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Chapter 1

Introduction

Precise Point Positioning (PPP) is becoming increasingly popular as it en-
ables an absolute positioning with centimeter accuracy without the need of a
reference station. However, the resolution of undifferenced carrier phase integer
ambiguities requires precise knowledge of satellite phase and code biases.

Recently, Laurichesse et al.[1][2][3] have shown that fractional widelane bi-
ases can be assumed constant over several months and narrowlane biases are
still constant on a daily basis, which enabled them to demonstrate undiffer-
enced integer ambiguity resolution. They used a two stage procedure, i.e. they
started with the geometry-free, ionosphere-free Melbourne-Wübbena combina-
tion[4], which provides the widelane integer ambiguities and a fractional bias,
which is one of three correction parameters. Secondly, the widelane ambiguities
are used as a priori knowledge in a Kalman filter, which processes ionosphere-free
phase and ionosphere-free code combinations to estimate ionosphere-free phase
clocks of both receivers and satellites, offsets between ionosphere-free phase
and pseudorange clocks of both receivers and satellites, zenith tropospheric de-
lays, station coordinate corrections, orbit corrections, and phase ambiguities.
Laurichesse assumed a purely stochastic behavior for the ionosphere-free phase
clocks, while a very tight model was used for the offset between ionosphere-
free phase and pseudorange clocks (1 cm process noise for station clocks, 1 mm
process noise for satellite clocks). The ionosphere-free satellite phase clocks
as well the offset between these phase and the respective pseudorange clocks
set the second and third correction parameters for Laurichesse’s precise point
positioning.

In this thesis, satellite bias estimation is based on a much more general
model, which does not use any linear combinations of measurements and, thus,
benefits from less noisy measurements. The bias estimation is performed with a
Cascaded Kalman filter. A first Kalman filter is used to estimate the geom-
etry terms (in detail, only offsets w.r.t. a priori knowledge of ranges based on
known ephemeris and station coordinates), the ionospheric delays, the integer
phase ambiguities, and phase biases. A second Kalman filter is then used to re-
fine the geometry term, i.e. it uses the a posteriori estimates of the first Kalman
filter as measurements, and estimates orbital corrections, tropospheric zenith de-
lays, satellite clock offsets (include code biases on one frequency), and receiver
clock offsets (include code biases on one frequency). This approach has the ad-
vantage that it enables a faster ambiguity resolution compared to an estimation
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of all unknowns in one single step. However, the first Kalman filter introduces
a time correlation into the a posteriori estimates, such that the assumption
of white Gaussian measurement noise is no longer fulfilled for the successive
Kalman filter. Therefore, the method of Bryson and Henrikson[5] (1968) is ap-
plied. It first performs a time-differencing to whiten measurement errors. As
this whitening introduces a correlation between measurement and process noises,
a second decorrelation is performed to decouple the time-differenced measure-
ment errors from the process errors. Both steps are combined in a generalized
Kalman filter being used to determine orbital and clock corrections.

Besides the phase and code biases, code multipath is another major chal-
lenge for precise point positioning. Therefore, a time series of pseudorange
residuals and its spectral transformation were analyzed for some IGS [6] sta-
tions in this thesis. A strong repeatability of multipath was observed over days,
and a sidereal filtering was performed to obtain multipath corrections, which
result in an almost white measurement noise.

Simulation results indicate that both the cascaded Kalman filter and code
multipath corrections are two important steps to improve the reliability of pre-
cise point positioning.
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Chapter 2

Laurichesse’s Measurement
Model

An accurate model of undifferenced code and carrier phase measurements is
a crucial point. One option is to use individual clock/ bias parameters for
each type of observation. Recently, Laurichesse et al. [3] re-parameterized the
problem: They estimated individual clocks for the ionosphere-free phase and
pseudorange combinations, and their offsets with respect to the clock offsets on
L1. This parameterization has the advantage that it separates the stochastic
parameters (ionosphere-free phase clock, ionosphere-free pseudorange clocks)
from the clock parameters, that are only affected by longterm variations. Lau-
richesse’s model lead to a very promising positioning performance, and is given
by

ρki,1 = gki,1 + c(δτρ,i − δτkρ ) + q2
11I

k
i + q2

11(bi − bk) + ηki,1

ρki,2 = gki,2 + c(δτρ,i − δτkρ ) + q2
12I

k
i + q2

12(bi − bk) + ηki,2

λ1ϕ
k
i,1 = gki,1 + λ1W + c(δτϕ,i − δτkϕ)− q2

11I
k
i − q2

11(βi − βk)

+λ1N
k
i,1 + εki,1

λ2ϕ
k
i,2 = gki,2 + λ2W + c(δτϕ,i − δτkϕ)− q2

12I
k
i − q2

12(βi − βk)

+λ2N
k
i,2 + εki,2,

(2.1)

with the following notations:

gki,m geometric propagation distance between the satellite and receiver
antenna phase centers at frequency fm
including the tropospheric delay and relativistic effects

W delay introduced by phase-wind up effect

q1m = f1
fm

ratio between frequencies f1 and fm
Iki slant ionospheric delay on frequency f1

c speed of light
δτρ,i ionosphere-free pseudorange clock offset of receiver i
δτkρ ionosphere-free pseudorange clock offset of satellite k
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δτϕ,i ionosphere-free phase clock offset of receiver i
δτkϕ ionosphere-free phase clock offset of satellite k
bi difference between pseudorange clock offset on f1 and

ionosphere-free pseudorange clock offset for receiver i
bk difference between pseudorange clock offset on f1 and

ionosphere-free pseudorange clock offset for satellite k
βi difference between phase clock offset on f1 and

ionosphere-free phase clock offset for user i
βk difference between phase clock offset on f1 and

ionosphere-free phase clock offset for satellite k
Nk
i,m carrier phase integer ambiguities.

