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Chapter 1

Introduction

The use of Global Navigation Satellite Systems (GNSS) for navigation, surveying and geo-

physics has continuously increased over the last decades. However, not only the demand has

increased but also the requirements on accuracy, precision, reliability, availability and con-

tinuity of the systems. Therefore, a new generation of GNSS is built, the European Galileo

system, and a modernization of the first and current Global Positioning System (GPS) is

also on track.

In order to meet the more stringent with respect to precision, integrity and real-time po-

sitioning, carrier phase measurements are used. These measurements are extremely precise

but ambiguous by an unknown number of cycles, which are known to be integer-valued.

For solving this problem integer ambiguity resolution algorithms have been developed. The

integer estimation process usually consists of three steps: First, a standard least-squares

method is applied by disregarding the integer property of the ambiguities and the so-called

float solution is obtained. In the second step, the integer constraint of the ambiguities is

considered, i.e. the float ambiguities are mapped to integer values. Different choices for this

mapping are available. The most simple, for example, is by rounding to the nearest integer

value. However, for this choice between different estimators, the probability of correct in-

teger estimation should be taken into account. Finally, the fixed integer-valued ambiguities

are use to adjust the remaining unknown parameters by their correlation.

The least-squares integer ambiguity decorrelation adjustment (LAMBDA) proposed by Te-

unissen in [1] is widely applied for integer ambiguity resolution. After obtaining the float

solution, an integer-valued ambiguity decorrelation transformation is computed from the

covariance matrix of the float ambiguities by alternating integer-approximated Gaussian

eliminations and permutations of ambiguities (de Jonge and Tiberius [2]). Afterwards, a

1



Chapter 1. Introduction 2

search and a back-transformation from the decorrelated search space into the original am-

biguity space is performed by using the inverse of the decorrelation matrix. This integer

decorrelation transformation has been originally derived for unbiased measurements where

it performs very well; however, it becomes critical for biased measurements as it amplifies

the biases, which affects the reliability of the ambiguity resolution. Therefore, a partial

integer decorrelation is suggested to achieve an optimum trade-off between the noise vari-

ance reduction and the biases amplification. The LAMBDA method was originally used

for double-difference (DD) carrier phase measurements. However, it can be applied also to

single-difference (SD) measurements.

A successful resolution of all ambiguities, also known as Full Ambiguity Resolution, may

not always be possible (i.e. the probability of correct integer estimation is too low). Se-

vere multipath or large uncorrected biases may prevent this reliable resolution. However,

a reliable resolution of a subset of the ambiguities can still be possible, also referred to as

Partial Ambiguity Resolution and introduced by Teunissen et al. in [3]. The aim of partial

ambiguity resolution is to identify the subset of ambiguities which gives the largest possible

probability of correct integer estimation. Partial ambiguity fixing for double-differences have

been analyzed by Cao et al. in [4] with a short baseline.

On this thesis, different partial ambiguity fixing methods in the presence of biases are in-

vestigated for carrier phase absolute positioning with satellite-satellite single-difference mea-

surements at a single epoch. A new partial ambiguity fixing method is used for sequential

fixing, which considers all the possible orders of fixing to obtain an optimum largest subset

of fixable ambiguities. This new method is the so-called Sequential optimum fixing order

search (SOFOS) method. Moreover, a new exponential profile is suggested to upper-bound

the residual biases.

This thesis is outlined as follows. In Chapter 2, a brief introduction to the current and

future Global Navigation Satellite Systems is given. The GNSS measurement model is also

introduced.

In Chapter 3 absolute carrier phase positioning and the ambiguity resolution problem are

described. Three different methods to simplify and improve the ambiguity resolution are

discussed: Satellite-satellite single differences (SD), linear combinations and carrier smooth-

ing. The derivation of a new four-frequency code-carrier linear combination for Galileo is

also presented. Furthermore, three integer estimators are briefly described: integer round-

ing, integer bootstrapping and integer least-squares. Finally, the quality of the ambiguity

estimates is analyzed.
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The presence of biases on the GNSS measurements and how they affect the ambiguity res-

olution is analyzed in Chapter 4. A biased carrier phase absolute positioning model using

the simplification methods from the previous chapter is discussed. Moreover, an upper-

bound for the biases is derived by using an exponential bias profile. Furthermore, due to the

amplification of the biases from the ambiguity decorrelation transformation matrix of the

LAMBDA method, a partial integer decorrelation is discussed. Finally, partial ambiguity

fixing is introduced for severe multipath and large uncorrected biases.

In Chapter 5 different partial ambiguity fixing methods using sequential and batch fixing are

described. The methods are implemented in Matlab R©, and simulations are used to investi-

gate their performance. The comparison of their performance is presented in Chapter 6.

Finally, the conclusions are summarized and an outlook is given in Chapter 7.



Chapter 2

Global Navigation Satellite Systems

Global Navigation Satellite Systems (GNSS) are built of medium earth orbit (MEO) satellites

that provide a global coverage for positioning with applications in navigation, surveying,

location-based services and geophysics. Four global navigation systems – GPS, Galileo,

GLONASS and Compass – will be available within the next years. A brief description

of them is given below. The frequency allocations for their signals (Misra and Enge [5],

InsideGNSS [6], and Verhagen [7]) are illustrated in Figure 2.1.

2.1 GNSS projects

GPS

The Global Positioning System (GPS), developed by the U.S. Air Force in the 1970’s, is the

first operational GNSS, and is currently the most utilized satellite navigation system on the

world. The fully operational GPS constellation consists of 24 MEO satellites, divided over 6

orbital planes, but it can uses up to 32 satellites. The orbital inclination angle is 55, with an

orbital radius of 26,600 km. GPS transmits currently on two radio frequencies in the L-band

using code division multiple access CDMA techniques. On the L1 (Link 1) band, centered

at 1575.42 MHz, two signals are transmitted, the free coarse acquisition (C/A) code for civil

users, and the military precision P-code for military users. One P-code for military users

is transmitted at the L2 band, centered at 1227.60 MHz. Civil users can only access the

P-code encrypted form (Y-code).

The frequency band L5, centered at 1176.45 MHz, is being added to the system, under

the GPS modernization plan, and the codes transmitted on it will be freely available. In

4



Chapter 2. Global Navigation Satellite Systems 5

addition, a civil signal is being introduced at the L2 band, and a modernized M-code signal

for military users is currently being implemented on L1 and L2 bands.

Figure 2.1: Frequency allocations for GPS, GLONASS, Galileo and Compass.

GLONASS

The Russian acronym GLONASS stands for GLObal’naya NAvigationsnaya Sputnikovaya

Sistema, which literally is the Russian’s GNSS. It is chronologically the world’s second GNSS

system. The satellite constellation consists of 24 satellites and can be described compactly

as a Walker 24/3/2 with an orbital inclination angle of 64.8, and an orbital radius of 25,500

km. GLONASS transmits also on the L1 (1598.0625–1607.0625 MHz) and L2 (1242.9375–

1249.9375 MHz) frequency bands using frequency division multiple access FDMA techniques.

Due to the fall of the Soviet Union and the followed economical collapse, a full GLONASS

constellation was available only for a short time in 1995; thereafter, it declines to only seven

operational satellites in 2001. That year, a GLONASS modernization program was initiated.

It is expected a fully operational constellation by 2011. Furthermore, the addition of a third

frequency in the band 1190–1212 MHz as well as a CDMA signal is being evaluated.

Note: A Walker constellation (Walker T/P/F ), represents a satellite constellation of T

satellites in circular orbits, divided over P equally spaced orbital planes. The satellites are

evenly distributed in each orbit and the relative spacing of the satellites between adjacent

planes is F in units of 360◦/T .
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Galileo

Galileo is the currently under development European’s Union GNSS. In contrast to GPS, it

will be an independent and civilian system. The project has been led by a 50-50 partnership

between the European Commission (EC) and the European Space Agency (ESA). It will have

international participation and investment, and will be interoperable and compatible with

GPS and GLONASS systems. The Galileo constellation, compactly described as a Walker

27/3/1, will consist of 30 satellites, divided over 3 orbital planes (9 operational satellites and

one active spare). The orbital inclination will be 56 and the orbital radius of 29,600 km.

Galileo signals will be transmitted using CDMA techniques on four frequency bands: E5a

(1176.45 MHz), E5b (1207.14 MHz), E6 (1278.75 MHz) and E2-L1-E1 (1575.42 MHz).

• Services

Galileo signals will be assigned to provide the following types of services (Ávila et al. [8]),

which are summarized in Table 2.1.

Open Service (OS): Free-accessible use for anyone, providing basic navigation.

Commercial Service (CS): Fee-based service offering additional commercial data, service

availability and higher accuracy than the OS.

Safety-of-Life Service (SoL): Fee-based service aimed to safety-critical transport applica-

tions (e.g. air-traffic control) offering integrity reliability and authentication of the signal,

certification and guarantee of service.

Public Regulated Service (PRS): Fee-based service aimed to security authorities and military

applications offering the same services as SoL. Additionally, it uses encrypted PRS codes

and anti-jamming signals.

Search And Rescue Service (SAR): Used for detection of distress alerts and coordination of

search-rescue teams.

Table 2.1: Galileo services mapped to signals.

Frequency band OS CS SoL PRS SAR

E5a
√ √

E5b
√ √ √

E6
√ √ √

E1
√ √ √ √
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Compass

Compass is a GNSS project to be developed by China. The Compass constellation will consist

of 35 satellites (5 geostationary orbit (GEO) satellites and 30 MEO satellites). Compass

signals will be transmitted on the E1 (1587.69–1591.79 MHz), E2 (1559.05–1563.15 MHz),

E5b (1195.14–1219.14 MHz) and E6 (1256.52–1280.52 MHz) frequency bands. It will offer

an open and a restricted service.

2.2 GNSS Measurements

Two types of measurements result from processing the GNSS signals: code and carrier phase

measurements.

2.2.1 Code measurements

Code tracking provides a coarse measure of the distance between the satellite and the receiver,

also referred to as pseudorange. It estimates the apparent transit time of the signal, defined

as the difference between the signal reception time at the receiver and the signal transmission

time at the satellite. The corresponding pseudorange is defined as the given transit time

multiplied by the speed of light in vacuum

ρ(t) = c[tu(t)− tk(t− τ)], (2.1)

where tu(t) is the reception time at user u; tk(t − τ) is the transmission time from satellite

k; c is the speed of light in vacuum; and τ is the travel time of the signal.

This measurement is biased by the receiver and satellite clocks, which are not equal and

also differ from the GPS Time (GPST). Taking into account these errors into equation (2.1)

yields

ρ(t) = c[(t + δtu(t))− (t− τ + δtk(t− τ))] = c[τ + (δtu(t)− δtk(t− τ)], (2.2)

where δtu(t) and δtk(t− τ) are the receiver and satellite clock offsets, respectively.

Atmospheric effects (ionospheric and tropospheric delays), multipath, orbital errors and noise

also affect the code measurements. A brief explanation of them will be given in Section 2.2.3.

Extending the code measurement model of user u, satellite k on frequency m and epoch i
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yields

ρk
u,m(ti) = rk

u(ti) + T k
u (ti) + q2

1mIk
u(ti) + δrk

u(ti)

+c(δτu(ti)− δτ k(ti)) + bρu,m + bk
ρm

+ εk
ρu,m

(ti), (2.3)

where rk
u = cτ , is the satellite-user range; T k

u is the tropospheric delay; Ik
u is the ionospheric

delay depending on the ratio of frequencies q1m; δrk
u is the projected satellite orbital error;

bρu,m and bk
ρm

are the receiver and the satellite code biases including instrumental delays;

εk
ρu,m

is the code noise including multipath; δτu,m is the receiver clock error; and δτ k
m is the

satellite clock error.

2.2.2 Carrier phase measurements

The carrier phase measurement is much more precise than the code measurement. It is

defined as the difference between the phase of the carrier received from the satellite and the

phase of the receiver-generated carrier signal at the instant of the measurement. The phase

is measured in terms of the number of cycles generated or received since the starting point

at zero time. Then, the carrier phase measurement will be the measured fractional cycle

plus an unknown number of whole cycles, which is also called integer ambiguity.

The carrier phase measurement in units of meters (Φ) at the user u from satellite k on

frequency m at epoch i is modeled as

Φk
u,m(ti) = λmφk

u,m(ti) = rk
u(ti) + T k

u (ti)− q2
1mIk

u(ti) + λmNk
u,m + δrk

u(ti) + λmbφu,m

+c(δτu(ti)− δτ k(ti)) + λmbk
φm

+ εk
φu,m

(ti), (2.4)

where λm is the wavelength of the carrier; rk
u, is the user-satellite range; T k

u is the tropospheric

delay; Ik
u is the ionospheric delay depending on the ratio of frequencies q1m; δrk

u is the

projected satellite orbital error; bφu,m is the receiver phase noise; bk
φm

is the satellite phase

bias; and εk
φu,m

is the phase noise including multipath. In contrast to the code measurements,

the phase ionospheric delay is negative and the phase multipath is also different, which will

be explained on the next section. Note that the multiplication of the phase noise and biases

by the wavelength will be later stipulated on the notation bφu,m , bk
φm

and εk
φu,m

.

The carrier phase measurements are extremely precise, but affected by integer ambiguities,

whose estimation can be performed by a variety of algorithms (e.g. LAMBDA, Three-Carrier

Ambiguity Resolution (TCAR) (Forssell et al. [9]), Rounding, ... etc.).
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2.2.3 Measurement’s errors and delays

Receiver noise, multipath, errors in the navigation message from the satellite and atmo-

spheric delays are different kind of error sources, which affect the precision of the GNSS

measurements.

Ephemeris and clock errors

The satellite computed orbit or ephemeris is uploaded to the satellite to be broadcast in

their navigation message over several days. It offers the states of the satellites and their

clocks. Errors on the estimation and prediction of the ephemeris parameter values result in

a false satellite predicted orbit. Therefore, the more accurate are the prediction models, and

the more frequent the ephemeris uploads, the lower the sizes of the range errors.

Atmospheric delays

The earth’s atmosphere modifies the speed and direction of propagation of the GNSS signals.

This effect, referred to as refraction, generates a propagation delay, i.e. the signal transit

time is changed. Two layers of the atmosphere affect particularly the propagation of the

GNSS signals: the ionosphere and the troposphere.

• Ionospheric delay

The ionosphere is the layer of the earth’s atmosphere that is ionized by solar radiation. It

extends from 50km to 1000km above the surface of the Earth. The UV radiation of the

sun heats the neutral gas molecules, which then break and liberate free electrons and ions.

