
M,β(α, Pf) [57]. This threshold yields the probability of detection

Pd = Pr{Λ > λ|H1} = 1 − PΛ|H1(λ) = QM

(√
2 M |yµ,H1 |2

σ2
w

,

√
2λ

σ2
w

)
. (3.78)

Fig. 3.13 illustrates the resulting probabilities of detection Pd. Fig. 3.14 summarizes the

carrier-to-noise PSD values CN/N0 where the noncoherent integration yields the probability

of detection Pd = 90 %. The figures show that the sensitivity of noncoherent integration

improves with increasing observation time. Unlike the coherent integration in Fig. 3.12, the

noncoherent integration does not narrow the frequency search bins. The reception sensitivity

of the noncoherent integration appears quite similar to the one for the differential correlation

in Fig. 3.10. The sensitivities in Fig. 3.14 are compared to the sensitivities of the differential

correlation method in the next section to determine the sensitivity gain of the differential

correlation technique. Both methods seem to converge to a sensitivity boundary, which

is slightly higher for Galileo than for GPS. The bound is due to the non-zero out-of-phase

autocorrelation values of the spreading codes. The bound for Galileo is slightly higher due to

the cross-correlation between the Galileo E1-B and E1-C signals. The details are elaborated

in Section 3.8. The sensitivity bound will be significantly lowered by the technique to

adaptively lower the detection threshold, which is introduced in Chapter 4. This method

will also balance the difference between Galileo and GPS.
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(b) GPS L1-C/A with fd = 60 Hz.

Figure 3.13: Detection probability with the noncoherent integration method for T0 = 290 K,
F = 3 dB, N Ts = 4 ms, and Pf = 10−5.

3.11 Sensitivity Gain

Fig. 3.15 shows the sensitivity gain CN/CD of the differential correlation as described in

Section 3.8 versus the state-of-the-art noncoherent integration method described in Section

3.10. The gain in dB is the difference between the values of Fig. 3.10 and 3.14. Since the

reception sensitivity of differential correlation and noncoherent integration degrade the same

way for an increasing frequency deviation fd, their difference becomes independent of fd. The

gain in Fig. 3.15 is not parameterized by fd as it applies to an arbitrary fd within the correct

frequency search bin. It can be observed that the sensitivity gain is initially higher for short

observation periods M N Ts and reaches values of up to 2.7 dB. However, the gain decreases

for longer observation periods. The reason for it is that the sensitivities in Fig. 3.10 and 3.14

are bound by the out-of-phase autocorrelation property of the spreading code. The adaptive

detection threshold solution in the next chapter further improves the sensitivity gain of the

differential correlation compared to the noncoherent integration.

3.12 Code Phase Estimation

The signal acquisition method described in Section 3.6 is the first step to estimate the code

phase τ . It allows the unknown code phase to be narrowed down. Fig. 3.1 illustrates the

highly parallel correlation engine, which simultaneously calculates the decision statistics Λι

for all possible fractional code delays τ̂ι. To prevent false acquisitions, the decision statistic

Λι has to be higher than the detection threshold λ. In case multiple Λι exceed λ, many

different strategies are possible. Amongst others, one could accumulate all Λι over the length

of the correlation peak. Alternatively one could continue the integration until only a single

block of neighboring Λι exceeds all other Λι by a certain amount. These strategies allow

selecting the code phase search bin, which is assumed to contain the correct code phase τ .

However, this limits the resolution of the estimated code phase τ̂ to the size of the code phase

search bins, which is insufficient for most positioning applications. A higher accuracy can be

obtained by interpolating the actual code phase τ in between the samples of the correlation

peak. Many different interpolation schemes are possible. The standard approach for GPS
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(d) Galileo E1-C (pilot only).
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(f) Galileo E1-C (pilot only).

Figure 3.14: Reception sensitivity with the noncoherent integration method for T0 = 290 K,
F = 3 dB, Pf = 10−5, and Pd = 90 %.

receivers is early-late discrimination [58, 59]. This method arises automatically when the

rectangular spreading pulse form is considered. The added advantage of this method is that

its accuracy can be derived in closed form [58, 60]. The target of this work is to evaluate

the performance of the differential correlation technique. After evaluating the reception

sensitivity, the second question to be answered is how does it affect the positioning accuracy.

The performance of early-late discrimination for noncoherent integration is well-published

in literature [60, 61]. It is also possible to algebraically derive the accuracy of early-late

discrimination for differential correlation in closed form. The early-late method therefore

offers the opportunity to compare the accuracy of differential correlation and noncoherent

integration in all details for the most widely used code phase interpolation method.
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(b) Galileo E1-C (pilot only).

Figure 3.15: Sensitivity gain of the differential correlation technique for T0 = 290 K,
F = 3 dB, Pf = 10−5, and Pd = 90 %.
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(d) BOC(1, 1) discrimination.

Figure 3.16: Code discrimination function for T0 = 290 K, F = 3 dB, δ = 1/B,
B = 4.092 MHz, C/N0 = 25 dBHz, N Ts = 4 ms, M N Ts = 1 s.

3.13 Early-Late Discrimination Function

With early-late discrimination, the two correlation values to both sides of the code phase

search bin are evaluated. Fig. 3.16.a shows a BPSK correlation peak, while Fig. 3.16.c illus-

trates a BOC(1, 1) correlation peak. Two decision statistics are marked with a cross in each

of the plots. The decision statistic to the left of the code phase interval is denoted as the

early decision statistic ΛE = |ΨE|2. It originates from the early estimated code phase τ̂E and
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Figure 3.17: Fractional code phase estimation with differential correlation technique.

has the mean

mΛ,E = E{ΛE} = E
{
|ΨE|2

}
= |mΨ,E|2 + σ2

Ψ,E (3.79)

with

mΨ,E = mΨ

∣∣
R2(τ−τ̂)=R2(τ−τ̂E)

, σ2
Ψ,E = σ2

Ψ

∣∣
R2(τ−τ̂)=R2(τ−τ̂E)

. (3.80)

The decision statistic to the right of the code phase interval is denoted as the late decision

statistic ΛL = |ΨL|2. It originates from the late estimated code phase τ̂L and has the mean

mΛ,L = E{ΛL} = E
{
|ΨL|2

}
= |mΨ,L|2 + σ2

Ψ,L (3.81)

with

mΨ,L = mΨ

∣∣
R2(τ−τ̂)=R2(τ−τ̂L)

, σ2
Ψ,L = σ2

Ψ

∣∣
R2(τ−τ̂)=R2(τ−τ̂L)

. (3.82)

In a second step, the true code phase τ is estimated with the code discrimination function

∆ = ΛE − ΛL = |ΨE|2 − |ΨL|2 . (3.83)

Fig. 3.17 shows the corresponding signal processing steps. It illustrates the two pathes of

the receiver that are utilized to calculate the discrimination function. The expectation value

of the discrimination function is

m∆ = E{∆} = E
{
|ΨE|2 − |ΨL|2

}
= σ2

Ψ,E + |mΨ,E|2 − σ2
Ψ,L − |mΨ,L|2

= 4 (M − 1) σ2
w C

[
R2(τ − τ̂E) − R2(τ − τ̂L)

]
sinc2(fd N Ts)

+ 4 (M − 1)2 C2
[
R4(τ − τ̂E) − R4(τ − τ̂L)

]
sinc4(fd N Ts) .

(3.84)

Fig. 3.16 illustrates the relationship between the decision statistics and the code discrimi-

nation function. Fig. 3.16.a and 3.16.b present the decision statistic Λ as a function of the

estimated code phase τ̂ . They show the correlation peak and two exemplary early and late

sampling values ΛE and ΛL. The discrimination function ∆ is provided in Fig. 3.16.c and

3.16.d. It indicates whether the true correlation peak is to the left or to the right of the

initial mean code phase estimation error

τǫ = τ − τ̂E + τ̂L

2
, (3.85)

where τ is the true code phase. The distance between the early and late code phase is

subsequently denoted as

δ = τ̂L − τ̂E . (3.86)
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A large positive value of ∆ originates from a large negative value of τǫ and vice versa.

The initial mean code phase estimation error can be obtained from the linear part of the

discrimination function as

τǫ =
m∆

∂m∆

∂τǫ

. (3.87)

With (3.85) and (3.87), the actual code phase is given by

τ =
τ̂E + τ̂L

2
+

m∆

∂m∆

∂τǫ

. (3.88)

Fig. 3.16.c and 3.16.d show that the linear part of the discrimination function approximates

the discrimination function with a high degree of accuracy. For sufficiently small code phase

errors τǫ, the code phase can be estimated as

τ̂ =
τ̂E + τ̂L

2
+

∆
∂m∆

∂τǫ

∣∣
τǫ=0

. (3.89)

3.14 Differential Correlation Accuracy

The ranging accuracy of the code phase estimation with the differential correlation method

is derived in this section. The estimation of τ in (3.89) has the mean

mτ̂ = E{τ̂} =
τ̂E + τ̂L

2
+

E{∆}
∂m∆

∂τǫ

∣∣
τǫ=0

=
τ̂E + τ̂L

2
+

m∆

∂m∆

∂τǫ

∣∣
τǫ=0

(3.90)

and the variance

σ2
τ̂ = E

{
(τ̂ − mτ̂ )

2} =
E
{
(∆ − m∆)2}
(

∂m∆

∂τǫ

)2 =
σ2

∆(
∂m∆

∂τǫ

)2 . (3.91)

In order to derive σ2
τ̂ , the derivative ∂m∆/∂τǫ is calculated next and the variance σ2

∆ there-

after.

If the initial mean code phase error is bound by the size of the code phase search bin

−δ

2
6 τǫ 6

δ

2
, (3.92)

then the early and late correlation functions can be expressed as

R(τ − τ̂E) = R

(
τ − τ̂E + τ̂L

2
+

δ

2

)
= R

(
τǫ +

δ

2

)

=

(
1 − |τǫ + δ/2|

η Tc

)
N =

(
1 − δ

2 η Tc

− τǫ

η Tc

)
N

(3.93)

and

R(τ − τ̂L) = R

(
τ − τ̂E + τ̂L

2
− δ

2

)
= R

(
τǫ −

δ

2

)

=

(
1 − |τǫ − δ/2|

η Tc

)
N =

(
1 − δ

2 η Tc

+
τǫ

η Tc

)
N .

(3.94)
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The factor η is a correction factor to model the correlation peaks for BPSK and BOC(1, 1)

modulation. As can be seen in Fig. 3.16, the correlation peak for BOC(1, 1) modulation is

steeper. It is modelled with η = 1/3 in (3.93) and (3.94), while η = 1 corresponds to BPSK

modulation. This leads to

R2(τ − τ̂E) − R2(τ − τ̂L) = −4

(
1 − δ

2 η Tc

)
N2 τǫ

η Tc

= −4 R

(
δ

2

)
N τǫ

η Tc

(3.95)

and

R4(τ − τ̂E) − R4(τ − τ̂L) = −8

(
1 − δ

2 η Tc

)3

N4 τǫ

η Tc

− 8

(
1 − δ

2 η Tc

)
N4 τ 3

ǫ

η3 T 3
c

= −8 R3

(
δ

2

)
N τǫ

η Tc

− 8 R

(
δ

2

)
N3 τ 3

ǫ

η3 T 3
c

.

(3.96)

Inserting (3.95) and (3.96) into (3.84) yields

m∆ = −16 (M − 1) σ2
w C R

(
δ

2

)
N τǫ

η Tc

sinc2(fd N Ts)

− 32 (M − 1)2 C2 R3

(
δ

2

)
N τǫ

η Tc

sinc4(fd N Ts)

− 32 (M − 1)2 C2 R

(
δ

2

)
N3 τ 3

ǫ

η3 T 3
c

sinc4(fd N Ts) .

(3.97)

Consequently, the slope of τǫ in the origin as illustrated in Fig. 3.16(b) is

∂m∆

∂τǫ

∣∣∣∣
τǫ=0

= −16 (M − 1) σ2
w C R

(
δ

2

)
N

η Tc

sinc2(fd N Ts)

− 32 (M − 1)2 C2 R3

(
δ

2

)
N

η Tc

sinc4(fd N Ts)

. (3.98)

The other required term for the calculation of σ2
τ̂ is the variance of the discrimination

function

σ2
∆ = E

{
(∆ − m∆)2

}
= E

{(
|ΨE|2 − |ΨL|2 − m∆

)2}

= E
{
|ΨE|4 + |ΨL|4 + m2

∆ − 2 |ΨE|2 |ΨL|2 − 2 |ΨE|2 m∆ + 2 |ΨL|2 m∆

}
.

(3.99)

The fourth moment of a complex-valued Gaussian variable with statistically independent

real and imaginary components results in [28, 53]

E
{
|Ψ|4

}
= σ4

Ψ + 2 σ2
Ψ |mΨ|2 +

(
σ2

Ψ + |mΨ|2
)2

. (3.100)

The squared discrimination mean is

m2
∆ =

(
σ2

Ψ,E + |mΨ,E|2
)2−2

(
σ2

Ψ,E + |mΨ,E|2
) (

σ2
Ψ,L + |mΨ,L|2

)
+
(
σ2

Ψ,L + |mΨ,L|2
)2

. (3.101)
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The correlation factor between the early and late predetection noise wµ,E and wµ,L can be

derived from (3.16), (3.28), (3.36), and (3.37) as

E
{
wµ,E w∗

µ,L

}

= E









(µ+1) N−1∑

ν=µ N

nν c⌊(ν Ts+τ̂E)/Tc⌋ q⌊(ν Ts+τ̂E)/Tc⌋








(µ+1) N−1∑

ν=µ N

nν c⌊(ν Ts+τ̂L)/Tc⌋ q⌊(ν Ts+τ̂L)/Tc⌋




∗



=

(µ+1) N−1∑

ν=µ N

E
{(

nν c⌊(ν Ts+τ̂E)/Tc⌋ q⌊(ν Ts+τ̂E)/Tc⌋

) (
nν c⌊(ν Ts+τ̂L)/Tc⌋ q⌊(ν Ts+τ̂L)/Tc⌋

)∗}

= E{nν n∗
ν}

(µ+1) N−1∑

ν=µ N

c⌊(ν Ts+τ̂E)/Tc⌋ q⌊(ν Ts+τ̂E)/Tc⌋ c⌊(ν Ts+τ̂L)/Tc⌋ q⌊(ν Ts+τ̂L)/Tc⌋

= E
{
|nν |2

}
R(τ̂E − τ̂L) =

R(τ̂E − τ̂L)

N
σ2

w =

(
1 − δ

η Tc

)
σ2

w =
R(δ)

N
σ2

w .

(3.102)

The expectation value of the product of two statistically dependent central Chi-squared

distributed variables can be found with help of the sum of two statistically dependent central

Chi-squared distributed variables

E
{
|wµ,E|2 |wµ,L|2

}
=

1

2
E
{(

|wµ,E|2 + |wµ,L|2
)2 − |wµ,E|4 − |wµ,L|4

}
. (3.103)

The characteristic function of the sum of two statistically dependent central Chi-squared

distributed variables with two degrees of freedom and the correlation factor R(δ)/N is [56]

Φ(j ω) =
1 − R2(δ)

N2[
1 − j ω

(
1 − R2(δ)

N2

)
σ2

w

]2
− R2(δ)

N2

. (3.104)

The second derivative of (3.104) yields the second moment

E
{(

|wµ,E|2 + |wµ,L|2
)2}

= (−j)2 ∂2Φ(j ω)

∂ω2

∣∣∣∣
ω=0

= 6 σ4
w + 2

R2(δ)

N2
σ4

w . (3.105)

Inserting (3.105) into (3.103) gives

E
{
|wµ,E|2 |wµ,L|2

}
=

(
1 +

R2(δ)

N2

)
σ4

w . (3.106)

From (3.39), (3.51), and (3.106) follows

E
{
|ΨE|2 |ΨL|2

}
=
(
σ2

Ψ,E + |mΨ,E|2
) (

σ2
Ψ,L + |mΨ,L|2

)

+
R2(δ)

N2
σ2

Ψ,E σ2
Ψ,L + 2

R(δ)

N
σΨ,E σΨ,L |mΨ,E| |mΨ,L| .

(3.107)

Inserting (3.97), (3.100), (3.101), and (3.107) into (3.99) yields the discrimination variance

σ2
∆ = σ4

Ψ,E + σ4
Ψ,L + 2 σ2

Ψ,E |mΨ,E|2 + 2 σ2
Ψ,L |mΨ,L|2

− 2
R2(δ)

N2
σ2

Ψ,E σ2
Ψ,L − 4

R(δ)

N
σΨ,E σΨ,L |mΨ,E| |mΨ,L|

. (3.108)
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(a) GPS L1-C/A with fd = 0.
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(b) GPS L1-C/A with fd = 60 Hz.

Figure 3.18: Range estimation with the differential correlation technique for T0 = 290 K,
F = 3 dB, N Ts = 4 ms, B = 4.092 MHz, and δ = 1/B.

The code phase estimation variance σ2
τ̂ is thus obtained by inserting (∂m∆/∂τǫ)|τǫ=0 as

specified in (3.98) and σ2
∆ as specified in (3.108) into (3.91). Multiplying it with the squared

speed of light c = 299.8 × 106 m/s, yields the variance of the estimated distance between

receiver and satellite for the differential correlation

σ2
ρ̂,D = c2 σ2

τ̂ =
c2 σ2

∆(
∂m∆

∂τǫ

∣∣
τǫ=0

)2 . (3.109)

The variance of the range estimate σ2
ρ̂,D in (3.109) decreases with a decreasing discrimination

spacing δ. However, it can be shown that a discrimination spacing below the Nyquist

sampling period

δ =
1

B
(3.110)

does not generate any further ranging accuracy improvements [60, 61]. The narrow correla-

tion technique requires a correspondingly wide filter bandwidth. The discrimination spacing

δ = 1/B is hence subsequently applied.

Fig. 3.18 shows the standard deviation of the range estimation for the differential correla-

tion σρ̂,D as a function of the carrier-to-noise PSD C/N0. The accuracy is good for sufficiently

high signal-to-noise ratios. If Fig. 3.18 is viewed together with Fig. 3.9 it becomes apparent

that the very low signal-to-noise ratios do not even permit signal acquisition and are thus

irrelevant. The cross marks in Fig. 3.18 indicate the accuracy obtained for the sensitivity

limit, where the C/N0 values yield Pd = 90 %, as shown in Fig. 3.9.

Fig. 3.19 shows the standard deviation of the range estimates σρ̂,D as a function of the

observation time M N Ts. It follows the presentation of the reception sensitivity as a function

of M N Ts in Fig. 3.10 and 3.14. The receiver parameters T0 = 290 K, F = 3 dB are elabo-

rated in Section 3.7. For mass market receivers, the front-end filter bandwidth B is typically

set to around the zero-to-zero bandwidth of the satellite signal, which is B = 4.092 MHz for

Galileo E1-B/C. A higher bandwidth would require a correspondingly higher sampling rate.

It would increase the implementation costs of the entire signal processing chain without im-

proving the reception sensitivity. The filter bandwidth, however, does affect the range errors
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(b) Galileo E1-C (pilot only).

Figure 3.19: Range estimation accuracy at the sensitivity limit with the differential correla-
tion technique for T0 = 290 K, F = 3 dB, B = 4.092 MHz, and δ = 1/B.

due to thermal noise. To allow for direct comparison, the same bandwidth B = 4.092 MHz

has been applied to the GPS and Galileo simulations in this thesis. The smaller the distance

between the early and late code delay δ, the higher is the range accuracy. It is set to 1/B,

which corresponds to exactly one sample difference for the Nyquist sampling rate. Any

smaller δ would not further improve the positioning accuracy. The aim of Fig. 3.19 is to pro-

vide the data to calculate how much the differential correlation can improve the positioning

accuracy as compared to the state-of-the-art noncoherent integration. Obviously, the accu-

racy of the range estimate depends on the carrier-to-noise PSD C/N0 of the received signal.

In order to allow a comparison of the accuracies provided by GPS and Galileo using the

differential correlation and the noncoherent integration, their range estimates are calculated

for the same C/N0 values. The weakest reception sensitivity is obtained by the state-of-

the-art noncoherent integration for Galileo. All range accuracies are therefore subsequently

calculated for the CN/N0 values where the noncoherent integration allows the positioning

with Pd = 90 %. These CN/N0 values are presented in Fig. 3.14. For N Ts = 4 ms and

N Ts = 20 ms, the CN/N0 values for Galileo have been utilized for the accuracy simulations

of GPS and Galileo. Since the CN/N0 values in Fig. 3.14 rise for an increasing frequency

deviation fd, the range accuracies in Fig. 3.19 turn out to be independent of fd. Since the

probability of detection is kept constant at Pd = 90 %, the degrading effect of the frequency

deviation is compensated with a higher CN/N0, such that σρ̂,D becomes independent of fd.

The range estimation accuracy in Fig. 3.19 shows better values for Galileo E1-C than

for GPS L1-C/A, since the Galileo signal is BOC(1, 1)-modulated and hence has a steeper

correlation peak. The correlation peaks, as well as the resulting discrimination functions for

GPS and Galileo are illustrated in Fig. 3.16. The steeper correlation peak yields a larger

slope of the discrimination function for the BOC-modulated Galileo signals, which translates

in a a higher range accuracy. However, since Fig. 3.19 is mainly provided as a reference to

compare the accuracies of differential correlation and nocoherent integration, the actual

values are less significant than their ratio. The presented range estimation accuracies are

relatively high, since multipath errors are not considered. The estimation errors hence result

from the additive white Gaussian noise and are still larger than the Cramer-Rao lower

bound [29].
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3.15 Noncoherent Integration Accuracy

In this section, the ranging accuracy is derived for the state-of-the-art noncoherent integra-

tion method as described in Sections 2.4 and 3.10. The early decision statistic for noncoherent

integration has the mean [28, 53]

mΛ,E = E {ΛE} = E

{
M−1∑

µ=0

|yµ,E + wµ,E|2
}

= M
(
σ2

w + |yµ,E|2
)

, (3.111)

with

yµ,E = yµ

∣∣
R(τ−τ̂)=R(τ−τ̂E)

. (3.112)

The late decision statistic has correspondingly the mean

mΛ,L = E {ΛE} = E

{
M−1∑

µ=0

|yµ,L + wµ,L|2
}

= M
(
σ2

w + |yµ,L|2
)

, (3.113)

with

yµ,L = yµ

∣∣
R(τ−τ̂)=R(τ−τ̂L)

. (3.114)

The code discrimination function

∆ = ΛE − ΛL (3.115)

therefore has the expectation value

m∆ = E{∆} = E{ΛE − ΛL} = M
(
|yµ,E|2 − |yµ,L|2

)

= 2 M C
[
R2(τ − τ̂E) − R2(τ − τ̂L)

]
sinc2(fd N Ts)

= −8 M C R

(
δ

2

)
N τǫ

η Tc

sinc2(fd N Ts) .

(3.116)

The derivative with respect to τǫ yields

∂m∆

∂τǫ

= −8 M C R

(
δ

2

)
N

η Tc

sinc2(fd N Ts) . (3.117)

The variance of the discrimination function is

σ2
∆ = E

{
(∆ − m∆)2

}
= E

{
(ΛE − ΛL − m∆)2}

= E
{
Λ2

E + Λ2
L + m2

∆ − 2 ΛE ΛL − 2 ΛE m∆ + 2 ΛL m∆

}
.

(3.118)

The second moment of a noncentral Chi-squared distributed variable is [28, 53]

E
{
Λ2
}

= M σ4
w + 2 M σ2

w |yµ|2 + M2
(
σ2

w + |yµ|2
)2

. (3.119)

With (3.103) and (3.107), the expectation value of the product of the two statistically de-

pendent noncentral Chi-squared distributed decision statistics ΛE and ΛL results in

E{ΛE ΛL} = E

{(
M−1∑

µ=0

|yµ,E + wµ,E|2
)(

M−1∑

µ=0

|yµ,L + wµ,L|2
)}

= M2
(
σ2

w + |yµ,E|2
) (

σ2
w + |yµ,L|2

)
+ M

R2(δ)

N2
σ4

w + 2 M
R(δ)

N
σ2

w |yµ,E| |yµ,L| .