ηki,m pseudorange noise including multipath
εki,m phase noise including multipath

An alternative parameterization to the use of separate phase and pseudor-
ange clocks is the use of a common clock offset and individual biases for each
type of observation as described in [7][8][9]. Setting the receiver clock offsets
and biases of both models equal results in

cδτρ,i + q2
11bi = cδτi + bi,1

cδτρ,i + q2
12bi = cδτi + bi,2

cδτφ,i − q2
11βi = cδτi + βi,1

cδτφ,i − q2
12βi = cδτi + βi,2.

(2.2)

This set of equations can also be written in matrix-vector-notation as
1 0 q2

11 0
1 0 q2

12 0
0 1 0 −q2

11

0 1 0 −q2
12


︸ ︷︷ ︸

A


cδτρ,i
cδτφ,i
bi
βi

 =


cδτi + bi,1
cδτi + bi,2
cδτi + βi,1
cδτi + βi,2

 , (2.3)

which can be easily solved:
cδτρ,i
cδτφ,i
bi
βi

 = A−1


cδτi + bi,1
cδτi + bi,2
cδτi + βi,1
cδτi + βi,2

 . (2.4)

The estimation of ionosphere-free phase and pseudorange clocks is in gen-
eral performed in two steps: in the first step, the geometry-free, ionosphere-free
Melbourne-Wübbena code carrier linear combination is computed and averaged
over time to obtain widelane integer ambiguities and fractional widelane bi-
ases. In the second step, the widelane ambiguity estimates are combined with
the ionosphere-free phase-only linear combination to determine ionosphere-free
phase and pseudorange clocks, code/ phase satellite/ receiver clock biases, satel-
lite orbital corrections, tropospheric zenith delays and Nk

i,1 integer ambiguities
in an extended Kalman filter.
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The ionospheric delay Iku in the pseudorange measurements of (2.1) can be
eliminated by a dual-frequency linear combination, i.e.

ρki,IF = α1ρ
k
i,1 + α2ρ

k
i,2, (2.5)

where the two coefficients α1 and α2 are obtained from the geometry-preserving
(α1 + α2 = 1) and ionosphere-free constraints (α1 + α2q

2
12 = 0) as

α1 =
q2
12

q2
12 − 1

and α2 = − 1

q2
12 − 1

. (2.6)

The estimation of the ionosphere-free phase and pseudorange clocks requires a
more precise model for the geometry term gki,m, which is commonly modeled as

gki,m = ‖~xi − ~xk‖+ dm +m(θki )Tz

= (~eki )T (~xi − (~̂xk + δ~̂xk)) + dm +m(θki )Tz,i, (2.7)

with the satellite position estimate ~̂xk based on Keplerian orbit parameters,
the satellite position error δ~̂xk, the difference dm between the ionosphere-free
phase center and the phase center on frequency fm, and the slant tropospheric
delay T ki , which is modeled as the product of an elevation-dependant mapping
function m(θki ), and a zenith delay Tz,i.

Thus, the ionosphere-free pseudorange and phase combinations can be ob-
tained from (2.1), (2.5) and (2.7) as

ρki,IF = (~eki )T (~xi − (~̂xk + δ~̂xk)) + c(δτρ,i − δτkρ ) +m(θki )Tz + ηki,IF

λϕki,IF = (~eki )T (~xi − (~̂xk + δ~̂xk)) + c(δτϕ,i − δτkϕ) +m(θki )Tz +
q2
12d1 − d2

1− q2
12

+
q2
12

q2
12 − 1

λ1N
k
i,1 −

1

q2
12 − 1

λ2N
k
i,2 + εki,IF. (2.8)

The ambiguity Nk
i,2 can be expressed as a function of Nk

i,1 and the a priori

known widelane ambiguity NWL = Nk
i,1 − Nk

i,2. The a priori known terms

include the station coordinates ~xi, the estimate of the satellite position ~̂xk, the

linear combination of antenna phase center offsets
q212d1−d2

1−q212
, and the widelane

ambiguities NWL, which are brought to the left sight of the equation:

λϕ̃ki,IF = λϕki,IF − (~eki )T (~xi − ~̂xk)− q2
12d1 − d2

1− q2
12

− 1

q2
12 − 1

λ2NWL

= (~eki )T δ~xk + c(δτϕ,i − δτkϕ) +m(θki )Tz +
q2
12λ1 − λ2

q2
12 − 1︸ ︷︷ ︸
λNL

Nk
i,1 + εki,IF, (2.9)

with

λNL =
q2
12λ1 − λ2

q2
12 − 1

=
f2

1λ1 − f2
2λ2

f2
1 − f2

2

= c · f1 − f2

f2
1 − f2

2

= c · 1

f1 + f2
=

1
1
λ1

+ 1
λ2

,

(2.10)
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which is 10.6 cm for dual frequency GPS measurements with λ1 = 19.0 cm
and λ2 = 24.4 cm. The a priori known terms are also subtracted from the
ionosphere-free pseudorange combination, i.e.