This process is referred to as ionization. Depending upon the solar activity, the free electron

density varies considerable.

The ionosphere is a dispersive medium for radio signals, which means that the ionospheric

delay depends on the frequency of the signal. The ionosphere effects are inversely propor-

tional to the square of the frequency of the signal. The first order ionospheric delays can be

estimated by collecting measurements on different frequencies

q2
1m =

f 2
1

f 2
m

=
λ2

m

λ2
1

.

The number of free electrons in the path of a signal affects the code and carrier phase

measurements differently, but with the same magnitude. That is, in the ionosphere, the
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phase velocity of the GNSS carrier signals exceeds that of light in vacuum, whereas the group

velocity is delayed. Therefore, the ionospheric phase delay is negative (see equation (2.4)),

i.e. the phase is advanced.

• Tropospheric delay

The troposphere, composed of dry gases and water vapor, is the lower layer of the earth’s

atmosphere, and generates also a signal delay. It extends from the surface of the Earth

to about 9 km above the poles and about 16 km above the equator. In contrast to the

ionosphere, the troposphere is a non-dispersive medium for GNSS frequencies, i.e. the prop-

agation delay does not depend on the frequency of the signal. Furthermore, the phase and

group velocities are the same; therefore the tropospheric delays are equal for the code and

carrier phase measurements.

The tropospheric delay can not be estimated from GNSS measurements, consequently tropo-

spheric models and mapping functions are used to correct for it. Typically, the tropospheric

delay is separated into a wet delay Tw, caused by the water vapor; and a dry delay Td, caused

by dry air and some water vapor, so that

T = Td + Tw.

The tropospheric wet delay is much harder to model than the dry delay, which is fortunately

larger and can be predicted with higher accuracy.

Random measurement noise

The code and carrier phase measurements are affected also by random errors unrelated to

the signal, e.g. noise introduced by the antenna, signal quantization noise and interference

from other signals. This noise is also called receiver noise and varies with the signal strength.

Multipath

Multipath refers to the effect of a signal arriving at an antenna via two or more paths due

to the reflections of the direct path (i.e. line-of-sight) from buildings, structures and from

the ground. The reflected signals are delayed and usually weaker than the direct signal. The

magnitudes of the errors induced by multipath on the code and carrier phase measurements

differ significantly. In the code measurements, it varies between 1 m and 5 m, whereas the
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corresponding error in the carrier phase measurements is 1–5 cm. Moreover, the multipath

error in the carrier phase measurements does not exceed a quarter cycle if the amplitude of

the reflected signal is smaller than the amplitude of the direct signal.



Chapter 3

Carrier Phase Positioning and Integer

Ambiguity Resolution

The precision and accuracy given by the code and carrier phase measurements are very

different. The carrier phase measurements offer a very-high precision (order of millime-

ters), whereas the code measurement’s precision is in the order of meters. Carrier phase

measurements are therefore required for precise positioning. However, they are ambiguous

(integer ambiguities); consequently, integer ambiguity resolution is necessary before the mea-

surements can be used for precise positioning. Integer ambiguity resolution consists of an

estimation and a validation part [10]. This means that given the estimates of the integers,

it is necessary to prove their precision and accuracy in order to obtain precise position es-

timates. In the following section, some methods to improve the performance of ambiguity

resolution for absolute carrier phase positioning are described. Moreover, an overview of

some usually ambiguity resolution methods will be given on Section 3.3. Finally, a form to

calculate their probability of correct estimation is shown on Section 3.4.

3.1 Simplification methods for ambiguity resolution

Usually, in the case of precise relative positioning, ambiguity resolution is done by using

double-difference (DD) carrier phase measurements (see Appendix A), which are used to

reduce nuisance parameters on the measurements. However, another methods, discussed

below, can also be used to improve the performance of ambiguity resolution, and for absolute

carrier phase positioning as will be discussed on Chapter 4.

12
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3.1.1 Linear combinations

Integer ambiguity resolution of the carrier phase measurements can be simplified by using

linear combinations of the measurements at multiple frequencies. The design of ionosphere-

free mixed code-carrier linear combinations of minimum noise and maximum combination

discrimination for Galileo has been performed by Henkel and Günther in [11] and [12].

An overview of the design and characteristics of these combinations is described below.

Furthermore, this work has been extended to four-frequency Galileo combinations (E1-E5a-

E5b-E6), which design and comparison to other combinations is introduced on Section 3.1.2.

Code-carrier linear combinations

Given the carrier phase measurements from Equation (2.4) and the code measurements from

Equation (2.3), a linear combination of them at multiple frequencies can be done in order to

obtain a larger wavelength and a low noise level, while the ionospheric delay is eliminated.

Hence, the carrier phase and code measurements should be weighted by the corresponding

coefficients, αm and βm. An illustration of this is shown in Figure 3.1. The properties of

the linear combination at M frequencies are regulated by doing some constraints on the

weighting coefficients:

Geometry-preserving (GP): The user-satellite range r should be preserved by

M∑
m=1

αm +
M∑

m=1

βm
!
= 1, (3.1)

where the phase part
∑M

m=1 αm will be weighted by the carrier phase geometric weight τlc,

and the code part
∑M

m=1 βm by (1 − τlc). This constraint refers also to the non-dispersive

errors, i.e. the satellite orbital errors, the satellite clock offsets and the tropospheric delays

are not amplified.

Ionosphere-free (IF): The ionospheric delay I of first order is eliminated if

M∑
m=1

αmq2
1m −

M∑
m=1

βmq2
1m

!
= 0. (3.2)

Integer-preserving (NP): The combination of Nm ambiguities should be an integer multiple

of a common wavelength λlc, that is

M∑
m=1

αmλmNm
!
= λlcN, (3.3)



Chapter 3. Carrier Phase Positioning and Integer Ambiguity Resolution 14

Figure 3.1: Code-carrier linear combination scheme.

which can be split into the next integer conditions

jm =
αmλm

λlc

∈ Z, (3.4)

where Z denote the space of integers.

The wavelength of the code-carrier combination is obtained as follows

λlc(τlc) =
τlc∑M

m=1
jm

λm

= λ̃τlc with λ̃ =
1∑M

m=1
jm

λm

. (3.5)

A combination discrimination indicator is given as a cost function in order to select the linear

combinations. This has been defined by Henkel and Günther in [11] as

D =
λlc

2σn

, (3.6)

with the overall noise contribution of the linear combination

σn =

√√√√
M∑

m=1

α2
mσ2

φm
+

M∑
m=1

β2
mσ2

ρm
, (3.7)

where σρm are the code noises; and σφm is the phase noise, which can be assumed to be equal

for the Galileo frequencies (E1, E5b, E5b, E6) due to their close vicinity.

The code noises σρm are obtained from the Cramér Rao Bound (CRB) given by

Γm =
c2

C
N0
·

∫
(2πf)2|Sm(f)|2df∫ |Sm(f)|2df

, (3.8)

where c is the speed of light; C/N0 is the carrier to noise power ratio; and Sm(f) is the power

spectral density, which has been derived for binary offset carrier (BOC) modulated signals
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Table 3.1: Cramér Rao Bounds for Galileo signals.

Frequency band Signal Bandwidth [MHz] CRB [cm]

E1 CBOC(6,1,1/11) 20 11.14

E5 (E5a+E5b) AltBOC(15,10) 51 1.95

E5a BPSK(10) 20 7.83

E5b BPSK(10) 20 7.83

E6 BOC(10,5) 40 2.41

by Betz in [13]. Table 3.1 shows the Cramér Rao Bounds at a carrier to noise power ratio

C/N0 = 45dB/Hz for the wideband Galileo signals.

Two kinds of optimization criteria for this indicator can be done by using the remaining

degrees of freedom of the linear combination (e.g. τlc, code weighting coefficients βm), after

fulfilling the constraints mentioned above. One optimization criterion is to maximize the

combination discrimination D, which is then used to select the linear combination that

minimizes the probability of wrong fixing over all linear combinations. The probability of

wrong fixing computation will be discussed on Section 3.4. On the other hand, the other

criterion is to minimize the noise variance σ2
n. For both criteria, a numerical search over the

integers jm should be also included.

For simplicity, the time and user indices are omitted and the index lc is used instead; and

the resulting code-carrier linear combination is written as

Φk
lc = λlcφ

k
lc = rk + T k + λlcN

k
lc + δrk

+c(δτ − δτ k) + bφlc
+ bk

φlc
+ εk

φlc
, (3.9)

where λlc is the wavelength of the linear combination; and bφlc
=

∑M
m=1 αmbφm+

∑M
m=1 βmbρm .

Note that the ionospheric delay is eliminated, and the obtained large wavelength λlc increases

the reliability of ambiguity resolution.

Code-only linear combinations

The reliability of ambiguity resolution is further improved by an additional linear combina-

tion of the code measurements from Equation (2.3), referred as to code-only combination,

which does not add further ambiguities. Figure 3.2 depicts the linear combination. The

properties of the linear combination at M frequencies are regulated by a geometry-preserving

and ionosphere-free constraints, as for the code-carrier linear combinations, but without the
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Figure 3.2: Code-only linear combination scheme.

carrier phase weighting coefficients. The corresponding constraints on the code weighting

coefficients are then written as

Geometry-preserving (GP):
M∑

m=1

bm
!
= 1, (3.10)

Ionosphere-free (IF):
M∑

m=1

bmq2
1m

!
= 0. (3.11)

The code weighting coefficients bm are represented in Roman letters in order to differentiate

them from the corresponding code weighting coefficients of the code-carrier linear combina-

tion.

The noise variance of the code-only linear combination, which should be minimized as opti-

mization criterion, is given by

σ2
n =

M∑
m=1

b2
mσ2

ρm
, (3.12)

with the code noises σρm , that can be also obtained as explained in the code-carrier linear

combinations.

For simplicity, the time and user indices are omitted and the index lc is used instead; and

the resulting code-only linear combination is written as

ρk
lc = rk

lc + T k
lc + δrk

lc + c(δlcτ − δlcτ
k) + bρlc

+ bk
ρlc

+ εk
ρlc

, (3.13)

where the ionospheric delay is also eliminated.
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Carrier phase-only linear combinations

The design of the carrier phase-only combination follows the same constraints as for code-

only combinations, i.e. the corresponding equations can be obtained by replacing the code

weighting coefficients bm of Equations (3.10) and (3.11) with the carrier phase weighting

coefficients am. The integer preserving (NP) constraint can be also applied for the resulting

ambiguities, but not necessarily.

The noise variance of the carrier phase-only linear combination, which should be minimized

as optimization criterion, is given by

σ2
n =

M∑
m=1

a2
mσ2

φm
, (3.14)

with the phase noises σφm , that can be also obtained as explained in the code-carrier linear

combinations.

This carrier-phase only combination can be useful to reduce the noise of the other linear

combinations, as will be introduced on Section 3.1.3.

3.1.2 GP-IF-NP Four-frequency Galileo code-carrier combination

Given the code and carrier phase measurements from Equations (2.3) and (2.4), an

ionosphere-free four-frequency Galileo (E1-E5a-E5b-E6) linear combination has been com-

puted. Two different wavelengths with a noise level of a few centimeters were found: 4.469

m and 4.284 m. The analytic determination of this combination and comparison of its

properties to other dual and triple frequency combinations is described below.

• Analytic determination

The properties of the linear combination are regulated by applying the geometry-preserving

(GP), ionosphere-free (IF) and integer-preserving (NP) constraints from Equations (3.1) to

(3.4) with M = 4 on the weighting coefficients.

In this case, the corresponding phase weighting coefficients can be rewritten to

α1 =
j1λlc

λ1

, α2 =
j2λlc

λ2

, α3 =
j3λlc

λ3

, α4 =
j4λlc

λ4

, (3.15)

where λ1 is the wavelength of the frequency E1; λ2 is the wavelength of the frequency E5a;

λ3 is the wavelength of the frequency E5b;and λ4 is the wavelength of the frequency E6.
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The wavelength λlc of the combination will be obtained by replacing these coefficients in

Equation (3.5). That is

λlc =
τlc

j1
λ1

+ j2
λ2

+ j3
λ3

+ j4
λ4

= λ̃τ with λ̃ =
1

j1
λ1

+ j2
λ2

+ j3
λ3

+ j4
λ4

, (3.16)

where τlc = α1 + α2 + α3 + α4.

For this four frequency linear combination there exist 5 degrees of freedom: 4 for the code

weights βm and 1 for the wavelength λlc. The first two of them, β1 and β2, were required

to fulfill the geometry-preserving (3.1) and ionosphere-free (3.2) constraints, and can be

analytical derived as

β1 = 1− w2 − (w1 + 1)τlc − (w3 + 1)β3 − (w4 + 1)β4, (3.17)

β2 = w1τlc + w3β3 + w4β4 + w2, (3.18)

with

w1 = k̃+1
q2
12−1

, w2 = −1
q2
12−1

, w3 =
1−q2

13

q2
12−1

, w4 =
1−q2

14

q2
12−1

and k̃ = λ̃
∑4

m=1
jm

λm
q2
1m,

where q1m is the corresponding ratio of frequencies m = E5a, E5b and E6 with respect to

the frequency E1.

The remaining degrees of freedom β3, β4 and τlc will be used to maximize the combination

discrimination (see Equation 3.6), which is rewritten into

D =
λlc

2σn

=
λlc

2 ·
√

σ2
φ(α

2
1 + α2

2 + α2
3 + α2

4) + β2
1σ

2
ρ1

+ β2
2σ

2
ρ2

+ β2
3σ

2
ρ3

+ β2
4σ

2
ρ4

, (3.19)

where the phase noise σφ will be assumed to 1 mm and 2 mm; and the code noises σρm are

obtained from the Cramér Rao Bounds (CRB) at a carrier to noise power ratio C/N0 =

45dB/Hz from Table 3.1.

The optimization criterion includes a numerical search over the integers jm which has been

limited to |jm| ≤ 5 as all the other combinations suffer from biases and noise amplification.