(3.120)
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(a) GPS L1-C/A with fd = 0.
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(b) GPS L1-C/A with fd = 60 Hz.

Figure 3.20: Range estimation with the noncoherent integration method for T0 = 290 K,
F = 3 dB, N Ts = 4 ms, B = 4.092 MHz, and δ = 1/B.

Inserting (3.116), (3.119), and (3.120) into (3.118) finally yields the variance of the discrim-

ination function

σ2
∆ = 2 M

(
1 − R2(δ)

N2

)
σ4

w + 2 M σ2
w

(
|yµ,E|2 + |yµ,L|2 − 2

R(δ)

N
|yµ,E| |yµ,L|

)
. (3.121)

The variance of the range estimation is hence

σ2
ρ̂,N =

c2 σ2
∆(

∂m∆

∂τǫ

)2 , (3.122)

where ∂m∆/∂τǫ and σ2
∆ are defined in (3.117) and (3.121).

Fig. 3.20 shows the ranging accuracy of the noncoherent integration method as a function

of the carrier-to-noise PSD C/N0. The higher ranging inaccuracies for very low C/N0 values

are irrelevant, since these signal-to-noise ratios do not even permit the signal acquisition,

as illustrated in Fig. 3.13. The cross marks in Fig. 3.20 denote the sensitivity limit with

Pd = 90 % in Fig. 3.13.

Fig. 3.21 shows the standard deviation of the range estimates σρ̂,N for the noncoherent

integration approach with equal carrier-to-noise PSD CN/N0 as applied for the accuracy of

the differential correlation in Fig. 3.19. The two figures are therefore directly comparable,

as the same receiver parameters are applied for both. The accuracy gain of the differential

correlation is provided in the next section based on the ratio of the values in the two figures.

The applied CN/N0 values are the ones where the noncoherent integration allows positioning

with Pd = 90 %, as shown in Fig. 3.14. Except for N Ts = 1 ms, the Galileo CN/N0 values

have been applied for the accuracy simulation of GPS and Galileo. Since the CN/N0 values in

Fig. 3.14 rise for an increasing frequency deviation fd, such that the probability of detection

is constant, the range accuracies in Fig. 3.21 are independent of fd. The accuracy for Galileo

is higher in Fig. 3.21 for the same reasons as stated in the previous section for the differential

correlation in Fig. 3.19.
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(a) GPS L1-C/A.
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(b) Galileo E1-C (pilot only).

Figure 3.21: Range estimation accuracy at the sensitivity limit with the noncoherent inte-
gration method for T0 = 290 K, F = 3 dB, B = 4.092 MHz, and δ = 1/B.

Carrier/noise PSD C/N0 [dBHz]

M N Ts = 10 s
M N Ts = 1 s
M N Ts = 0.1 s

0

0.3

0.6

0.9

1.2

1.5

1.8

10 15 20 25 30 35 40 45

R
el

at
iv

e
ac

cu
ra

cy
σ

ρ̂
,N

σ
ρ̂

,D

(a) GPS L1-C/A with fd = 0.
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(b) GPS L1-C/A with fd = 60 Hz.

Figure 3.22: Relative accuracy of the differential correlation technique for T0 = 290 K,
F = 3 dB, N Ts = 4 ms, B = 4.092 MHz, and δ = 1/B.

3.16 Accuracy Improvement

Fig. 3.22 compares the ranging accuracies of the differential correlation and the noncoherent

integration procedures. It shows the ratio of the range standard deviations of the noncoherent

integration method σρ̂,N and the differential correlation technique σρ̂,D. The relative accuracy

in Fig. 3.22 is obtained from the ratio of the values in Fig. 3.18 and 3.20. The range accuracy

of the differential correlation is 39 % to 77 % more accurate than range accuracy of the

noncoherent integration method.

Fig. 3.23 compares the ranging accuracies for the carrier-to-noise PSD CN/N0 which yields

the detection probability PD = 90 % for the state-of-the-art noncoherent integration. The

relative accuracy in Fig. 3.23 is obtained from the ratio of the values in Fig. 3.19 and 3.21.

It shows the accuracies for the same receiver parameters as used in Fig. 3.10 and 3.14. The

carrier-to-noise PSD CN/N0 which permits the detection probability Pd = 90 % can be

retrieved from Fig. 3.14 for various observation times M N Ts. The range accuracy of the

differential correlation technique becomes as much as 47 % to 80 % better than the range

accuracy of the noncoherent integration method. It is slightly larger for shorter coherent

integration periods and remains fairly constant over the range of observation periods M N,Ts.
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(a) GPS L1-C/A.
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(b) Galileo E1-C (pilot only).

Figure 3.23: Accuracy improvement of the differential correlation technique for T0 = 290 K,
F = 3 dB, B = 4.092 MHz, and δ = 1/B.

3.17 Conclusion

Differential correlation is an attractive alternative to the state-of-the-art noncoherent inte-

gration method. The noncoherent integration procedure accumulates the squared magnitude

of the coherently integrated predetection samples and thereby suffers from a squaring loss.

The differential correlation approach on the other hand multiplies each predetection sample

with the complex conjugate of its predecessor and accumulates these products. Since suc-

cessive predetection samples are uncorrelated, the differential correlation technique yields

a better reception sensitivity than the noncoherent integration routine. The product of

two uncorrelated Gaussian variables has a lower variance than the product of two identi-

cal Gaussian variables. The sensitivity gain of the differential correlation method starts off

with up to 2.7 dB for very short observation periods, but decreases substantially for very long

observation periods. The sensitivity gain is independent of frequency deviations. Unlike the

long coherent integration method, the differential correlation technique does not increase the

number of frequency search bins over that of the noncoherent integration method. Since the

decision statistics obtained from the differential correlation method have a lower variance,

the code discrimination function for the differential correlation result has a lower variance,

too. This effect improves the positioning accuracy. The differential correlation technique

increases the accuracy of the estimated receiver-satellite distance to between 47 % and 80 %

of the noncoherent integration results.

The decrease in sensitivity gain for very long observation periods is due to the asymptotic

reception sensitivity characteristic of differential correlation and noncoherent integration.

While both reception sensitivities converge, their slope reduces and their difference decreases.

The adaptation of the detection threshold, which will be introduced in the next chapter,

reduces the asymptotic effect. It not only enhances the reception sensitivity, but also leads

to a sustained gain of the differential correlation technique over the noncoherent integration,

also for very long observation periods.
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Chapter 4

Adaptive Detection Threshold

The last chapter has shown that the reception sensitivity of both, the differential correlation

and the state-of-the-art noncoherent integration, exhibit an asymptotic characteristic. Al-

though the differential correlation yields a higher reception sensitivity than the noncoherent

integration, both have problems with highly attenuated signals. The sensitivity improvement

of extended observation periods decreases with increasing observation periods. The reason

for this effect lies in out-of-phase autocorrelation values.

Fig. 4.1 shows examples of GPS correlation functions plus added thermal noise for different

carrier-to-noise PSD values C/N0. The graph to the left displays the case of line-of-sight

propagation. The line-of-sight correlation peak is out of the display range at 2.02 × 106 σ4
w.

The adaptive detection threshold λ is drawn such that the out-of-phase autocorrelation

values plus the thermal noise do not exceed λ with a probability greater than Pf = 10−5.

The graph to the right displays the case of a moderate indoor signal with a carrier-to-noise

PSD C/N0 = 25 dBHz. It can be observed that both, the correlation peak and the out-

of-phase autocorrelation values are reduced. The correlation peak is reduced to an extent

that it cannot be detected any more with the previous detection threshold λ. However, if

the detection threshold is lowered for the lower signal power, the correlation peak can still

be detected without violating the probability of false detection Pf = 10−5. The reason is
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(a) GPS L1-C/A with C/N0 = 45.5 dBHz.
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(b) GPS L1-C/A with C/N0 = 25 dBHz.

Figure 4.1: Correlation functions with additive thermal noise and detection threshold λ for
T0 = 290 K, F = 3 dB, N Ts = 20 ms, M N Ts = 0.1 s, and Pf = 10−5.
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the concurrent reduction of both, the correlation peak and the out-of-phase autocorrelation

values.

The reception sensitivity can hence be improved if the receiver first estimates the received

signal power and then correspondingly adjusts the detection threshold. The adaptive detec-

tion threshold substantially improves the reception sensitivities of the differential correlation

technique and the noncoherent integration method.

4.1 Attenuation Mitigation

As introduced in Section 3.7, GPS receivers typically employ the Neyman-Pearson crite-

rion, where the false detection probability Pf must not exceed a fixed number. The prob-

ability of detection Pd is maximized by choosing the lowest detection threshold λ without

exceeding the maximum false detection probability. False detection is caused by out-of-phase

autocorrelation, cross-correlation, and additive noise.

If the received signal strength decreases due to attenuation, the correlation peak and the

out-of-phase autocorrelation values also decrease. If the line-of-sight detection threshold is

used, then the probability of detection declines. However, the false detection probability

also declines due to lower out-of-phase autocorrelation values. The detection threshold can

be lowered for weaker signals in order to make full use of the maximum acceptable false

detection probability. This increases the probability of detection for the correlation peak

and therefore the reception sensitivity.

In order to optimally adjust the detection threshold, knowledge of the probability dis-

tribution of the received signal is required. If its correlation function, specified in (3.28)

as

R(τ − τ̂) =
N−1∑

ν=0

c⌊(ν Ts+τ)/Tc⌋ q⌊(ν Ts+τ)/Tc⌋ c⌊(ν Ts+τ̂)/Tc⌋ q⌊(ν Ts+τ̂)/Tc⌋

≃ 1

Ts

∫ N Ts

0

c(t + τ) q(t + τ) c(t + τ̂) q(t + τ̂) dt ,

(4.1)

was assumed to be ideal, its out-of-phase autocorrelation and cross-correlation values would

all be zero. In this case, the differential correlation mean, given in (3.39) as

mΨ = 2 (M − 1) C R2(τ − τ̂) sinc2(fd N Ts) ej 2 π fd N Ts (4.2)

would be zero for hypothesis H0. The cumulative probability density function of the decision

statistic Λ, defined in (3.61) as

PΛ(Λ) ≃ 1 − Q1

(√
2 |mΨ|2

σ2
Ψ

,

√
2Λ

σ2
Ψ

)
(4.3)

would thus transform from a noncentral Chi-Squared to a central Chi-Squared distri-

bution. The differential correlation variance in (3.51)

σ2
Ψ = (M − 1) σ4

w + 4 (M − 1) σ2
w C R2(τ − τ̂) sinc2(fd N Ts) (4.4)
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would be reduced to (M − 1) σ4
w for hypothesis H0. Thus, the detection threshold, which is

defined in (3.65) by

λ = P−1
Λ|H0

(1 − Pf) =
σ2

Ψ,H0

2

[
Q−1

1,β

(√
2 |mΨ,H0 |2

σ2
Ψ,H0

, Pf

)]2

(4.5)

with

mΨ,H0 = mΨ

∣∣
R2(τ−τ̂)=R2

m
, σ2

Ψ,H0
= σ2

Ψ

∣∣
R2(τ−τ̂)=R2

m
(4.6)

would be lowered significantly. The lowered detection threshold λ would obviously lead to a

higher detection probability Pd. The assumption of an idealized correlation function R(τ−τ̂)

would hence produce substantially higher reception sensitivities.

4.2 Detection Threshold Adjustment

The Welch, Sidelnikov, and Sarwate bounds provide lower bounds for the minimum

possible value of the maximum nontrivial correlation value [62]. The maximum nontriv-

ial correlation value is the maximum of the out-of-phase autocorrelation and the cross-

correlation values. There are spreading codes with very good autocorrelation properties but

poor cross-correlation properties and vice versa. Both have to be optimized for the code di-

vision multiple access scheme of GPS and Galileo. Low nontrivial correlation values reduce

the probability of false acquisition. The Gold code of the GPS L1-C/A signal has equal

maximum out-of-phase autocorrelation and cross-correlation values, which are close to the

lower bounds [52, 62]. The spreading codes for the Galileo signals are memory-mapped pure

random codes that have been chosen by computer simulation for further improved correlation

properties.

The false detection probability is given in (3.63) as

Pf = Pr{Λ > λ|H0} = 1 − PΛ|H0(λ) = Q1

(√
2 |mΨ,H0 |2

σ2
Ψ,H0

,

√
2 λ

σ2
Ψ,H0

)
. (4.7)

If an idealized correlation function R(τ − τ̂) with Rm = 0 was assumed, the detection

threshold λ would be calculated based on the central Chi-Squared distribution. However,

the lowered detection threshold would lead to a violation of the maximum permissable false

detection probability, if the actual correlation function with Rm 6= 0 is applied in (4.7).

Fig. 4.2.a and 4.2.b show Pf for the case where the threshold λ is calculated for an idealized

correlation function with Rm = 0, but the received signal has the actual correlation function

with Rm = 65 N/1023 for GPS L1-C/A and Rm = 0.094 N for Galileo E1-C [5, 29]. It can

be observed that Pf increases to 100 % with an increasing carrier-to-noise PSD C/N0. The

nominal false detection probability Pf = 10−5 is only met for the carrier power C = 0. The

threshold is much too low for signals from around C/N0 = 25 dBHz onwards. The reason

are the out-of-phase correlation values that increase above the threshold and cause frequent

false detections.
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(b) Galileo E1-C with Rm = 0.
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(c) GPS L1-C/A with Rm = 65 N/1023.
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(d) Galileo E1-C with Rm = 0.094 N .

Figure 4.2: Probability of false detection Pf for different detection thresholds λ with
T0 = 290 K, F = 3 dB, and N Ts = 20 ms.

Fig. 4.2.c and 4.2.d show Pf for the case where the threshold λ is calculated for the nominal

signal power and the real correlation function with Rm = 65 N/1023 for GPS L1-C/A and

Rm = 0.094 N for Galileo E1-C [62]. It can be observed that Pf has the nominal value for

the line-of-sight carrier power, but decreases very fast for lower C/N0 values. The reason

for this effect is that the mean mΨ in (4.2) and the variance σ2
Ψ in (4.4) are functions of

the carrier power C. The threshold λ in Fig. 4.2.c and 4.2.d, however, is calculated for the

line-of-sight carrier power C as specified in Table 3.1. This threshold is unnecessarily high

for weak signals.

If the maximum permissable false detection probability Pf in (4.7) is to be fully utilized,

the detection threshold λ has to be calculated with (4.5) for the actual received signal

properties. It is required to calculate the mean mΨ in (4.2) for R2(τ − τ̂) = R2
m as a function

of the received carrier power C and frequency deviation fd. The variance σ2
Ψ in (4.4) has

to be calculated as a function of the received carrier power C, frequency deviation fd, and

noise temperature T0 using R2(τ − τ̂) = R2
m. The detection threshold λ can be lowered for a

decreasing C. It is always set as low as possible without violating the maximum permissable

false detection probability Pf in (4.7). This technique substantially improves the probability

of detection Pd. Fig. 4.3 shows the adaptive detection threshold λ as a function of C/N0.

The value converges for very low C/N0 values, since the out-of-phase correlation values

become insignificant compared to the additive noise component.
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(a) GPS L1-C/A with fd = 0.
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(b) Galileo E1-C with fd = 0.
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(c) GPS L1-C/A with fd = 60 Hz.
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(d) Galileo E1-C with fd = 60 Hz.
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(e) GPS L1-C/A with fd = 120 Hz.
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(f) Galileo E1-C with fd = 120 Hz.

Figure 4.3: Adaptive detection threshold λ for T0 = 290 K, F = 3 dB, N Ts = 20 ms, and
B = 4.092 MHz.

4.3 Cross-Correlation Mitigation

An important aspect that has to be considered when lowering the detection threshold is the

cross-correlation between the signals. The maximum cross-correlation value of the Gold

code for GPS L1-C/A is 65/1023, which corresponds to an attenuation of 24 dB [29, 63].

If two signals are received with the same Doppler frequency shift and have a power dif-

ference of 24 dB, then the stronger signal introduces cross-correlation of equal power as the

autocorrelation peak of the weak signal. The cross-correlation is significantly reduced if the

two signals have a different Doppler shift. With a coherent integration of N Ts = 20 ms

and a Doppler shift difference of just 45 Hz, a GPS L1-C/A signal already has to be 43 dB
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Figure 4.4: Correlation function of a weak GPS L1-C/A signal with N Ts = 20 ms in presence
of a 24 dB stronger GPS L1-C/A signal with varying Doppler frequency difference.

stronger than another signal to have its cross-correlation reach the same level as the auto-

correlation peak of the weak signal. The cross-correlation reoccurs for GPS L1-C/A if the

Doppler shift difference is an integer multiple of 1 kHz [29, 63].

Fig. 4.4 illustrates the case where a weak GPS L1-C/A signal is correlated with its correct

local spreading code. At the same time a 24 dB stronger GPS L1-C/A signal with a different

spreading code causes interference. The Y-axis represents the code phase difference τ − τ̂ .

The correct autocorrelation peak can be found for τ − τ̂ = 0, independent of the Doppler

frequencies. The X-axis denotes the Doppler frequency difference between the strong and

weak signal. If both have equal Doppler frequencies, such that the difference is zero, one

can observe severe cross-correlation. As soon as there is a little Doppler frequency differ-

ence, the cross-correlation vanishes, leaving only the correct autocorrelation peak behind.

However, the cross-correlation reoccurs at integer multiples of 1 kHz, which can be explained

with the combined correlation function

R(τ − τ̂) =
N−1∑

ν=0

c
(1)
⌊(ν Ts+τ̂)/Tc⌋

[√
2 C(1) c

(1)
⌊(ν Ts+τ)/Tc⌋

+
√

2 C(2) c
(2)
⌊(ν Ts+τ)/Tc⌋

ej 2 π fd (ν Ts+τ)
]

.

(4.8)

The weak signal with carrier power C(1) and spreading code c
(1)
⌊(ν Ts+τ)/Tc⌋

is being despread

with the correct local code c
(1)
⌊(ν Ts+τ̂)/Tc⌋

. The strong interfering signal with carrier power

C(2) has a different spreading code c
(2)
⌊(ν Ts+τ)/Tc⌋

and a frequency offset fd. Every 1 ms

interval produces a correlation function with the autocorrelation peak in the middle and

cross-correlation on the side. In the case of zero frequency deviation, the Gold code of

GPS L1-C/A has around 24 dB isolation between the autocorrelation peak and the cross-

correlation values. Just like the autocorrelation function, the cross-correlation function

is also three-valued, where the correlation values R(τ − τ̂)|τ−τ̂=ν Tc = −65 N/1023 and

R(τ − τ̂)|τ−τ̂=ν Tc = 63 N/1023 each have a 12.5 % occurrence rate [29, 52].
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In the case of non-zero frequency deviation, the cross-correlation function becomes more

erratic, with the maximum cross-correlation values only 21 dB below the correlation peak.

This, however, is only true for 0.1 % of the cross-correlation values, while 98 % of the cross-

correlation values have more than 24 dB isolation [63]. If N Ts > 1 ms, then multiples of these

cross-correlation functions with the correlation peak in the middle are accumulated. When

the frequency deviation fd is not an integer multiple of 1 kHz, then the phase ej 2 π fd (ν Ts+τ)

in (4.8) has a different value after each 1 ms interval. As a result the cross-correlation

function of each 1 ms interval looks different. The cross-correlation values for each code

delay vary between positive and negative values for each 1 ms period. When multiple cross-

correlation functions are coherently accumulated, the cross-correlation values partially cancel

out each other. The isolation between the autocorrelation peak and the cross-correlation

values becomes much larger than for zero frequency deviation.

However, if the frequency deviation fd in (4.8) is an integer multiple of 1 kHz, the phase

ej 2 π fd (ν Ts+τ) has exactly the same value after each 1 ms interval. As a result, the cross-

correlation functions of each 1 ms period are identical. When they are coherently accumu-

lated multiple times, each code delay always yields the same correlation values. No positive

and negative values cancel out each other. The same cross-correlation is simply scaled by

N Ts/(1 ms). At integer multiples of 1 kHz, the isolation between the autocorrelation peak

and the cross-correlation is therefore suddenly reduced to around 21–24 dB. Since the inter-

fering signal in Fig. 4.4 has 24 dB more signal power than the wanted signal, the maximum

cross-correlation values at integer multiples of 1 kHz slightly exceed the autocorrelation peak.

The simplest way to prevent false detection due to cross-correlation is to utilize the

strongest signal in each frequency bin to calculate the detection threshold in this frequency

bin and the bins apart by an integer multiple of 1 kHz. In result, the weakest signal that

can be detected in the respective frequency bins must be less than 24 dB weaker than the

strongest signal in these bins. Fortunately, the frequency bins become rather narrow with an

increasing coherent integration period. A typical bin size is 30–50 Hz for N Ts = 20 ms. The

likelihood of this interference scenario is rather low. This could be the most cost-effective

solution for many mass market products, since the resulting availability degradation might

be negligible. However, the cross-correlation problem can also be resolved for two signals

in the same frequency bin by a variety of different cross-correlation mitigation techniques

[64, 65, 66]. One possible method relies on multiple correlations separated by more than

1.54 s. It utilizes the effect that the cross-correlation pattern moves by one chip each 1.54 s

for a frequency difference of 1 kHz [29].

While the maximum cross-correlation for the Galileo E1-C primary codes is of similar

magnitude as for GPS L1-C/A, the secondary spreading codes of Galileo E1-C can resolve

the problem. For example, if the secondary codes of two signals differ by half the chips within

the observation period, then the cross-correlation effect fully vanishes. A method to prevent

cross-correlation for Galileo L1-C is hence to correlate the signals at the time instances when

their secondary codes suppress the cross-correlation. The respective timing information could

be provided by assistance data. If the correlation period extends over a sufficient number

of secondary code chips, the cross-correlation will also be strongly suppressed when the

correlation starts at an arbitrary time. Furthermore, it would even be possible to utilize the
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data bits of the GPS L1-C/A signal to suppress cross-correlation. A reference receiver would

have to track interfering signals and predict some data bits. It could then provide assistance

data to schedule the correlation process of the mobile receiver such that the data bits of the

interfering signals have different values around half the time.

4.4 Attenuation Estimation

The adaptive detection threshold λ requires knowledge of the actual received differential

correlation variance σ2
Ψ,H0

and magnitude of the mean |mΨ,H0 |. The decision statistic Λ is

the squared magnitude of the Gaussian distributed differential correlation result Ψ. The

combination of its first moment

E{Λ} = E
{
|Ψ|2

}
= |mΨ|2 + σ2

Ψ (4.9)

with its second moment

E
{
Λ2
}

= E
{
|Ψ|4

}
= σ4

Ψ + 2 σ2
Ψ |mΨ|2 +

(
σ2

Ψ + |mΨ|2
)2

(4.10)

yields the relationships

|mΨ|2 =

√
2 (E{Λ})2 − E{Λ2} (4.11)

and

σ2
Ψ = E{Λ} − |mΨ|2 . (4.12)

This can be utilized to estimate the parameters |mΨ,H0| and σ2
Ψ,H0

. Since both parameters

should be estimated for hypothesis H0, the first step is to exclude the correlation peak. The

different decision statistics within one frequency search bin are denoted as Λι. The different

code phase search bins are thereby indexed with ι. First, the index ι̂, which originates most

likely from the correlation peak is selected by one of the methods described in Section 3.12.

The interval of the correlation peak is excluded in the following estimation algorithm,

such that only the out-of-phase correlation values for are used. The variable D is introduced

in Section 2.3 as the number of code phase search bins. The first moment is hence estimated

by

M1 =
1

D − 2 ⌈Tc/Ts⌉ + 1




ι̂−⌈Tc/Ts⌉∑

ν=1

Λν +
D∑

ν=ι̂+⌈Tc/Ts⌉

Λν



 ≃ E{Λ}
∣∣
τ 6=τ̂

(4.13)

and the second moment is estimated by

M2 =
1

D − 2 ⌈Tc/Ts⌉ + 1




ι̂−⌈Tc/Ts⌉∑

ν=1

Λ2
ν +

D∑

ν=ι̂+⌈Tc/Ts⌉

Λ2
ν



 ≃ E
{
Λ2
} ∣∣

τ 6=τ̂
, (4.14)

where ⌈ ·⌉ is the ceiling function for rounding to the nearest integer more or equal.