ρ̃ki,IF = ρki,IF − (~eki )T (~xi − ~̂xk) = (~eki )T δ~xk + c(δτρ,i − δτkρ ) +m(θki )Tz + ηki,IF.
(2.11)

Laurichesse used a Kalman filter to estimate orbital corrections δ~xk, ionosphere-
free phase clocks cδτkϕ, and ionosphere-free pseudorange clocks cδτkρ from the
linear combinations. As the Kalman filter will be introduced in a later section,
only the process noise model and the obtained results for the offset between the
ionosphere-free clocks and the clock offset on L1 shall be briefly introduced.

Table 2.1: Process noise model (Source: Laurichesse et al. [3])
Phase sat. clock ∞ purely stochastic
Phase rec. clock ∞ purely stochastic
Code/ phase sat. clock bias 1 mm
Code/ phase rec. clock bias 1 cm
Zenith tropospheric delay 1 mm
Satellite orbit corrections (0, 4 mm, 2 mm) radial correction set to 0
Phase ambiguities 0 ambiguities are constant,

initial covariance set to
100m2

Laurichesse et al. [3] have processed phase and code measurements from 50
IGS stations to estimate the ionosphere-free phase clocks and the offsets between
these ionosphere-free phase clocks and the ionosphere-free pseudorange clocks.
Fig. 2.1 shows that long-term variations can be above one cycle, and tend to
be larger for the older bloc IIA satellites compared to the bloc IIR satellites.
However, the variations on a daily basis are negligible.
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Figure 2.1: Evolution of pseudorange-phase biases over one year: This differen-
tial clock bias can be considered constant over one day but it shows long-term
variations that can be far above one cycle. This motivates the estimation of
individual phase clocks and pseudorange clocks. [3]
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Chapter 3

Generalized Measurement
Model

3.1 Model for undifferenced, uncombined Mea-
surements

The most general model for undifferenced phase and code measurements at
receiver i, from satellite k on frequency m was proposed by Günther in [10]:

λ1φ
k
1,i(tn) = gki (tn)− Ik1,i(tn) + λ1N

k
1,i + β1,i + βk1 + εk1,i(tn)

λ2φ
k
2,i(tn) = gki (tn)− q2

12I
k
1,i(tn) + λ2N

k
2,i + β2,i + βk2 + εk2,i(tn)

ρk1,i(tn) = gki (tn) + Ik1,i(tn) + b1,i + bk1 + ηk1,i(tn)

ρk2,i(tn) = gki (tn) + q2
12I

k
1,i(tn) + b2,i + bk2 + ηk2,i(tn),

(3.1)

where:

λm : wavelength
φkm,i : carrier phase measurement
ρkm,i : code measurement
tn : epoch
gki : geometry term
Ikm,i : ionospheric slant delay
Nk
m,i : integer ambiguity

βm,i : receiver phase bias
βkm : satellite phase bias
bm,i : receiver code bias
bkm : satellite code bias
εkm,i : phase noise
ηkm,i : code noise,

and q12 = f1/f2 denotes the frequency ratio.
The geometry term contains all non-dispersive terms and is described by:

gki (tn) = rki (tn) + c(δτi(tn)− δτk(tn −∆τki (tn))) + T ki (tn), (3.2)
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with

rki (tn) =
∥∥~ri − ~rk(tn −∆τki (tn))

∥∥ , (3.3)

where rki denotes the range between receiver i and satellite k, δτi and δτk denote
the receiver and satellite clock offsets and T ki denotes the tropospheric delay.
∆τki (tn) describes the propagation time of the signal from the satellite to the
receiver at the reception time tn, i.e. the difference in time between signal
emission and reception.

A dynamic model of second order is introduced for the geometry term gki :

gki (tn) = gki (tn−1) + ∆tġki (tn−1) +
1

2
∆t2g̈ki (tn−1) + wgki (tn), (3.4)

where wgki (tn) denotes the process noise.
The ionospheric slant delay is assumed to be a Gauss-Markov process, al-

lowing the accumulation of white Gaussian noise, i.e.

Ik1,i(tn) = Ik1,i(tn−1) + wIki (tn), (3.5)

with wIki ∼ N (0, σ2
w
Ik
i

).

3.2 Parameter Mapping

The estimation of all the parameters in (3.1) is not possible due to the rank
deficiency of the system of equations. Assuming

NMEAS =

R∑
i=1

Ki, (3.6)

with R denoting the total number of receivers and Ki being the number of visible
satellites to receiver i, the model provides 4NMEAS measurements (code and
phase measurements for each satellite/receiver pair on 2 frequencies). However
the number of unknowns is obtained from

NUNKNOWN = Ngki +NIk1,i +NNkm,i +Nβm,i +Nβkm +Nbm,i +Nbkm

= NMEAS +NMEAS + 2NMEAS + 2R+ 2K + 2R+ 2K

= 4NMEAS + 4(K +R) > 4KR, (3.7)

which means the current system has 4(K + R) more unknowns than measure-
ments. Thus, the system of Eq.(3.1) is singular. In order to solve the system of
equations, a set of mappings [8][7] is applied to the unknowns to remove the rank
deficiency, i.e. new unknowns are created by performing linear combinations of
previous ones.

In a first step, code biases are mapped into the geometry and ionospheric
terms:

g̃ki (tn) = gki (tn) + bgi + bgk (3.8)

Ĩk1,i(tn) = Ik1,i(tn) + bIi + bIk , (3.9)
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with

bgi = −b2,i − q
2
12b1,i

q2
12 − 1

(3.10)

bgk = −b
k
2 − q2

12b
k
1

q2
12 − 1

(3.11)

bIi =
b1,i − b2,i
q2
12 − 1

(3.12)

bIk =
bk1 − bk2
q2
12 − 1

. (3.13)

Since the geometry and ionospheric terms also appear in the phase measure-
ments, the phase bias terms are affected accordingly:

β̃1,i = β1,i − bgi + bIi (3.14)

β̃2,i = β2,i − bgi + q2
12bIi (3.15)

β̃k1 = βk1 − bgk + bIk (3.16)

β̃k2 = βk2 − bgk + q2
12bIk . (3.17)

This first mapping reduces the number of unknowns from 4NMEAS+4(R+K)
(3.7) to 4NMEAS + 2(R+K).