Moreover, the following optimization constraints are applied to the remaining degrees of

freedom

∂D2(β3, β4, τlc)

∂τlc

!
= 0,

∂D2(β3, β4, τlc)

∂β3

!
= 0 and

∂D2(β3, β4, τlc)

∂β4

!
= 0. (3.20)

The results of the analytical derivation of the code weight β3 and the carrier phase geometric

weight τlc from Equation (3.20) are described as follows

τlc =
−(2c1β

2
3 + 2c2β

2
4 + 2c5β3β4 + 2c7β3 + 2c8β4 + 2c9)

c3β3 + c4β4 + c6

, (3.21)
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where

c1 = σ2
ρ1

(w3 + 1)2 + σ2
ρ2

w2
3 + σ2

ρ3
, c2 = σ2

ρ1
(w4 + 1)2 + σ2

ρ2
w2

4 + σ2
ρ4

,

c3 = 2(σ2
ρ1

(w1w3 + w1 + w3 + 1) + σ2
ρ2

w1w3, c4 = 2(σ2
ρ1

(w1w4 + w1 + w4 + 1) + σ2
ρ2

w1w4,

c5 = 2(σ2
ρ1

(w3w4 + w3 + w4 + 1) + σ2
ρ2

w3w4, c6 = 2(σ2
ρ1

(w1w2 − w1 + w2 − 1) + σ2
ρ2

w1w2,

c7 = 2(σ2
ρ1

(w2w3 + w2 − w3 − 1) + σ2
ρ2

w2w3, c8 = 2(σ2
ρ1

(w2w4 + w2 − w4 − 1) + σ2
ρ2

w2w4,

c9 = σ2
ρ1

(1− w2)
2 + σ2

ρ2
w2

2;

β3 =
s1β

2
4 − s2β4 + s3

s4β4 + s5

, (3.22)

with the coefficients

s1 = c4c5 − 2c2c3, s2 = 2c3c8 − c5c6 − c4c7, s3 = c6c7 − 2c3c9,

s4 = c3c5 − 2c1c4, s5 = c3c7 − 2c1c6.

The code weight β4 is also analytically derived from Equation (3.20) as

v1β
3
4 + v2β

2
4 + v3β4 + v4 = 0, (3.23)

with the coefficients

v1 = s2
1s5 + r3s

2
4 + s1s2s4 + r1s1s4,

v2 = 2r3s4s5 + r1s1s5 − s1s3s4 − s1s2s5 − r1s2s4 − s2
2s4 − r2s

2
4,

v3 = r3s
2
5 + s1s3s5 + r1s3s4 + 2s2s3s4 − 2r2s4s5 − r1s2s5,

v4 = s2
3s4 + r2s

2
5 − r1s3s5,

where

r1 = 2c4c7 − c5c6 − c3c8, r2 = c6c8 − 2c4c9, r3 = c4c8 − 2c2c6.

Table 3.2: Four-frequency code-carrier linear combinations (σφ = 1 mm , σρm = Γm).

E1 E5a E5b E6 λ σn D

αm 23.485 17.537 0.000 -38.124
jm

βm

1
-0.047

1
-0.170

0
-0.162

-2
-1.519

4.469m 6.34cm 35.3

αm 2.284 -0.853 -0.437 0.000
jm

βm

4
0.0002

-2
0.0005

-1
0.0005

0
0.0049

10.87cm 2.48mm 21.9

The non-linear optimization can be obtained after solving for the non-linear equation of

the code weight β4, which can be solved analytically by using the Cardano’s method (see
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Appendix B). The resulting weighting coefficients and properties of the four frequency code-

carrier linear combinations of maximum discrimination with a phase noise σφ = 1 mm are

shown in Table 3.2. The first combination refers to a widelane, while the second one to a

narrowlane combination. The higher E1 code noise is significantly suppressed, which benefits

by a larger wavelength of 4.469 m and a lower noise level of 6.34 cm.

Table 3.3: Four-frequency code-carrier linear combinations (σφ = 2 mm , σρm = 3 · Γm).

E1 E5a E5b E6 λ σn D

αm 22.515 16.813 17.252 -54.825
jm

βm

1
-0.018

1
-0.068

1
-0.064

-3
-0.604

4.284m 13.7cm 15.6

αm 2.284 -0.853 -0.437 0.000
jm

βm

4
0.0002

-2
0.0005

-1
0.0005

0
0.0050

10.87cm 4.97mm 10.9

Table 3.3 shows the resulting weighting coefficients and properties of the four-frequency

code-carrier linear combinations of maximum discrimination with a phase noise σφ = 2 mm

and a Cramér Rao Bound scaled by a factor of three to include fast varying multipath. A

different widelane combination is found with a large wavelength of 4.284 m and a noise level

of 13.7 cm.

Table 3.4: GP-IF-NP code-carrier widelane combinations of maximum discrimination for

two, three and four frequencies (σφ = 2 mm, σρm = 3 · Γm).

E1 E5 E5a E5b E6 λ σn D

αm 17.263 -13.059
jm

βm

1
-0.055

-1
-3.148

3.285m 19.0cm 8.6

αm 18.556 55.428 -71.093
jm

βm

1
-0.234

4
-0.850

-5
-0.807

3.531m 34.0cm 5.2

αm 21.122 15.979 -34.289
jm

βm

1
-0.020

1
-1.142

-2
-0.649

4.019m 11.9cm 16.9

αm 22.515 16.813 17.252 -54.825
jm

βm

1
-0.018

1
-0.068

1
-0.064

-3
-0.604

4.284m 13.7cm 15.6

The trade-off between the wavelength and the noise level for a limited numerical search

over the integers jm for four-frequency (E1-E5a-E5b-E6) widelane and narrowlane linear

combinations is illustrated on Figure 3.3. The respective properties of the combinations

that maximize the combination discrimination indicator are showed on Table 3.5.
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The additional use of E6 measurements offers the advantage of using its lower code noise as

the main noise contribution to the linear combination, which benefits by a larger wavelength

an a lower noise level. This increases the combination discrimination by more than 50% in

comparison to another optimized linear combinations with two and three Galileo frequencies.

Table 3.4 depicts the weighting coefficients and properties of code-carrier widelane linear

combinations of maximum discrimination for two, three and four Galileo frequencies (Henkel

et al. [14]).
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Figure 3.3: Four-frequency code-carrier linear combinations for a limited numerical search

over the integers jm. (σφ = 2 mm, σρm = 3 · Γm)



Chapter 3. Carrier Phase Positioning and Integer Ambiguity Resolution 22

Table 3.5: GP-IF-NP four-frequency code-carrier widelane and narrowlane combinations of

maximum discrimination for a limited numerical search over the integers jm. (σφ = 2 mm,

σρm = 3 · Γm)

E1 E5a E5b E6 λ σn D

αm 22.158 33.093 -16.978 -35.971
jm

βm

1
-0.032

2
-0.117

-1
-0.111

-2
-1.043

4.217m 14.1cm 14.9

αm 24.542 18.326 -18.805 -19.920
jm

βm

1
-0.077

1
-0.282

-1
-0.268

-1
-2.517

4.670m 22.1cm 10.6

αm 1.194 -0.891 -0.457 0.969
jm

βm

2
0.0045

-2
0.0166

-1
0.0158

2
0.1486

11.36cm 12.67mm 4.49

αm 0.608 -0.454 0.000 0.494
jm

βm

1
0.0087

-1
0.0315

0
0.0299

1
0.2816

11.58cm 23.03mm 2.52

3.1.3 Carrier smoothing

The noise and multipath of the code-carrier and code-only combinations can be reduced by

smoothing them with a carrier phase-only combination of minimum noise variance.

A non-recursive Hatch filter [15] variant introduced by Hwang et al. [16], which is illustrated

on Figure 3.4, will be used to obtain the smoothed linear combination Ψsm. An ionosphere-

free code-carrier combination of arbitrary wavelength or a code-only combination can be

used as the noisy upper input ΨA, while an ionosphere-free carrier-phase-only combination

is used as lower input ΦB.

Figure 3.4: Carrier smoothing process.

The smoothed linear combination is written as

Ψsm(t) = χ̄(t) + ΦB(t), (3.24)
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with χ(t) = ΨA(t)− ΦB(t), which is filtered by a low pass filter, i.e.

χ̄(t) =

(
1− 1

τ

)
χ̄(t− 1) +

1

τ
χ(t). (3.25)

The variance of the smoothed linear combination which can be derived by using the low pass

filter equations and the geometric series
∑∞

n=0 qn = 1/1− q, is given by Henkel and Günther

in [11] as

σ2
sm = σ2

B +
1

2τs − 1
· (σ2

A − 2σAB + σ2
B) +

2

τs

· (σAB − σ2
B), (3.26)

where τs is the smoothing time constant; σ2
B is the variance of the carrier phase-only com-

bination from Equation (3.14); σ2
A is the variance of the combination to be smoothed (e.g.

code-carrier); and σAB is the covariance between both combinations.

Note that the use of carrier smoothing reduces the noise variance, which limits the margins

for the biases, but having no impact on them; however, the main cost is the time needed

for the desired accuracy. Also, the ambiguities of the carrier phase-only combination have

no impact on the smoothed output as they are cancelled by the use of different signs in the

addition.

3.1.4 Satellite-satellite single-difference (SD)

In order to eliminate the receiver biases and clock errors satellite-satellite single-difference

(SD) measurements can be utilized. This simplifies the measurements and also improves

their precision. For simplicity, the time indices are omitted, and the code and carrier phase

satellite-satellite (kl) SD measurements obtained from Equations (2.3) and (2.4) are modeled

as

ρkl
u,m = ρk

u,m − ρl
u,m = rkl

u + T kl
u + q2

1mIkl
u + bkl

ρu,m
+ εkl

ρu,m
, (3.27)

Φkl
u,m = Φk

u,m − Φl
u,m = rkl

u + T kl
u − q2

1mIkl
u + λmNkl

u,m + λmbkl
φu,m

+ εkl
φu,m

, (3.28)

where the corresponding SD clock offsets c(δτ kl) and the SD projected orbital errors δrkl
u

have been mapped respectively to the SD code biases bkl
ρu,m

and SD phase biases bkl
φu,m

.

3.2 Linear model for position estimation

The user-satellite range rk
u obtained from the GNSS measurements can be expressed as a

function of the satellite and the user positions as

rk
u = ||xk − xu||, (3.29)
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where xk = (xk, yk, zk)T is the satellite position vector; xu = (xu, yu, zu)
T is the user position

vector; and || · || denotes the magnitude of a vector.

Given the code and carrier phase measurements, a linearization of them with respect to the

user position can be done by using approximate values of all the parameters, that means

a computed measurement is generated. For simplicity, it will be assumed that all the ap-

proximate values except for the user-satellite range are zero. Let xk
0 = (xk

0, y
k
0 , z

k
0 )T be the

approximate satellite position and x0 = (x0, y0, z0)
T the approximate user position, then the

corresponding range approximation is

rk
0 = ||xk

0 − x0||, (3.30)

and the resulting observed-minus-computed equations are given by

δΦk
u,m = Φk

u,m − rk
0 and δρk

u,m = ρk
u,m − rk

0 . (3.31)

Considering that the true position of the user can be represented as xu = x0 + δx, with

δx being a correction for the estimate, then the difference in the range can be linearized as

follows

δrk = rk
u − rk

0

= ||xk
0 − xu|| − ||xk

0 − x0||
= ||xk

0 − x0 + δx|| − ||xk
0 − x0||

≈ − xk
0 − x0

||xk
0 − x0|| · δx = −1k · δx, (3.32)

where 1k is the unit vector pointing from the user to the satellite and a Taylor series ap-

proximation have been used.

By substituting the linearized range on the observed-minus-computed equations gives the

following linearized equations

yρ = δρk
u,m = −1k · δx + T k

u + q2
1mIk

u + δrk
u

+c(δτu − δτ k) + bρu,m + bk
ρm

+ εk
ρu,m

, (3.33)

yφ = δΦk
u,m = −1k · δx + T k

u − q2
1mIk

u + λmNk
u,m + δrk

u

+c(δτu − δτ k) + bφu,m + bk
φm

+ εk
φu,m

. (3.34)

A GNSS mathematical model, also known as the Gauss-Markov model, can be obtained

from the last linearized equations and is given in a general form as

E{y} = Ax; D{y} = E{εεT} = Σy, (3.35)
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where E{·} is the expectation operator; D{·} is the dispersion operator; y is the vector of

measurements; A is the design matrix; x is the vector of parameters; ε is the discrepancy

between y and Ax; and Σy is the noise covariance matrix of the measurements.

The first part of the model (functional model) describes the relation between the measure-

ments and the parameters, while the second part (stochastic model) describes the noise

characteristics of the measurements; therefore Σy is needed as weight of the measurements

for the least-squares estimation of the unknown parameters, which will be discussed in the

following section.

3.3 Integer estimation

The GNSS mathematical model from equation (3.35) can be parameterized in integers and

real-values as

y = A1N + A2u + ε, N ∈ Zn, u, ε ∈ Rn (3.36)

where the vector N consists of the unknown integer ambiguities; the vector u consists of the

remaining unknown parameters (e.g. user position, tropospheric delay); and ε is the noise

vector.

A commonly used method to solve this model is the least-squares criterion, which looks for

the estimates which minimizes the cost function

C(N,u) =
∥∥y −A1N−A2u

∥∥2
. (3.37)

The cost function is the sum of the lengths of residuals squared, which would be directly

to calculate if the integer constraint on each element of N were not considered. Hence, an

integer-least squares problem arises, which can be solved by giving different weights to the

residuals by using the inverse of the noise covariance matrix of the measurements Σ−1
y . It

reads

CΣ−1
y

(N,u) =
∥∥y −A1N−A2u

∥∥2

Σ−1
y

= (y −A1N−A2u)TΣ−1
y (y −A1N−A2u). (3.38)

The procedure to solve this minimization problem can be divided into three steps (Teunissen

[1]) as follows:

1. Float solution: The integer constraint of the ambiguities N is disregarded (i.e. N ∈ Rn),

and a float solution (denoted by a hat sign ·̂) which minimizes the equation (3.38) is obtained.
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The resulting real-valued estimates and their covariance matrix are written as

(
N̂

û

)
; Σfloat =

(
ΣN̂ ΣN̂,û

Σû,N̂ Σû

)
. (3.39)

2. Ambiguity resolution: Given the float ambiguity vector N̂ from Equation (3.39) compute

the integer ambiguity vector N which minimizes the cost function

C(N) =
∥∥N̂−N

∥∥2

Σ−1

N̂

= (N̂−N)TΣ−1

N̂
(N̂−N). (3.40)

A mapping S from the space of reals to the space of integers is needed to obtain the integer

solution (denoted by a check sign ·̌) to Equation (3.40), this means

Ň = S(N̂), where S : Rn → Zn. (3.41)

Since the space of integers Zn is discrete, the mapping will be a many-to-one map, this

means that many real-valued ambiguity vectors N will be mapped to the same integer

vector. Therefore, a subset Sz ⊂ Rn, also known as pull-in region by Teunissen [17] and

Jonkman [18], can be assigned to each integer vector z ∈ Zn as follows

Sz = {x ∈ Rn
∣∣z = S(x)}, z ∈ Zn. (3.42)

Then, the integer estimator can be expressed as

Ň =
∑

z∈Zn

zsz(N̂), with sz(x) =

{
1 if x ∈ Sz

0 otherwise
(3.43)

where sz(x) is an indicator function.