The GPS L1-C/A out-of-phase correlation values plus noise can be seen in Fig. 4.1 on

both sides of the correlation peak. The GPS L1-C/A signals utilize Gold codes of length
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1023, which have the three different out-of-phase autocorrelation values 63, -1, -65 [52]. The

average magnitude of the out-of-phase autocorrelation values E{|R(τ − τ̂)|}|τ 6=τ̂ lies below

the maximum magnitude of the out-of-phase autocorrelation values Rm. When analyzing

the correlation functions, it can be observed that the relationship E{|R(τ − τ̂)|}|τ 6=τ̂ = ϑ Rm

is different for all space vehicles and the conversion factor ϑ lies in the range ϑ ∈ [0.21, 0.32]

for GPS L1-C/A. For Galileo E1-B and E1-C it is a bit lower in the range ϑ ∈ [0.18, 0.25].

The detection threshold λ has to be calculated with the factor ϑ of the particular space

vehicle using the relationship E{|mΨ|}|τ 6=τ̂ = ϑ2 |mΨ,H0 |.

With (4.11), the squared magnitude of the differential correlation mean for hypothesis H0

can therefore be estimated as

|m̂Ψ,H0|2 =
1

ϑ4

√
2M2

1 −M2 . (4.15)

With (3.39) and (3.51), the differential correlation variance can be expressed as

σ2
Ψ = (M − 1) σ4

w + 2 σ2
w |mΨ| . (4.16)

The variable σ2
w can be calculated with

0 = σ4
w +

2 |mΨ|
M − 1

σ2
w − σ2

Ψ

M − 1
(4.17)

as

σ2
w = − |mΨ|

M − 1
+

√
|mΨ|2

(M − 1)2
+

σ2
Ψ

M − 1
. (4.18)

With (4.12) it is estimated as

σ̂2
w = −ϑ2 |m̂Ψ,H0|

M − 1
+

√
ϑ4 |m̂Ψ,H0|2
(M − 1)2

+
M1 − ϑ4 |m̂Ψ,H0|2

(M − 1)
. (4.19)

The differential correlation variance for hypothesis H0 can hence be estimated as

σ̂2
Ψ,H0

= (M − 1) σ̂4
w + 2 σ̂2

w |m̂Ψ,H0| . (4.20)

Incorporating the previous results, the adaptive detection threshold is

λ̂ = P−1
Λ|H0

(1 − Pf) =
σ̂2

Ψ,H0

2

[
Q−1

1,β

(√
2 |m̂Ψ,H0 |2

σ̂2
Ψ,H0

, Pf

)]2

. (4.21)

Fig. 4.5 compares a simulation of the estimated detection threshold λ̂ versus the optimal

detection threshold λ. Due to the applied sample rate of four samples per chip, a total

number of 1021 × 4 code phase bins have been evaluated for the GPS L1-C/A simulations

and 4090 × 4 code phase bins for the Galileo E1-C simulations. Both corresponds to a full-

epoch search excluding the correlation peak. No relevant estimation errors can be observed

in the simulations. The estimation method presented here shows a high level of reliability.
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(b) Galileo E1-C with fd = 0.
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(c) GPS L1-C/A with fd = 60 Hz.
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(d) Galileo E1-C with fd = 60 Hz.
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(e) GPS L1-C/A with fd = 120 Hz.
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(f) Galileo E1-C with fd = 120 Hz.

Figure 4.5: Comparison of the estimated detection threshold λ̂ versus the simulated optimal
detection threshold λ for T0 = 290 K, F = 3 dB, N Ts = 20 ms, and B = 4.092 MHz.

4.5 Differential Correlation Sensitivity

The probability of detection is calculated with

Pd = Pr{Λ > λ|H1} = 1 − PΛ|H1(λ) = Q1

(√
2 |mΨ,H1 |2

σ2
Ψ,H1

,

√
2 λ

σ2
Ψ,H1

)
(4.22)

as specified in (3.66) by applying

mΨ,H1 = mΨ

∣∣
R2(τ−τ̂)=N2 , σ2

Ψ,H1
= σ2

Ψ

∣∣
R2(τ−τ̂)=N2 . (4.23)
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(a) GPS L1-C/A.
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(b) Galileo E1-C (pilot only).

 

 

Observation time M N Ts [s]

N Ts = 1 ms, fd = 240 Hz
N Ts = 4 ms, fd = 60 Hz
N Ts = 20 ms, fd = 12 Hz

0 1 2 3 4 5 6 7 8 9
10

10

15

20

25

30

35

1575.42

C
ar

ri
er

/n
oi

se
P

S
D

C
T

,D

N
0

[d
B

H
z]

(c) GPS L1-C/A.
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(d) Galileo E1-C (pilot only).
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(e) GPS L1-C/A.
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(f) Galileo E1-C (pilot only).

Figure 4.6: Reception sensitivity with the adaptive detection threshold technique for the
differential correlation with T0 = 290 K, F = 3 dB, Pf = 10−5, and Pd = 90 %.

Fig. 4.6 illustrates the carrier-to-noise PSD values CT,D/N0 for the probability of detec-

tion Pd = 90 %, when the adaptive detection threshold of Fig. 4.3 is used in combination

with differential correlation. The choice of the receiver parameters T0 = 290 K, F = 3 dB,

Pf = 10−5, and Pd = 90 % has been discussed in Section 3.7. When compared to the re-

ception sensitivity presented in Fig. 3.10, it becomes apparent that the adaptive detection

threshold method yields a very high improvement. Furthermore, with the static detection

threshold in Fig. 3.10, the sensitivity for GPS L1-C/A has been slightly higher than for

Galileo E1-C. This has been due to the slightly higher maximum out-of-phase autocorre-

lation value of Galileo E1-C, since it is transmitted in phase with the Galileo E1-B signal.

This effect has virtually vanished in Fig. 4.3 when the detection threshold is dynamically
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(a) GPS L1-C/A.
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(b) Galileo E1-C (pilot only).
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(c) GPS L1-C/A.

 

 

Observation time M N Ts [s]

N Ts = 4 ms, fd = 60 Hz
N Ts = 20 ms, fd = 12 Hz

0 1 2 3 4 5 6 7 8 9
10

10

15

20

25

30

35

C
ar

ri
er

/n
oi

se
P

S
D

C
T

,E

N
0

[d
B

H
z]

(d) Galileo E1-C (pilot only).
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(e) GPS L1-C/A.
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(f) Galileo E1-C (pilot only).

Figure 4.7: Reception sensitivity with the adaptive detection threshold technique for a de-
tection threshold estimation error of factor 2 with T0 = 290 K, F = 3 dB, Pf = 10−5, and
Pd = 90 %.

adjusted. The sensitivity for Galileo E1-C has reached the one for GPS L1-C/A.

The sensitivity gain of the adaptive detection threshold technique is furthermore fairly

insensitive to reasonable estimation errors. Fig. 4.7 shows the reception sensitivity CT,E/N0

for λ̂ = 2 λ. Fig. 4.8 shows the loss CT,E/CT,D that is introduced by this estimation error

of factor 2. In dB, it is calculated as the difference between the curves in Fig. 4.7 and 4.6.

Since the estimation error degrades the reception in the same way for an increasing frequency

deviation fd, the sensitivity loss becomes independent of fd and Fig. 4.8 is not parameterized

by fd. It applies to any fd within the frequency search bin. The sensitivity introduced by

the severe estimation error of λ̂ = 2 λ causes only a minor sensitivity loss of 1.3 dB.
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(a) GPS L1-C/A.
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(b) Galileo E1-C (pilot only).

Figure 4.8: Sensitivity loss caused by a detection threshold estimation error of factor 2 with
T0 = 290 K, F = 3 dB, Pf = 10−5, and Pd = 90 %.

4.6 Noncoherent Integration Sensitivity

The reception sensitivity of the noncoherent integration method can also be substantially

improved with an adaptive detection threshold procedure. The detection threshold for the

noncoherent integration approach is given in (3.76) as

λ =
σ2

w

2

[
Q−1

M,β

(√
2 M |yµ,H0 |2

σ2
w

, Pf

)]2

. (4.24)

It is a function of the deterministic predetection component

yµ ≃
√

2 C ds,µ R(τ − τ̂) sinc(fd N Ts) ej [(2 µ+1) π fd N Ts+ϕc] (4.25)

as defined in (3.31) and the predetection noise variance

σ2
w = 2 Nk T0 B F (4.26)

given in (3.19).

Fig. 4.9 shows the reception sensitivity CT,N/N0 for the noncoherent integration method

with the adaptive detection threshold, which is given by inserting the actual carrier power

C, frequency deviation fd, and noise temperature T0 into (4.25) and (4.26). The estimation

of the two parameters |yµ,H0 |2 and σ2
w can be performed in a similar fashion as described in

Section 4.4 or with conventional signal-to-noise ratio estimation techniques [67, 68, 69].

4.7 Sensitivity Gain

This section illustrates the sensitivity gain that can be obtained by the adaptive selection

of the detection threshold. The sensitivity gain CD/CT,D obtained by applying the adaptive

detection threshold method to the differential correlation technique is the difference between

the values in dB of Fig. 3.10 and 4.6. It can be observed that the maximum reception sen-

sitivity in Fig. 3.10 is bound, while Fig. 4.6 presents far better sensitivity. The gain of the
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(b) Galileo E1-C (pilot only).
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(c) GPS L1-C/A.
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(d) Galileo E1-C (pilot only).

 

 

Observation time M N Ts [s]

N Ts = 1 ms, fd = 480 Hz
N Ts = 4 ms, fd = 120 Hz
N Ts = 20 ms, fd = 24 Hz

0 1 2 3 4 5 6 7 8 9
10

10

15

20

25

30

35

C
ar

ri
er

/n
oi

se
P

S
D

C
T

,N

N
0

[d
B

H
z]

(e) GPS L1-C/A.
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(f) Galileo E1-C (pilot only).

Figure 4.9: Reception sensitivity with the adaptive detection threshold technique for the
noncoherent integration with T0 = 290 K, F = 3 dB, Pf = 10−5, and Pd = 90 %.

presented method is therefore very large. The gain of the adaptive detection threshold when

applied to the differential correlation is displayed in Fig. 4.10 and reaches up to 9.6 dB for

GPS and 11.3 dB for Galileo. The reception sensitivity of differential correlation with and

without adaptive detection threshold degrades the same amount for an increasing frequency

deviation fd. The difference remains independent of fd. Fig. 4.10 is therefore not parame-

terized by fd and its values are generally applicable to an arbitrary fd. The gain is higher

for longer coherent integration periods, since the out-of-phase autocorrelation values become

more significant for long integration. It also increases for longer observation periods, because

this yields higher reception sensitivity where the nontrivial correlation values have a stronger

impact. The Galileo E1-B (data) and E1-C (pilot) signals are transmitted jointly on the in-
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(b) Galileo E1-C (pilot only).

Figure 4.10: Sensitivity gain of the adaptive detection threshold technique for the differential
correlation with T0 = 290 K, F = 3 dB, Pf = 10−5, and Pd = 90 %.
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(b) Galileo E1-C (pilot only).

Figure 4.11: Sensitivity gain of the adaptive detection threshold technique for the noncoher-
ent integration method with T0 = 290 K, F = 3 dB, Pf = 10−5, and Pd = 90 %.

phase component of a single carrier, which causes a small degree of cross-correlation between

the Galileo E1-B and E1-C signals. The maximum out-of-phase autocorrelation value for

despreading the Galileo E1-B/C signals with the Galileo E1-B or the Galileo E1-C codes

is therefore slightly larger than for GPS L1-C/A. The slightly higher nontrivial correlation

values in turn lead to a slightly larger sensitivity gain of the adaptive detection threshold

for Galileo E1-C.

The sensitivity gain CN/CT,N of the adaptive detection threshold for the noncoherent

integration is calculated as the difference between the values in dB of Fig. 3.14 and 4.9. It is

presented in Fig. 4.11 and reaches 8.5 dB for GPS and 10.1 dB for Galileo. As previously, the

gain is independent of fd and therefore also not parameterized by fd. The gain characteristics

are the same as for differential correlation, just on a lower level.

Fig. 4.12 shows the cumulative sensitivity gain CN/CT,D obtained by the differential cor-

relation with the adaptive detection threshold versus the state-of-the-art noncoherent in-

tegration. When calculated in dB, it is the difference between the values of Fig. 3.14 and

Fig. 4.6. The cumulative gain of the differential correlation technique with the adaptive

detection threshold in Fig. 4.12 is also independent of fd and reaches up to 10 dB for GPS

and 11.6 dB for Galileo.
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(b) Galileo E1-C (pilot only).

Figure 4.12: Cumulative sensitivity gain of the differential correlation with adaptive detec-
tion threshold versus the state-of-the-art noncoherent integration without adaptation of the
threshold for T0 = 290 K, F = 3 dB, Pf = 10−5, and Pd = 90 %.
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(b) Galileo E1-C (pilot only).

Figure 4.13: Sensitivity gain of the differential correlation versus the noncoherent integration
when both utilize the adaptive detection threshold technique for T0 = 290 K, F = 3 dB,
Pf = 10−5, and Pd = 90 %.

Even when compared to the noncoherent integration with adaptive detection threshold,

the differential correlation with adaptive detection threshold offers a significant sensitivity

gain. As shown in Fig. 4.13, the gain CT,N/CT,D ranges from 1.5 dB to 2.9 dB, where it is

calculated as the difference in dB between Fig. 4.9 and Fig. 4.6. Since differential correlation

and noncoherent integration are affected in the same way by the residual frequency devia-

tion fd, the gain in Fig. 4.13 is independent of fd. The sensitivity gain of the differential

correlation technique origins from it multiplying successive predetection results, while the

noncoherent integration squares the predetection results. Successive predetection samples

are statistically independent such that the resulting noise power is less than when squaring

the predetection samples.

4.8 Conclusion

A method to estimate the variance of the correlation result σ2
Ψ and its mean magnitude

|mΨ| under hypothesis H0 is provided. With the help of these two parameters, the optimum
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detection threshold λ can be calculated as a function of the received carrier power C, fre-

quency deviation fd, and noise temperature T0. The optimum detection threshold is higher

for line-of-sight signals than for attenuated signals. The continuous adjustment of the thresh-

old yields a constant false detection probability, which maximizes the probability of correct

detection. The adaptive detection threshold therefore substantially improves the reception

sensitivity by up to 11.6 dB for the presented receiver configurations. The remote chance of

harmful cross-correlation between strong and weak signals with unfortunate Doppler fre-

quencies can be circumvented with the presented techniques. Since the adaptive detection

threshold has no impact on the positioning accuracy for a given carrier-to-noise PSD, the

analysis of the positioning accuracy in Chapter 3 is also applicable to this chapter. If both,

the differential correlation and the noncoherent integration are enhanced with the adaptive

detection threshold, the differential correlation still provides a sensitivity gain of 1.5–2.9 dB.
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Chapter 5

Frequency Offset Correction

Depending on the location of the satellites, the Galileo/GPS signals can have a Doppler

frequency shift of up to ±6 kHz. With knowledge of the approximate receiver location,

the approximate time, and the expected satellite constellation, this Doppler search space

can be narrowed down. However, the exact receiver location, the exact receiver motion,

and the exact local oscillator frequency remain unknown. This limits the accuracy of the

estimated frequency shift before the single shot positioning starts. A residual frequency

deviation between the down-conversion frequency and the received signal frequency generally

remains. The previous chapters have shown how the residual frequency deviation degrades

the reception sensitivity. The longer the coherent integration period is, the smaller the

tolerable frequency deviation. The phase of the differential correlation result has been derived

in Chapter 3 to be directly proportional to the frequency deviation. This chapter exploits

this characteristic for a frequency offset correction technique.

The new technique partitions the observation period into intermediate differential cor-

relation intervals. The residual frequency deviation is estimated based on the phase of

each intermediate differential correlation result. This information is fed back to the down-

conversion stage, which corrects the down-conversion frequency of the following intermediate

differential correlation interval. The result is an increased signal-to-noise ratio of the final

differential correlation result, which increases reception sensitivity, as well as positioning

accuracy. The reduced frequency deviation furthermore allows longer coherent integration,

which improves reception sensitivity and positioning accuracy even more.

5.1 Frequency Deviation Feedback

Fig. 5.1 shows the signal processing steps of one channel of the frequency offset correction

method. When compared to the previous signal processing chain of the differential cor-

relation in Fig. 3.3, the main difference is the feedback path for the estimated frequency

deviation. The expectation value of the intermediate differential correlation result

Ψκ =

(κ+1) M−1∑

µ=κ M+1

sµ s∗µ−1 (5.1)
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Figure 5.1: Receiver channel with the frequency offset correction technique.

is given in (3.39) as

mΨκ = E{Ψκ} = 2 (M − 1) C R2(τ − τ̂) sinc2(fd,κ N Ts) ej 2 π fd,κ N Ts , (5.2)

where fd,κ is the frequency deviation during the intermediate differential correlation interval

κ. It can be observed in (5.2) that the phase of E{Ψκ} is a function of the frequency deviation

fd,κ with

E{Ψκ} = |E{Ψκ}| ej 2 π fd,κ N Ts . (5.3)

Within the range fd,κ ∈ [−1/(2 N Ts), 1/(2 N Ts)], the residual frequency deviation can there-

fore be estimated by

f̂d,κ =
arg(Ψκ)

2 π N Ts

=

arg

(
(κ+1) M−1∑
µ=κ M+1

sµ s∗µ−1

)

2 π N Ts

. (5.4)

The frequency estimation method in (5.4) has two advantages over alternative methods

[70, 71, 72]. The first one is very low additional implementation complexity as it reuses the

differential correlation processing of Chapter 3. If Fig. 5.1 is compared to the illustration of

the differential correlation in Fig. 3.3, the low overhead becomes apparent. The additionally

required steps are just to calculate the argument of the differential correlation result and feed

it back to the down-conversion unit. The second advantage is that the averaging functionality

of the existing differential correlation procedure is utilized to reduce the probability of phase

jumps that occur when the real or imaginary parts of the products sµ s∗µ−1 introduce sign

changes due to the added noise [73].

5.2 Open Loop Frequency Estimation Accuracy

The accuracy of the frequency estimation method can be determined by deriving the prob-

ability density function of the estimated frequency deviation f̂d,κ. In Section 3.5, the differ-

ential correlation result Ψκ is derived to be Gaussian distributed. From (3.52), its inphase

variance can be derived as

σ2
Ψκ,I = E

{
ℜ{Ψκ − E{Ψκ}}2

}

=
(M − 1) σ4

w

2
+ 2 σ2

w C R2(τ − τ̂) sinc2(fd,κ N Ts)
[
1 + 2 (M − 2) cos2(2 π fd,κ N Ts)

]
,

(5.5)
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and with (3.53) its quadrature variance results in

σ2
Ψκ,Q = E

{
ℑ{Ψκ − E{Ψκ}}2

}

=
(M − 1) σ4

w

2
+ 2 σ2

w C R2(τ − τ̂) sinc2(fd,κ N Ts)
[
1 + 2 (M − 2) sin2(2 π fd,κ N Ts)

]
.

(5.6)

Using the estimated correlation magnitude

âκ = |Ψκ| , (5.7)

the estimated correlation phase

φ̂κ = arg(Ψκ) , (5.8)

and the Jacobian determinant

Jκ =

∣∣∣∣∣

∂ℜ{Ψκ}
âκ

∂ℜ{Ψκ}

φ̂κ
∂ℑ{Ψκ}

âκ

∂ℑ{Ψκ}

φ̂κ

∣∣∣∣∣ =

∣∣∣∣∣
cos
(
φ̂κ

)
−âκ sin

(
φ̂κ

)

sin
(
φ̂κ

)
âκ cos

(
φ̂κ

)
∣∣∣∣∣ = âκ , (5.9)

the probability density function of Ψκ can be transformed into polar coordinates as

pΨκ

(
âκ, φ̂κ

)
=

âκ

2 π σΨκ,I σΨκ,Q

exp



−

[
âκ cos

(
φ̂κ

)
−ℜ{mΨκ}

]2

2 σ2
Ψκ,I

−

[
âκ sin

(
φ̂κ

)
−ℑ{mΨκ}

]2

2 σ2
Ψκ,Q



.

(5.10)

By substituting

gκ =

√√√√cos2
(
φ̂κ

)

2 σ2
Ψκ,I

+
sin2
(
φ̂κ

)

2 σ2
Ψκ,Q

, (5.11)

hκ =
ℜ{mΨκ} cos

(
φ̂κ

)

σ2
Ψκ,I

+
ℑ{mΨκ} sin

(
φ̂κ

)

σ2
Ψκ,Q

, (5.12)

and

lκ =
exp
(
−ℜ{mΨκ}

2

2 σ2
Ψκ,I

− ℑ{mΨκ}
2

2 σ2
Ψ,Q

)

2 π σΨκ,I σΨκ,Q

, (5.13)

the probability density in (5.10) can be rewritten as

pΨκ

(
âκ, φ̂κ

)
= lκ âκ exp

(
−â2

κ g2
κ + âκ hκ

)
. (5.14)

Integration over âκ yields the probability density of φ̂κ

pφ̂κ

(
φ̂κ

)
=

∫ ∞

0

pΨκ

(
âκ, φ̂κ

)
dâκ = lκ

∫ ∞

0

âκ exp
(
−â2

κ g2
κ + âκ hκ

)
dâκ . (5.15)

By substituting

bκ = âκ gκ −
hκ

2 gκ

, (5.16)
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the integral in (5.15) can be solved as

pφ̂κ

(
φ̂κ

)
= lκ

∫ ∞

− hκ
2 gκ

[
bκ

gκ

+
hκ

2 g2
κ

]
1

gκ

exp

(
−b2

κ +
h2

κ

4 g2
κ

)
dbκ

=
lκ
g2

κ

exp

(
h2

κ

4 g2
κ

)[∫ ∞

− hκ
2 gκ

bκ exp
(
−b2

κ

)
dbκ +

hκ

2 gκ

∫ ∞

− hκ
2 gκ

exp
(
−b2

κ

)
dbκ

]

=
lκ
g2

κ

exp

(
h2

κ

4 g2
κ

)[
1

2
exp

(
− h2

κ

4 g2
κ

)
+

√
π hκ

4 gκ

erfc

(
− hκ

2 gκ

)]

=
lκ

2 g2
κ

+

√
π lκ hκ

4 g2
κ

exp

(
h2

κ

4 g2
κ

)
erfc

(
− hκ

2 gκ

)

(5.17)

with erfc( · ) denoting the complementary error function. Replacing the phase φ̂κ by the

estimated frequency deviation

f̂d,κ =
φ̂κ

2 π N Ts

(5.18)

as specified in (5.4) yields the probability density function of the estimated frequency devi-

ation

pf̂d,κ

(
f̂d,κ

)
=

2 π lκ N Ts

2 u2
κ

+
2 π

3
2 lκ N Ts vκ

4 u2
κ

exp

(
v2

κ

4 u2
κ

)
erfc

(
− vκ

2 uκ

)
(5.19)

with

uκ =

√√√√cos2
(
2 π N Ts f̂d,κ

)

2 σ2
Ψκ,I

+
sin2
(
2 π N Ts f̂d,κ

)

2 σ2
Ψκ,Q

(5.20)

and

vκ =
ℜ{mΨκ} cos

(
2 π N Ts f̂d,κ

)

σ2
Ψκ,I

+
ℑ{mΨκ} sin

(
2 π N Ts f̂d,κ

)

σ2
Ψκ,Q

. (5.21)

Fig. 5.2.a, 5.2.c, and 5.2.e show the expectation value of the estimated frequency deviation

mf̂d,κ
= E

{
f̂d,κ

}
(5.22)

as a function of the observation period M N Ts. The results in Fig. 5.2 have been deter-

mined by numerical integration with the adaptive Simpson quadrature method [74]. It can

be observed that the expectation value of the frequency estimation converges quickly for

sufficiently long observation periods. Fig. 5.2.b, 5.2.d, and 5.2.f show the standard deviation

of the estimated frequency deviation

σf̂d,κ
=

√

E

{(
f̂d,κ − E

{
f̂d,κ

})2}
. (5.23)

The standard deviation σf̂d,κ
decreases exponentially with increasing observation periods.