In the second step, one satellite is chosen as reference. Its corresponding
phase biases on each frequency are mapped to the other satellite phase biases
and are compensated in the receiver phase biases, i.e.

˜̃
βk1 = β̃k1 − β̃1

1 (3.18)

˜̃
βk2 = β̃k2 − β̃1

2 (3.19)

˜̃
βm,1 = β̃1,i + β̃1

1 (3.20)

˜̃
βm,2 = β̃2,i + β̃1

2 , (3.21)

which allows a reduction to 4NMEAS + 2(R + K − 1) unknowns. To get rid of
the remaining dependencies, a third mapping is performed on the ambiguities
[11]. The main idea is to map a subset of 2(R + K − 1) ambiguities to other
ambiguities and phase biases through Gaussian elimination.

˜̃̃
βi =

˜̃
βi +

∑
Nj∈Nsub

cj,iNj (3.22)

˜̃̃
βk =

˜̃
βk +

∑
Nj∈Nsub

ckjNj (3.23)

Ñk
i = Nk

i +
∑

Nj∈Nsub

ckj,iNj , (3.24)

where the subset is denoted by Nsub and cj,i, c
k
j and ckj,i denote the coefficients

generated by Gaussian elimination.
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The measurement model after the set of parameter mappings is written as:

λ1φ
k
1,i(tn) = g̃ki (tn)− Ĩk1,i(tn) + λ1Ñ

k
1,i +

˜̃̃
β1,i +

˜̃̃
βk1 + εk1,i(tn)

λ2φ
k
2,i(tn) = g̃ki (tn)− q2

12Ĩ
k
1,i(tn) + λ2Ñ

k
2,i +

˜̃̃
β2,i +

˜̃̃
βk2 + εk2,i(tn)

ρk1,i(tn) = g̃ki (tn) + Ĩk1,i(tn) + ηk1,i(tn)

ρk2,i(tn) = g̃ki (tn) + q2
12Ĩ

k
1,i(tn) + ηk2,i(tn).

(3.25)

3.3 A Priori Information: Widelane Double Dif-
ference Integer Ambiguities

The widelane Melbourne-Wübbena combination W k
i is defined as:

W k
i =

(
f1

f1 − f2
λ1φ

k
1,i −

f2

f1 − f2
λ2φ

k
2,i

)
−
(

f1

f1 + f2
ρk1,i +

f2

f1 + f2
ρk2,i

)
,

(3.26)

which is geometry-free and ionosphere-free, i.e.

W k
i =

(
gki +

1

f1 − f2

(
−f1I

k
1,i + f2q

2
12I

k
1,i

+f1

(
λ1N

k
1,i + βk1 + εk1,i

)
− f2

(
λ2N

k
2,i + βk2 + εk2,i

)))
−
(
gki +

1

f1 + f2

(
f1I

k
1,i + f2q

2
12I

k
1,i + f1η

k
1,i + f2η

k
2,i

))
=

(
q2
12f2 − f1

f1 − f2
− q2

12f2 + f1

f1 + f2

)
Ik1,i

+
f1

(
λ1N

k
1,i + βk1 + εk1,i

)
− f2

(
λ2N

k
2,i + βk2 + εk2,i

)
f1 − f2

−
f1η

k
1,i + f2η

k
2,i

f1 + f2
. (3.27)

The scaling of Ik1,i can be easily derived, i.e.

q2
12f2 − f1

f1 − f2
− q2

12f2 + f1

f1 + f2
=

f2
1

f2
− f1

f1 − f2
−

f2
1

f2
+ f1

f1 + f2

=
f1 ((f1 − f2)(f1 + f2)− (f1 + f2)(f1 − f2))

f2(f1 − f2)(f1 + f2)
.

= 0 (3.28)
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Eq. (3.27) can be further simplified to

W k
i =

f1

(
λ1N

k
1,i + βk1 + εk1,i

)
− f2

(
λ2N

k
2,i + βk2 + εk2,i

)
f1 − f2

−
f1η

k
1,i + f2η

k
2,i

f1 + f2

=λW

(
Nk

1,i −Nk
2,i +

βk1
λ1
− βk2
λ2

)
+ f(εk1,i, ε

k
2,i, η

k
1,i, η

k
2,i), (3.29)

with the widelane wavelength λW :

λW =
1

1
λ1
− 1

λ2

, (3.30)

and the combined noise term

f(εk1,i, ε
k
2,i, η

k
1,i, η

k
2,i) =

f1ε
k
1,i − f2ε

k
2,i

f1 − f2
−
f1η

k
1,i + f2η

k
2,i

f1 + f2
. (3.31)

In case of GPS, the wavelength of the widelane Melbourne-Wübbena combi-
nation is 86.2 cm, which allows a much easier fixing of ambiguities. In order to
eliminate the biases, the double difference Melbourne-Wübbena ∆W kl

ij is used:

∆W kl
ij =

(
W k
i −W l

i

)
−
(
W k
j −W l

j

)
= λW

(
∆Nkl

W,ij +
∆βkl1,ij

λ1
−

∆βkl2,ij

λ2

)
+ f(∆εkl1,ij ,∆ε

kl
2,ij ,∆η

kl
1,ij ,∆η

kl
2,ij),

(3.32)

with

∆Nkl
W,ij = ∆Nkl

1,ij −∆Nkl
2,ij (3.33)

∆Nkl
1,ij = (Nk

1,i −N l
1,i)− (Nk

1,j −N l
1,j) (3.34)

∆Nkl
2,ij = (Nk

2,i −N l
2,i)− (Nk

2,j −N l
2,j) (3.35)

∆βkl1,ij = (βk1 − βl1)− (βk1 − βl1) = 0 (3.36)

∆βkl2,ij = (βk2 − βl2)− (βk2 − βl2) = 0 (3.37)

f(∆εkl1,ij ,∆ε
kl
2,ij ,∆η

kl
1,ij ,∆η

kl
2,ij) =

(
f(εk1,i, ε

k
2,i, η

k
1,i, η

k
2,i − f(εl1,i, ε

l
2,i, η

l
1,i, η

l
2,i)
)

−
(
f(εk1,j , ε

k
2,j , η

k
1,j , η

k
2,j − f(εl1,j , ε

l
2,j , η

l
1,j , η

l
2,j)
)
. (3.38)

Combining (3.32) with (3.34) and (3.35) leads to the estimate of the double
differenced widelane ambiguity being averaged over time, i.e.

∆N̂kl
W,ij =

[
1

T

T∑
tn=1

∆W kl
ij (tn)

λW

]
(3.39)

N̂k
2,i = N̂k

1,i − N̂ l
1,i + N̂ l

2,i − N̂k
1,j + N̂k

2,j − N̂ l
1,j − N̂ l

2,j −∆N̂kl
W,ij , (3.40)

which expresses the ambiguity as a linear combination of 7 others and a mea-
surement combination.
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Example

The first two equations of Eq. (3.1) can be expressed as a matrix expression,
i.e. (

λ1φ1

λ2φ2

)
=

(
λ11 0

0 λ21

)(
N1

N2

)
+ f

(
g, I1, β1,R, β

K
1 , ε1

)
= HN

(
N1

N2

)
+ f

(
g, I1, β1,R, β

K
1 , ε1

)
. (3.41)

The a priori knowledge of widelane ambiguities results in additional measure-
ments or - in an alternative interpretation - enables a reduction of unknowns.

A set of 2 stations each seeing the same 3 satellites can be described as

HN

(
N1

N2

)
=

λ1 0 0 0 0 0 0 0 0 0 0 0
0 λ1 0 0 0 0 0 0 0 0 0 0
0 0 λ1 0 0 0 0 0 0 0 0 0
0 0 0 λ1 0 0 0 0 0 0 0 0
0 0 0 0 λ1 0 0 0 0 0 0 0
0 0 0 0 0 λ1 0 0 0 0 0 0
0 0 0 0 0 0 λ2 0 0 0 0 0
0 0 0 0 0 0 0 λ2 0 0 0 0
0 0 0 0 0 0 0 0 λ2 0 0 0
0 0 0 0 0 0 0 0 0 λ2 0 0

−λ2 −λ2 0 −λ2 λ2 0 −λ2 λ2 0 λ2 0 0
0 0 0 0 0 0 0 0 0 0 0 λ2





N1
1,1

N2
1,1

N3
1,1

N1
1,2

N2
1,2

N3
1,2

N1
2,1

N2
2,1

N3
2,1

N1
2,2

N2
2,2

N3
2,2


+ cor, (3.42)

with

cor =



0
0
0
0
0
0
0
0
0
0

−∆N̂2,1
W,2,1

0



. (3.43)

The red column in (3.42) corresponding to the red mapped ambiguity can be
removed after mapping, which consists in filling the corresponding row with the
adequate terms and adding a correction vector cor which contains the last term
of equation (3.39). If a common reference station is chosen for all Melbourne-
Wübbena combinations and all stations have the same visibility, the number
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of ambiguities being mapped is K(R − 1). This a priori knowledge allows to
reduce the number of unknown ambiguities and therefore contributes to a faster
estimation of phase biases.

3.4 Melbourne-Wübbena Combination for Un-
differenced Measurements

The elimination of both geometry and ionospheric delays by the Melbourne-
Wübbena combination results in an extremely stable behaviour over time also
for undifferenced measurements. Fig. 3.1 shows the fractional widelane bias for
an CORS station over one month.

265 270 275 280 285 290 295
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time [days]

M
el

bo
ur

ne
−

W
üb

be
na

 w
id

el
an

e 
bi

as
 [m

]

 

 

5
6
15
16
18
21
26
29
30

Figure 3.1: Stability of Melbourne-Wübbena combination bias: This linear com-
bination is applied to 1 Hz measurements (22.09.-22.10.2011) from CORS station
MTUM, and averaged over the first two hours of each day. One can observe a
high stability over a whole month, which enables a transmission as correction
parameter for widelane ambiguity fixing and, thus, an ambiguity fixing at the
receiver.
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Chapter 4

Cascaded Kalman Filter

In the previous chapter, the system of equations (3.1) was transformed by a set
of parameter mappings into Eq. (3.25), which then becomes solvable. A first
Kalman filter [12] is introduced to estimate the geometry, ionospheric slant de-
lays, integer ambiguities and phase biases, using code and phase measurements
on both frequencies. The integer ambiguities are resolved sequentially based on
the convergence behavior over a period of time. The geometry estimates are
split into terms of orbital errors, receiver clock offsets and satellite code biases,
etc., which are to be estimated in a second-stage Kalman filter. However, the
assumption of a traditional Kalman filter is that measurement noises are not
correlated over time. It can be shown that the geometry estimates are yet cor-
related in this sense. The Bryson method is used to decouple the measurement
noise in the second Kalman filter. In the last section, a cascaded Kalman filter is
set up with the Bryson method applied to the second stage. Simulation results
show that the error in orbital error estimates is smaller than 2 cm.