Different integer estimators can be chosen for the mapping S. A brief overview of them will

be given on the following section.

3. Fixed solution: The integer ambiguity estimates are used to correct the float estimates of

the remaining parameters û, it reads

û(Ň) = û−Σû,N̂Σ−1

N̂
(N̂− Ň) = ǔ. (3.44)
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3.3.1 Integer estimators

The float ambiguity solution N̂ from Equation (3.39) can be represented as a vector of

estimates with the corresponding covariance matrix as

N̂ =




N̂1

N̂2

...

N̂n




, ΣN̂ =




σ2
N̂1

σ2
N̂1N̂2

. . . σ2
N̂1N̂n

σ2
N̂2N̂1

σ2
N̂2

. . . σ2
N̂2N̂n

...
...

. . .
...

σ2
N̂nN̂1

σ2
N̂nN̂2

. . . σ2
N̂n




. (3.45)

This notation of the float ambiguity solution will be used to describe the following integer

estimators.

Integer Rounding

Integer rounding is the simplest integer estimator. The integer solution is obtained by round-

ing each of the entries of the float solution N̂ to their nearest integer. The corresponding

integer estimation procedure is written then as

ŇR =




[N̂1]

[N̂2]
...

[N̂n]




, (3.46)

where [·] denotes rounding to the nearest integer.

This estimator does not take the ambiguity correlation into account; therefore, the solution

will not always satisfy the cost function formulated in Equation (3.40), unless the ambiguity

covariance matrix ΣN̂ were a diagonal matrix (i.e. there is no correlation between the

ambiguities).

Integer Bootstrapping

In contrast to integer rounding, the integer bootstrapping (Blewitt [19]) estimator takes

some of the correlation between the ambiguities into account. It is also knows as sequential

integer rounding, because the integer solution is computed as follows: the first ambiguity N̂1

is rounded to its nearest integer. After this, the estimates of the remaining ambiguities are

corrected by virtue of their correlation with the first ambiguity. Then the second (corrected)
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ambiguity is rounded to its nearest integer, and the remaining estimates are then now cor-

rected by their correlation with this second ambiguity, and so on. The algorithm is given

as

ŇB =




[N̂1]

[N̂2|1]
...

[N̂n|N ]




=




[N̂1]

[N̂2 − σN̂2N̂1
σ−2

N̂1
(N̂1 − [N̂1])]

...

[N̂n −
∑n−1

i=1 σN̂nN̂i|I
σ−2

N̂i|I
(N̂i|I − [N̂i|I ])]




, (3.47)

where N̂i|I stands for the ith least-squares ambiguity obtained through a conditioning on the

previous I = 1, ..., (i− 1) sequentially rounded ambiguities.

The real-valued sequential least-squares solution can be obtained by the triangular decom-

position of the covariance matrix of the ambiguities as follows

ΣN̂ = LTDL, (3.48)

with the diagonal matrix D, with the conditional variances as its entries, and the unit lower

triangular matrix L, which have the following structure

D = diag(σ2
N̂1

, σ2
N̂2|1

, ..., σ2
N̂n|I

), (3.49)

L =




1

σN̂2N̂1
σ−2

N̂1
1

...
. . . . . .

σN̂nN̂1
σ−2

N̂1
. . . σN̂nN̂1

σ−2

N̂n−1|1,...,n−2
1




. (3.50)

Note that the integer solution depends on with which ambiguity is started and on the order

of the ambiguities.

Integer least-squares (ILS) estimator

The integer least-squares estimator takes all the correlation between the ambiguities into

account due to the use of the covariance matrix ΣN̂, and therefore, it really focuses to solve

the cost function from (3.40), which can be rewritten into

ŇLS = min
z∈Zn

∥∥N̂− z
∥∥2

Σ−1

N̂

, (3.51)

where ŇLS is the integer least-squares solution, which has the shortest distance to the float

solution, in terms of the covariance matrix ΣN̂. In order to obtain this solution an inte-

ger search is needed. The Least-squares AMBiguity Decorrelation Adjustment (LAMBDA)
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(a) (b)

Figure 3.5: 2D Ambiguity search space before (a) and after the ambiguity decorrelation (b).

method [1] provides the integer least-square solution for a sufficiently large search space

volume.

• LAMBDA method

The search space is defined as

ΩN = (N̂−N)TΣ−1

N̂
(N̂−N) ≤ χ2, N ∈ Zn, (3.52)

where χ2 is a positive constant to be chosen which determines the size of the search space.

The search space is an ellipsoid centered at N̂, and its shape is governed by the covariance

matrix ΣN̂. It is usually extremely elongated due to the high correlation between the am-

biguities, hence the computational efficiency of the search for the integer solution is highly

affected. Therefore, the aim is to decorrelate the original float ambiguity solution before

the search procedure starts. Figure 3.5 illustrates the 2D ambiguity search space (Odijk

[20]) before and after the ambiguity decorrelation transformation, where the ambiguity float

solution and the integer solution are marked with a cross and a circle, respectively. The

ambiguity decorrelation is done by using the following transformation

ẑ = ZT N̂, Σẑ = ZTΣN̂Z. (3.53)

This transformation Z must satisfy the following conditions to be admissible: Z and its

inverse Z−1 must have integer entries and must be volume-preserving transformations (i.e.
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|detZ| = 1), so that the integer nature of the ambiguities is preserved in both spaces. The

transformed search space is then given by

Ωz = (ẑ− z)TΣ−1
ẑ (ẑ− z) ≤ χ2, z ∈ Zn, (3.54)

where, by using the LTDL decomposition of Σẑ, the left-hand side of the quadratic inequality

can be written as a sum-of-squares

n∑
i=1

(ẑi|I − zi)
2

σ2
i|I

≤ χ2, (3.55)

with the conditional variances σ2
i|I obtained from the matrix D; and the conditional least-

square estimator ẑi|I .

In order to make the search more efficient, the choice of χ2 should be chosen, such that the

search space contains at least one integer. This can be done by using the integer bootstrapped

solution, because it is a good approximation of the ILS estimator. Then the size of the search

space is

χ2 = (ẑ− žB)TΣ−1
ẑ (ẑ− žB) (3.56)

By using Equation (3.55), the n intervals used for the search of the integer candidates are

bounded as follows

(ẑ1 − z1)
2 ≤ σ2

1χ
2

(ẑ2|1 − z2)
2 ≤ σ2

2|1

(
χ2 − (ẑ1 − z1)

2

σ2
1

)

...

(ẑn|N − zn)2 ≤ σ2
n|N

(
χ2 −

n∑
i=1

(ẑi|I − zi)
2

σ2
i|I

)

This search based on the decorrelated ambiguities also results in a minimization of the cost

function from (3.40)

(ẑ− z)TΣ−1
ẑ (ẑ− z) = (N̂−N)TZΣ−1

ẑ ZT (N̂−N)

= (N̂−N)TZ(ZTΣN̂Z)−1ZT (N̂−N)

= (N̂−N)TΣ−1

N̂
(N̂−N). (3.57)

The obtained solution ž can be back-transformed to the original domain by applying the

inverse Z-transformation as follows

Ň = Z−T ž. (3.58)
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3.4 Quality of ambiguity estimates

The probability of correct integer estimation, referred also as to success rate, is an important

measure of the reliability of the ambiguity resolution. This probability depends on the

functional and stochastic model, and the chosen method of integer estimation. In order to

calculate it, the distribution functions of the ambiguity estimators are needed. Therefore, a

brief description of how to obtain this distribution functions is given below.

If the noise vector ε from Equation (3.36) is assumed to be normally distributed with zero

mean and covariance matrix Σy, i.e. ε ∼ N (0,Σy); then the float ambiguities are also

normally distributed with mean N and covariance matrix ΣN̂. It reads

N̂ ∼ N (N,ΣN̂), N ∈ Zn. (3.59)

Then, the probability density function (PDF) of the float ambiguities N̂ is

fN̂(x) =
1√|ΣN̂|(2π)

1
2
n

exp{−1

2

∥∥x−N
∥∥2

ΣN̂

}, (3.60)

where | · | denotes the determinant operator.

The joint PDF of the float and fixed ambiguities is given by

fN̂Ň(x, z) = fN̂(x)szx, x ∈ Rn, z ∈ Zn, (3.61)

where sz(x) is the indicator function of Equation (3.43).(See Teunissen [21] for the proof).

By integration of this function over x and z the marginal distributions of N̂ and Ň can

be obtained, which results in the following probability mass function (PMF) of the fixed

ambiguities

P (Ň = z) =

∫

Rn

fN̂Ň(x, z)dx =

∫

Sz

fN̂(x)dx. (3.62)

• Success rate and probability of wrong fixing

The success rate Ps can be then obtained from Equation (3.62) as

Ps = P (Ň = N) =

∫

SN

fN̂(x)dx. (3.63)

If the success rate is sufficiently close to one the integer ambiguity solution can be considered

deterministic, this means that the uncertainty in the integer ambiguity solution can be safely

neglected. On the other hand, incorrect estimates can be obtained due to very low success

rates leading to unacceptable errors in the positioning results.
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Note that the reliability of the ambiguity resolution can also be given in terms of the prob-

ability of incorrect or wrong fixing Pw, which can be given by

Pw = P (Ň 6= N) = 1− Ps. (3.64)

The corresponding success rate of each estimator can be obtained by evaluating Equa-

tion (3.63) for each one. Unfortunately, this evaluation is very complicated for the integer

least-squares estimator because of the complex integration region, and for the vectorial case

of the integer rounding estimator when the ambiguity covariance matrix is non-diagonal,

which in practice is the case (Teunissen [22]). However, an exact and easy-to-compute eval-

uation of the success rate for the integer bootstrapping estimator can be possible. Therefore,

it can be used as approximation or bound for the other estimators.

3.4.1 Success rate of the bootstrapped estimator

The bootstrapped success rate is given as

PsB
= P (ŇB = N) = P (

n⋂
i=1

{
∣∣N̂i|I −Ni

∣∣ ≤ 1

2
}) (3.65)

=
n∏

i=1

P ([N̂i|I ] = Ni

∣∣∣[N̂1] = N1, ..., [N̂i−1|I−1] = Ni−1)

=
n∏

i=1

∫ 1
2

− 1
2

1

σi|I
√

2π
exp{−1

2

(
x

σi|I

)2

}dx

=
n∏

i=1

(
2Φ

(
1

2σi|I

)
− 1

)
, (3.66)

with the standard deviation of the ith least-squares ambiguity conditioned on the previous

I = {1, ..., i− 1} ambiguities σi|I ; and the cumulative normal distribution

Φ(x) =

∫ x

−∞

1√
2π

exp{−1

2
v2}dv. (3.67)

Note that the chain rule of conditional probabilities have been applied to Equation (3.65),

and the conditional standard deviations are equal to the square root of the entries of the

matrix D from the triangular decomposition LTDL of the covariance matrix ΣN̂.
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3.4.2 Success rate bounds

The success rate of the bootstrapped estimator can be used as upper bound for the success

rate of the rounding estimator as

P (ŇR = N) ≤ P (ŇB = N). (3.68)

Furthermore, it can also be used as lower bound for the ILS success rate, if the bootstrapped

success rate from Equation (3.66) is computed for the decorrelated ambiguities ẑ and the

corresponding conditional standard deviations.

PsLS
= P (ŇLS = N) ≥

n∏
i=1

(
2Φ

(
1

2σi|I

)
− 1

)
, (3.69)

where σi|I are equal to the square root of the entries of the matrix D from the triangular

decomposition LTDL of the covariance matrix Σẑ.

• Invariant upper bound

The Ambiguity Dilution of Precision (ADOP) measure (units of cycles), introduced by Teu-

nissen in [23], is invariant for the class of ambiguities transformations and approximates the

average precision of the ambiguities. This means that it is independent of which parameter-

ization is used. It is defined as

ADOP =
√
|ΣN̂|

1
n

. (3.70)

An upper bound for the bootstrapped success rate can be then given based on the ADOP as

PsB
≤

(
2Φ

(
1

2 · ADOP

)
− 1

)n

, (3.71)

where n is the number of ambiguities to be resolved.



Chapter 4

Integer ambiguity resolution in the

presence of biases

Usually, errors on the GNSS measurements (e.g. multipath, satellite clock offsets) can not

be successfully corrected or modeled resulting in a measurement bias. These biases will

lower the success rate and thus degrade the performance of ambiguity resolution. Therefore,

it would be interesting to know the impact that biases have on this performance. On the

following section, a measure for this impact, referred to as bias-affected bootstrapped success

rate, will be discussed. Thereafter, a model for absolute carrier phase positioning in the

presence of biases with satellite-satellite single difference measurements will be introduced

on Section 4.2. For the ambiguity resolution of this model, the LAMBDA method does not

achieve the integer least-squares solution, because the biases are amplified due to the integer

decorrelation transformation. In Section 4.4, a method to approximate the magnitude and

sign of the measurement biases is discussed. A partial integer decorrelation suggested for

the LAMBDA method is discussed in Section 4.5. Moreover, a sequential fixing using the

bootstrapping estimator with or without the partial integer decorrelation is also suggested.

Finally, partial ambiguity fixing for severe multipath or large uncorrected biases will be

introduced on Section 4.6.

4.1 Biased-affected bootstrapped success rate

In the presence of uncorrected biases, the float ambiguity solution is assumed to be biased

and normally distributed as follows

N̂ ∼ N (N + bN̂,ΣN̂), N ∈ Zn, bN̂ ∈ Rn, (4.1)

34
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where bN̂ denotes the real-valued bias vector.

The reduction of the success rate due to biases in the float solution increases with the size of

the bias along a fixed direction. However, this reduction could be very large or it could be so

small, that the success rate can still be sufficiently high. Hence, it is important to be able to

evaluate the success rate in the presence of biases. An exact and easy-to-compute evaluation

of this biased-affected success rate can be only possible for the bootstrapped estimator.