The presented method can estimate the residual frequency deviation fd,κ even for low carrier-

to-noise PSD values C/N0.
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Figure 5.2: Expectation value and standard deviation of the frequency offset estimation for
GPS L1-C/A and Galileo E1-C.

5.3 Feedback Loop

The frequency deviation

fd,κ = fIF + fD − fLO,κ (5.24)

is a function of the intermediate frequency fIF, the Doppler frequency shift, and the time-

variant digital down-conversion frequency fLO,κ. The simulations in this chapter utilize

a channel model with a constant Doppler shift fD. However, the frequency correction

method also works for a dynamically changing frequency deviation. Once the frequency

offset has been estimated, a frequency correction loop can feed the frequency deviation back
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and subtract it from the current down-conversion frequency to calculate the next down-

conversion frequency as

fLO,κ+1 = fLO,κ − fd,κ = fLO,κ −
arg(Ψκ)

2 π N Ts

= fLO,κ −
arg

(
(κ+1) M−1∑
µ=κ M+1

sµ s∗µ−1

)

2 π N Ts

. (5.25)

The initially selected down-conversion frequency during the first intermediate differential

correlation interval is denoted fLO,0. After M N signal samples are processed, the differential

correlation result Ψκ is utilized to calculate f̂d,κ as specified in (5.4). The estimated frequency

deviation f̂d,κ is fed back to the down-conversion unit for the calculation of the optimized

down-conversion frequency fLO,κ+1, which is used for the following M N signal samples. The

rotation angle of the down-conversion unit in Fig. 5.1 is calculated as

Ωκ = 2 π fLO,κ Ts . (5.26)

With (5.4) and (5.25), the sequence of rotation angles can simply be calculated as

Ωκ+1 = Ωκ −
arg(Ψκ)

N
. (5.27)

As illustrated in Fig. 5.1, the final differential correlation result is calculated as

Υ =
K M−1∑

µ=1

sµ s∗µ−1 =
K M−1∑

µ=1

(yµ + wµ) (yµ−1 + wµ−1)
∗ . (5.28)

From (3.25) and (3.31), the deterministic predetection component for the case of frequency

correction results in

yµ ≃
√

2 C R(τ − τ̂) sinc(fd,⌊µ/M⌋ N Ts) ej ϕµ (5.29)

with the phase

ϕµ = ϕµ−1 + π (fd,⌊µ/M⌋ + fd,⌊(µ−1)/M⌋) N Ts . (5.30)

Utilizing (3.38) and (3.39), the expectation value of the final differential correlation result is

derived to be

mΥ = E{Υ} =
K M−1∑

µ=1

yµ y∗
µ−1

= 2 C R2(τ − τ̂)
K M−1∑

µ=1

sinc(fd,⌊µ/M⌋ N Ts) sinc(fd,⌊(µ−1)/M⌋ N Ts)

× ej π (fd,⌊µ/M⌋+fd,⌊(µ−1)/M⌋) N Ts

= 2 C R2(τ − τ̂)

[
K−1∑

κ=0

(M − 1) sinc2(fd,κ N Ts) ej 2 π fd,κ N Ts

+
K−1∑

κ=1

sinc(fd,κ N Ts) sinc(fd,κ−1 N Ts) ej π (fd,κ+fd,κ−1) N Ts

]
.

(5.31)
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It can be observed that the mean mΥ incrementally converges to a purely real value when

the frequency deviation fd,κ is incrementally reduced. Furthermore, the term sinc(fd,κ N Ts)

increases towards one as fd,κ is reduced. This increase of mΥ may lead to a larger correlation

gain, as will be shown subsequently.

Using (3.42), (3.43), and (3.51) with y−1 = yK M = 0, the combined variance of the

inphase and quadrature components results in

σ2
Υ = E

{
|Υ − E{Υ}|2

}
= E






∣∣∣∣∣

K M−1∑

µ=1

(wµ w∗
µ−1 + yµ w∗

µ−1 + wµ y∗
µ−1)

∣∣∣∣∣

2





= (K M − 1) σ4
w +

σ2
w

2

K M−1∑

µ=0

|yµ+1 + yµ−1|2 +
σ2

w

2

K M−1∑

µ=0

|yµ+1 − yµ−1|2

= (K M − 1) σ4
w + σ2

w

K M−1∑

µ=1

(
|yµ|2 + |yµ−1|2

)

= (K M − 1) σ4
w + 2 σ2

w C R2(τ − τ̂)
K M−1∑

µ=1

[
sinc2(fd,⌊µ/M⌋ N Ts) + sinc2(fd,⌊(µ−1)/M⌋ N Ts)

]

= (K M − 1) σ4
w + 2 σ2

w C R2(τ − τ̂)

[
(2M − 1)

[
sinc2(fd,0 N Ts) + sinc2(fd,K−1 N Ts)

]

+
K−2∑

κ=1

2 M sinc2(fd,κ N Ts)

]

(5.32)

with the predetection noise variance

σ2
w = E

{
|w|2

}
= 2 N k T0 B F (5.33)

as defined in (3.19). The inphase correlation variance is derived from (3.42) and (3.51) to be

σ2
Υ,I = E

{
ℜ{Υ − E{Υ}}2} = E




ℜ
{

K M−1∑

µ=1

(wµ w∗
µ−1 + yµ w∗

µ−1 + wµ y∗
µ−1)

}2





=
(K M − 1) σ4

w

2
+

σ2
w

2

[
|y1|2 + |yK M−2|2 +

K M−2∑

µ=1

(
|yµ+1 + yµ−1|2

)
]

=
(K M − 1) σ4

w

2
+ σ2

w C R2(τ − τ̂)

[
sinc2(fd,⌊2/M⌋ N Ts) + sinc2(fd,⌊(K M−2)/M⌋ N Ts)

+
K M−2∑

µ=1

∣∣∣sinc2(fd,⌊(µ+1)/M⌋ N Ts) + sinc2(fd,⌊(µ−1)/M⌋ N Ts)

× ej π (fd,⌊(µ+1)/M⌋+2 fd,⌊µ/M⌋+fd,⌊(µ−1)/M⌋) N Ts

∣∣∣
2
]

(5.34)
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σ2
Υ,I =

(K M − 1) σ4
w

2
+ σ2

w C R2(τ − τ̂)

[
sinc2(fd,0 N Ts) + sinc2(fd,K−1 N Ts)

+
K−1∑

κ=0

4 (M − 2) sinc2(fd,κ N Ts) cos2(2 π fd,κ N Ts)

+
K−2∑

κ=0

∣∣sinc(fd,κ+1 N Ts) + sinc(fd,κ N Ts) ej π(fd,κ+1+3 fd,κ) N Ts
∣∣2

+
K−1∑

κ=1

∣∣sinc(fd,κ N Ts) + sinc(fd,κ−1 N Ts) ej π(3 fd,κ+fd,κ−1) N Ts
∣∣2
]
.

(5.35)

5.4 Reception Sensitivity

Fig. 5.1 shows two possibilities to calculate the decision statistic Λ. Since the correlation

result Υ is complex-valued, the conventional approach is to take the squared magnitude of

Υ as the decision statistic

ΛA = |Υ|2 =

∣∣∣∣∣

K M−1∑

µ=1

sµ s∗µ−1

∣∣∣∣∣

2

. (5.36)

This method utilizes not only the inphase and quadrature correlation power, but it also

includes the inphase and quadrature noise power.

The frequency offset correction method decreases the frequency deviation fd,κ towards

zero. This leads to a reduction in the quadrature correlation power ℑ{mΥ}2 as specified

in (5.31), while the inphase correlation power ℜ{mΥ}2 increases accordingly. Depending on

the reception conditions and the receiver settings, it can therefore be advantageous to just

evaluate the inphase component of Υ as the decision statistic

ΛB = ℜ{Υ} = ℜ
{

K M−1∑

µ=1

sµ s∗µ−1

}
. (5.37)

This method not only rejects the quadrature noise power, but it also rejects the quadrature

signal power. Just evaluating the real part of the differential correlation result also reduces

the implementation complexity.

The differential correlation result Υ is a Gaussian distributed variable. Since method

A utilizes the squared magnitude of Υ as the decision statistic ΛA, it obeys the noncentral

Chi-squared distribution with two degrees of freedom. Its detection threshold λA can

therefore be derived from the specification in (3.65) as

λA = P−1
ΛA|H0

(1 − Pf,A) =
σ2

Υ,H0

2

[
Q−1

1,β

(√
2 |mΥ,H0 |2

σ2
Υ,H0

, Pf,A

)]2

(5.38)
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with

mΥ,H0 = mΥ

∣∣
R2(τ−τ̂)=R2

m
, σ2

Υ,H0
= σ2

Υ

∣∣
R2(τ−τ̂)=R2

m
. (5.39)

To obtain comparable results, the adaptive detection threshold method as described in Chap-

ter 4 is subsequently applied.

The probability of detection for method A is obtained from (3.66) as

Pd,A = Pr{ΛA > λA|H1} = 1 − PΛA,H1(λA) = Q1

(√
2 |mΥ,H0 |2

σ2
Υ,H1

,

√
2 λA

σ2
Υ,H1

)
(5.40)

with

mΥ,H1 = mΥ

∣∣
R2(τ−τ̂)=N2 , σ2

Υ,H1
= σ2

Υ

∣∣
R2(τ−τ̂)=N2 . (5.41)

Since method B in Fig. 5.1 just uses the real part of Υ as the decision statistic ΛB, it obeys

the Gaussian distribution with the mean ℜ{mΥ} and the variance σ2
Υ. Its probability of

false detection is hence

Pf,B = Pr{ΛB > λB|H0} = 1 − PΛB,H0(λB) =
1

2
erfc

(
λB −ℜ{mΥ,H0}√

2 σΥ,I,H0

)
(5.42)

with

σ2
Υ,I,H0

= σ2
Υ,I

∣∣
R2(τ−τ̂)=R2

m
. (5.43)

Its detection threshold λB can be calculated as

λB = P−1
ΛB|H0

(1 − Pf) =
√

2 σΥ,I,H0 erfc−1(2 Pf) + ℜ{mΥ,H0} (5.44)

while the probability of detection for method B is

Pd,B = Pr{ΛB > λB|H1} = 1 − PΛB,H1(λB) =
1

2
erfc

(
λB −ℜ{mΥ,H1}√

2 σΥ,I,H1

)
(5.45)

with

σ2
Υ,I,H1

= σ2
Υ,I

∣∣
R2(τ−τ̂)=N2 . (5.46)

Fig. 5.3 shows the reception sensitivity for the probability of detection Pd = 90 % as

achieved with the frequency offset correction method. Fig. 5.3.a to 5.3.d illustrate the carrier-

to-noise PSD CF,A/N0 where method A achieves Pd = 90 %, while Fig. 5.3.e to 5.3.h show

the carrier-to-noise PSD for method B, CF,B/N0. The simulations in this and the following

chapters cover small and large frequency deviations. Unlike the last two chapters, the case

of zero frequency deviation is not included any more. The figures for reception sensitivity

in the last two chapters included six plots showing zero, small, and large frequency devia-

tions for GPS and Galileo. The figures from this point onwards include eight plots showing

small and large frequency deviations using methods A and B for GPS and Galileo. The

receiver parameters T0 = 290 K, F = 3 dB, Pf = 10−5, and Pd = 90 % in Fig. 5.3 are typi-

cal and reasonable values that can also be found in literature to compare different receiver

techniques. They are justified and elaborated in detail in Section 3.7. Since the frequency
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(b) Method A for Galileo E1-C.
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(c) Method A for GPS L1-C/A.
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(d) Method A for Galileo E1-C.
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(e) Method B for GPS L1-C/A.
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(f) Method B for Galileo E1-C.
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(g) Method B for GPS L1-C/A.
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(h) Method B for Galileo E1-C.

Figure 5.3: Reception sensitivity with the frequency offset correction technique for
T0 = 290 K, F = 3 dB, K = 10, Pf = 10−5, and Pd = 90 %.
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offset estimation error as displayed in Fig. 5.2 has to be minimized, sufficiently long inter-

mediate differential correlation intervals M N Ts are desired. The choice of K in Fig. 5.3

is therefore K = 10, such that the frequency deviation is estimated only 10 times during

the observation period K M N Ts. Performing the estimation more often would reduce the

accumulation time M N Ts for the estimation, which in turn would degrade the estimation

accuracy. With K = 10, the values of M in Fig. 5.3 equal the observation period divided

by K N Ts. For example, when K M N Ts = 10 s, the frequency deviation is estimated every

1 s. The value K = 10 has been found empirically to yield a good trade-off between high

frequency estimation accuracy and fast response.

5.5 Sensitivity Gain

The sensitivity gain of the frequency offset correction technique versus the differential cor-

relation with adaptive detection threshold is the difference between the values in dB of

Fig. 4.6 and 5.3. The gain for method A, CT,D/CF,A, and method B, CT,D/CF,B, is displayed

in Fig. 5.4. It can be observed in Fig. 5.4 that the frequency correction requires a little while

to converge and delivers its maximum gain for intermediate and long observation periods.

Method A converges faster than method B. It can be observed in Fig. 5.3.e to 5.3.h that the

frequency offset compensation has not yet settled for method B with the combination of a

short observation period and a long coherent integration interval. The loss of the quadrature

correlation power causes the inferior initial sensitivity of method B. Once converged, both

methods reach around the same reception sensitivity. The gain is approximately the same

for the different coherent integration intervals and initial frequency deviations. The reason

is that the products fd N Ts yield the same values of 0.24 and 0.48. The sensitivity gain of

the frequency correction depends on the value of fd N Ts, since this is term degrades the re-

ception sensitivity in (5.31) with sinc2(fd,κ N Ts). The larger the product fd N Ts, the larger

is the sensitivity gain of the frequency correction. The saturated sensitivity gain for the

larger frequency deviation is 1.5 dB for method A and 1.6 dB for method B. Both methods

hence yield a similar reception sensitivity. Method B thereby introduces a lower implemen-

tation complexity, which can reduce application costs. Unfortunately, method B also yields

a slightly lower positioning accuracy, as shown in the next chapter. To provide a complete

analysis, both methods, A and B, will be presented subsequently.

Fig. 5.5 shows the cumulative sensitivity gain of the frequency offset correction technique

versus the state-of-the-art noncoherent integration. Calculated in dB, the gain for methods

A and B, CN/CF,A and CN/CF,B, is the difference between the values of Fig. 3.14 and 5.3.

The cumulative gain is the sum of the sensitivity gain of the differential correlation, the

adaptive detection threshold, and the frequency offset correction. The differential corre-

lation contributes around 1.5 dB and the adaptive detection threshold another 10 dB. The

differential correlation furthermore enables the frequency correction, which improves the re-

ception sensitivity by an additional 1.5 dB. The cumulative gain therefore reaches 13 dB for

the methods A and B.
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(b) Method A for Galileo E1-C.
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(c) Method A for GPS L1-C/A.
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(d) Method A for Galileo E1-C.
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(e) Method B for GPS L1-C/A.
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(f) Method B for Galileo E1-C.
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(g) Method B for GPS L1-C/A.
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(h) Method B for Galileo E1-C.

Figure 5.4: Sensitivity gain of the frequency offset correction technique for T0 = 290 K,
F = 3 dB, K = 10, Pf = 10−5, and Pd = 90 %.
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(b) Method A for Galileo E1-C.
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(c) Method A for GPS L1-C/A.
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(d) Method A for Galileo E1-C.
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(e) Method B for GPS L1-C/A.
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(f) Method B for Galileo E1-C.
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(g) Method B for GPS L1-C/A.
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(h) Method B for Galileo E1-C.

Figure 5.5: Cumulative sensitivity gain of the frequency offset correction technique versus
the state-of-the-art noncoherent integration for T0 = 290 K, F = 3 dB, K = 10, Pf = 10−5,
and Pd = 90 %.
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5.6 Positioning Accuracy

As described in Section 3.13, the actual correlation peak can be interpolated in between the

sampling points with the discrimination function

∆ = ΛE − ΛL = |ΥE|2 − |ΥL|2 . (5.47)

The range variance for method A of the frequency correction is defined in (3.109) as

σ2
ρ̂,F,A =

c2 σ2
∆,A(

∂m∆,A

∂τǫ

∣∣
τǫ=0

)2 . (5.48)

Modifying (3.108) yields the discrimination variance for method A

σ2
∆,A = σ4

Υ,E + σ4
Υ,L + 2 σ2

Υ,E |mΥ,E|2 + 2 σ2
Υ,L |mΥ,L|2

− 2
R2(δ)

N2
σ2

Υ,E σ2
Υ,L − 4

R(δ)

N
σΥ,E σΥ,L |mΥ,E| |mΥ,L|

(5.49)

with the early mean and variance

mΥ,E = mΥ

∣∣
τ̂=τ̂E

, σ2
Υ,E = σ2

Υ

∣∣
τ̂=τ̂E

(5.50)

and the late mean and variance

mΥ,L = mΥ

∣∣
τ̂=τ̂L

, σ2
Υ,L = σ2

Υ

∣∣
τ̂=τ̂L

. (5.51)

The expectation value of the discrimination function for method A is

m∆,A = E{∆A} = E
{
|ΥE|2 − |ΥL|2

}
= σ2

Υ,E + |mΥ,E|2 − σ2
Υ,L − |mΥ,L|2

= 2 C σ2
w

[
R2(τ − τ̂E) − R2(τ − τ̂L)

]K M−1∑

µ=1

[
sinc2(fd,⌊µ/M⌋ N Ts) + sinc2(fd,⌊(µ−1)/M⌋ N Ts)

]

+4 C2
[
R4(τ − τ̂E) − R4(τ − τ̂L)

]K M−1∑

µ=1

∣∣∣sinc(fd,⌊µ/M⌋ N Ts) sinc(fd,⌊(µ−1)/M⌋ N Ts)

× ej π (fd,⌊µ/M⌋+fd,⌊(µ−1)/M⌋) N Ts

∣∣∣
2

.

(5.52)

With (3.95) and (3.96), it can be simplified to

m∆,A = − 8 C σ2
w R

(
δ

2

)
N τǫ

η Tc

K M−1∑

µ=1

[
sinc2(fd,⌊µ/M⌋ N Ts) + sinc2(fd,⌊(µ−1)/M⌋ N Ts)

]

− 32 C2

[
R3

(
δ

2

)
N τǫ

η Tc

+ R

(
δ

2

)
N3 τ 3

ǫ

η3 T 3
c

] ∣∣∣∣∣

K M−1∑

µ=1

sinc(fd,⌊µ/M⌋ N Ts)

× sinc(fd,⌊(µ−1)/M⌋ N Ts) ej π (fd,⌊µ/M⌋+fd,⌊(µ−1)/M⌋) N Ts

∣∣∣∣∣

2

,

(5.53)
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where δ is the discrimination spacing and τǫ the initial mean code phase estimation error.

The derivative with respect to τǫ is therefore

∂m∆,A

∂τǫ

∣∣∣∣
τǫ=0

= −8 C σ2
w R

(
δ

2

)
N

η Tc

K M−1∑

µ=1

[
sinc2(fd,⌊µ/M⌋ N Ts) + sinc2(fd,⌊(µ−1)/M⌋ N Ts)

]

−32 C2 R3

(
δ

2

)
N

η Tc

∣∣∣∣∣

K M−1∑

µ=1

sinc(fd,⌊µ/M⌋ N Ts) sinc(fd,⌊(µ−1)/M⌋ N Ts)

× ej π (fd,⌊µ/M⌋+fd,⌊(µ−1)/M⌋) N Ts

∣∣∣∣∣

2

= −8 C σ2
w R

(
δ

2

)
N

η Tc

[
(2M − 1)

[
sinc2(fd,0 N Ts) + sinc2(fd,K−1 N Ts)

]

+
K−2∑

κ=1

2 M sinc2(fd,κ N Ts)

]

− 32 C2 R3

(
δ

2

)
N

η Tc
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K−1∑

κ=1

sinc(fd,κ N Ts) sinc(fd,κ−1 N Ts) ej π (fd,κ+fd,κ−1) N Ts

+
K−1∑

κ=0

(M − 1) sinc2(fd,κ N Ts) ej 2 π fd,κ N Ts

∣∣∣∣∣

2

.

(5.54)

The variance of the range for method B of the frequency correction is

σ2
ρ̂,F,B =

c2 σ2
∆,B(

∂m∆,B

∂τǫ

)2 . (5.55)

The discrimination variance for method B results in

σ2
∆,B = E

{
(∆B − m∆,B)2} = E

{
ℜ{ΥE − mΥ,E − ΥL + mΥ,L}2} = σ2

Υ,I,E + σ2
Υ,I,L (5.56)

with the early and late inphase variances

σ2
Υ,I,E = σ2

Υ,I

∣∣∣
τ̂=τ̂E

, σ2
Υ,I,L = σ2

Υ,I

∣∣∣
τ̂=τ̂L

. (5.57)

Since ΛB is Gaussian distributed, the expectation value of the discrimination function is

m∆,B = E{∆B} = E{ℜ{ΥE} − ℜ{ΥL}} = ℜ{mΥ,E} − ℜ{mΥ,L}

= 2 C
[
R2(τ − τ̂E) − R2(τ − τ̂L)

]K M−1∑

µ=1

[
sinc(fd,⌊µ/M⌋ N Ts) sinc(fd,⌊(µ−1)/M⌋ N Ts)

× cos
(
π (fd,⌊µ/M⌋ + fd,⌊(µ−1)/M⌋) N Ts

)]

= −8 C R

(
δ

2

)
N τǫ

η Tc

K M−1∑

µ=1

[
sinc(fd,⌊µ/M⌋ N Ts) sinc(fd,⌊(µ−1)/M⌋ N Ts)

× cos
(
π (fd,⌊µ/M⌋ + fd,⌊(µ−1)/M⌋) N Ts

)]
,

(5.58)
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while the derivative with respect to τǫ is

∂m∆,B

∂τǫ

= −8 C R

(
δ

2

)
N

η Tc

K M−1∑

µ=1

[
sinc(fd,⌊µ/M⌋ N Ts) sinc(fd,⌊(µ−1)/M⌋ N Ts)

× cos
(
π (fd,⌊µ/M⌋ + fd,⌊(µ−1)/M⌋) N Ts

)]

= − 8 C R

(
δ

2

)
N

η Tc

[
K−1∑

κ=0

(M − 1) sinc2(fd,κ N Ts) cos(2 π fd,κ N Ts)

+
K−1∑

κ=1

sinc(fd,κ N Ts) sinc(fd,κ−1 N Ts) cos(π (fd,κ + fd,κ−1) N Ts)

]
.

(5.59)

Fig. 5.6 shows the standard deviation of the estimated range for method A, σρ̂,F,A, as

specified in (5.48) by inserting (5.49) and (5.54), as well as the standard deviation of the

estimated range for method B, σρ̂,F,B, as specified in (5.55) by inserting (5.59) and (5.56).

The choice of the parameters T0 = 290 K, and F = 3 dB has been introduced in Section

3.7, the choice of K = 10 in Section 5.4, and the choice of δ = 1/B and B = 4.092 MHz

in Section 3.14. Fig. 5.6.a to 5.6.d illustrate the result of method A for GPS and Galileo,

while Fig. 5.6.e to 5.6.h present method B. To allow a comparison with the previous results

of Chapter 3, the same underlying CN/N0 values have been applied. The CN/N0 values are

presented in Fig. 3.14 and yield Pd = 90 % for the state-of-the-art noncoherent integration.

By using these common CN/N0 values, it can be shown how much the frequency offset

correction technique can improve the positioning accuracy. The carrier-to-noise PSD of

Fig. 3.14 has been selected, because the state-of-the-art noncoherent integration delivers the

weakest reception sensitivity and would not even permit reliable positioning at lower C/N0

values.