4.1 Standard Kalman Filter

The measurement and state space models of a conventional Kalman filter [12]
are given by

xn = Φn−1xn−1 + wn−1

zn = Hnxn + ζn

E(wn) = E(ζn) = 0

E(wkw
T
l ) = Qkδkl, E(ζkζ

T
l ) = Rkδkl, E(wkζ

T
l ) = 0,

(4.1)

with δkl being the Kronecker delta function

δkl =

{
1, if k = l

0, if k 6= l
.

The state vector xn contains the geometry terms, ionospheric slant delays,
integer ambiguities and phase biases given by E.(3.25), i.e.

xn =

(
g̃T
n , ˙̃gT

n , ¨̃g
T
n , Ĩ

T
n ,

˜̃̃
βT
R,

˜̃̃
βK,T, ÑT

)T

. (4.2)
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The measurement vector zn contains the absolute code and phase measure-
ments on two frequencies, i.e.

zn =
(
λ1ϕ

T
1,n, λ2ϕ

T
2,n, ρ

T
1,n, ρ

T
2,n

)T
. (4.3)

The process and measurement noises wn and ζn are assumed to be white, of
zero mean and with Qn and Rn as their respective covariance matrices.

In the following, it is assumed that a number of Ki satellites is visible to re-
ceiver i (i ∈ [1, R]). The number of measurements NMEAS on a single frequency
for the code (or the phase) is given by

NMEAS =

R∑
i=1

Ki. (4.4)

Using Eq.(3.4), the state transition matrix Φn can be obtained by

Φn =



1 ∆t1 1
2∆t21 0 0 0 0

0 1 ∆t1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


, (4.5)

with 1 representing the identity matrix having different dimensions depending
on each state.

The Hn matrix represents the relationships between states and measure-
ments at the discrete time instant tn. It can be separated into sub-matrices,
i.e.

Hn =
(
Hg̃ H ˙̃g H¨̃g HĨ H ˜̃̃

βR
H ˜̃̃
βK

HÑ

)
. (4.6)

The Hg̃, H ˙̃g and H¨̃g are straightforward to be obtained since the geometry
term appears in every equations of the base model:

Hg̃ = 14NMEAS×NMEAS (4.7)

H ˙̃g = H¨̃g = 0. (4.8)

Since the code and phase measurements have opposite signs on ionosphere,
the HĨ matrix is given by

HĨ =


−1
−q2

12

1
q2
12

⊗ 1NMEAS×NMEAS , (4.9)

with ⊗ being the Kronecker product.
H ˜̃̃
βR

has a specific form depending on how the measurements are sorted.

The following order is taken

zn =
(
λ1ϕ

T
1,n, λ2ϕ

T
2,n, ρ

T
1,n, ρ

T
2,n

)T
. (4.10)
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with

ϕm,n =
(
ϕ1
m,1,n · · ·λ1ϕ

1
m,R,n · · ·λ1ϕ

KR
m,R,n

)T

ρm,n =
(
ρ1
m,1,n · · · ρ1

m,R,n · · · ρ
KR
m,R,n

)T

(4.11)

Accordingly, H ˜̃̃
βR

is described by

H ˜̃̃
βR

=

(
12×2

02×2

)
⊗


1K1×1

1K2×1

. . .

1KR×1

 . (4.12)

The H ˜̃̃
βK

is a 4NMEAS × 2(K − 1) matrix (see (3.18)). The HÑ depends on

Gaussian elimination operation but is based on the original HN matrix, which
is given by

HN =


λ1 0
0 λ2

0 0
0 0

⊗ 1NMEAS . (4.13)

The Kalman filter is a recursive least-squares estimator, which benefits from
the joint use of a measurement and state space model, and is in general imple-
mented in two steps:

Prediction step
x̂−n = Φn−1x̂

+
n−1

P−n = Φn−1P
+
n−1ΦT

n−1 +Qn−1

(4.14)

Update step

Kn = P−n H
T
n

(
HnP

−
n H

T
n +Rn

)−1

x̂+
n = x̂−n +Kn

(
zn −Hnx̂

−
n

)
P+
n = (I −KnHn)P−n ,

(4.15)

where

Qn : covariance of the process noise
Rn : covariance of the measurement error
Kn : Kalman gain
P−n : a priori error covariance matrix
P+
n : a posteriori error covariance matrix.

In the prediction step, an a priori estimate of the state x̂−n is computed from
the posteriori estimate of the previous epoch or an initial value. The update step
serves as a refinement by using the measurements of the current time instant
and builds an a posteriori state estimate x̂+

n .
The initialization of the Kalman filter is done with a least-squares estimation

using the measurements of the first 3 epochs (3 time instants are needed to
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produce a reliable second derivative estimate of the geometry term), i.e. z1

z2

z3

 = H0 ·

 x1

x2

x3

+

 v1

v2

v3

 , (4.16)

with x1, x2, x3 being the first 3 state vectors without ˙̃g and ¨̃g in Eq.(4.2) and
with

H0 =
(
13×3 ⊗Hg̃ 13×1 ⊗ (HĨ H ˜̃̃

βR
H ˜̃̃
βK

HÑ )
)
. (4.17)

The initial state vector is calculated by performing the least-squares estima-
tion  x̂1

x̂2

x̂3

 =
(
HT

0 Σ−1
0 H0

)−1
HT

0 Σ−1
0 ·

 z1

z2

z3

 , (4.18)

with

Σ0 = 13×3 ⊗R0. (4.19)

Then, the initial state estimates of the geometry term derivatives are com-
puted by differencing between the estimated geometry terms on three time in-
stants.