The biased-affected bootstrapped success rate has been derived by Teunissen in [24] as

PsB ,bias = Pbias(ŇB = N) =
n∏

i=1

(
Φ

(
1− 2bN̂i|I

2σN̂i|I

)
+ Φ

(
1 + 2bN̂i|I

2σN̂i|I

)
− 1

)
, (4.2)

where bN̂i|I
is the ith entry of the conditional bias vector bN̂i|I

= L−1bN̂, with the unit lower

triangular matrix L from the factorization ΣN̂ = LTDL; σN̂i|I
the standard deviation of the

ith least-squares ambiguity conditioned on the previous I = {1, ..., i − 1} ambiguities; and

Φ(x) is the cumulative normal distribution given in Equation (3.67).

This bias-affected success rate can also be evaluated for the decorrelated ambiguity vector

ẑ = ZT N̂ of the LAMBDA method. But when the original ambiguities are biased, the

transformed ambiguities will also be biased. This reads

ẑ ∼ N (z + ZTbN̂,ZTΣN̂Z), (4.3)

where ZTbN̂ is the transformed bias vector.

In this case, the factorization Σẑ = LTDL is applied, and the corresponding conditional bias

vector bN̂i|I
= L−1ZTbN̂ and the conditional standard deviations σẑi|I should be replaced in

Equation (4.2) to obtain the bias-affected success rate Pbias(žB = z).

4.2 Absolute carrier phase positioning model

Given the bias-affected success rate to measure the impact biases have on ambiguity resolu-

tion, the linear positioning model to be used for this study will be derived as follows.

• Use of code-carrier and code-only linear combinations

A dual frequency (E1-E5) GP-IF-NP code-carrier linear combination of maximum discrim-

ination is applied to the code and carrier phase measurements in order to increase the ro-

bustness of ambiguity resolution. Furthermore, an additional dual frequency (E1-E5) GP-IF
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code-only linear combination, which is uncorrelated with respect to the previous code-carrier

combination, is also used to improve the ambiguity resolution. This code-carrier combination

benefits from a wavelength of 3.285 m with a lower noise level (see Section 3.1.1, Table 3.4).

The covariance matrix of both combinations is given by

ΣLC =

(
σ2

n1
σn1n2

σn1n2 σ2
n2

)
, (4.4)

with the noise variances of the code-carrier and code-only linear combinations

σ2
n1

=
M∑

m=1

α2
mσ2

φ + β2
mσ2

ρm
, σ2

n2
=

M∑
m=1

b2
mσ2

ρm
,

and the cross-correlation

σn1n2 =
M∑

m=1

βmbmσ2
ρm

,

which equals zero in the case of the code-carrier of maximum combination discrimination

and the code-only of minimum noise variance combinations.

• Use of carrier smoothing

Carrier smoothing is applied to both linear combinations in order to reduce their noise

variance. Therefore, the smoothed covariance matrix of both combinations is obtained from

Equation 3.26 and is given by

ΣLCsm =

(
σ2

n1sm σn1n2sm

σn1n2sm σ2
n2sm

)
, (4.5)

with

σ2
n1sm = σ2

B +
1

2τs − 1
· (σ2

n1
− 2σn1B + σ2

B) +
2

τs

· (σn1B − σ2
B),

σ2
n2sm = σ2

B +
1

2τs − 1
· (σ2

n2
+ σ2

B) +
2

τs

· (−σ2
B),

σ2
n1n2sm = σ2

B +
1

2τs − 1
· (σ2

n1n2
− σn1B + σ2

B) +
1

τs

· (σn1B − 2σ2
B).

• Use of satellite-satellite SD with linear combinations

Satellite-satellite single difference is used with the code-carrier and code-only combinations.

In this case, the corresponding equations for the SD linear combinations are given by

Φkl
lc1

= Φk
lc1
− Φl

lc1
= rkl

lc1
+ T kl

lc1
+ λlc1N

kl
lc1

+ λlc1b
kl
φlc1

+ εkl
φlc1

, (4.6)

ρkl
lc2

= ρk
lc2
− ρl

lc2
= rkl

lc2
+ T kl

lc2
+ bkl

ρlc2
+ εkl

ρlc2
, (4.7)
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where the indices lc1 and lc2 correspond to the code-carrier combination and the code-only

combination, respectively.

The single-differences (SD) introduce a correlation which can be derived as follows

ΦSD =




Φ12

Φ13

Φ14

...

Φ1K




=




Φ1 − Φ2

Φ1 − Φ3

Φ1 − Φ4

...

Φ1 − ΦK




=




1 −1 0 0 0 0

1 0 −1 0 0 0

1 0 0 −1 0 0
... 0 0 0

. . . 0

1 0 0 0 0 −1




︸ ︷︷ ︸
Cbase

·




Φ1

Φ2

Φ3

Φ4

...

ΦK




︸ ︷︷ ︸
Φ

, (4.8)

where, for simplicity, the first satellite has been taken as the reference satellite; and Cbase is

the design matrix for the single-differences. The correlation from the single-differences can

be then given as

CSD = E{ΦSDΦT
SD} = Cbase · E{ΦΦT} ·CT

base, (4.9)

where E{ΦΦT} = σ2
n · 1, because of their full correlation. Therefore,

CSD = σ2
n ·Cbase ·CT

base

= σ2
n ·




2 1 . . . 1

1 2
. . .

...
...

. . . . . . 1

1 . . . 1 2




. (4.10)

• Linear model for ambiguity resolution

Given the single-difference combinations from Equations (4.6) and (4.7), a transformation

of them from range into position domain is necessary for position estimation as explained in

Section 3.2. Corrections on the SD combinations for the projected satellite orbital error, for

the satellite clock offsets and biases, and for the dry components of the tropospheric delays

are assumed; then, the resulting SD of the linear combinations are written as

Φkl
lc1

= λlc1φ
k
lc1
− λlc1φ

l
lc1

= rkl
lc1

+ T kl
wlc1

+ λlc1N
kl
lc1

+ εkl
φlc1

, (4.11)

ρkl
lc2

= ρk
lc2
− ρl

lc2
= rkl

lc2
+ T kl

wlc2
+ εkl

ρlc2
. (4.12)

For simplicity, the indices lc1 and lc2 are omitted, and the obtained single-difference observed-
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minus-computed combinations for K satellites are represented as

y1 =
(
λφ1Kref , λφ2Kref , ..., λφ(K−1)Kref

)T

y2 =
(
ρ1Kref , ρ2Kref , ..., ρ(K−1)Kref

)T
,

where λ = λlc1 ; and Kref is the SD reference satellite.

The linear model parameterized in integers and real-values, based on the Gauss-Markov

model from Equation (3.36), is represented in matrix-vector notation as
(

y1

y2

)
=

(
H1 H2

H1 H2

)
·
(

x

Tz

)
+

(
λ · I
0

)
·N +

(
ε1

ε2

)
, (4.13)

where x is the user position; Tz is the wet component of the tropospheric zenith delay; N are

the combined single-difference (K-1) ambiguities which are still integers; I is a (K-1)×(K-1)

identity matrix; ε1 and ε2 are the phase and code noises, respectively; and

H1 =
(
e1Kref , e2Kref , ..., e(K−1)Kref

)T
, (4.14)

H2 =
(
m

1Kref
w ,m

2Kref
w , ...,m

(K−1)Kref
w

)T

, (4.15)

where ekKref = −(1k−1Kref ) is the SD user-satellite unit direction vectors; and m
kKref
w is the

SD tropospheric Niell mapping functions that scales the wet component of the tropospheric

zenith delay as a function of the elevation angle of the satellite.

The corrections made for the satellite orbital errors and satellite clock offsets have a cen-

timeter level accuracy, which results in a measurement bias that is taking into account on

the noise. The bias generated by multipath is also included on it. Therefore, a biased

mean Gaussian noise ε ∼ N (b,Σ) is assumed. The SD correlation from Equation (4.10) is

taken on the covariance matrix from Equation (4.5) into account, so that the resulting noise

covariance matrix of the measurements is given by

Σ = ΣLCsm ⊗CSD, (4.16)

where ⊗ denotes the Kronecker product (see Appendix C).

The linear model from Equation (4.13) can be further simplified in order to relate both linear

combinations to the unknown parameters x, Tz and N as

(
y1

y2

)
= X ·




x

Tz

N


 +

(
ε1

ε2

)
, with X =

(
H1 H2 λ · I
H1 H2 0

)
. (4.17)

This model will be used on the following analysis for ambiguity resolution.
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4.3 Sequential fixing

A sequential ambiguity fixing using the bootstrapping estimator with a LAMBDA search (if

decorrelation is applied) is suggested. In this case, the fixing is performed from the last to

the first ambiguity, i.e. the kth conditional ambiguity is given by

ŇB = [N̂k|k] = [N̂k −
K−1∑

i=k+1

σN̂kN̂i|I
σ−2

N̂i|I
(N̂i|I − [N̂i|I ])] (4.18)

where N̂i|I stands for the ith least-squares ambiguity obtained through a conditioning on

the previous (I = (j + 1), ..., (K − 1)) sequentially rounded ambiguities; and [·] denotes the

rounding to the nearest integer operator. The conditional variances can be obtained from the

diagonal matrix Di,i = σ2
N̂i|I

due to the triangular decomposition of the covariance matrix of

the decorrelated ambiguities as follows

ΣN̂′ = LTDL = ZTP
(
XTΣ−1X

)−1
PTZ, (4.19)

where X is the design matrix of the unknown parameters from Equation (4.17); Σ is the co-

variance matrix of the measurements from Equation (4.16); and P = (0(K−1)×4,1(K−1)×(K−1))

selects the float ambiguities N̂ from the float solution (x̂, T̂z, N̂).

The bias-affected bootstrapped success rate was described already in Section 4.1. In order to

compute it, the real-valued biased vector bN̂ and the corresponding conditional bias vector

bN̂k|k
are needed. In the following section, a method to approximate these biases will be

introduced.

4.4 Bounding the biases

4.4.1 Exponential bias profile

In order to approximate the magnitude of the biases of the real-valued bias vector bN̂, the

following exponential bias profile is assumed for the measurement biases

b(θ) = bmax(0
◦) · exp

{θ

ξ

}
, (4.20)

where θ is the elevation angle of the satellite; and ξ is the decay constant of the exponential

profile, which can be regulated with the following equation

ξ =
90

ln
(

bmin(90◦)
bmax(0◦)

) , (4.21)
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with the minimum assumed bias at an elevation angle of ninety degrees bmin(90◦), and the

maximum assumed bias at an elevation angle of zero degrees bmax(0
◦). Figure 4.1 depicts a

phase bias profile with a bmin(90◦) = 0.01 cyc and a bmax(0
◦) = 0.1 cyc.
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Figure 4.1: Example of an exponential phase bias profile (bφ,max(0
◦) = 0.1 cyc, bφ,min(90◦) =

0.01 cyc).

The advantage of this bias profile is that it can be used for the phase and code biases, and

it can be adapted for different bias scenarios by changing the bmin and bmax values. In the

following section, an upper bound for the conditional biases bN̂k|k
will be derived using the

exponential bias profile.

4.4.2 Bounding of conditional biases

In Section 4.1, it has been discussed that the conditional bias vector bN̂i|I
can be linearly

related to the real-valued bias vector bN̂, when the bootstrapping estimator is used. By

using the decomposition of the covariance matrix of the decorrelated ambiguities from Equa-

tion (4.19), this relation can be written as



bN̂1

...

bN̂k|k


 = (LT )−1ZTbN̂

=
(

(LT )−1ZTP
(
XTΣ−1X

)−1
XTΣ−1

︸ ︷︷ ︸
S

) (
blc1

blc2

)
, (4.22)
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where

blc1 = α1λ1bφE1
+ α2λ2bφE5

+ β1bρE1
+ β2bρE5

, (4.23)

blc2 = b1bρE1
+ b2bρE5

(4.24)

are the residual biases of the code-carrier and code-only combinations; with the phase and

code weighting coefficients α1, α2, β1 and β2 of the code-carrier combination; the code weight-

ing coefficients b1 and b2 of the code-only combination; and the phase and code biases on

E1 and E5 bφ(·) and bρ(·) . Note that the conditional biases depend also on the decorrelation

Z-matrix, (see Section 4.5).

By substituting Equations (4.23) and (4.24) into (4.22), the conditional biases can be rewrit-

ten into

bN̂k|k
=

K−1∑
i=1

Sk,i · b(i)
lc1

+
K−1∑
i=1

Sk,i+(K−1) · b(i)
lc2

=
K−1∑
i=1

Sk,iα1λ1 · b(i)
φE1

+
K−1∑
i=1

Sk,iα2λ2 · b(i)
φE5

+
K−1∑
i=1

(Sk,iβ1 + Sk,i+(K−1)b1) · b(i)
ρE1

+
K−1∑
i=1

(Sk,iβ2 + Sk,i+(K−1)b2) · b(i)
ρE5

. (4.25)

The magnitude and sign of the biases are not known. However, an upper bound on the

magnitude can be derived first for them by using the bias exponential profile. The exponential

profile is determined for the phase and code biases as

b
(i)
φ,max(θ) = bφ,max(0

◦) · exp
{θ(i)

ξφ

}
, ξφ =

90

ln
( bφ,min(90◦)

bφ,max(0◦)

) (4.26)

b(i)
ρ,max(θ) = bρ,max(0

◦) · exp
{θ(i)

ξρ

}
, ξρ =

90

ln
( bρ,min(90◦)

bρ,max(0◦)

) . (4.27)

The resulting magnitude of the phase and code biases are assumed to be equal on the

frequencies E1 and E5, this means

b
(i)
φ,max(θ) = b

(i)
φ,maxE1

(θ) = b
(i)
φ,maxE5

(θ) (4.28)

b(i)
ρ,max(θ) = b(i)

ρ,maxE1
(θ) = b(i)

ρ,maxE5
(θ). (4.29)

Having the magnitude of the phase and code biases, the upper bound on the conditional

biases is derived by assuming that all the biases in Equation (4.25) accumulate positively,
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this means

b
(i)
φE1

= sign(Sk,iα1λ1) · b(i)
φ,maxE1

b
(i)
φE5

= sign(Sk,iα2λ2) · b(i)
φ,maxE5

b(i)
ρE1

= sign(Sk,iβ1 + Sk,i+(K−1)b1) · b(i)
ρ,maxE1

b(i)
ρE5

= sign(Sk,iβ2 + Sk,i+(K−1)b2) · b(i)
ρ,maxE5

.