5.7 Accuracy Improvement

The frequency offset correction influences the mean and variance of the differential correlation

results. This leads to a different positioning accuracy than previously. The difference of the

range estimation accuracies of the frequency offset correction and the differential correlation

is displayed in Fig. 5.7. The relative accuracies σρ̂,D/σρ̂,F,A and σρ̂,D/σρ̂,F,B are calculated as

the ratios of the values in Fig. 3.19 and 5.6. It can be observed that range accuracy degrades

for the combination of a large frequency deviation, a long coherent integration interval, and

a very short observation period. This is because the value of K is actually less than 10 for

all observation periods below 200 ms for N Ts = 20 ms. This low number of iterations does

not allow the frequency deviation to converge sufficiently. Instead, the degrading effect of

a changing phase of the intermediate differential correlation results is still present and not

being outweighed by the reduced frequency deviation. This issue of changing signal phases

will be addressed in detail in the next chapter. Furthermore, it can be observed that method

B yields a range accuracy that is 8–39 % lower than that of method A. This is a result of

only using the inphase component of the correlation function. Method A of the frequency

offset correction technique can increase the accuracy of the range estimate up to 62 %. As
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(a) Method A for GPS L1-C/A.
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(b) Method A for Galileo E1-C.
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(c) Method A for GPS L1-C/A.
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(d) Method A for Galileo E1-C.
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(e) Method B for GPS L1-C/A.
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(f) Method B for Galileo E1-C.
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(g) Method B for GPS L1-C/A.
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(h) Method B for Galileo E1-C.

Figure 5.6: Range estimation accuracy with the frequency offset correction technique for
T0 = 290 K, F = 3 dB, K = 10, δ = 1/B, and B = 4.092 MHz.
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(a) Method A for GPS L1-C/A.
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(b) Method A for Galileo E1-C.
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(c) Method A for GPS L1-C/A.
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(d) Method A for Galileo E1-C.
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(e) Method B for GPS L1-C/A.
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(f) Method B for Galileo E1-C.
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(g) Method B for GPS L1-C/A.
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(h) Method B for Galileo E1-C.

Figure 5.7: Accuracy improvement of the frequency offset correction technique for
T0 = 290 K, F = 3 dB, K = 10, δ = 1/B, and B = 4.092 MHz.
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can be seen in Fig. 5.7, method B can achieve an improvement of 44 % for large frequency

deviations, while it slightly worsens the accuracy for low frequency deviations.

The cumulative relative accuracy of the frequency offset correction versus the state-of-

the-art noncoherent integration is shown in Fig. 5.8. The cumulative relative accuracies

σρ̂,N/σρ̂,F,A and σρ̂,N/σρ̂,F,B are calculated as the ratios of the values in Fig. 3.21 and 5.6.

The accuracy of the estimated distance between receiver and satellite is increased by the

frequency offset correction by as much as 191 % more than the state-of-the-art noncoherent

integration. Method B improves the accuracy of the range measurements by 159 %. The

contributors to this improvement are the differential correlation with 80 %, method A of

the frequency offset correction with 62 %, and method B of the frequency offset correction

44 %. The cumulative accuracy enhancement is obtained as 1.8× 1.62− 1 for method A and

1.8 × 1.44 − 1 for method B.

5.8 Conclusion

This chapter presents a technique to estimate the frequency deviation fd based on the dif-

ferential correlation result. It allows the iterative compensation of the frequency deviation

with the presented feedback loop. The reduction of the frequency deviation yields a higher

correlation gain. The frequency offset correction technique therefore increases the reception

sensitivity by up to 1.5 dB for the presented receiver configuration. This adds up to a cu-

mulative sensitivity gain versus the state-of-the-art noncoherent integration of 13 dB. The

additional gain of the frequency correction method is obviously bound by the sensitivity for

zero Doppler frequency shift. The improved signal-to-noise ratio furthermore leads to a

lower variance of the correlation peak estimation. This results in an improved positioning

accuracy. The accuracy of the estimated distance between receiver and satellite is increased

by as much as 67 %. The cumulative relative accuracy for the frequency offset correction ver-

sus the state-of-the-art noncoherent integration is therefore improved by up to 191%. Since

the frequency deviation converges towards zero, the differential correlation result converges

to a real-valued result. It is therefore also possible to evaluate just the inphase component

of the differential correlation result. This not only reduces the implementation complexity,

power consumption, and manufacturing costs, but also improves the reception sensitivity by

up to 1.6 dB and enhances the accuracy of the range estimates by 44 %. When compared to

the state-of-the-art noncoherent integration, the inphase component of the frequency offset

correction, enhances the reception sensitivity by 11.4 dB for GPS and 13 dB for Galileo. It

improves the range accuracy by a maximum of 159 % for GPS and 108 % for Galileo.



5.8. Conclusion 85

2.5

Observation time Tt [s]

N0 Ts = 1 ms, fd = 240 Hz
N0 Ts = 4 ms, fd = 60 Hz
N0 Ts = 20 ms, fd = 12 Hz

0
0

0.5

1

1

1.5

2

2

3

3 4 5 6 7 8 9 10C
u
m

u
la

ti
ve

re
l.

ac
cu

ra
cy

σ
ρ̂

,N

σ
ρ̂

,F
,A

(a) Method A for GPS L1-C/A.

2.5

Observation time Tt [s]

N0 Ts = 4 ms, fd = 60 Hz
N0 Ts = 20 ms, fd = 12 Hz

0
0

0.5

1

1

1.5

2

2

3

3 4 5 6 7 8 9 10C
u
m

u
la

ti
ve

re
l.

ac
cu

ra
cy

σ
ρ̂

,N

σ
ρ̂

,F
,A

(b) Method A for Galileo E1-C.
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(c) Method A for GPS L1-C/A.
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(d) Method A for Galileo E1-C.
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(e) Method B for GPS L1-C/A.
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(f) Method B for Galileo E1-C.
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Figure 5.8: Cumulative accuracy improvement of the frequency offset correction technique
versus the state-of-the-art noncoherent integration for T0 = 290 K, F = 3 dB, K = 10,
δ = 1/B, and B = 4.092 MHz.
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Chapter 6

Phase Mismatch Correction

The frequency offset correction technique of Chapter 5 leads to phase fluctuations of the

intermediate differential correlation results. Excessive phase fluctuations may degrade the

combined accumulated correlation power. This chapter therefore introduces a phase mis-

match correction technique, which rotates the intermediate differential correlation results

towards the inphase component before further accumulating them.

This phase mismatch correction compensates sudden phase changes early in the observa-

tion period, when the frequency correction technique introduces strong fluctuations of the

frequency deviation. It therefore achieves the same correlation gain within a shorter inte-

gration interval, which leads to lower energy consumption. Another benefit is that more

correlation power accumulates in the inphase path. This allows to only evaluate the in-

phase component of the differential correlation instead of its magnitude. While a minor

quadrature correlation component may be neglected this way, the quadrature noise compo-

nent is also rejected. Just evaluating the inphase component simplifies the hardware and

software implementation. The third accumulator can be simplified from complex-valued to

real-valued and the calculation of the squared magnitude can be omitted. This reduces not

only implementation expenses, but also power consumption.

6.1 Signal Rotation

It can be observed in (5.31) that the phase of each intermediate differential correlation

result φ̂κ is proportional to the frequency deviation fd. The frequency offset correction

therefore reduces the phase, which lowers the achievable final differential correlation value

Υ. The frequency offset estimation method of Chapter 5 already includes the required signal

processing units to calculate the argument of the intermediate differential correlation results

Ψκ. As shown in Fig. 6.1, the new technique only introduces an additional block to rotate

the samples Ψκ. This becomes apparent when compared to Fig. 5.1.
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Figure 6.1: Receiver channel with the phase mismatch correction technique.

The correlation phase is estimated as

φ̂κ = arg(Ψκ) = arg




(κ+1) M−1∑

µ=κ M+1

sµ s∗µ−1



 (6.1)

and the final differential correlation result is thus calculated as

Υ =
K−1∑

κ=0

(κ+1) M−1∑

µ=κ M

sµ s∗µ−1 e−j φ̂κ (6.2)

with s−1 = 0. From (5.31), the resulting expectation value of the final differential correlation

result Υ is derived as

mΥ = E{Υ}

= 2 C R2(τ − τ̂)

[
K−1∑

κ=0

(M − 1) sinc2(fd,κ N Ts) ej 2 π fd,κ N Ts−j φ̂κ

+
K−1∑

κ=1

sinc(fd,κ N Ts) sinc(fd,κ−1 N Ts) ej π (fd,κ+fd,κ−1) N Ts−j φ̂κ

]
.

(6.3)

The combined variance of the inphase and quadrature components of the differential cor-

relation noise remains unchanged since it does not depend on φ̂κ and is given in (5.32). If

only the inphase path is to be evaluated, a modification of (5.35) yields the variance of the

inphase component of the differential correlation noise

σ2
Υ,I =

(K M − 1) σ4
w

2
+ σ2

w C R2(τ − τ̂)

[
sinc2(fd,0 N Ts) + sinc2(fd,K−1 N Ts)

+
K−1∑

κ=0

4 (M − 2) sinc2(fd,κ N Ts) cos2(2 π fd,κ N Ts − φ̂κ)

+
K−2∑

κ=0

∣∣∣sinc(fd,κ+1 N Ts) + sinc(fd,κ N Ts) ej π(fd,κ+1+3 fd,κ) N Ts−j φ̂κ

∣∣∣
2

+
K−1∑

κ=1

∣∣∣sinc(fd,κ N Ts) + sinc(fd,κ−1 N Ts) ej π(3 fd,κ+fd,κ−1) N Ts−j φ̂κ

∣∣∣
2
]
.

(6.4)
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6.2 Phase Estimation Accuracy

The sensitivity gain of the phase mismatch correction method is subject to the accuracy of

the signal phase estimation. The probability density function of φ̂κ has already been derived

in (5.17). Fig. 6.2 shows the expectation value of the estimated phase

mφ̂κ
= E

{
φ̂κ

}
(6.5)

and the standard deviation of the estimated phase

σφ̂κ
=

√

E

{(
φ̂κ − E

{
φ̂κ

})2}
(6.6)

as a function of the observation period M N Ts. They are obtained by numerical integra-

tion with the adaptive Simpson quadrature method [74]. As can be observed in Fig. 6.2,

the estimated phase converges quickly to the correct value for sufficiently long observation

periods. The standard deviation σφ̂κ
decreases exponentially with increasing observation pe-

riods. Even for very low carrier-to-noise PSD values C/N0, the presented estimation method

can substantially reduce the phase mismatch.

6.3 Reception Sensitivity

The phase mismatch correction enables two different decision statistics. The conventional

squared magnitude

ΛA = |Υ|2 =

∣∣∣∣∣∣

K−1∑

κ=0

(κ+1) M−1∑

µ=κ M

sµ s∗µ−1 e−j φ̂κ

∣∣∣∣∣∣

2

(6.7)

is used for method A and the inphase component

ΛB = ℜ{Υ} = ℜ






K−1∑

κ=0

(κ+1) M−1∑

µ=κ M

sµ s∗µ−1 e−j φ̂κ




 (6.8)

is used for method B, since the phase mismatch correction rotates the correlation power

towards the real part of Υ.

The detection threshold for method A, λA, is obtained from (5.38) using mΥ,H0 =

mΥ|R2(τ−τ̂)=R2
m

and σ2
Υ,H0

= σ2
Υ|R2(τ−τ̂)=R2

m
as provided in (6.3) and (5.32). The probabil-

ity of detection Pd,A is then obtained from (5.40) by inserting mΥ,H1 = mΥ|R2(τ−τ̂)=N2 and

σ2
Υ,H1

= σ2
Υ|R2(τ−τ̂)=N2 . Similarly, the detection threshold for method B, λB, is calculated

with (5.44), where σ2
Υ,I,H0

= σ2
Υ,I|R2(τ−τ̂)=R2

m
is provided in (6.4). This yields the probability

of detection Pd,B with (5.45) by inserting σ2
Υ,I,H1

= σ2
Υ,I|R2(τ−τ̂)=N2 .
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Figure 6.2: Expectation value and standard deviation of the phase mismatch estimation for
GPS L1-C/A and Galileo E1-C.

The reception sensitivity achieved by the phase mismatch correction technique is shown

in Fig. 6.3. It is presented for GPS and Galileo with Pd = 90 %. The minimum carrier-

to-noise PSD for methods A and B, CP,A/N0 and CP,B/N0, are plotted as a function of

the observation period. The choice of the receiver parameters T0 = 290 K, F = 3 dB,

Pf = 10−5, and Pd = 90 % has been discussed in Section 3.7, while the choice of K = 10 has

been motivated in Section 5.4. The phase estimation in Fig. 6.2 converges with sufficient

accuracy after a certain observation period M N Ts. The intermediate differential correlation

intervals therefore have to be sufficiently long to minimize the impact of the estimation error.

The number of phase estimations K in Fig. 6.3 is therefore as previously K = 10. The

underlying channel model for these simulations introduces a constant frequency deviation
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(b) Method A for Galileo E1-C.
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(c) Method A for GPS L1-C/A.
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(d) Method A for Galileo E1-C.
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(e) Method B for GPS L1-C/A.
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(f) Method B for Galileo E1-C.
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(g) Method B for GPS L1-C/A.
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(h) Method B for Galileo E1-C.

Figure 6.3: Reception sensitivity with the phase mismatch correction technique for
T0 = 290 K, F = 3 dB, K = 10, Pf = 10−5, and Pd = 90 %.
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fd. However, the phase mismatch correction technique is also applicable to a dynamically

changing frequency offset. If the dynamics are very high, it might be useful to increase the

parameter K, in order to partition the observation period into a larger number of phase

mismatch correction.

6.4 Sensitivity Gain

The phase mismatch correction method rotates the intermediate differential correlation re-

sults towards positive real values, before further accumulating them. This reduces the degra-

dation introduced by the variation of the differential correlation phase. It thus yields a

sensitivity gain, which is calculated in this section.

Fig. 6.4 illustrates the sensitivity gain of the phase mismatch correction. The gain for

method A, CF,A/CP,A, and method B, CF,B/CP,B, is calculated in dB as the difference between

the values in Fig. 5.3 and 6.3. It is reduced to 0.7 dB for long observation periods. For short

observation periods it can be significantly higher in excess of 1.5 dB, since the frequency

correction introduces larger phase fluctuations. For the short observation period of 100 ms,

the gain even reaches 8.2 dB with method B. Once the gain has converged it is equal for

the different coherent integration intervals. The reason is the same as for the frequency

correction in the last chapter. The gain depends on the products fd N Ts and is higher

for larger products. Since these products are equal for the different coherent integration

intervals of each plot, the sensitivity gain is also equal. Once converged, the sensitivity

gain is furthermore independent of the observation period K M N Ts. The reason for this

effect lies in the constant factor K. The simulations in Fig. 6.4 use K = 10, which has

the effect that the observation period is partitioned into ten intermediate intervals of equal

length. The frequency offset and phase mismatch are corrected only after each intermediate

interval. The first tenth of the observation period is degraded with the full frequency offset.

The cumulative phase correction is the same for all observation periods and each correction

acts on equal length intermediate intervals. Since the underlying carrier-to-noise PSD is

also lower for longer observation periods, the frequency offset of each subsequent interval

is reduced by around the same amount, independent of the length of the total observation

period. Hence, the phase fluctuations are around the same and the sensitivity gain is also

constant. The reception sensitivity of the phase correction method could be further improved

by storing the intermediate differential correlation results and rotating them at the end of

the entire observation period with the knowledge of the final accumulated frequency offset

estimation.

The cumulative sensitivity gain of the phase mismatch correction technique versus the

state-of-the-art noncoherent integration is presented in Fig. 6.5. Subtracting the values in

Fig. 6.3 from the values in Fig. 3.14 yields the cumulative gain in dB. The gain for methods

A and B, CN/CP,A and CN/CP,B, reaches 13.7 dB. This cumulative gain is composed of 1.5 dB

from the differential correlation, 10 dB from the adaptive detection threshold, 1.5 dB from

the frequency offset correction, and 0.7 dB from the phase mismatch correction.
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(b) Method A for Galileo E1-C.
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(c) Method A for GPS L1-C/A.
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(d) Method A for Galileo E1-C.
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(e) Method B for GPS L1-C/A.
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(f) Method B for Galileo E1-C.
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(g) Method B for GPS L1-C/A.
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(h) Method B for Galileo E1-C.

Figure 6.4: Sensitivity gain of the phase mismatch correction technique for T0 = 290 K,
F = 3 dB, K = 10, Pf = 10−5, and Pd = 90 %.
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(b) Method A for Galileo E1-C.
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(c) Method A for GPS L1-C/A.
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(d) Method A for Galileo E1-C.
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(e) Method B for GPS L1-C/A.
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(f) Method B for Galileo E1-C.
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(g) Method B for GPS L1-C/A.
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(h) Method B for Galileo E1-C.

Figure 6.5: Cumulative sensitivity gain of the phase mismatch correction technique versus
the state-of-the-art noncoherent integration for T0 = 290 K, F = 3 dB, K = 10, Pf = 10−5,
and Pd = 90 %.
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6.5 Positioning Accuracy

The range variance for method A of the phase correction σ2
ρ̂,P,A has already been defined

in (5.48) as a function of σ2
∆,A and ∂m∆,A/∂τǫ|τǫ=0. The discrimination variance σ2

∆,A is

provided in (5.49) as a function of mΥ,E = mΥ|τ̂=τ̂E , mΥ,L = mΥ|τ̂=τ̂L , σ2
Υ,E = σ2

Υ|τ̂=τ̂E , and

σ2
Υ,L = σ2

Υ|τ̂=τ̂L , where mΥ and σ2
Υ are derived in (6.3) and (5.32). With (5.54), the derivative

of the discrimination mean for the adaptive integration technique can be derived as

∂m∆,A

∂τǫ

∣∣∣∣
τǫ=0

= − 8 C σ2
w R

(
δ

2

)
N

η Tc

[
(2M − 1)

[
sinc2(fd,0 N Ts) + sinc2(fd,K−1 N Ts)

]

+
K−2∑

κ=1

2 M sinc2(fd,κ N Ts)

]

− 32 C2 R3

(
δ

2

)
N

η Tc

∣∣∣∣∣

K−1∑

κ=1

sinc(fd,κ N Ts) sinc(fd,κ−1 N Ts) ej π (fd,κ+fd,κ−1) N Ts−j φ̂κ

+
K−1∑

κ=0

(M − 1) sinc2(fd,κ N Ts) ej 2 π fd,κ N Ts−j φ̂κ

∣∣∣∣∣

2

.

(6.9)

In the same way, the range variance for method B of the phase correction, σ2
ρ̂,P,B is given

in (5.55), with σ2
∆,B provided in (5.56) as a function of σ2

Υ,I,E = σ2
Υ,I|τ̂=τ̂E and σ2

Υ,I,L =

σ2
Υ,I|τ̂=τ̂L . The inphase differential correlation noise variance σ2

Υ,I is derived in (6.4). Finally,

the derivative of the discrimination function for method B is obtained from (5.59) and (6.3)

as

∂m∆,B

∂τǫ

= − 8 C R

(
δ

2

)
N

η Tc

[
K−1∑

κ=0

(M − 1) sinc2(fd,κ N Ts) cos(2 π fd,κ N Ts − φ̂κ)

+
K−1∑

κ=1

sinc(fd,κ N Ts) sinc(fd,κ−1 N Ts) cos(π (fd,κ + fd,κ−1) N Ts − φ̂κ)

]
.

(6.10)

Fig. 6.6 shows the standard deviations of the estimated ranges σρ̂,P,A and σρ̂,P,B. The

parameters T0 = 290 K and F = 3 dB are motivated in Section 3.7, the parameter K = 10

in Section 5.4, and the parameters δ = 1/B and B = 4.092 MHz in Section 3.14. In order to

allow comparison with the previous results, the range estimation accuracies in Fig. 6.6 are

also calculated for the common baseline CN/N0 values of Fig. 3.14.

6.6 Accuracy Improvement

Since the phase mismatch correction reduces the degradation of the correlation result, the

correlation peak becomes larger in relation to the correlation noise. This improves the code

discrimination and thus increases the ranging accuracy. The relative accuracies between the

phase mismatch correction and the frequency offset correction, σρ̂,F,A/σρ̂,P,A and σρ̂,F,B/σρ̂,P,B,

are presented in Fig. 6.7. They are found by dividing the values of Fig. 5.6 by the values
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(f) Method B for Galileo E1-C.
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(h) Method B for Galileo E1-C.

Figure 6.6: Range estimation accuracy with the phase mismatch correction technique for
T0 = 290 K, F = 3 dB, K = 10, δ = 1/B, and B = 4.092 MHz.
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(b) Method A for Galileo E1-C.
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(c) Method A for GPS L1-C/A.
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(d) Method A for Galileo E1-C.
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(e) Method B for GPS L1-C/A.
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(f) Method B for Galileo E1-C.
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(g) Method B for GPS L1-C/A.
Observation time Tt [s]

N0 Ts = 4 ms, fd = 120 Hz
N0 Ts = 20 ms, fd = 24 Hz

0
0

0.2

0.4

0.6

0.8

1

1

1.2

1.4

1.6

2 3 4 5 6 7 8 9 10

R
el

at
iv

e
ac

cu
ra

cy
σ

ρ̂
,F

,B

σ
ρ̂

,P
,B

(h) Method B for Galileo E1-C.

Figure 6.7: Accuracy improvement of the phase mismatch correction technique for
T0 = 290 K, F = 3 dB, K = 10, δ = 1/B, and B = 4.092 MHz.
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of Fig. 6.6. Both methods, A and B, deliver an accuracy improvement of 15 % for long

observation periods. It is thereby very stable over the range of observation periods. The

accuracy gain exceeds 60 % for very short observation periods.

The cumulative relative accuracy of the phase mismatch correction technique versus the

state-of-the-art noncoherent integration is shown in Fig. 6.8. The ratios σρ̂,N/σρ̂,P,A and

σρ̂,N/σρ̂,P,B are thereby calculated based on the values in Fig. 3.21 and 6.6. The differential

correlation improves the accuracy by 80 % and the frequency offset correction by 62 % for

method A and 44 % for method B. The phase mismatch correction therefore improves the

accuracy of the estimated ranges by as much as 1.8× 1.62× 1.15− 1 = 235 % for method A

and 1.8 × 1.44 × 1.15 − 1 = 198 % for method B.

6.7 Conclusion

The presented technique adaptively reduces the phase mismatch of the intermediate differ-

ential correlation results. The phase of the complex-valued differential correlation result is

proportional to the residual frequency deviation and the coherent integration time. The

underlying channel model for the simulations of this chapter incorporates a constant fre-

quency offset, although the presented technique is also applicable to a dynamically changing

frequency deviation. The frequency offset correction method presented in Chapter 5 incre-

mentally reduces the residual frequency deviation. This leads to a fluctuation of the phase

of the intermediate differential correlation results. The phase mismatch correction method

of this chapter therefore adaptively realigns the correlation phases to improve the final dif-

ferential correlation result. The analysis of this chapter shows that the phase mismatch

correction method enhances the reception sensitivity by 0.7 dB for long observation periods

and substantially more in excess of 1.5 dB for short observation periods. It adds up to a

cumulative sensitivity gain versus the state-of-the noncoherent integration of 13.7 dB. The

same sensitivity enhancement can also be achieved by just evaluating the inphase compo-

nent of the final differential correlation result. This simplifies the hardware and software

implementation considerably with the benefit of reduced implementation costs and power

consumption. The reduction of the phase mismatch furthermore enables the adaptive inte-

gration technique of the next chapter, which yields a large sensitivity gain of 7.1 dB. The

phase mismatch correction can also improve the positioning accuracy. The accuracy of the

estimated satellite-receiver range can be increased by 15 %, which yields an improvement of

the ranging accuracy versus the state-of-the-art noncoherent integration of 236 %. If just

the inphase result is processed, the range accuracy is also increased by 15 % and a cumula-

tive enhancement of 198 % when compared to the state-of-the-art results is achieved. The

sensitivity and accuracy improvements in the presented simulations are not very large. This

is the case for a constant frequency offset as it is simulated here. In case of a dynamically

changing frequency deviation, e.g. from user motion or a drifting local oscillator, the sensi-

tivity gain is substantially higher. The phase mismatch correction is furthermore necessary

for the adaptive integration interval technique of the next chapter. The adaptive integration

yields a very large sensitivity gain, but also causes very large phase fluctuations. It relies on

the phase mismatch correction to realign the intermediate correlation results.
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(c) Method A for GPS L1-C/A.
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(d) Method A for Galileo E1-C.
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(f) Method B for Galileo E1-C.
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(g) Method B for GPS L1-C/A.
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(h) Method B for Galileo E1-C.