During the Kalman filtering, an ambiguity resolution is performed to im-
prove the accuracy of all other states [11]. Without ambiguity resolution, the
ambiguities estimates would stay as float numbers whereas ambiguities are inte-
gers by definition. Once an ambiguity has been fixed to the right integer value,
it is removed from the state vector allowing a more precise estimate of the phase
biases. The fixing criterion is based on 3 parameters: a fixing window of length
tfixing epochs, a threshold εfixing and a probability αfixing (allowing some out-
liers) expressed in percentage. At each epoch tn, the integer Nk

int,i closest to

N̂k
i (tn) is computed as well as its distance from each previous N̂k

i during the
time period tfixing [9]. One ambiguity is only fixed when the offsets between
float and integer numbers are below a certain threshold over a time window, i.e.

#
{
N̂k
i (t),

∣∣∣N̂k
i (t)−Nk

int,i

∣∣∣ < εfixing; t ∈ {tn − tfixing, . . . , tn}
}
< αfixing · tfixing,

(4.20)

with # denoting the cardinality of a set. In this work, the parameters are chosen
to be

tfixing = 100 epochs, εfixing = 0.05cycles, αfixing = 95 %.

4.2 The Bryson Model

In order to take the correlation between the measurements over time in the sec-
ond Kalman filter into account, Bryson and Henrikson [13] proposed a method
to decouple the measurements, i.e.

xn = Φn−1xn−1 + wn−1 (4.21)

zn = Hnxn + vn (4.22)

vn = Γn−1vn−1 + ζn, (4.23)
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where vn denotes the measurement noise in the second Kalman filter, Γn de-
scribes the temporal correlation introduced by an earlier filtering process, and
ζn is white Gaussian distributed noise. Obviously, the main difference between
this model and the one underlying conventional Kalman filters lies in the de-
scription of the measurement noise, which is white Gaussian for the standard
one and colored for this much more general model. Clearly, Bryson‘s model
includes the conventional model as a special case.

The statistic properties of the process and measurement noises are given by

E(wn) = E(ζn) = 0 (4.24)

E(wnw
T
m) = Qnδnm (4.25)

E(ζnζ
T
m) = Rnδnm (4.26)

E(wnζ
T
m) = 0. (4.27)

By time-differencing the measurements, according to (4.21), (4.22) a new
measurement z∗n can be derived as

z∗n = zn+1 − Γnzn

= Hn+1xn+1 + vn+1 − Γn (Hnxn + vn)

= Hn+1 (Φnxn + wn) + Γnvn + ζn+1 − ΓnHnxn − Γnvn

= (Hn+1Φn − ΓnHn)xn +Hn+1wn + ζn+1

= H∗nxn + v∗n, (4.28)

with

H∗n = Hn+1Φn − ΓnHn (4.29)

v∗n = Hn+1wn + ζn+1. (4.30)

where v∗n represents the new measurement error with zero mean and covariance
matrix R∗n, and is no longer correlated over time, i.e.

E{v∗n} = 0, (4.31)

E{v∗nv∗Tm } = E{(Hn+1wn + ζn+1) (Hm+1wm + ζm+1)}
=
(
Hn+1QnH

T
n+1 +Rn+1

)
δnm

= R∗nδnm. (4.32)

However, a correlation between the process noise wn and the new measure-
ment noise v∗n is introduced as

E{wnv∗Tm } = E{wn (Hm+1wm + ζm+1)
T}

=
(
QnH

T
n+1

)
δnm

= Snδnm. (4.33)

Thus, a new state process noise vector w∗n shall be introduced accordingly
which is following a white Gaussian noise distribution with covariance Q∗n and
has no correlation with the measurement noise v∗n, i.e.

E{w∗n} = 0 (4.34)

E{w∗nw∗Tm } = Q∗nδnm (4.35)

E{w∗nv∗Tm } = 0. (4.36)
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The state transition in Eq.(4.21) remains unchanged after adding a 0, which
is obtained according to (4.28) by

z∗n−1 −H∗n−1xn−1 − v∗n−1 = 0. (4.37)

A new matrix Jn is introduced into the state transition by

xn = Φn−1xn−1 + wn−1 + Jn−1

(
z∗n−1 −H∗n−1xn−1 − v∗n−1

)
=
(
Φn−1 − Jn−1H

∗
n−1

)
xn−1 + Jn−1z

∗
n−1 +

(
wn−1 − Jn−1v

∗
n−1

)
= Φ∗n−1xn−1 + Jn−1z

∗
n−1 + w∗n−1, (4.38)

with

Φ∗n = Φn − JnH∗n (4.39)

w∗n = wn − Jnv∗n. (4.40)

According to (4.36) and (4.40), the cross correlation between process noise
and measurement noise is obtained by

E{w∗nv∗Tm } = E{(wn − Jnv∗n) v∗Tm }
= Snδnm − JnR∗nδnm (4.41)

= 0. (4.42)