Given the conditional biases bN̂k|k
, it would be interesting to know which satellite could affect

primarily the success rate. This can be given by

kc = arg min
k

0.5− bN̂k|k

σN̂k|k

, (4.30)

with the corresponding conditional variance σN̂k|k
.

4.5 Partial integer decorrelation

For unbiased measurements, the LAMBDA method achieves a higher success rate due to the

integer decorrelation which can also be beneficial for the sequential bootstrapped estimator.

However, this performance degrades notably in the presence of biases as the integer decorre-

lation amplifies the biases, disturbing also the gain obtained from the variance reduction by

carrier smoothing. Furthermore, if the biases are amplified to more than half a cycle, reliable

ambiguity resolution is prevented. Therefore, a partial integer decorrelation is suggested.

The ambiguity decorrelation matrix Z is constructed by a sequence of integer approximated

Gauss transformations, which carry out the decorrelation, and permutations of the ambigu-

ities in order to allow further decorrelation. A triangular decomposition of the covariance

matrix is done, where the Gauss transformation only affects the unit lower triangular matrix

L without changing the diagonal matrix D. This means, that the variances are changed,

while the conditional variances are not affected until a reordering of ambiguities is done.

Thus, the ambiguity decorrelation matrix is constructed iteratively as

Z = Z1 · Z2 · ... · ZNit
. (4.31)

The problem by a complete integer decorrelation, i.e. Nit = Nit,max, with original biased

ambiguities is that the corresponding transformed ambiguities will also be biased as explained

in Section 4.1. And the transformed real-valued biased vector is affected by the ambiguity

decorrelation matrix Z as

ZTbN̂ = (Z1 · Z2 · ... · ZNit
)TbN̂. (4.32)
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Therefore, a reduce number of decorrelation steps, i.e. Nit < Nit,max is suggested or even

more no decorrelation at all. Figure 4.2 shows this problem when a complete or a partial

integer decorrelation of five sequentially fixed ambiguities is applied. The conditional biases

are affected in both cases in the same manner (i.e. there exists amplification and reduction

of them), however, the severity is considerably reduced with partial integer decorrelation.

The amplification of the biases is several times higher than their reduction. Moreover, this

amplification occurs on the first ambiguities to be fixed reducing thus the bootstrapping

success rate. The corresponding conditional standard deviations are showed in Figure 4.3,

in order to compare the effect of the decorrelation on the variance.
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Figure 4.2: Biases amplification with complete integer decorrelation (a,c) and partial integer

decorrelation (b,d) with their corresponding decorrelation matrix Z.
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The resulting complete and partial decorrelation matrices are

Zcomp =




−1 0 0 1 1

0 0 1 1 1

0 1 1 2 1

1 0 −1 −2 −1

0 0 0 −1 −1




Zpart =




1 0 0 0 0

0 0 0 1 0

0 1 1 1 1

0 0 0 −1 −1

0 −1 0 0 0



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Figure 4.3: Conditional standard deviations with complete integer decorrelation (a) and

partial integer decorrelation (b).

Figure 4.4 shows the probability of wrong fixing as a function of the maximum phase and

code biases, and the number of decorrelation iterations. An exponential bias profile is as-

sumed, where the maximum code bias bρ,max(90◦) = 1 cm; and a smoothing time of 30

seconds is applied for both linear combinations. As the biases increase, a reduced number

of decorrelation iterations is required for a lower probability of wrong fixing. The achiev-

able probability of wrong fixing by a partial integer decorrelation can be several orders of

magnitude lower than in the case of a complete integer decorrelation.



Chapter 4. Integer ambiguity resolution in the presence of biases 45

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
10

−20

10
−15

10
−10

10
−5

10
0

Maximum phase bias b
φ,max

 (0°) [cycles]

P
ro

ba
bi

lit
y 

of
 w

ro
ng

 fi
xi

ng
 P

w

 

 

1 iter.
20 iter.
50 iter.
248 iter.

(a) bρ,max(0◦) = 2cm

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
10

−20

10
−15

10
−10

10
−5

10
0

Maximum phase bias b
φ,max

 (0°) [cycles]

P
ro

ba
bi

lit
y 

of
 w

ro
ng

 fi
xi

ng
 P

w

 

 

1 iter.
20 iter.
50 iter.
248 iter.

(b) bρ,max(0◦) = 5cm

Figure 4.4: Probability of wrong fixing as a function of the E1 and E5 phase biases upper

bound (bφ,maxE1
(0◦) = bφ,maxE5

(0◦)); and different number of integer decorrelation iterations.

4.6 Partial ambiguity fixing

A higher reliable resolution of all ambiguities can not always be possible within a few epochs,

especially in the presence of severe multipath or large uncorrected biases. However, some of

them can still be resolved with higher reliability. As the success rate of the bootstrapped

estimator depends plenty on the utilized order of the measurements for sequential fixing, the

number of sequentially fixable ambiguities Np can be maximized by choosing an appropriate

sorting of the measurements. The permutation of the measurements from Equation (4.17)

can be given by

(
ỹ1

ỹ2

)
=

(
POy1

POy2

)
= X̃ ·




x

Tz

Ñ


 +

(
ε̃1

ε̃2

)
, (4.33)

with

X̃ =

(
POH1 POH2 λ · I
POH1 POH2 0

)
and Ñ = PON, (4.34)

where PO is a (K−1)×(K−1) permutation matrix, in which every row and column contains

precisely a single 1 with zeros everywhere else according to the permutation vector O. For

example,

PO =




0 1 0

1 0 0

0 0 1


 with O = (2, 1, 3).
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The permutation matrix is also applied to the phase and code residual biases from Equa-

tions (4.28) and (4.29) as follows

b̃
(i)
φ,max(θ) = PO · b(i)

φ,max(θ) (4.35)

b̃(i)
ρ,max(θ) = PO · b(i)

ρ,max(θ). (4.36)

The sequentially fixable ambiguities that satisfy a required higher reliability in terms of the

biased success rate from Equation (4.2) will then compose the partial ambiguity fixing subset

Np ∈ N. The maximum number of fixable ambiguities while using different permutations of

measurements is given by

max
PO

Np : Ps =
K−1∏

i=K−Np

P ( ˇ̃Ni|I = Ñi)
!≤ Pth, (4.37)

where Pth is the required probability of correct integer estimation; and

P ( ˇ̃Ni|I = Ñi) = Φ

(
1− 2b ˆ̃Ni|I

2σ ˆ̃Ni|I

)
+ Φ

(
1 + 2b ˆ̃Ni|I

2σ ˆ̃Ni|I

)
− 1, (4.38)

with the conditional variances σ ˆ̃Ni|I
and the conditional biases b ˆ̃Ni|I

, which can be obtained

by replacing X by the permuted matrix X̃ in Equations (4.19) and (4.22).

An appropriate order of the measurements for sequential fixing is however not an easy

challenge due to all the different possibilities to determine it. In the following chapter, some

methods to find a larger subset of reliable fixable ambiguities Np by looking for an adequate

order of fixing are discussed. Furthermore, a new method is suggested to find the largest

subset Np by performing a search for an optimum order of fixing.



Chapter 5

Partial ambiguity fixing methods

Five different methods to find a larger subset of reliable fixable ambiguities are discussed

on this chapter. The first four of them are based on a sequential fixing scheme, hence a

specific order of fixing is needed; while the last one is based on an integer rounding scheme.

All of them are based on the absolute carrier phase positioning model described on the last

chapter.

5.1 PRN order method

This method is actually based on a sequential fixing of the pseudo-random noise (PRN)-

number order of the satellites. It is a very simple method, because a permutation of the

measurements is not required. However, it usually does not offer an improvement on the

number of reliably fixable ambiguities Np. Figure 5.1 shows the scheme for this method.

5.2 Sequential fixing Ascending Variance Order

(SAVO) method

The aim of this method is to determine an order, in which the first ambiguities to be fixed

show lower variances; and thus to increase the probability to obtain a larger number of

reliably fixable ambiguities Np. Figure 5.2 illustrates the scheme for this method, where the

shadowed boxes refer to the algorithm to find the respective order.

The algorithm for K visible satellites and (K − 1) single difference ambiguities consists of

the following steps:

47
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Figure 5.1: PRN-order scheme.

Step 1: The ambiguity with the minimum variance of the covariance matrix of the float

ambiguities ΣN̂ = P
(
XTΣ−1X

)−1
PT is selected to be fixed first, it reads

Nv1 = min
i

ΣN̂(i, i), for i = 1, 2, ..., K − 1. (5.1)

Step 2: The covariance matrix of the remaining float ambiguities is calculated again, but

now for (K−2) ambiguities, because the ambiguity selected on step 1 is assumed to be fixed.

This is done by deleting the (4+ith) column in the design matrix of the unknown parameters

X and by using the adapted selection matrix P = (0(K−2)×4,1(K−2)×(K−2)). Afterwards, the
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Figure 5.2: SAVO method scheme.
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ambiguity with the minimum variance is chosen now as the second to be fixed, i.e.

Nv2 = min
i

Σ́N̂(i, i), for i = 1, 2, ..., K − 2. (5.2)

Note that the assumed covariance matrix is denoted by an acute sign (́·) in order to differ-

entiate it from the primary covariance matrix of float ambiguities.

The following example for K = 7 satellites shows how is determined step-by-step the order

of fixing vector O, which contains the sub-indices of the ambiguities as entries.

(1) O = (1, 2, 3, 4, 5, 6), with Nv1 = 2 → O = (1, 3, 4, 5, 6, 2)

(2) O = (1, 3, 4, 5, 6, 2), with Nv2 = 5 → O = (1, 3, 4, 6, 5, 2)
...

...

Step 3: The previous step is performed but now for (K − 3) ambiguities and the third

ambiguity to be fixed Nv3 is chosen. This is done iteratively for all the rest of the ambiguities

in order to determine the order of fixing vector as follows

O = (NvK−1
, NvK−2

, ..., Nv1). (5.3)

Step 4: The permutation matrix PO is constructed based on the order of fixing vector O and

is applied to the measurements, and the phase and code biases by using Equations (4.33),

(4.35) and (4.36).

Step 5: Sequential fixing from the last to the first ambiguity is used, and the number of

reliable fixable ambiguities Np using this method is obtained from Equation (4.37).

5.3 Sequential BLewitt fixing Order (SEBLO) method

This method is similar to the previous SAVO method. It determines the order of fixing by

looking for the first ambiguities to be fixed which have a minimum probability of wrong

fixing. As in the previous section, Figure 5.3 shows the scheme for this method, where the

shadowed boxes refer to the algorithm.

The algorithm for K visible satellites and (K − 1) single difference ambiguities consists of

the following steps:

Step 1: The biased success rate of each ambiguity is computed by using the standard devi-

ations from the covariance matrix of the float ambiguities and the PRN order as follows

P (i)
s (Ńi = Ni) = Φ

(
1− 2bN̂i|I

2σN̂i

)
+ Φ

(
1 + 2bN̂i|I

2σN̂i

)
− 1, σN̂i

=
√

ΣN̂(i, i). (5.4)
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Figure 5.3: SEBLO method scheme.
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The probability of wrong fixing P
(i)
w is calculated from the resulting success rate as (1 - P

(i)
s ).

And the ambiguity with the corresponding minimum probability of wrong fixing is selected

to be fixed first, it reads

Npw1 = min
i

P (i)
w , for i = 1, 2, ..., K − 1. (5.5)

Step 2: The covariance matrix of the remaining float ambiguities is calculated again Σ́N̂ , but

now for (K−2) ambiguities, because the ambiguity selected on step 1 is assumed to be fixed.

This is done by deleting the (4+ith) column in the design matrix of the unknown parameters

X and by using the adapted selection matrix P = (0(K−2)×4,1(K−2)×(K−2)). Afterwards, the

success rate is calculated again as given in step 1, and the ambiguity with the minimum

probability of wrong fixing is chosen now as the second to be fixed, i.e.

Npw2 = min
i

P (i)
w , for i = 1, 2, ..., K − 2. (5.6)

The order of fixing vector O is determined step-by-step as given in the example for the SAVO

method (see Section5.2).

Step 3: The previous step is performed but now for (K − 3) ambiguities and the third

ambiguity to be fixed Npw3 is chosen. This is done iteratively for all the rest of the ambiguities

in order to determine the order of fixing vector as follows

O = (NpwK−1
, NpwK−2

, ..., Npw1). (5.7)

Step 4: The permutation matrix PO is constructed based on the order of fixing vector O and

is applied to the measurements, and the phase and code biases by using Equations (4.33),

(4.35) and (4.36).

Step 5: Sequential fixing is used as in the previous methods, and the number of reliable

fixable ambiguities Np using this method is obtained from Equation (4.37).

5.4 Sequential Optimum Fixing Order Search

(SOFOS) method

This new method suggest a search for the optimum fixing order which maximizes the number

of reliable fixable ambiguities Np for a required probability of wrong fixing Pth. In this case,

for K visible satellites and thus (K − 1) single difference ambiguities to be fixed, the search

space consists of (K − 1)! possible orders. Therefore, it could be very large in cases for
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Table 5.1: Search space SOFOS method.

K satellites No. of possible orders

8 5,040

9 40,320

10 362,880

11 3,628,800

example where more than nine satellites are visible for the user. Table 5.1 shows this size of

the corresponding search space for eight to eleven visible satellites.

A completely search for the optimum order is then often unfeasible and would take a lot

of time. However, the search space can be dramatically reduced by using the two following

constraints:

1. Azimuth constraint

The azimuth constraint is based on the idea that a good satellite geometry offers usually

a lower probability of wrong fixing. Therefore, a required azimuthal separation between

two sequentially fixable ambiguities is suggested. A maximum azimuthal threshold ∆Azith

between the first two ambiguities to be fixed is given. Depending on this maximum threshold,

the following required azimuthal separation for the remaining ambiguities decreases gradually

in order to facilitate their less probable but not excluded fixing. Hence, the choice of ∆Azith

represents a trade-off between the maximum number of fixable ambiguities Np and the

reduction of the search space. This trade-off is illustrated on Figure 5.4, where the number of

fixable ambiguities reduces while the azimuthal threshold increases. However, the reduction

of the number of fixable ambiguities varies also for different satellite geometries. Figure 5.4a

shows that one fixable ambiguity is already lost by an ∆Azith < 20◦, while for another case,

it happens until ∆Azith > 120◦ (Figure 5.4b).