Figure 6.8: Cumulative accuracy improvement of the phase mismatch correction technique
versus the state-of-the-art noncoherent integration for T0 = 290 K, F = 3 dB, K = 10,
δ = 1/B, and B = 4.092 MHz.
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Adaptive Integration Interval

The maximum coherent integration period is inversely proportional to the maximum fre-

quency deviation. The higher the residual frequency deviation, the faster the signal phase

rotates during the coherent integration process. The further the phase rotates during the

coherent integration interval, the larger the sensitivity degradation when the samples are

accumulated. The frequency offset correction of Chapter 5 incrementally reduces the resid-

ual frequency deviation. It is therefore also possible to incrementally increase the coherent

integration period while the differential correlation process is still ongoing.

The adaptive integration interval technique of this chapter waits until the frequency cor-

rection has sufficiently converged. It increases the coherent integration period once the resid-

ual frequency deviation is sufficiently small. The reception sensitivity is thereby enhanced,

since the coherent integration provides a higher correlation gain than the differential corre-

lation. In case the frequency deviation increases again, the adaptive technique reduces the

coherent integration interval.

7.1 Integration Number Adjustment

Adjusting the coherent integration interval as a function of the frequency deviation implies

a transformation of the coherent integration number N to a time-variant variable Nκ. The

intermediate correlation number M determines the accuracy of the frequency offset estima-

tion and is also transformed into a time-variant variable Mκ, such that it can be adjusted as

a function of Nκ. The signal flow diagram for the adaptive integration technique is presented

in Fig. 7.1. When compared to the signal processing chain of the phase mismatch correction

in Fig. 6.1, the additional block to calculate the integration numbers Nκ and Mκ becomes

apparent. It bases its adjustment on the feedback path for the estimated phase φ̂κ.

In Chapter 5, an estimation method for the residual frequency deviation fd,µ in the range

[−1/(2 Nκ Ts), 1/(2 Nκ Ts)] is derived and analyzed. Modifying (5.4) yields

f̂d,κ =
arg(Ψκ)

2 π Nκ Ts

=

arg

(
Wκ+1−1∑
µ=Wκ+1

sµ s∗µ−1

)

2 π Nκ Ts

(7.1)
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Figure 7.1: Receiver channel with the adaptive integration interval technique.

with the cumulative intermediate differential correlation number

Wκ+1 = Wκ + Mκ , W0 = 0 . (7.2)

Fig. 5.2 provides an overview of the frequency offset estimation accuracy. The initial

intermediate correlation number M0 has to be large enough to provide sufficiently long ob-

servation periods for the frequency offset estimation. This improves the estimation accuracy.

Furthermore, the coherent integration number Nκ is only increased once the estimation of the

frequency deviation has converged with sufficient accuracy. The next coherent integration

number is then calculated as

Nκ+1 =






Nmin ;
⌊

1

8 f̂d,κ Nmin Ts

⌋
6 1

⌊
1

8 f̂d,κ Nmin Ts

⌋
Nmin ; 1 <

⌊
1

8 f̂d,κ Nmin Ts

⌋
< Nmax

Nmin

Nmax ; else

, (7.3)

whereby the floor operation ⌊·⌋ rounds to the nearest integer smaller or equal to the argu-

ment. The minimum coherent integration number Nmin ensures that at least one full code

cycle is used for correlation. It is set to 1 ms/Ts for GPS L1-C/A and 4 ms/Ts for Galileo E1-

C. The maximum coherent integration number Nmax limits the coherent integration interval

to the expected coherence time of the propagation channel. It should be chosen according

to the Doppler spread, which is influenced by the dynamics of the receiver movement [75].

The coherence time is a statistical measure of the time duration over which the propagation

channel is essentially invariant. A reasonable value of Nmax for a static pedestrian receiver

is 100 ms/Ts. The coherent integration number Nκ in (7.3) is only increased if the estimated

frequency deviation is smaller than a quarter of the estimation range. Otherwise, the co-

herent integration period is decreased again. This case could happen for large estimation

errors or if the frequency deviation varies due to fast receiver movement. The generous

back-tracking property of (7.3) leads to a quick recovery from such situations.

In order to keep the total intermediate observation time Mκ Nκ for the frequency offset

estimation stable, the intermediate differential correlation number is set to

Mκ+1 =






2 ;
〈

M0 N0

Nκ+1

〉
6 2

〈
M0 N0

Nκ+1

〉
; else

, (7.4)
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with 〈·〉 representing the rounding operation. As shown in Fig. 7.1, the final differential

correlation result is denoted as Υ. From (3.38), (3.39), and (6.3), the expectation value of

Υ for the adaptive integration interval method is derived as

mΥ = E{Υ}

= 2 C
R2

0(τ − τ̂)

N2
0

[
K−1∑

κ=0

(Mκ − 1) N2
κ sinc2(fd,κ Nκ Ts) ej 2 π fd,κ Nκ Ts−j φ̂κ

+
K−1∑

κ=1

Nκ Nκ−1 sinc(fd,κ Nκ Ts) sinc(fd,κ−1 Nκ−1 Ts) ej π (fd,κ Nκ+fd,κ−1 Nκ−1) Ts−j φ̂κ

]
.

(7.5)

where R2
0(τ − τ̂) denotes the correlation function for the coherent integration number N0 as

specified in (3.28). With (3.42), (3.43), (3.51), and (5.32), the derivation of the combined

variance of the inphase and quadrature components yields

σ2
Υ = E

{
|Υ − E{Υ}|2

}

=
K−1∑

κ=0

(Mκ − 1) σ4
w,κ +

K−1∑

κ=1

σ2
w,κ σ2

w,κ−1

+ 2 C
R2

0(τ − τ̂)

N2
0

[
K−1∑

κ=0

2 (Mκ − 1) σ2
w,κ N2

κ sinc2(fd,κ N Ts)

+
K−2∑

κ=0

σ2
w,κ N2

κ+1 sinc2(fd,κ+1 N Ts) +
K−1∑

κ=1

σ2
w,κ N2

κ−1 sinc2(fd,κ−1 N Ts)

]

(7.6)

where the predetection noise variance

σ2
w,κ = 2 Nκ k T0 B F (7.7)

follows from (3.19). If only the inphase path is to be evaluated, a modification of (5.35)

yields the variance of the inphase component of the differential correlation noise

σ2
Υ,I = E

{
ℜ{Υ − E{Υ}}2}

=
K−1∑

κ=0

(Mκ − 1) σ4
w,κ

2
+

K−1∑

κ=1

σ2
w,κ σ2

w,κ−1

2

+ C
R2

0(τ − τ̂)

N2
0

[
σ2

w,0 N2
0 sinc2(fd,0 N0 Ts) + σ2

w,K−1 N2
K−1 sinc2(fd,K−1 NK−1 Ts)

+
K−1∑

κ=0

4 (Mκ − 2) σ2
w,κ N2

κ sinc2(fd,κ Nκ Ts) cos2
(
2 π fd,κ Nκ Ts − φ̂κ

)

+
K−2∑

κ=0

σ2
w,κ

∣∣∣Nκ+1 sinc(fd,κ+1 Nκ+1 Ts) + Nκ sinc(fd,κ Nκ Ts) ej π (fd,κ+1 Nκ+1+3 fd,κ Nκ) Ts−j φ̂κ

∣∣∣
2

+
K−1∑

κ=1

σ2
w,κ

∣∣∣Nκ sinc(fd,κ Nκ Ts) + Nκ−1 sinc(fd,κ−1 Nκ−1 Ts) ej π (3 fd,κ Nκ+fd,κ−1 Nκ−1) Ts−j φ̂κ

∣∣∣
2
]
.

(7.8)
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7.2 Reception Sensitivity

The reception sensitivity is again calculated for the two different decision statistics. The

squared magnitude

ΛA = |Υ|2 =

∣∣∣∣∣

K−1∑

κ=0

Wκ+1−1∑

µ=Wκ

sµ s∗µ−1 e−j φ̂κ

∣∣∣∣∣

2

(7.9)

with s−1 = 0 is used for method A and the inphase component

ΛB = ℜ{Υ} = ℜ
{

K−1∑

κ=0

Wκ+1−1∑

µ=Wκ

sµ s∗µ−1 e−j φ̂κ

}
(7.10)

is used for method B.

As before, the detection threshold for method A, λA, is calculated with (5.38) by in-

serting mΥ,H0 = mΥ|R2(τ−τ̂)=R2
m

and σ2
Υ,H0

= σ2
Υ|R2(τ−τ̂)=R2

m
as specified in (7.5) and (7.6).

The corresponding probability of detection Pd,A is then obtained from (5.40) by inserting

mΥ,H1 = mΥ|R2(τ−τ̂)=N2 and σ2
Υ,H1

= σ2
Υ|R2(τ−τ̂)=N2 . Similarly, the detection threshold for

method B, λB, is calculated with (5.44), where σ2
Υ,I,H0

= σ2
Υ,I|R2(τ−τ̂)=R2

m
is provided in (7.8).

This yields the probability of detection Pd,B with (5.45) by inserting σ2
Υ,I,H1

= σ2
Υ,I|R2(τ−τ̂)=N2 .

Chapter 3 introduces the differential correlation method, Chapter 4 the adaptive detec-

tion threshold, Chapter 5 the frequency offset correction, Chapter 6 the phase mismatch

correction, and this chapter the adaptive integration interval. The reception sensitivity for

Pd = 90 % of all these techniques combined is illustrated in Fig. 7.2. It shows the minimum

carrier-to-noise PSD for method A, CI,A/N0, and method B, CI,B/N0, where a 90 % proba-

bility of detection can be maintained. The choice of T0 = 290 K, F = 3 dB, Pf = 10−5, and

Pd = 90 % in Fig. 7.2 is explained in detail in Section 3.7. The initial intermediate differential

correlation number is chosen according to the setting in Section 5.4 as M0 = Tt/(10 N0 Ts),

where

Tt =
K−1∑

κ=0

Mκ Nκ Ts (7.11)

is the total observation period. This choice of M0 corresponds to the value K = 10 in the

last two chapters. The values for N0 Ts in the legend of each plot are the initial coherent

integration periods that are incrementally increased with (7.3), when the initial frequency

offset fd is reduced with frequency correction technique of the Chapter 5. The minimum

values Nmin are chosen such that the coherent integration period covers exactly one spreading

code period. The limit for the maximum coherent integration periods is Nmax Ts = 100 ms.

This value corresponds to a reasonable coherence time for a static pedestrian receiver, as

elaborated in Section 7.1. While longer coherent integration periods would yield even better

sensitivity, limiting the integration provides a higher receiver robustness and corresponds

better to practical applications.
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(h) Method B for Galileo E1-C.

Figure 7.2: Reception sensitivity with the adaptive integration interval technique for
T0 = 290 K, F = 3 dB, M0 = Tt/(10 N0 Ts), Nmin,GPS = 1 ms/Ts, Nmin,Galileo = 4 ms/Ts,
Nmax Ts = 100 ms, Pf = 10−5, and Pd = 90 %.
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7.3 Sensitivity Gain

The adaptive coherent integration interval exploits the convergence of the frequency devia-

tion towards zero by incrementally increasing the coherent integration interval as a function

of the estimated frequency deviation. It thereby yields a sensitivity gain, which is calcu-

lated in this section. The sensitivity gain in dB of the adaptive integration interval method

is found by subtracting the values in Fig. 7.2 from the values in Fig. 6.3. As presented in

Fig. 7.3, the gain for method A, CP,A/CI,A, amounts up to 7.1 dB, and the gain for method

B, CP,B/CI,B, amounts up to 6.7 dB. The sensitivity gain is the largest for the shortest ini-

tial coherent integration interval N0 Ts, since the maximum integration interval is limited at

Nmax Ts = 100 ms. The smallest initial value has the most room for increment and hence

achieves the largest improvement. The longer initial coherent integration intervals satu-

rate earlier. Nonetheless, the shortest initial coherent integration interval still delivers the

largest frequency search bin. The adaptive integration interval does not affect the size of

the frequency search bin. This is accomplished by a generous backtracking range. Only one

quarter of the frequency estimation range leads to an increase in coherent integration time.

Three quarters of the estimation range decrease the coherent integration period. The full

magnitude of sensitivity improvement requires a certain settling time until the frequency

offset correction has reduced the frequency deviation sufficiently. The adaptive integration

method delivers its main improvement for intermediate and long observation periods.

The cumulative sensitivity gain of the adaptive detection threshold versus the state-of-

the-art noncoherent integration can be obtained as the difference between the values in

dB of Fig. 3.14 and 7.2. As is summarized in Fig. 7.4, the cumulative gain for method A,

CN/CI,A, rises to 17.3 dB and the cumulative gain for method B, CN/CI,B, rises to 17.2 dB.

Although methods A and B deliver almost the same reception sensitivity, their distinction is

important since method B can be implemented with higher cost-efficiency and lower power

consumption than method A. For the case of large frequency deviations, the cumulative

gain is comprised of 1.5 dB by the differential correlation, 11.6 dB by the adaptive detection

threshold, 1.5 dB by the frequency offset correction, 0.7 dB by the phase mismatch correction

and 3.6 dB by the adaptive integration interval. However, the adaptive integration yields

higher sensitivity improvements for shorter initial coherent integration periods. This leads

to the effect that the cumulative sensitivity gain for N Ts = 1 ms and fd = 240 Hz is 12.7 dB,

while the cumulative gain for N Ts = 20 ms and fd = 12 Hz is 13.6 dB, which is just 0.9 dB

more. With the adaptive integration method, shorter initial coherent integration intervals

might be beneficial in order to simplify the frequency search space. The resulting sensitivity

reduction is only minor.

7.4 Positioning Accuracy

The range variance for method A of the adaptive integration σ2
ρ̂,I,A is defined in (5.48) as a

function of σ2
∆,A and ∂m∆,A/∂τǫ|τǫ=0. The discrimination variance σ2

∆,A is given in (5.49) as

function of mΥ,E = mΥ|τ̂=τ̂E , mΥ,L = mΥ|τ̂=τ̂L , σ2
Υ,E = σ2

Υ|τ̂=τ̂E , and σ2
Υ,L = σ2

Υ|τ̂=τ̂L , where

mΥ and σ2
Υ for the adaptive integration technique are derived in (7.5) and (7.6). The slope
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Figure 7.3: Sensitivity gain of the adaptive integration interval technique for T0 = 290 K,
F = 3 dB, M0 = Tt/(10 N0 Ts), Nmin,GPS = 1 ms/Ts, Nmin,Galileo = 4 ms/Ts, Nmax Ts = 100 ms,
Pf = 10−5, and Pd = 90 %.
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Figure 7.4: Cumulative sensitivity gain of the adaptive integration interval technique versus
the state-of-the-art noncoherent integration for T0 = 290 K, F = 3 dB, M0 = Tt/(10 N0 Ts),
Nmin,GPS = 1 ms/Ts, Nmin,Galileo = 4 ms/Ts, Nmax Ts = 100 ms, Pf = 10−5, and Pd = 90 %.
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of the discrimination mean can be derived with help of (5.52), (5.53), and (6.9) as

∂m∆,A

∂τǫ

∣∣∣∣
τǫ=0

= −8 C
R0

(
δ
2

)

N0 η Tc

[
K−1∑

κ=0

2 (Mκ − 1) σ2
w,κ N2

κ sinc2(fd,κ Nκ Ts)

+
K−2∑

κ=0

σ2
w,κ N2

κ+1 sinc2(fd,κ+1 Nκ+1 Ts) +
K−1∑

κ=1

σ2
w,κ N2

κ−1 sinc2(fd,κ−1 Nκ−1 Ts)

]

− 32 C2 R3
0

(
δ
2

)

N3
0 η Tc

∣∣∣∣∣

K−1∑

κ=0

(Mκ − 1) N2
κ sinc2(fd,κ Nκ Ts) ej 2 π fd,κ Nκ Ts−j φ̂κ

+
K−1∑

κ=1

Nκ Nκ−1 sinc(fd,κ Nκ Ts) sinc(fd,κ−1 Nκ−1 Ts) ej π (fd,κ Nκ+fd,κ−1 Nκ−1) Ts−j φ̂κ

∣∣∣∣∣

2

.

(7.12)

As before, the range variance for method B of the adaptive integration, σ2
ρ̂,I,B is given by

(5.55), with σ2
∆,B presented in (5.56) as a function of σ2

Υ,I,E = σ2
Υ,I|τ̂=τ̂E and

σ2
Υ,I,L = σ2

Υ,I|τ̂=τ̂L . The inphase differential correlation noise variance σ2
Υ,I is derived in (7.8).

Finally, the derivative of the discrimination function for method B is obtained from (6.10)

and (7.5) as

∂m∆,B

∂τǫ

= −8 C
R0

(
δ
2

)

N0 η Tc

[
K−1∑

κ=0

(Mκ − 1) N2
κ sinc2(fd,κ Nκ Ts) cos

(
2 π fd,κ Nκ Ts − φ̂κ

)

+
K−1∑

κ=1

Nκ Nκ−1 sinc(fd,κ Nκ Ts) sinc(fd,κ−1 Nκ−1 Ts) cos
(
π(fd,κ Nκ + fd,κ−1 Nκ−1) Ts − φ̂κ

)]
.

(7.13)

This completes the derivation of the standard deviations of the estimated receiver-satellite

ranges σρ̂,I,A and σρ̂,I,B, which are illustrated in Fig. 7.5. The same baseline CN/N0 function

in Fig. 3.14 as for all previous accuracy plots has been used to enable direct comparison.

The parameters T0 = 290 K and F = 3 dB are introduced in Section 3.7, the parameters

M0 = Tt/(10 N0 Ts), Nmin,GPS = 1 ms/Ts, Nmin,Galileo = 4 ms/Ts, and Nmax Ts = 100 ms in

Section 7.2, and the parameters δ = 1/B and B = 4.092 MHz in Section 3.14.

7.5 Accuracy Improvement

When the frequency deviation decreases and the coherent integration interval is increased,

then the signal-to-noise ratio for the code discrimination increases as well. The increased

signal strength leads to an improved positioning accuracy, which is presented in this section.

Dividing the values in Fig. 6.6 by the values in Fig. 7.5 yields the accuracy improvement of

the the adaptive integration technique. The resulting relative accuracies σρ̂,P,A/σρ̂,I,A and

σρ̂,P,B/σρ̂,I,B are shown in Fig. 7.6. The accuracy of the estimated receiver-satellite distance

is improved with the adaptive integration technique by up to 114 % for method A and 66 %

for method B. The shortest initial coherent integration interval N0 Ts delivers the highest im-

provement in ranging accuracy, since it has the most headroom for the extended integration,
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Observation time Tt [s]

N0 Ts = 1 ms, fd = 480 Hz
N0 Ts = 4 ms, fd = 120 Hz
N0 Ts = 20 ms, fd = 24 Hz

0
0 1

2

2 3

4

4 5

6

6 7

8

8 9

10

10

12

S
ta

n
d
ar

d
d
ev

ia
ti

on
σ

ρ̂
,I

,A
[m

]

(c) Method A for GPS L1-C/A.

 

 

Observation time Tt [s]

N0 Ts = 4 ms, fd = 120 Hz
N0 Ts = 20 ms, fd = 24 Hz

0
0 1

2

2 3

4

4 5

6

6 7

8

8 9

10

10

12

S
ta

n
d
ar

d
d
ev

ia
ti

on
σ

ρ̂
,I

,A
[m

]

(d) Method A for Galileo E1-C.
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(e) Method B for GPS L1-C/A.
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(f) Method B for Galileo E1-C.
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(g) Method B for GPS L1-C/A.
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(h) Method B for Galileo E1-C.

Figure 7.5: Range estimation accuracy with the adaptive integration interval technique for
T0 = 290 K, F = 3 dB, M0 = Tt/(10 N0 Ts), Nmin,GPS = 1 ms/Ts, Nmin,Galileo = 4 ms/Ts,
Nmax Ts = 100 ms, δ = 1/B, and B = 4.092 MHz.
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(b) Method A for Galileo E1-C.
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(c) Method A for GPS L1-C/A.
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(d) Method A for Galileo E1-C.
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(e) Method B for GPS L1-C/A.
Observation time Tt [s]

N0 Ts = 4 ms, fd = 60 Hz
N0 Ts = 20 ms, fd = 12 Hz

0
0

0.5

1

1

1.5

2

2 3 4 5 6 7 8 9 10

R
el

at
iv

e
ac

cu
ra

cy
σ

ρ̂
,P

,B

σ
ρ̂

,I
,B

(f) Method B for Galileo E1-C.
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(g) Method B for GPS L1-C/A.
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(h) Method B for Galileo E1-C.

Figure 7.6: Accuracy improvement of the adaptive integration interval technique for
T0 = 290 K, F = 3 dB, M0 = Tt/(10 N0 Ts), Nmin,GPS = 1 ms/Ts, Nmin,Galileo = 4 ms/Ts,
Nmax Ts = 100 ms, δ = 1/B, and B = 4.092 MHz.
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which is bound by Nmax Ts = 100 ms. This bound has practical reasons, since the propaga-

tion channel has a limited coherence time, even for a static receiver. It is elaborated in more

detail in Section 7.1. It should be noted that the shortest initial coherent integration not

only yields the largest accuracy improvement, but also tolerates the largest initial frequency

deviation. It can observed in Fig. 7.5, that the different initial coherent integration intervals

deliver almost the same range accuracy. With the adaptive integration it is hence useful to

start with a short initial coherent integration in order to allow for a large initial frequency

deviation. For intermediate and long observation periods, there is barely any difference in

the resulting range accuracy.

The cumulative relative accuracy of the phase mismatch correction versus the state-of-the-

art noncoherent integration is presented in Fig. 7.7. The ratios of the values in Fig. 3.21 and

7.5 yield the cumulative relative accuracies σρ̂,N/σρ̂,I,A and σρ̂,N/σρ̂,I,B. The differential corre-

lation improves the accuracy by 80 %, the frequency offset correction by 62 % for method A

and 44 % for method B, the phase mismatch correction by 15 %, and the adaptive integration

by 74 % for method A and 40 % for method B. The combination of all these techniques in-

creases the accuracy of the final estimated range by up to 1.8×1.62×1.15×1.74−1 = 483 %

of the initial value with method A and 1.8 × 1.44 × 1.15 × 1.4 − 1 = 317 % with method B.

7.6 Conclusion

A method to adaptively adjust the coherent integration interval in respect to the residual fre-

quency deviation is introduced in this chapter. Since the residual frequency deviation leads

to a continuous phase rotation of the baseband signal samples, the coherent integration in-

terval can only be chosen as long as the residual frequency deviation permits. The previously

presented frequency offset correction method reduces the residual frequency deviation and

therefore enables the adaptive integration interval technique. The extended coherent inte-

gration interval delivers a very large signal-to-noise ratio improvement. The initial size of the

frequency search bin is thereby maintained without a constraint. The generous backtracking

range of three quarters of the the frequency estimation range yields a high reliability of the

adaptive integration technique. In case of a sudden increase in frequency deviation, e.g. due

to fast changes in receiver motion, the coherent integration period is reduced again. The

presented method enhances the reception sensitivity by up to 7.1 dB, when the maximum

coherent integration interval is bound by 100 ms. It enhances the cumulative sensitivity gain

versus the state-of-the-art noncoherent integration to 17.3 dB. The increased signal-to-noise

ratio also leads to a higher accuracy of the correlation peak estimation, which increases the

accuracy of the receiver-satellite range by 114 %. The cumulative accuracy improvement

reaches 483 % as compared to the state-of-the-art noncoherent integration. Due to the phase

mismatch correction, positioning based on the just the inphase component of the differen-

tial correlation result is also possible. This method achieves around the same cumulative

reception sensitivity improvement of 17.2 dB versus the state-of-the-art and thereby reduces

implementation costs and power consumption. The improvement in positioning accuracy

is somewhat less with 66 %, which yields a cumulative improvement of 317 % versus the

state-of-the-art noncoherent integration.
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(b) Method A for Galileo E1-C.
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(c) Method A for GPS L1-C/A.
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(d) Method A for Galileo E1-C.
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(e) Method B for GPS L1-C/A.
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(f) Method B for Galileo E1-C.