After investigating different scenarios for this trade-off, it has been identified that a ∆Azith =

45◦ reduces radically the search space with a considerably lower effect on the maximum

number of fixable ambiguities. This can be seen on Figure 5.5, where the number of fixable

ambiguities without an azimuthal separation constraint and a ∆Azith = 45◦ are compared

for different simulated Galileo geometries.

The azimuth constraint reads mathematically

|Azi(k) − Azi(k+1)| !
>

(K − 1− k

K − 2

)
·∆Azith. (5.8)
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Figure 5.4: Azimuth trade-off for two different satellite geometries.
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Figure 5.5: Number of fixable ambiguities comparison between an azimuthal threshold of

45◦ and without it.

Figure 5.6 shows two skyplots, where the azimuth constraint is graphically described. In the

first fixing step (Figure 5.6a), the number of fixing candidates is reduced from 9 to 7, where

the maximum azimuthal threshold was chosen to 45◦. The selected ambiguity is marked

in green, while the ambiguities, which have been constrained, are marked in red. On the

second fixing step (Figure 5.6b), the number of candidates is from 8 to 5 reduced, despite

the azimuthal separation constraint is weakened to 40◦. This process continues until all

ambiguities have been taken into account.
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(a) 1st fixing step (∆Azi1−2 = 45◦). (b) 2nd fixing step (∆Azi2−3 = 40◦).

Figure 5.6: Azimuth constraint graphical representation.

2. Suffix constraint

The search space can be represented by a tree diagram, where the nodes refer to the am-

biguities and the branches are characterized by the probability of wrong fixing. The suffix

constraint is based on the required probability of wrong fixing Pth, this means that the prob-

ability of wrong fixing is computed for one order, and once the probability of wrong fixing of

a branch exceeds the threshold Pth in a node, the following branch is no more extended; and

thus the corresponding orders are not taken anymore into account. The respective reached

number of fixable ambiguities is saved as current maximum Npcur until another reaches more

than it. Moreover, if the reached number of fixable ambiguities by following orders is less

than the current maximum, the respective branches are also no more extended. Figure 5.7

depicts the idea of the suffix constraint and azimuth constraint for k = K − 1 ambiguities

in a tree diagram.

Both constraints complement one another, because the azimuth constraint confines shorter

branches, while the other constrains larger branches. The reduction of the search space is

depicted on Figure 5.8, where the number of remaining fixing orders to be searched is dra-

matically reduced in comparison to the (K-1)! initial possible fixing orders. An exponential

profile of bmax(0
◦) = 0.1 and bmax(90◦) = 0.01 for the code [cm] and phase [cyc] biases, a

maximum azimuthal threshold of ∆Azith = 45◦ and a smoothing time τsm = 20s have been

considered with a simulated Galileo geometry at 48.1507◦ latitude and 11.569◦ longitude.

Figure 5.8b shows the comparison between the search spaces, in a logarithmic scale, before

and after the constraints are applied.
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Figure 5.7: Suffix and azimuth constraint for the search space represented as a tree diagram.

After both constraints are applied and sequential fixing is done, many orders reach usually

the same maximum number of fixable ambiguities Np. In order to solve this, the optimum

one is chosen by comparing the probability of wrong fixing of the fixed ambiguities. The

maximum probability of wrong fixing of each corresponding order is selected, and then the

order with the minimum probability of wrong fixing from these is chosen as the optimum

order Oopt. This is described in the following example for K = 6, where the Pw from three
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Figure 5.8: Search space reduction.

orders with Np = 3 is analyzed:

(O1) Pw = (1.0, 0.8, 5.28 · 10−10, 5.20 · 10−10, 3.18 · 10−12

︸ ︷︷ ︸
Pw,max1=5.28·10−10

)

(O2) Pw = (1.0, 0.6, 8.38 · 10−10, 3.20 · 10−10, 2.18 · 10−15

︸ ︷︷ ︸
Pw,max2=8.38·10−10

)

(O3) Pw = (1.0, 0.3, 6.48 · 10−10, 5.25 · 10−11, 1.18 · 10−14

︸ ︷︷ ︸
Pw,max3=6.48·10−10

)

Then: Oopt = min
OPw,max

(Pw,max1 , Pw,max2Pw,max3) → Oopt = O1.

The algorithm of this method is illustrated on Figure 5.9.

5.5 Rounding fixing method

The ambiguity resolution of this method is based on an integer rounding estimator, therefore

it does not need a search for an adequate order of fixing, making it very simple to use. An

ambiguity decorrelation is also not used. Figure 5.10 shows the scheme for this method.

Although this method it does not take the correlation between the ambiguities into account,

the success rate can be approximated by using the following equation

Ps =
n∏

i=1

P (i)
s (Ňi = Ni)

=
(

min
i

P (i)
s

)n

, (5.9)
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Figure 5.9: SOFOS method scheme.
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with

P (i)
s (Ňi = Ni) = Φ

(
1− 2bN̂i

2σN̂i

)
+ Φ

(
1 + 2bN̂i

2σN̂i

)
− 1, σN̂i

=
√

ΣN̂(i, i). (5.10)

where bN̂i
is the ith entry of the bias vector bN̂; and Φ(x) is the cumulative normal distri-

bution given in Equation (3.67).

Figure 5.10: Rounding fixing scheme.



Chapter 6

Comparison of the partial ambiguity

fixing methods

In the previous chapter, the different partial ambiguity fixing methods were described. It

is now interesting to compare their performance for absolute carrier phase positioning with

satellite-satellite single difference measurements in the presence of biases. For this purpose

snapshots for simulations of Galileo measurements at 48.1507◦ latitude and 11.569◦ longitude,

and through Europe are used. Moreover, an exponential bias profile with the parameters from

Table 6.1, and a carrier smoothing time τsm of 20 seconds have been applied. Furthermore,

the simulations are done without integer decorrelation of the ambiguities.

Table 6.1: Exponential bias profile for simulations.

bφ,maxE1 bφ,maxE5 bρ,maxE1 bρ,maxE5

θ = 0◦ 0.1 cyc. 0.1 cyc. 10 cm 10 cm

θ = 90◦ 0.01 cyc. 0.01 cyc. 1 cm 1 cm

The dual frequency (E1-E5) GP-IF-NP code-carrier linear combination of maximum dis-

crimination with a wavelength of 3.285 m is applied to the measurements. Furthermore,

a probability of wrong fixing threshold Pth of 10−9 is taken into account for obtaining the

largest subset of reliably fixable ambiguities Np from each method. For the special case of

the SOFOS method, a ∆Azith = 45◦ has been set in order to have a good trade-off with

respect to the maximum number of fixable ambiguities.

The comparison of the methods will be done with respect to the new SOFOS method. The

obtained bound on the biases, the standard deviations of the ambiguities, the probability of

wrong fixings and the respective orders of fixings are analyzed for the different methods.

60
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6.1 SOFOS and SAVO methods

The first method to be compared is the SAVO method. Figure 6.1 shows the probability of

wrong fixing and a skyplot with the corresponding fixing orders obtained after using both

methods. The satellite geometry consists of 8 satellites (i.e. K = 8). The reference satellite

used for the single differences (SD) is marked in red in the skyplot. This is chosen to be the

highest satellite in order to use it’s higher precision. Although both methods begin to fix with

the same satellite, from the remaining 7 single-difference ambiguities the SOFOS method

fixes up to Np = 4 ambiguities, while the SAVO method can fix only up to 3 ambiguities. This

result is reflected on the probability of wrong fixing, where the characteristics of the methods

are better recognized. The probability of wrong fixing of the SAVO method is very small for

the first two ambiguities because these correspond to the two higher satellites (θ = 68◦ and

θ = 52◦), however the third and fourth satellites to be fixed are lower in comparison to the

last ones increasing thus faster the probability of wrong fixing, which exceeds the threshold

after the fixing of the third ambiguity. In the case of the SOFOS method, this increment

is slower because it prefers to fix at the second and third places lower satellites (approx.

θ = 42◦ and θ = 29◦, respectively) sacrificing thus an acceptable reliability, but afterwards

this is compensated by the next higher satellite to be fixed (θ = 52◦). A highly reliable fixing

of the other three remaining satellites is not possible because of their very low elevation.

(a) Skyplot (order of fixings).
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(b) Probability of wrong fixings.

Figure 6.1: Skyplot and probability of wrong fixing for a simulated Galileo geometry.



Chapter 6. Comparison of the partial ambiguity fixing methods 62

The corresponding conditional biases and standard deviations of the ambiguities for the

previous satellite geometry are illustrated in Figure 6.2. In the case of the SAVO method,

the conditional biases and standard deviations increase gradually for the first satellites. The

conditional biases up to the fourth satellite reach approximately 0.31 cyc. which is not to

high so far, however the respective conditional standard deviation is high enough (approx.

0.0325 cyc.) to prevent its reliable fixing. In the case of the SOFOS method, the conditional

standard deviations are higher. Nevertheless, the fixing of more ambiguities can be possible

due to the lower conditional biases. For example, the conditional bias of 0.2 cyc. compensates

the high conditional standard deviation of 0.043 cyc for the second fixable ambiguity.
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(a) SAVO method.
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(b) SOFOS method.

Figure 6.2: Conditional ambiguity biases (upper bound) and conditional standard deviations.
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A skyplot which contains the order of fixings, and the probability of wrong fixing for a

different satellite geometry is showed in Figure 6.3. For this case with K = 9 satellites, the

number of fixable ambiguities of the SOFOS method compared to of the SAVO method is

rather higher. The SAVO method fixes only 2 of the 8 ambiguities, whereas the SOFOS

method fixes up to 6 ambiguities. This benefit can be explained based on the satellite

geometry, which consist only of medium and low elevated satellites. Therefore, the SAVO

method performs badly due to the absence of high elevated satellites. On the other hand,

the SOFOS method takes advantage of this geometry by fixing sequentially medium elevated

satellites with a similar elevation from side to side, keeping the increment of the probability

of wrong fixing slow. This is reflected on the conditional biases and standard deviations,

which are illustrated for both methods in Figure 6.4, where the SOFOS conditional biases

increase slowly while the conditional standard deviations decrease.

(a) Skyplot (order of fixings).
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(b) Probability of wrong fixings.

Figure 6.3: Skyplot and probability of wrong fixing for a simulated Galileo geometry.

The performance on the number of fixable ambiguities obtained from both methods for

different Galileo geometries is shown in Figure 6.5 and is further described on Table 6.2.

The SOFOS method can fix in 51% of the times 2 or more ambiguities than the SAVO

method; and in 84% of the times it can fix at least one ambiguity more.
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(a) SAVO method.
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(b) SOFOS method.

Figure 6.4: Conditional ambiguity biases (upper bound) and conditional standard deviations.

Table 6.2: Performance description for the number of fixable ambiguities from Figure 6.5.

SOFOS SAVO

Np n times Percentage n times Percentage

6 5 10.22% – –

5 24 48.97% 6 12.24%

4 18 36.73% 2 4.08%

3 2 4.08% 33 67.35%

2 – – 8 16.33%

Total 49 100% 49 100%



Chapter 6. Comparison of the partial ambiguity fixing methods 65

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

10

11

N
um

be
r 

of
 fi

xa
bl

e 
am

bi
gu

iti
es

Time [h]

K−1 ambiguities
N

p
 (SAVO method)

N
p
 (SOFOS method)

Figure 6.5: Number of fixable ambiguities Np for different simulated Galileo geometries.
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Figure 6.6: Benefit on the minimum number of maximum fixable ambiguities with a proba-

bility of wrong fixing lower than Pth = 10−9 of the SOFOS method compared to the SAVO

method for a snapshot through Europe.
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Figure 6.6 shows the resulted benefit between the minimum number of the maximum fixable

ambiguities for the methods through different locations in Europe. This means that the

resulted worst cases in the maximum number of fixable ambiguities for each location from

the SOFOS and the SAVO method are first chosen, and then the difference between them

is calculated. This reads mathematically

∆Np = min
i

N (i)
p,maxSOFOS

−min
i

N (i)
p,maxSAV O

. (6.1)

Although the worst cases are considered, the SOFOS method can still fix up to 3 ambiguities

more than the SAVO method in some locations. Moreover, the fixing of at least one more

ambiguity occurs in 99.5% of the times.

6.2 SOFOS and SEBLO methods

The second method to be analyzed is the so-called SEBLO method. Figure 6.7 shows the

probability of wrong fixing and a skyplot with the corresponding fixing orders for a selected

snapshot. K = 10 visible satellites are available, from which the highest satellite (in red) is

chosen as reference for the single differences. From the 9 ambiguities, the SEBLO method

can fix up to 3, while the SOFOS method fixes up to 6 of them. In this case, the SOFOS

method shows a similar behavior to the second case analyzed with the SAVO method in

the previous section. It takes advantage from the medium elevated satellites geometry and

prefers to lose some acceptable reliability in the first fixed ambiguities in order to fix more

ambiguities while keeping their probability of wrong fixing almost flat. The remaining three

ambiguities can not be fixed due to their lower elevation (θ < 18◦). On the other hand, the

SEBLO method which based its order of fixing by taken the minimum probability of wrong

fixing into account, shows a very low probability of wrong fixing for the first ambiguities,

however this benefit is lost quickly after the fixing of the third ambiguity. The corresponding

conditional biases and standard deviations are shown in Figure 6.8.
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(a) Skyplot (order of fixings).
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(b) Probability of wrong fixings.

Figure 6.7: Skyplot and probability of wrong fixing for a simulated Galileo geometry.
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(a) SEBLO method.
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(b) SOFOS method.

Figure 6.8: Conditional ambiguity biases (upper bound) and conditional standard deviations.
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A second geometry with K = 10 satellites is analyzed below. The corresponding skyplot and

probability of wrong fixings are illustrated in Figure 6.9. In this case, the SEBLO method

performs almost similar to the SOFOS method and can fix up to 5 of the 9 ambiguities.

This similarity in the performance is better recognized in the respective conditional standard

deviations and biases, which are shown in Figure 6.10. Both methods show a slowly increase

of the conditional biases for the first 5 ambiguities, while their conditional standard deviation

decreases. However, the conditional bias of the sixth ambiguity for the SEBLO method

increases suddenly from 0.33 to 0.42 cyc. preventing its fixing, while the sixth ambiguity of

the SOFOS method decreases due to its higher elevation compared to the last fixed ambiguity

facilitating its reliable fixing.

(a) Skyplot (order of fixings).
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(b) Probability of wrong fixings.

Figure 6.9: Skyplot and probability of wrong fixing for a simulated Galileo geometry.