Observation time Tt [s]

N0 Ts = 1 ms, fd = 480 Hz
N0 Ts = 4 ms, fd = 120 Hz
N0 Ts = 20 ms, fd = 24 Hz

0
0

1

1

2

2

3

3

4

4

5

5

6

6 7 8 9 10C
u
m

u
la

ti
ve

re
l.

ac
cu

ra
cy

σ
ρ̂

,N

σ
ρ̂

,I
,B

(g) Method B for GPS L1-C/A.
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(h) Method B for Galileo E1-C.

Figure 7.7: Cumulative accuracy improvement of the adaptive integration interval tech-
nique versus the state-of-the-art noncoherent integration for T0 = 290 K, F = 3 dB,
M0 = Tt/10 N0 Ts, Nmax Ts = 100 ms, δ = 1/B, and B = 4.092 MHz.
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Chapter 8

Multipath Fading Mitigation

As introduced in Chapter 1, satellite navigation is becoming increasingly important for loca-

tion based services and emergency caller location. Both applications require positioning in

urban and indoor areas, where obstacles give rise to reflections, diffraction, and scattering.

These obstacles are often near the receiver and lead to multipath signal propagation. Mea-

surement campaigns have shown that most multipath components are within an excess delay

of less than 500 ns, which corresponds to an excess distance of 150 m [12, 76, 77]. Multiple

signal echoes therefore combine at the receiver antenna with a sub-chip distance. Depending

on their phase offset, they cause constructive or destructive interference. This then leads to

a widely varying amplitude of the combined multipath signal. The resulting fading process

degrades the receiver performance. It is shown in this chapter that the negative impact of

the fading process can be reduced by adaptively adjusting the detection threshold with the

presented multipath fading mitigation method.

8.1 Fading Adaptation

As introduced in Section 3.7, GPS receivers typically employ the Neyman-Pearson detec-

tion criterion, where the false detection probability Pf must not exceed a fixed number. Then

for the given false detection probability, the probability of detection Pd is maximized. The

detection threshold λ is therefore chosen as low as possible, without exceeding the maximum

false detection probability. False detection is caused by out-of-phase correlation and additive

noise.

In relevant environments for mobile phone positioning, the power distribution of the

received signal can be modelled with a Rice distribution [41, 78, 79]. The multipath fad-

ing modifies both the correlation peak and the out-of-phase autocorrelation values. If the

detection threshold is not adjusted, the fading correlation peak changes the probability of

detection. At the same time, the fading out-of-phase autocorrelation values lead to a changed

false detection probability, which is different from the admissible level. The multipath fad-

ing mitigation method of this chapter therefore estimates the differential correlation variance

σ2
Ψ,H0

and mean magnitude |mΨ,H0|. This allows to optimally adjust the detection threshold
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to the fading characteristic of the Galileo/GPS signal. The false detection probability is kept

at the admissible level and the probability of detection is maximized. The knowledge of the

fading characteristic can thus be used to recover a large portion of the receiver performance.

The magnitude of a complex-valued Gaussian distributed variable θ with the expectation

value

mθ = E{θ} , (8.1)

and the combined real and complex variance

σ2
θ = E

{
|θ − mθ|2

}
(8.2)

obeys the Rice distribution [28]

p|θ|(α) =






2 α
σ2

θ
exp
(
−α2+|mθ|

2

σ2
θ

)
I0

(
2 |mθ|α

σ2
θ

)
, α > 0

0 , else ,
(8.3)

with

α = |θ| . (8.4)

The modified Bessel function of first kind and zero order is denoted by I0(·) and specified

in (3.57). The Rice distribution is frequently used to model multipath fading in urban and

indoor environments [41, 78, 79]. The fading signal is thereby characterized by the Rice

factor

K =
|mθ|2
σ2

θ

. (8.5)

To model a fading Galileo/GPS signal, its definition in (3.8) is modified to

rν =
√

2 C c⌊(ν Ts+τ)/Tc⌋ q⌊(ν Ts+τ)/Tc⌋ ej (2 π fd ν Ts+ϕc) θν + nν , (8.6)

where θν describes the fading characteristic. The received line-of-sight signal power is de-

scribed by C. The fading variable θ has the mean magnitude

|mθ| = |E{θ}| = 1 . (8.7)

The line-of-sight signal is superimposed by multiple time-varying reflections, which form the

fading process around the line-of-sight signal. The variance of the fading variable

σ2
θ = E

{
|θ − mθ|2

}
=

1

K (8.8)

follows from (8.5) and (8.7). It is subsequently assumed that the coherent integration in-

terval N Ts is chosen to be no longer than the coherence time of the multipath propagation

channel, such that the fading variable θν can be approximated to be constant during each co-

herent integration interval. By making the additional assumption that the fading variable is

uncorrelated between integration intervals, the computation becomes mathematically better

traceable. With (3.14) and (3.31), the coherently integrated predetection result is derived

as

sµ =

(µ+1) N−1∑

ν=µ N

rν c⌊(ν Ts+τ̂)/Tc⌋ q⌊(ν Ts+τ̂)/Tc⌋

≃
√

2 C R(τ − τ̂) sinc(fd N Ts) ej [(2 µ+1) π fd N Ts+ϕc] θNµ + wµ

. (8.9)
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The Gaussian variables θNµ and wµ in (8.9) lead to a Gaussian distributed variable sµ

with the mean

msµ = E{sµ} =
√

2 C R(τ − τ̂) sinc(fd N Ts) ej [(2 µ+1) π fd N Ts+ϕc] mθ (8.10)

and the variance

σ2
sµ

= E
{
|sµ − E{sµ}|2

}
= 2 C R2(τ − τ̂) sinc2(fd N Ts) σ2

θ + σ2
w . (8.11)

The differential correlation result is calculated as

Ψ =
M−1∑

µ=1

sµ s∗µ−1 . (8.12)

Its expectation value is derived from (3.39), (8.7), and (8.10) as

mΨ = E{Ψ} = (M − 1) msµ m∗
sµ−1

= 2 (M − 1) C R2(τ − τ̂) sinc2(fd N Ts) ej 2 π fd N Ts
. (8.13)

The correlation variance for the Rice fading channel is derived from (3.51), (8.8), and (8.11)

as

σ2
Ψ = E

{
|Ψ − E{Ψ}|2

}
= (M − 1)

(
σ4

sµ
+ 2 σ2

sµ
|msµ|2

)

= (M − 1)

[
σ4

w + 4 C2 R4(τ − τ̂) sinc4(fd N Ts)
2K + 1

K2

+ 4 C σ2
w R2(τ − τ̂) sinc2(fd N Ts)

K + 1

K

]
. (8.14)

8.2 Optimal Detection Threshold

If the detection threshold λ that is defined in (3.65) as

λ = P−1
Λ,H0

(1 − Pf) =
σ2

Ψ,H0

2

[
Q−1

1,β

(√
2 |mΨ,H0|2

σ2
Ψ,H0

, Pf

)]2

(8.15)

is calculated for a line-of-sight signal and then applied to signals received from a Rice

multipath fading channel, the resulting probability of false detection Pf specified in (3.63)

as

Pf = Pr{Λ > λ|H0} = 1 − PΛ|H0(λ) = Q1

(√
2 |mΨ,H0 |2

σ2
Ψ,H0

,

√
2 λ

σ2
Ψ,H0

)
(8.16)

is above the admissible level. Fig. 8.1 shows Pf as a function of the Rice factor K. The

detection threshold λ in Fig. 8.1 has been calculated to yield Pf = 10−5 for a non-fading

signal. This is the standard approach for state-of-the-art receivers. However, once the Rice

factor drops below 100, the false alarm probability starts to increase. The probability of

false alarm is almost a magnitude too large for K = 10. For low Rice factors, the false



8.2. Optimal Detection Threshold 115

Rice factor K

M N Ts = 10 s
M N Ts = 1 s
M N Ts = 0.1 s

F
al

se
d
et

ec
ti

on
p
ro

b
ab

il
it
y

P
f

10−1

10−2

10−3

10−4

10−5

0.01 0.1

1

1 10

1232.6

100

(a) GPS L1-C/A.
Rice factor K

M N Ts = 10 s
M N Ts = 1 s
M N Ts = 0.1 s

F
al

se
d
et

ec
ti

on
p
ro

b
ab

il
it
y

P
f

10−1

10−2

10−3

10−4

10−5

0.01 0.1

1

1 10 100

(b) Galileo E1-C.

Figure 8.1: Probability of false detection without threshold adaptation for T0 = 290 K,
F = 3 dB, N Ts = 20 ms, and C/N0 = 45 dBHz.
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Figure 8.2: Optimal detection threshold λ for Rice fading for T0 = 290 K, F = 3 dB,
N Ts = 20 ms, C/N0 = 45 dBHz, and B = 4.092 MHz.

alarm probability approaches 100 %, which means that false acquisition leading to severe

positioning errors is almost guaranteed.

In order for the false detection probability Pf in (8.16) to exactly reach the permissable

level, the detection threshold λ in (8.15) has to be calculated as a function of the actual

Rice factor K of the propagation channel, where mΨ,H0 = mΨ|R2(τ−τ̂)=R2
m

is specified in

(8.13) and σ2
Ψ,H0

= σ2
Ψ|R2(τ−τ̂)=R2

m
is given in (8.14). A low Rice factor K requires a high

detection threshold λ and a high Rice factor requires a low detection threshold. In Fig. 8.2,

the optimal detection threshold is presented as a function of the Rice factor. It must be

high enough not to lead to a violation of the maximum allowed Pf . Using this threshold will

maintain a constant false alarm probability Pf = 10−5 for all possible Rice factors.

The Rice factor can be estimated with different methods [80, 81, 82]. However, none

of them is required here, since the detection threshold estimation method of Chapter 4 can

also be applied to Rice fading channels. It can calculate the optimal detection threshold

for the actual Rice factor of the propagation channel, as will be shown subsequently. With

this technique, the estimated differential correlation mean

|m̂Ψ,H0|2 =
1

ϑ4

√
2M2

1 −M2 (8.17)
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Figure 8.3: Probability of false detection with threshold adaptation for T0 = 290 K, F = 3 dB,
N Ts = 20 ms, and C/N0 = 45 dBHz.

of (4.15) and the estimated differential correlation variance

σ̂2
Ψ,H0

= (M − 1) σ̂4
w + 2 σ̂2

w |m̂Ψ,H0 | (8.18)

of (4.20) are calculated with help of the first moment

M1 =
1

D − 2 ⌈Tc/Ts⌉ + 1




ι̂−⌈Tc/Ts⌉∑

ν=1

Λν +
D∑

ν=ι̂+⌈Tc/Ts⌉

Λν



 ≃ E{Λ}
∣∣
τ 6=τ̂

(8.19)

in (4.13), the second moment

M2 =
1

D − 2 ⌈Tc/Ts⌉ + 1




ι̂−⌈Tc/Ts⌉∑

ν=1

Λ2
ν +

D∑

ν=ι̂+⌈Tc/Ts⌉

Λ2
ν



 ≃ E
{
Λ2
} ∣∣

τ 6=τ̂
(8.20)

in (4.14), and

σ̂2
w = −ϑ2 |m̂Ψ,H0|

M − 1
+

√
ϑ4 |m̂Ψ,H0|2
(M − 1)2

+
M1 − ϑ4 |m̂Ψ,H0|2

(M − 1)
. (8.21)

in (4.19). Fig. 8.2 compares the optimal detection threshold for Rice fading channels versus

a simulation of the estimated threshold with (8.17) and (8.18). The simulation utilizes

1021 × 4 different code phase bins for the GPS L1-C/A signal and 4090 × 4 code phase

bins for the Galileo E1-C signal, due to the front-end bandwidth of four times the chip rate.

This corresponds to a simple full epoch code search and works well for the whole range of

Rice factors. As can be seen in Fig. 8.2, the detection threshold for fading signals with a

low Rice factor is higher than for non-fading signals with a very high Rice factor. Cross-

correlation is not an issue here, since the multipath fading mitigation only increases the

detection threshold and does not decrease it. The adaptive detection threshold method in

Chapter 4, which actually decreases the threshold, already takes care of the cross-correlation.

The simulated detection thresholds of Fig. 8.2 are furthermore translated into the resulting

false detection probabilities in Fig. 8.3. It can be seen that the false alarm probability is

kept constant at Pf = 10−5. This is the primary target of the multipath fading mitigation
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(a) GPS L1-C/A with K = 1.
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(b) Galileo E1-C with K = 1.
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(c) GPS L1-C/A with K = 10.
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(d) Galileo E1-C with K = 10.

Figure 8.4: Reception sensitivity with the multipath fading mitigation technique for T0 =
290 K, F = 3 dB, Pf = 10−5, and Pd = 90 %.

technique. The simulations in Fig. 8.2 and 8.3 do not make use of any of the approximations

in this thesis. They simulate the results for actual white Gaussian noise samples combined

with the Galileo/GPS satellite signal at the input of the receiver chain in Fig. 3.3. As can

be seen, the simulations match very well with the theoretical derivations. Fig. 8.3 shows

that the multipath fading mitigation works effectively. The Rice fading does not increase

the probability of false acquisition any more, as previously in Fig. 8.1. The false alarm

probability is at the permissable level of Pf = 10−5 for the whole range of different Rice

factors.

8.3 Reception Sensitivity

Fig. 8.4 shows the reception sensitivity achieved by the optimal detection threshold λ of

Fig. 8.2. The choice of the receiver parameters T0 = 290 K, F = 3 dB, Pf = 10−5, and

Pd = 90 % has been motivated in Section 3.7. The decision statistic

Λ = |Ψ|2 =

∣∣∣∣∣

M−1∑

µ=1

sµ s∗µ−1

∣∣∣∣∣

2

(8.22)
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results in the detection probability

Pd = Pr{Λ > λ|H1} = 1 − PΛ|H1(λ) = Q1

(√
2 |mΨ,H1 |2

σ2
Ψ,H1

,

√
2 λ

σ2
Ψ,H1

)
(8.23)

as specified in (3.66) by applying

mΨ,H1 = mΨ

∣∣
R2(τ−τ̂)=N2 , σ2

Ψ,H1
= σ2

Ψ

∣∣
R2(τ−τ̂)=N2 . (8.24)

The reception sensitivity in Fig. 8.4 corresponds to Pd = 90 %. The figure is provided to

show how the Rice fading influences the receiver sensitivity. It can be observed that the

sensitivity degrades slightly for lower K. However, this effect is barely noticeable since the

degradation is really minor. The reason for it is the increase in detection threshold to prevent

false acquisition due to fading behavior.

8.4 Conclusion

The presented multipath fading mitigation method estimates the optimal detection threshold

for different fading channels. It dynamically adjusts well over a wide range of different Rice

factors. The optimal detection threshold is lower for signals with a high Rice factor. A

relevant multipath proportion leads to a low Rice factor and the optimal detection threshold

is set at a higher level to prevent excessive false detections. If the detection threshold for

a line-of-sight signal was applied to a strongly fading signal, false detections would occur

frequently. The adaptive detection threshold technique therefore automatically calculates

the optimal detection threshold for any Rice factor of the propagation channel.
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Chapter 9

Conclusion

Location based services and emergency caller location require high service availability in

deep urban and moderate indoor environments. Severe attenuation of Galileo/GPS signals

in these environments mandates enhanced reception sensitivity. Long signal integration

periods are the key to improving the reception sensitivity. However, the maximum coherent

integration interval is limited by residual frequency deviation. The state-of-the-art enhanced

sensitivity method is noncoherent integration, which tolerates a certain amount of frequency

deviation.

This work has introduced the differential correlation technique. Because differential cor-

relation multiplies statistically independent noise samples, it provides a sensitivity gain of

1.5–2.9 dB over the noncoherent integration. Additionally, differential correlation also pro-

vides an estimate of the residual frequency deviation. This property is utilized to build a

frequency offset correction loop. It incrementally reduces the frequency deviation while the

correlation process is ongoing. This in turn causes phase rotations within the correlation

process. The phase mismatch correction resolves this issue. The incremental reduction of

the frequency offset allows for an incremental extension of the coherent integration inter-

vals. The adaptive integration interval technique causes very large phase fluctuations. The

phase mismatch correction resolves this problem as well. All techniques combined advance

the sensitivity gain to 17.3 dB beyond the published state-of-the-art method. However, this

sensitivity gain can only be fully realized with an adaptive detection threshold. This the-

sis has therefore presented a method to estimate the mean and variance of the differential

correlation result. It keeps a constant probability of false detection while maximizing the

reception sensitivity. The differential correlation provides the strongest sensitivity gain for

short observation intervals, while the frequency offset and phase mismatch corrections yield

the highest benefit for intermediate observation periods. The adaptive integration interval

and the adaptive detection threshold achieve the biggest improvement for long observation

periods, where they provide the major share of the sensitivity gain.

At the same time, a sufficiently high positioning accuracy should be maintained to en-

able location based services and emergency caller location. The correlation scheme has an

influence on the positioning accuracy. Each satellite to receiver distance is calculated based

on the location of the correlation peak. As the satellite signal becomes weaker, the corre-

lation function becomes noisier, which in turn leads to larger positioning errors. Since the
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techniques of this thesis increase the correlation gain, positioning accuracy is also improved.

The differential correlation by itself increases the accuracy of each satellite to receiver dis-

tance by 80 %. The combination of all techniques presented, improves the range accuracy

by 483 %. While the benefit of the differential correlation and frequency offset correction

is already present for short and intermediate observation periods, the adaptive integration

interval yields the highest accuracy increase for long observation periods.

Urban and indoor environments frequently cause multipath fading signals, which leads to a

substantially increased false alarm probability with state-of-the-art noncoherent integration.

The adaptive detection threshold technique of this work, however, not only compensates for

variations in the signal-to-noise ratio, it also mitigates the multipath fading behavior and

maintains a constant false alarm probability.

Many location based services also require low power consumption. The major signal pro-

cessing blocks of this thesis have therefore been implemented in a microchip design. The

Appendix summarizes the resulting silicon area and power consumption. The phase mis-

match correction rotates the correlation peak towards the inphase path. The subsequent

quadrature path may then be omitted to reduce implementation expenses and current con-

sumption with only minor impact on the reception sensitivity. The sensitivity gain may

also be traded off to reduce the observation period and thereby the power consumption. If

the noncoherent integration was also advanced with the adaptive detection threshold, the

combined techniques of this thesis can still achieve the same reception sensitivity in only one

tenth of the observation period.

In summary, the techniques presented in this thesis aim at improving the service avail-

ability, accuracy, and power efficiency of positioning with Galileo and GPS.
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Appendix A

Semiconductor Implementation

Characteristics

The mandate for emergency caller location and the prospected revenues with location based

services increasingly leads to GPS receivers being integrated into cellular telephones. The

majority of future Galileo receivers are also expected to become integrated into mobile

phones. The size constraints of cellular phones require highly integrated semiconductor

solutions. The most important requirement for a successful integration of a Galileo/GPS

receiver into mobile phones is low cost. The cost of microchips can be reduced by shrinking

the silicon area. This can be accomplished by the optimum choice of the quantization

resolutions in the digital baseband section and by the reuse of hardware resources within the

integrated circuits.

Since satellite navigation receivers for indoor applications are usually designed to host the

equivalent of several thousand correlation channels, the benefit of reducing the bit sizes and

reusing the signal processing blocks is substantial. The optimum quantization resolutions

for the differential correlation technique, as well as for the state-of-the-art noncoherent in-

tegration method are therefore derived in this chapter. Furthermore, the required amount

of signal processing units can be also substantially reduced. This is accomplished by oper-

ating the hardware resources with an increased clock rate and multiplexing different signal

processing paths through the same hardware.

The implementation of the differential correlation and the noncoherent integration meth-

ods in hardware description language allows the synthesizing of the signal processing units

into a complementary metal-oxide semiconductor (CMOS) technology. This chapter presents

the resulting silicon area, power consumption, quantization loss, and timing characteristics

for a 90 nm CMOS process. In order to obtain these results, the respective floating point

algorithms are first converted into a fixed point representation and then implemented with

the Verilog hardware description language. The units are verified with the Mentor Graphics

ModelSim before they are synthesized into digital CMOS circuits with the Synopsys Design

Compiler. This tool allows the analysis of the circuit timing characteristics and the sili-

con area. Based on the synthesis results, the power consumption of the silicon circuits is

simulated with the Sequence Power Theater.
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Figure A.1: Quantization loss for a uniform ADC with mid-riser characteristic.

The simulations begin with low clock frequencies and extend up to extremely high clock

frequencies, as long as the timing slack remains positive. The inputs of all units are directly

connected to the processing logic and the output signals are stored into flip-flops. This allows

the different units to operate asynchronously from each other, where the signal requires one

clock period to propagate through each processing block.

A.1 Analog to Digital Conversion

The differential correlation technique and the noncoherent integration method use the same

signal processing chain up to the coherently integrated predetection results. The choice

of the quantization resolution for the Analog-to-Digital Conversion (ADC) is determined

by the trade-off between the implementation complexity and Signal-to-Noise Ratio (SNR)

degradation. High quantization resolutions offer lower SNR degradation, but introduce sub-

stantial implementation expenses. This is because they require every consecutive digital

signal processing stage to operate with correspondingly larger bit ranges. Fig. A.1 shows

the quantization loss for a uniform ADC with mid-riser characteristic as a function of the

number of output bits. The quantization range is given as a multiple of the input standard

deviation σ. The optimal quantization range for signals with very low SNR depends almost

entirely on the standard deviation of the input signal, which is denoted by σ in Fig. A.1.

Table A.1 summarizes the optimum quantization range and the resulting implementation

degradation for a given number of output bits. The output quantization resolution specifies

how many bits are used to decode the output signal, the quantization range specifies which

range is covered before the saturation takes place, and the quantization loss specifies the

resulting SNR degradation.

A.2 Despreading

The despreading stage does not cause any implementation loss, as it only multiplies the input

signal with a series of ±1. If the signal encoding is chosen symmetrical around zero with a



A.2. Despreading 123

Output
quantization
resolution

Optimal
quantization

range

Minimal
quantization

loss

1 bit n/a 1.96 dB

2 bit [-0.99 σ, 0.99 σ] 0.55 dB

3 bit [-1.76 σ, 1.76 σ] 0.17 dB

4 bit [-2.35 σ, 2.35 σ] 0.050 dB

5 bit [-2.82 σ, 2.82 σ] 0.015 dB

6 bit [-3.23 σ, 3.23 σ] 0.0045 dB

7 bit [-3.58 σ, 3.58 σ] 0.0013 dB

8 bit [-3.93 σ, 3.93 σ] 0.00038 dB

Table A.1: Quantization characteristics for the ADC unit.

Silicon
area

Timing
slack

Leakage
power

Dynamic
power

51.7µm2 Ts − 0.175 ns 30.1 nW 9.49 × 10−14 W
Ts

Table A.2: Synthesis results for the despreading unit.

Silicon
area

Timing
slack

Leakage
power

Dynamic
power

458µm2 Ts − 0.585 ns 244 nW 5.31 × 10−13 W
Ts

Table A.3: Synthesis results for the Gold code generation unit.

single bit marking the sign and the remaining bits the magnitude, then the despreading stage

has to only perform an exclusive-or (XOR) operation between the input signal bit and the

despreading code. Table A.2 shows the total silicon area, power consumption, and timing

slack for different clock frequencies of the despreading unit.

The results show that a single despreading unit could in principle support the entire search

of all code delays. The received signal would be applied at the input and the entire reference

code would be stepped through within one chip period of the received signal. During the

next chip period of the received signal, the reference code would start with a shift of one

chip and again step through the entire code. The reference code generator would thus have

to run through the entire code plus one chip within the period of one chip of the received

signal. Table A.3 presents the implementation characteristics of the GPS L1-C/A Gold

code generator for different clock frequencies. It shows that the code generator could in

principle also support this multiplexing scheme where the despreading and code generation

unit are reused for the despreading with all code delays.
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Accumulation
number

Output
quantization
resolution

Output
quantization

range

Theoretical
quantization

loss

Simulated
quantization

loss

GPS L1-C/A 2045 6 bit [-2047, 2047] 0.063 dB 0.060 dB

GPS L1-C/A 40900 6 bit [-4095, 4095] 0.013 dB 0.014 dB

Galileo E1-C 8180 6 bit [-4095, 4095] 0.063 dB 0.063 dB

Galileo E1-C 40900 6 bit [-4095, 4095] 0.013 dB 0.016 dB

Table A.4: Quantization characteristics for the coherent accumulation unit.