Table 6.3: Performance description for the number of fixable ambiguities from Figure 6.11.

SOFOS SEBLO

Np n times Percentage n times Percentage

6 5 10.22% 1 2.04%

5 24 48.97% 10 20.41%

4 18 36.73% 17 34.69%

3 2 4.08% 21 42.86%

Total 49 100% 49 100%
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(a) SEBLO method.
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(b) SOFOS method.

Figure 6.10: Conditional ambiguity biases (upper bound) and conditional standard devia-

tions.

Figure 6.11 depicts the number of fixable ambiguities obtained from both methods for dif-

ferent Galileo geometries. These results are further described on Table 6.3. The SOFOS

method can fix in 16% of the times 2 or more ambiguities than the SEBLO method; and in

63% of the times it can fix at least one ambiguity more.

The resulted benefit between the minimum number of the maximum fixable ambiguities for

the methods through different locations in Europe is shown in Figure 6.12. As explained in

Section 6.1, this benefit is given by

∆Np = min
i

N (i)
p,maxSOFOS

−min
i

N (i)
p,maxSEBLO

. (6.2)

For this worst case, the SOFOS method can still fix up to 3 ambiguities more than the

SEBLO method, but in less locations compared to the previous SAVO method. However,

the fixing of at least one ambiguity more represents more than 65% of the times. On the other
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hand, the effect of the azimuthal trade-off for the SOFOS method discussed on Section 5.4

takes place on this result, where the lost of one ambiguity occurs one time at 50◦ latitude

and 24◦ longitude.
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Figure 6.11: Number of fixable ambiguities Np for different simulated Galileo geometries.
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Figure 6.12: Benefit on the minimum number of maximum fixable ambiguities with a proba-

bility of wrong fixing lower than Pth = 10−9 of the SOFOS method compared to the SEBLO

method for a snapshot through Europe.
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6.3 SOFOS and Rounding fixing methods

In this section the performance comparison between the Rounding fixing method which does

not fix the ambiguities sequentially as the previous two methods and the SOFOS method is

presented. Figure 6.13 shows the probability of wrong fixing and a skyplot for a snapshot of

a selected geometry. In this case with K = 9 visible satellites, the Rounding fixing method

fixes 3 of the 8 ambiguities, while the SOFOS method fixes up to 6 ambiguities. The order

of fixing for the SOFOS method is shown as in the previous sections on the skyplot. For

the batch case of the Rounding fixing method, the corresponding three fixed ambiguities

are marked with a dashed circle. These ambiguities belongs actually to the three highest

satellites as it was probably awaited. Figure 6.14 shows the conditional biases and standard

deviations for the SOFOS method, and the biases and standard deviations of the ambiguities

for the Rounding fixing method.

(a) Skyplot (order of fixings).
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Figure 6.13: Skyplot and probability of wrong fixing for a simulated Galileo geometry.
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(a) Ambiguity biases (upper bound) and standard deviations (Rounding
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(b) Conditional ambiguity biases (upper bound) and conditional stan-

dard deviations (SOFOS method).

Figure 6.14: Biases and standard deviations for the SOFOS and Rounding fixing methods.

Figure 6.15 illustrates the probability of wrong fixing and the skyplot for a different satellite

geometry which consists of K = 9 satellites. In a similar way as in the previous geometry,

the Rounding fixing method concentrates on the fixing of the three highest satellites which

in this case have an elevation above θ = 40◦. On the other hand, the SOFOS method fixes

5 ambiguities by using its characteristic of losing a little of reliability on the first fixable

ambiguities while keeping almost flat the course of the probability of wrong fixing for the

next fixed ambiguities. The corresponding biases and standard deviations are shown in

Figure 6.16.
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(a) Skyplot (order of fixings).
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(b) Probability of wrong fixings.

Figure 6.15: Skyplot and probability of wrong fixing for a simulated Galileo geometry.
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(a) Ambiguity biases (upper bound) and standard deviations (Round-

ing fixing method).
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(b) Conditional ambiguity biases (upper bound) and conditional stan-

dard deviations (SOFOS method).

Figure 6.16: Biases and standard deviations for the SOFOS and Rounding fixing methods.
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The obtained number of fixable ambiguities from the Rounding fixing and the SOFOS meth-

ods for different Galileo geometries are shown in Figure 6.17. The corresponding results are

described on Table 6.4. The SOFOS method can fix in 33% of the times 2 or more ambi-

guities than the Rounding fixing method; and in 65% of the times it can fix at least one

ambiguity more.

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

10

11

N
um

be
r 

of
 fi

xa
bl

e 
am

bi
gu

iti
es

Time [h]

K−1 ambiguities
N

p
 (Rounding fixing method)

N
p
 (SOFOS method)

Figure 6.17: Number of fixable ambiguities Np for different simulated Galileo geometries.

Table 6.4: Performance description for the number of fixable ambiguities from Figure 6.17.

SOFOS Rounding fixing

Np n times Percentage n times Percentage

6 5 10.22% – –%

5 24 48.97% 6 12.24%

4 18 36.73% 19 38.78%

3 2 4.08% 23 46.94%

2 2 4.08% 1 2.04%

Total 49 100% 49 100%

The resulted benefit between the minimum number of the maximum fixable ambiguities for

the methods through different locations in Europe is shown in Figure 6.18. This benefit is

given by the following equation

∆Np = min
i

N (i)
p,maxSOFOS

−min
i

N (i)
p,maxRound

. (6.3)
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Figure 6.18: Benefit on the minimum number of maximum fixable ambiguities with a proba-

bility of wrong fixing lower than Pth = 10−9 of the SOFOS method compared to the Rounding

fixing method for a snapshot through Europe.

In this case, the resulted benefit is equal as for the SAVO method, i.e. the SOFOS method

can fix up to 3 ambiguities more than the Rounding fixing method in some locations, and it

fixes at least one more ambiguity in 99.5% of the times. However, this does not mean that

both methods perform in the same manner.



Chapter 7

Summary and conclusions

In this thesis carrier phase ambiguity resolution in the presence of biases have been inves-

tigated for absolute positioning. Geometry-preserving, ionosphere-free mixed code-carrier

linear combinations with two, three and four Galileo frequencies that maximize the ratio

between wavelength and noise power have been derived. A four frequency (E1-E5a-E5b-E6)

combination with a wavelength of 4.469 m and a low noise level of 6.34 cm have been found.

Moreover, the dual frequency (E1-E5) mixed code-carrier linear combination with a wave-

length of 3.285 m and a noise level of 19 cm, and an additional code-only linear combination

have been considered in the analysis to improve the reliability of ambiguity resolution.

Satellite-satellite single differences are applied with the linear combinations for reduction of

parameters on the measurements. The noise variance of the linear combinations is further

reduced by using an ionosphere-free carrier smoothing.

An exponential bias profile, whose decay factor depends on the maximum and minimum

assumed biases at θ = 90◦ and θ = 0◦ elevation angles, was used for upper bounding the

residual phase and code biases on E1 and E5. This presence of biases on the measure-

ments affects substantially the ambiguity resolution performed by the LAMBDA method,

which usually achieves the integer least-square solution for unbiased measurements, since

its ambiguity decorrelation transformation amplifies the biases while it reduces the vari-

ance. Therefore, a partial and non-integer decorrelation have been suggested to achieve an

optimum variance and bias amplification trade-off.

A higher reliable resolution of all the ambiguities is prevented for significant biases. However,

a subset of ambiguities can still be fixed sufficiently reliable. A new partial ambiguity fixing

method has been developed for this reason. This so-called SOFOS method is based on a

sequentially fixing of the ambiguities. It searches efficiently for the optimum order which
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fixes the largest subset of reliably fixable ambiguities for a given probability of wrong fixing

threshold.

The performance of the SOFOS method has been evaluated with another three partial am-

biguity fixing methods: SAVO, SEBLO and Rounding fixing. As the SOFOS method, the

SAVO and SEBLO methods are based on a sequentially fixing of the ambiguities, whereas

the Rounding fixing method is based on a batch fixing. Simulations for different Galileo

geometries were performed for making the comparison between the methods possible.

The obtained results shows that the SOFOS method performs rather better than the other

methods on the achieved number of reliably fixable ambiguities at a single epoch. This

benefit is possible due to its overall order search. Moreover, it fixes at least four ambiguities

through Europe for a probability of wrong fixing of 10−9 and a carrier smoothing time of 20

seconds. The SAVO and Rounding fixing methods show a poor performance compared to

the SOFOS and SEBLO methods. However, they are computationally simpler.

The SOFOS method demonstrates also that the order of fixing does not have to be started

with the most precise ambiguity or in other words with the highest elevated satellite in order

to achieve a larger subset of ambiguities.

The following further research on the implementation aspects for the SOFOS method are

recommended:

• Lagrange optimization of multi-frequency GP-IF-NP linear combinations of maximum

discrimination with constrained bias amplification

max
αm,βm

D = max
αm,βm

λlc

2σn

, (7.1)

such that

M∑
m=1

|αm| · λm · bφm,max +
M∑

m=1

|βm| · bρm,max

!≤ bmax, for M ≥ 2. (7.2)

• Comparison of SOFOS with Integer Least-Squares Estimation (LAMBDA).

• Validation tests.



Appendix A

Differencing

In order to eliminate some parameters from the GNSS measurements, differencing is applied.

This means that differences between the measurements from receivers and/or satellites are

taken.

A.1 Single difference

By taking a difference of the measurements at two receivers (e.g. the user and the reference

receiver) at the same epoch, the satellite clock and ephemeris errors cancels out in the

difference. For simplicity, the time indices are omitted, and the code and carrier phase (ur)

between-receiver SD measurements obtained from Equations (2.3) and (2.4) are modeled as

ρk
ur,m = ρk

u,m − ρk
r,m = rk

ur + T k
ur + q2

1mIk
ur + c(δτur) + bρur,m + εk

ρur,m
, (A.1)

Φk
ur,m = Φk

u,m − Φk
r,m = rk

ur + T k
ur − q2

1mIk
ur + λmNk

ur,m + c(δτur)

+λmbφur,m + εk
φur,m

, (A.2)

where (·)ur = (·)u − (·)r.
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A.2 Double difference

The number of parameters can be further reduced by taking between-receiver and between-

satellite double differences (DD). The obtained code and carrier phase DD measurements

are modeled as

ρkl
ur,m = ρk

ur,m − ρl
ur,m = rkl

ur + T kl
ur + q2

1mIkl
ur + εkl

ρur,m
, (A.3)

Φkl
ur,m = Φk

ur,m − Φl
ur,m = rkl

ur + T kl
ur − q2

1mIkl
ur + λmNkl

ur,m + εkl
φur,m

, (A.4)

where (·)kl
ur = (·)k

ur − (·)l
ur; and the relative receiver clock biases from the single-difference

measurements have now also cancelled.



Appendix B

Cardano’s method

A cubic function, in mathematics, is a function of the form

f(x) = ax3 + bx2 + cx + d, with a 6= 0. (B.1)

By setting f(x) = 0, the following cubic equation is generated

ax3 + bx2 + cx + d = 0. (B.2)

In order to solve a cubic equation, which accounts to find the roots of a cubic function,

one can uses the Cardano’s method. It is named after the Italian mathematician Gerolamo

Cardano, and is described by the following steps:

1. The standard cubic equation is divided by the first coefficient a and the following equation

is obtained:

x3 + ȧx2 + ḃx + ċ = 0, ȧ = b
a

ḃ = c
a

ċ = d
a
. (B.3)

2. Substitute x = z − ȧ/3 in order to eliminate the quadratic term and obtain the following

depressed cubic equation:

z3 + pz + q = 0, (B.4)

with the coefficients

p = ḃ− ȧ2

3
and q = ċ +

2ȧ3 − 9ȧḃ

27
(B.5)

3. Substitute z = u + v into Equation B.4 to obtain

u3 + v3 + (3uv + p)(u + v) + q = 0. (B.6)
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4. Substitute the condition (3uv + p) = 0 proposed by Cardano into the previous equation:

u6 + qu3 − p3

27
= 0, (B.7)

where this equation can be seen as a quadratic equation for u3.

5. Solve the previous equation as a quadratic equation to get:

u3 = −q

2
±

√
q2

4
+

p3

27
→ u =

3

√
−q

2
±

√
q2

4
+

p3

27
. (B.8)

6. Since z = x + ȧ/3 = u + v, this results in

x = u + v − ȧ

3
, with v = − p

3u
then x = u− p

3u
− ȧ

3
. (B.9)

Where the three roots x1, x2, x3 for the cubic equation (B.2) are obtained by substituting

the three values obtained for u from Equation (B.8).



Appendix C

Kronecker product

The Kronecker product, denoted by ⊗, is named after the German mathematician and logi-

cian Leopold Kronecker. It is an operation on two matrices of arbitrary size resulting in a

block matrix.

If A is an m× n matrix and B is a p× q matrix, then their Kronecker product is defined as

the following mp× nq matrix

A⊗B =




a11B . . . a1nB
...

. . .
...

am1B . . . amnB


 . (C.1)

It has the following properties:

(A + B)⊗ C = A⊗ C + B ⊗ C

A⊗ (B + C) = A⊗B + A⊗ C

(A⊗B)⊗ C = A⊗ (B ⊗ C)

(A⊗B)(C ⊗D) = (AC ⊗BD)

(A⊗B)T = AT ⊗BT

(A⊗B)−1 = A−1 ⊗B−1

Note: The Kronecker product is not commutative A⊗B 6= B ⊗ A.
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Appendix D

Further SOFOS simulations

The following simulations of Galileo measurements for the SOFOS method are also based on

the same parameters used for the comparison between the methods in Chapter 6, except for

the carrier smoothing time τsm, whose value is given for each figure. Moreover, an azimuthal

threshold ∆Azith = 45◦ is also used for the SOFOS method, and a probability of wrong

fixing threshold Pth = 10−9 is considered.
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Figure D.1: Number of fixable ambiguities Np for a snapshot through Europe. (τsm = 30 s)
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Figure D.1 and Figure D.2 show that at least four ambiguities can be fixed through Europe

and for different geometries. Moreover, in 98% of the times at least 5 ambiguities can be

fixed in both scenarios.
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Figure D.2: Number of fixable ambiguities Np for different simulated Galileo geometries.
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The impact of the smoothing time on the number of fixable ambiguities is shown in Fig-

ures D.3 and D.4 for different code and phase biases. Np converges to the number of condi-

tional biases which are smaller than 0.5 cycles, when large smoothing periods are applied.
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