Silicon
area

Timing
slack

Leakage
power

Dynamic
power

760µm2 Ts − 2.89 ns 485 nW 1.06 × 10−12 W
Ts

Table A.5: Synthesis results for the coherent accumulation unit.

Output
quantization
resolution

Output
quantization

range

Theoretical
quantization

loss

Simulated
quantization

loss

GPS L1-C/A 8 bit [-1023, 1023] 0.010 dB 0.010 dB

GPS L1-C/A 8 bit [-1023, 1023] 0.008 dB 0.008 dB

Galileo E1-C 8 bit [-1023, 1023] 0.005 dB 0.005 dB

Galileo E1-C 8 bit [-1023, 1023] 0.010 dB 0.011 dB

Table A.6: Quantization characteristics for the differential product unit.

A.3 Coherent Accumulation

The coherent accumulation stage integrates N samples of the input signal. The output

requires a higher quantization resolution than the input, because the signal-to-noise ratio is

also higher at the output. Furthermore, due to the increased mean and standard deviation

at the output, a quantization step size larger than one is required. Table A.4 summarizes

the quantization characteristics and the resulting loss for the coherent accumulation. Table

A.5 presents the results of the semiconductor synthesis of the coherent accumulation unit.

A.4 Differential Product

The differential product unit multiplies each input sample with the complex-conjugate of the

previous input sample. The complex-valued differential product is implemented with three

multiplications, one addition, and two subtractions. In order to reduce the silicon area,

the three multiplication operations are calculated by a single multiplier in time multiplex

operation. Table A.6 summarizes the quantization results for the differential product and

Table A.7 presents the synthesis results.
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Silicon
area

Timing
slack

Leakage
power

Dynamic
power

4839µm2 Ts − 3.73 ns 3.13 µW 3.35 × 10−12 W
Ts

Table A.7: Synthesis results for the differential product unit.

Accumulation
number

Output
quantization
resolution

Output
quantization

range

Theoretical
quantization

loss

Simulated
quantization

loss

GPS L1-C/A 100 8 bit [-511, 511] 0.001 dB 0.002 dB

Galileo E1-C 100 8 bit [-511, 511] 0.002 dB 0.002 dB

Table A.8: Quantization characteristics for the differential accumulation unit.

Silicon
area

Timing
slack

Leakage
power

Dynamic
power

895µm2 Ts − 2.06 ns 530 nW 9.82 × 10−13 W
Ts

Table A.9: Synthesis results for the differential accumulation unit.

A.5 Differential Accumulation

The differential products are further accumulated to form the differential correlation result.

Since the differential correlation result is then processed in software, the output resolution of

the differential accumulation stage is 8 bit, which results in an additional quantization loss of

just around 0.002 dB. The quantization characteristics of the differential accumulation unit

are summarized in Table A.8, while the synthesis results are presented in Table A.9.

A.6 Squared Magnitude

The inphase and quadrature components of the input are squared and added together by

the squared magnitude stage. The internal squaring hardware is thereby reused for both

squaring operations in time multiplex mode. Table A.10 shows the quantization results,

while Table A.11 summarizes the CMOS semiconductor synthesis outcome.

A.7 Noncoherent Accumulation

The final step for the noncoherent integration method is to raise the signal-to-noise ratio of

the detection statistic by means of noncoherent accumulation. This accumulator hardware

only has to process positive numbers, since its input is supplied from the squared magnitude

unit. It can hence be implemented with less silicon area than the differential accumula-

tion unit. The silicon area is displayed in Table A.13 together with the timing and power

characteristics, while the quantization loss is found in Table A.12.



126 Appendix A. Semiconductor Implementation Characteristics

Output
quantization
resolution

Output
quantization

range

Theoretical
quantization

loss

Simulated
quantization

loss

GPS L1-C/A 7 bit [0, 1023] 0.005 dB 0.004 dB

GPS L1-C/A 7 bit [0, 1023] 0.004 dB 0.012 dB

Galileo E1-C 7 bit [0, 1023] 0.002 dB 0.001 dB

Galileo E1-C 7 bit [0, 1023] 0.005 dB 0.014 dB

Table A.10: Quantization characteristics for the squared magnitude unit.

Silicon
area

Timing
slack

Leakage
power

Dynamic
power

876µm2 Ts − 1.84 ns 555 nW 1.3 × 10−12 W
Ts

Table A.11: Synthesis results for the squared magnitude unit.

Accumulation
number

Output
quantization
resolution

Output
quantization

range

Theoretical
quantization

loss

Simulated
quantization

loss

GPS L1-C/A 100 8 bit [0, 2047] 0.003 dB 0.003 dB

Galileo E1-C 100 8 bit [0, 2047] 0.003 dB 0.003 dB

Table A.12: Quantization characteristics for the noncoherent accumulation unit.

Silicon
area

Timing
slack

Leakage
power

Dynamic
power

721µm2 Ts − 2 ns 416 nW 8.73 × 10−13 W
Ts

Table A.13: Synthesis results for the noncoherent accumulation unit.

A.8 Conclusion

The Appendix presents the semiconductor implementation characteristics for differential cor-

relation and noncoherent integration. The quantization resolutions are a trade-off between

maximizing the signal-to-noise ratio and minimizing the silicon area. The resulting quan-

tization degradation is sufficiently low for enhanced sensitivity Galileo/GPS receivers. A

large number of correlation results can be calculated simultaneously by running the hard-

ware units with an increased clock rate and multiplexing the data streams. The timing slack

of the CMOS synthesis results can be analyzed in order to estimate the degree of paralleliza-

tion required for single shot positioning. When compared with the desired sample rates,

the timing slack indicates how many correlation channels can be served in parallel by the

respective unit. The simulations of the power consumption allow an estimate of the battery

drain by the receiver circuit. The silicon area does not increase with the clock frequency as

long as the timing slack is positive. Combined with the required degree of parallelization,

the synthesized silicon area is important for the business case of the microchip.
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Acronyms, Mathematical Symbols,

and Variables

Acronyms

3D three-dimensional (p. 12)

ADC Analog to Digital Conversion (p. 122)

BOC Binary Offset Carrier (p. 15)

BPSK Binary Phase Shift Keying (p. 16)

dB decibel (p. 1)

dBHz Hertz in decibel (p. 31)

dBm miliwatt in decibel (p. 1)

FFT Fast Fourier Transform (p. 9)

GPS Global Positioning System (p. 1)

GSM Global System for Mobile Communications (p. 1)

Hz Hertz (p. 16)

K Kelvin (p. 18)

kHz kilohertz (p. 6)

km kilometer (p. 5)

m meter (p. 12)

MAP Maximum A Posteriori (p. 6)

MHz Megahertz (p. 6)

ML Maximum Likelihood (p. 6)

MMSE Minimum Mean Squared Error (p. 6)

ms millisecond (p. 7)

mW milliwatt (p. 1)

nW nanowatt (p. 7)

PSD Power Spectral Density (p. 16)

RF Radio Frequency (p. 8)

s second (p. 5)

SNR Signal-to-Noise Ratio (p. 122)

UMTS Universal Mobile Telecommunications Services (p. 1)

W Watt (p. 1)

WLSE Weighted Least Square Error (p. 5)
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Mathematical Symbols

argmax( · ) maximum argument (p. 6, eq. 2.10)

argmin( · ) minimum argument (p. 5, eq. 2.8)

cos( · ) sinus function (p. 17, eq. 3.4)

δ( · ) Dirac delta distribution (p. 24, eq. 3.44)

erfc( · ) complementary error function (p. 69, eq. 5.17)

exp( · ) exponential function (p. 18, eq. 3.10)

E{ · } expectation value (p. 18, eq. 3.11)

Γ( · ) Gamma function (p. 27, eq. 3.56)

ℑ{ · } imaginary part (p. 18, eq. 3.10)

Iκ( · ) modified Bessel function of the first kind and order κ (p. 27, eq. 3.57)

j complex operator
√
−1 (p. 17, eq. 3.8)

J Jacobian determinant (p. 68, eq. 5.9)

K0( · ) modified Bessel function of the second kind and zero order (p. 24, eq. 3.45)

mα expectation value of α (p. 23, eq. 3.38)

Pr{ · } probability (p. 29, eq. 3.63)

pα( · ) probability density function of α (p. 24, eq. 3.44)

Pα( · ) cumulative probability density function of α (p. 50, eq. 4.3)

Φ(j ω) characteristic function (p. 42, eq. 3.104)

Qκ( · , · ) Marcum-Q function of order κ (p. 28, eq. 3.59)

Q−1
κ,β( · , · ) inverse κ-th order Marcum-Q function with respect to its second

argument (p. 30, eq. 3.65)

rect( · ) rectangular function (p. 17, eq. 3.6)

ℜ{ · } real part (p. 6, eq. 2.10)

R
3 three-dimensional real number space (p. 5)

sign( · ) signum function (p. 15, eq. 3.3)

sin( · ) sinus function (p. 15, eq. 3.3)

sinc(α) sinus of π α divided by π α (p. 20, eq. 3.26)

σα standard deviation of α (p. 5, eq. 2.8)

z−1 delay element (p. 14)

Z integer number space (p. 4)

≃ approximately equal (p. 5, eq. 2.4)

( · )∗ complex conjugate (p. 14)

α̂ estimated value of α (p. 5, eq. 2.8)

‖ · ‖2 Euclidian norm (p. 5, eq. 2.2)

| · | magnitude (p. 5, eq. 2.7)

± plus or minus (p. 6)

〈 · 〉 rounding to the nearest integer (p. 5, eq. 2.6)

⌊ ·⌋ rounding to the nearest integer less or equal (p. 9, eq. 2.13)

⌈ ·⌉ rounding to the nearest integer more or equal (p. 56, eq. 4.13)
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Latin Variables

B front-end bandwidth (p. 18, eq. 3.11)

c speed of light (p. 5, eq. 2.2)

c(t) time-continuous spreading code (p. 20, eq. 3.28)

cν sampled spreading code (p. 15, eq. 3.1)

C carrier power (p. 15, eq. 3.1)

CD carrier power for Pd = 90 % with differential correlation (p. 31)

CF,A carrier power for Pd = 90 % with frequency offset correction using method A

(p. 74)

CF,B carrier power for Pd = 90 % with frequency offset correction using method B

(p. 74)

CI,A carrier power for Pd = 90 % with adaptive integration interval using method

A (p. 102)

CI,B carrier power for Pd = 90 % with adaptive integration interval using method

B (p. 102)

CN carrier power for Pd = 90 % with noncoherent integration (p. 35)

CP,A carrier power for Pd = 90 % with phase mismatch correction using method A

(p. 89)

CP,B carrier power for Pd = 90 % with phase mismatch correction using method B

(p. 89)

CT,D carrier power for Pd = 90 % with adaptive detection threshold for differential

correlation (p. 59)

CT,E carrier power for Pd = 90 % with adaptive detection threshold and

estimation error (p. 60)

CT,N carrier power for Pd = 90 % with adaptive detection threshold for

noncoherent integration (p. 61)

ds,µ data bit stream after coherent integration (p. 19, eq. 3.21)

dµ data bit stream (p. 15, eq. 3.1)

D number of code phase bins of the receiver (p. 9)

f frequency (p. 18, eq. 3.9)

fc carrier frequency (p. 17, eq. 3.4)

fd frequency deviation (p. 18, eq. 3.9)

fd,κ time-variant frequency deviation (p. 67, eq. 5.2)

fD Doppler frequency shift (p. 17, eq. 3.4)

fLO local oscillator frequency (p. 9, eq. 2.12)

fLO,κ time-variant local oscillator frequency (p. 70, eq. 5.24)

F front-end noise figure (p. 18, eq. 3.11)

G number of spreading code periods per data bit period (p. 15, eq. 3.2)

H0 hypothesis 0 (p. 29, eq. 3.62)

H1 hypothesis 1 (p. 29, eq. 3.62)

k Boltzman constant (p. 18, eq. 3.12)

K third accumulation number (p. 71, eq. 5.28)

K Rice factor (p. 113, eq. 8.5)
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KS number of visible satellites (p. 5, eq. 2.8)

L primary spreading code length (p. 4, eq. 2.1)

mf̂d,κ
expectation value of the estimated frequency deviation (p. 69, eq. 5.22)

m∆ expectation value of the discrimination function (p. 39, eq. 3.84)

m∆,A expectation value of the discrimination function for method A

(p. 79, eq. 5.52)

m∆,B expectation value of the discrimination function for method B

(p. 80, eq. 5.58)

mΛ,E expectation value of the early decision statistic (p. 39, eq. 3.79)

mΛ,L expectation value of the late decision statistic (p. 39, eq. 3.81)

mφ̂κ
expectation value of the estimated phase of the differential correlation

result (p. 88, eq. 6.5)

mΨ expectation value of the differential correlation result (p. 22, eq. 3.33)

mΨ,E expectation value of the early differential correlation result (p. 39, eq. 3.80)

mΨ,H0 expectation value of the differential correlation result for hypothesis 0

(p. 29, eq. 3.64)

mΨ,H1 expectation value of the differential correlation result for hypothesis 1

(p. 30, eq. 3.67)

mΨ,L expectation value of the late differential correlation result (p. 39, eq. 3.82)

mτ̂ expectation value of the estimated code delay (p. 40, eq. 3.90)

mθ expectation value of a Gaussian distributed variable (p. 113, eq. 8.1)

mΥ expectation value of the final differential correlation result (p. 71, eq. 5.31)

mΥ,E expectation value of the early final differential correlation result

(p. 79, eq. 5.50)

mΥ,H0 expectation value of the final differential correlation result for hypothesis 0

(p. 74, eq. 5.39)

mΥ,H1 expectation value of the final differential correlation result for hypothesis 1

(p. 74, eq. 5.41)

mΥ,L expectation value of the late final differential correlation result

(p. 79, eq. 5.51)

M second accumulation number (p. 10, eq. 2.15)

Mκ time-variant second accumulation number (p. 100, eq. 7.4)

M1 first moment (p. 56, eq. 4.13)

M2 second moment (p. 56, eq. 4.14)

n additive white Gaussian noise in lowpass equivalent notation

(p. 18, eq. 3.10)

nbp additive white Gaussian noise in bandpass notation (p. 17, eq. 3.4)

nν sampled additive white Gaussian noise in lowpass equivalent notation

(p. 17, eq. 3.8)

N coherent accumulation number (p. 9, eq. 2.13)

N0 noise power spectral density (p. 18, eq. 3.12)

Nκ time-variant coherent accumulation number (p. 100, eq. 7.3)

Nmax maximum coherent integration number (p. 100, eq. 7.3)

p(t) spreading pulse form (p. 15, eq. 3.1)
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pa approximate receiver location (p. 5, eq. 2.4)

pn( · , · ) probability distribution of the complex-valued Gaussian noise

(p. 18, eq. 3.10)

pr receiver location (p. 5, eq. 2.2)

p
(κ)
s satellite location (p. 5, eq. 2.2)

pγ( · ) normal product distribution (p. 24, eq. 3.44)

pΛ( · ) probability distribution of the decision statistic (p. 27, eq. 3.55)

pφ̂κ
( · ) probability distribution of the estimated phase of the intermediate

differential correlation result (p. 68, eq. 5.15)

pΨκ( · , · ) probability distribution of the intermediate differential correlation result

(p. 68, eq. 5.10)

p|θ|( · ) Rice distribution (p. 113, eq. 8.3)

Pd probability of detection (p. 30, eq. 3.66)

Pd,A probability of detection for method A (p. 74, eq. 5.40)

Pd,B probability of detection for method B (p. 74, eq. 5.45)

Pf probability of false detection (p. 29, eq. 3.63)

Pf,A probability of false detection for method A (p. 73, eq. 5.38)

Pf,B probability of false detection for method B (p. 74, eq. 5.42)

PΛ( · ) cumulative probability distribution of the decision statistic (p. 28, eq. 3.58)

q(t) time-continuous BOC subcarrier (p. 15, eq. 3.3)

qν sampled BOC subcarrier (p. 17, eq. 3.8)

r(t) time-continuous received signal in lowpass equivalent notation (p. 6, eq. 2.9)

rbp(t) time-continuous received signal in bandpass notation (p. 17, eq. 3.4)

rν sampled received signal in lowpass equivalent notation (p. 17, eq. 3.8)

R( · ) correlation function (p. 20, eq. 3.28)

R0( · ) correlation function for the coherent integration number N0 (p. 101, eq. 7.5)

Rm maximum out-of-phase autocorrelation value (p. 21)

sµ predetection samples (p. 18, eq. 3.14)

t time (p. 5, eq. 2.2)

t0 transmission time (p. 4, eq. 2.1)

ta approximate time (p. 5, eq. 2.5)

tǫ satellite clock error (p. 4, eq. 2.1)

T0 noise temperature (p. 18, eq. 3.12)

Tc spreading chip period (p. 4, eq. 2.1)

Td data bit period (p. 15, eq. 3.1)

Ti coherent integration period (p. 6, eq. 2.9)

Tt total observation period (p. 102, eq. 7.11)

Tp propagation period (p. 17, eq. 3.4)

Ts sample period (p. 9, eq. 2.12)

u Gaussian distributed part of the differential correlation result

(p. 22, eq. 3.34)

U secondary spreading code length (p. 16)

v normal product distributed part of the differential correlation result

(p. 22, eq. 3.35)
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wµ zero-mean white Gaussian noise component of the predetection samples

(p. 19, eq. 3.16)

x(t) time-continuous transmit signal in lowpass equivalent notation

(p. 15, eq. 3.1)

yµ deterministic signal component of the predetection samples (p. 21, eq. 3.31)

yµ,H0 deterministic signal component of the predetection samples for

hypothesis 0 (p. 33, eq. 3.71)

yµ,H1 deterministic signal component of the predetection samples for

hypothesis 1 (p. 33, eq. 3.73)

Y number of frequency bins of the receiver (p. 9, eq. 2.12)

Greek Variables

α function variable (p. 20, eq. 3.26)

β function variable (p. 21, eq. 3.29)

δ distance between the early and late code delay (p. 39, eq. 3.86)

∆ code discrimination function (p. 39, eq. 3.83)

η correction factor for BPSK or BOC modulation (p. 40, eq. 3.93)

ι correlation path index (p. 9, eq. 2.13)

κ sample index (p. 66, eq. 5.1)

λ detection threshold (p. 29, eq. 3.62)

λA detection threshold for method A (p. 73, eq. 5.38)

λB detection threshold for method B (p. 74, eq. 5.44)

Λ decision statistic (p. 9, eq. 2.14)

ΛA decision statistic for method A (p. 73, eq. 5.36)

ΛB decision statistic for method B (p. 73, eq. 5.37)

ΛE early decision statistic (p. 39, eq. 3.79)

ΛL late decision statistic (p. 39, eq. 3.81)

µ sample index (p. 9, eq. 2.13)

ν sample index (p. 9, eq. 2.13)

Ω digital down-conversion factor (p. 9, eq. 2.12)

Ωκ time-variant digital down-conversion factor (p. 71, eq. 5.26)

φκ phase of the intermediate differential correlation result (p. 68, eq. 5.8)

Ψ differential correlation result (p. 22, eq. 3.32)

ΨE early differential correlation result (p. 39, eq. 3.79)

ΨL late differential correlation result (p. 39, eq. 3.81)

Ψκ intermediate differential correlation result (p. 66, eq. 5.1)

ρ distance between receiver and satellite (p. 5, eq. 2.2)

σn standard deviation of the additive white Gaussian noise (p. 18, eq. 3.11)

σf̂d,κ
standard deviation of the estimated frequency deviation (p. 69, eq. 5.23)

σw standard deviation of the noise component of the predetection samples

(p. 19, eq. 3.19)
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σ∆ standard deviation of the discrimination function (p. 41, eq. 3.99)

σ∆,A standard deviation of the discrimination function for method A

(p. 79, eq. 5.49)

σ∆,B standard deviation of the discrimination function for method B

(p. 80, eq. 5.56)

σφ̂κ
standard deviation of the estimated phase of the intermediate differential

correlation result (p. 88, eq. 6.6)

σΨ combined standard deviation of the inphase and quadrature components

of the differential correlation result (p. 26, eq. 3.51)

σΨ,E combined standard deviation of the inphase and quadrature components

of the early differential correlation result (p. 39, eq. 3.80)

σΨ,H0 combined standard deviation of the inphase and quadrature components

of the differential correlation result for hypothesis 0 (p. 29, eq. 3.64)

σΨ,H1 combined standard deviation of the inphase and quadrature components

of the differential correlation result for hypothesis 1 (p. 30, eq. 3.67)

σΨ,I standard deviation of the inphase component of the differential correlation

result (p. 26, eq. 3.49)

σΨ,L combined standard deviation of the inphase and quadrature components

of the late differential correlation result (p. 39, eq. 3.82)

σΨ,Q standard deviation of the quadrature component of the differential

correlation result (p. 26, eq. 3.50)

σρ̂ standard deviation of the range estimate (p. 43, eq. 3.109)

σρ̂,D standard deviation of the range estimate for differential correlation

(p. 43, eq. 3.109)

σρ̂,F,A standard deviation of the range estimate for frequency offset correction

with method A (p. 79, eq. 5.48)

σρ̂,F,B standard deviation of the range estimate for frequency offset correction

with method B (p. 80, eq. 5.55)

σρ̂,I,A standard deviation of the range estimate for adaptive integration interval with

method A (p. 104)

σρ̂,I,B standard deviation of the range estimate for adaptive integration interval with

method B (p. 107)

σρ̂,N standard deviation of the range estimate for noncoherent integration

(p. 46, eq. 3.122)

σρ̂,P,A standard deviation of the range estimate for phase mismatch correction with

method A (p. 94, eq. 6.5)

σρ̂,P,B standard deviation of the range estimate for phase mismatch correction with

method B (p. 94, eq. 6.5)

στ̂ standard deviation of the estimated code delay (p. 40, eq. 3.91)

σθ standard deviation of a Gaussian distributed variable (p. 113, eq. 8.2)

σΥ combined standard deviation of the inphase and quadrature components

of the final differential correlation result (p. 72, eq. 5.32)

σΥ,E combined standard deviation of the inphase and quadrature components

of the early final differential correlation result (p. 79, eq. 5.50)
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σΥ,H0 combined standard deviation of the inphase and quadrature components

of the final differential correlation result for hypothesis 0 (p. 74, eq. 5.39)

σΥ,H1 combined standard deviation of the inphase and quadrature components

of the final differential correlation result for hypothesis 1 (p. 74, eq. 5.41)

σΥ,I standard deviation of the inphase component of the final differential

correlation result (p. 73, eq. 5.35)

σΥ,I,E standard deviation of the inphase component of the early final differential

correlation result (p. 80, eq. 5.57)

σΥ,I,H0 standard deviation of the inphase component of the final differential

correlation result for hypothesis 0 (p. 74, eq. 5.43)

σΥ,I,H1 standard deviation of the inphase component of the final differential

correlation result for hypothesis 1 (p. 74, eq. 5.46)

σΥ,I,L standard deviation of the inphase component of the late final differential

correlation result (p. 80, eq. 5.57)

σΥ,L combined standard deviation of the inphase and quadrature components

of the late final differential correlation result (p. 79, eq. 5.51)

τ code phase (p. 4, eq. 2.1)

τǫ initial mean code phase estimation error (p. 39, eq. 3.85)

τE early code phase (p. 39, eq. 3.80)

τL late code phase (p. 39, eq. 3.82)

θ Gaussian distributed variable (p. 113, eq. 8.1)

ϕc carrier phase (p. 17, eq. 3.4)

ϕµ phase of the deterministic signal component of the predetection samples

(p. 71, eq. 5.30)

ς integer multiple (p. 4, eq. 2.1)

ϑ scaling factor (p. 57, eq. 4.15)
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