The expression of Jn is given by

Jn = Sn (R∗n)
−1
, (4.43)

and Q∗n can be derived as

Q∗n = E{w∗nw∗Tn }
= E{(wn − Jnv∗n)(wn − Jnv∗n)T}
= E{wnwT

n } − E{wnv∗Tn }JT
n − JnE{v∗nwT

n }+ JnE{v∗nv∗Tn }JT
n

= Qn − SnJT
n − JnST

n + JnR
∗
nJ

T
n

= Qn − SnJT
n − Sn (R∗n)

−1
ST
n + Sn (R∗n)

−1
Rn∗JT

n

= Qn − Sn (R∗n)
−1
ST
n . (4.44)

The final set of the new introduced variables is obtained as

z∗n = zn+1 − Γnzn

H∗n = Hn+1Φn − ΓnHn

Sn = QnH
T
n+1

R∗n = Hn+1QnH
T
n+1 +Rn+1

Jn = Sn (R∗n)
−1

Q∗n = Qn − Sn (R∗n)
−1
ST
n

Φ∗n = Φn − JnH∗n.

(4.45)

The new prediction and updating steps are stated as

Prediction
x̂−n = Φ∗n−1x̂

+
n−1 + Jn−1z

∗
n−1

P−n = Φ∗n−1P
+
n−1Φ∗Tn−1 +Q∗n−1

(4.46)
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Updating

Kn = P−n H
∗T
n

(
H∗nP

−
n H

∗T
n +R∗n

)−1

x̂+
n = x̂−n +Kn

(
z∗n −H∗nx̂−n

)
P+
n = (I −KnH

∗
n)P−n

(4.47)

The algorithm is very similar to the equations (4.14) and (4.15) with the
usage of the ’newly’ time uncorrelated defined variables z∗n, H∗n, R∗n, Q∗n and
Φ∗n.

4.3 Cascaded Kalman Filter

A cascaded Kalman filter has the advantage that it enables a faster ambiguity
resolution compared to an estimation of all unknowns in one single step. How-
ever, the cascading of filters introduces time correlation into the a posteriori
estimates, such that the assumption of white Gaussian measurement noise is
no longer fulfilled for all filters except the first one. Therefore, the method of
Bryson shall be used to decouple the filters. Cascading Kalman filters is also
advantageous as batch processing of a large number of states is computationally
challenging.

4.3.1 First Stage

The first Kalman filter focuses on an accurate estimation of the geometry term
∆g̃ki . The measurement model of Eq. (3.25) shall be slightly modified, i.e. an
a priori knowledge of the receiver and satellite positions (and, thus, the range)
as well as of the tropospheric delay shall be assumed available and, thus, only
the errors of this model have to be estimated, i.e.

λ1∆φk1,i(tn) = ∆g̃ki (tn)− Ĩk1,i(tn) + λ1Ñ
k
1,i +

˜̃̃
β1,i +

˜̃̃
βk1 + εk1,i(tn)

λ2∆φk2,i(tn) = ∆g̃ki (tn)− q2
12Ĩ

k
1,i(tn) + λ2Ñ

k
2,i +

˜̃̃
β2,i +

˜̃̃
βk2 + εk2,i(tn)

∆ρk1,i(tn) = ∆g̃ki (tn) + Ĩk1,i(tn) + ηk1,i(tn)

∆ρk2,i(tn) = ∆g̃ki (tn) + q2
12Ĩ

k
1,i(tn) + ηk2,i(tn)

, (4.48)

where the geometry term is written as

∆g̃ki (tn) = ~ekT
i ∆~rk(tn) + cδτi + bgk , (4.49)

with cδτi being the receiver clock offset, bgk being the satellite code bias and
with ∆~rK defining the orbital error of the satellite, i.e.

∆~rk = ~rk − ~̂rk. (4.50)

Both the geometry term and the slant ionospheric delay of the first Kalman
filter include a deterministic first order dynamical model and a Gauss-Markov
process, i.e.

∆g̃ki (tn) = ∆g̃ki (tn−1) + ∆t∆ ˙̃gki (tn−1) + w∆g̃ki
(tn) (4.51)

Ĩkm,i(tn) = Ĩkm,i(tn−1) + ∆t ˙̃Im,i(tn−1) + wĨki
(tn). (4.52)
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The state vector for the first Kalman filter is obtained as

x(1)
n =

[
∆g̃T

n ,∆ ˙̃gT
n , Ĩ

T
n ,

˙̃IT
n ,

˜̃̃
βT
R,

˜̃̃
βK,T, ÑT

]T

, (4.53)

where the upper index (1) indicates the stage of Kalman filters.
The measurement vector combines 2 epochs together to allow a better esti-

mate of the first derivatives,

z(1)
n =

[
λ1ϕ

T
1,n, λ2ϕ

T
2,n, ρ

T
1,n, ρ

T
2,n, λ1ϕ

T
1,n+1, λ2ϕ

T
2,n+1, ρ

T
1,n+1, ρ

T
2,n+1

]T
. (4.54)

The new number of states is calculated as

NSTATES = Nmeas +Nmeas +Nmeas +Nmeas + 2R+ 2(K − 1)

+ 2Nmeas − 2R− 2(K − 1)

= 6Nmeas, (4.55)

withK being the number of visible satellites, and R is the number of stations.
It is noted that in the above calculation, the Gaussian elimination has already
been applied to the ambiguities and, thus, no singularity is expected with the
phase biases.

The state transition matrix can be derived from (4.51) and (4.52) as

Φn =



1 ∆t1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 ∆t1 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


, (4.56)

with ∆t = 2 epochs in this model because of the form of the measurements.
According to the system model the Hn matrix has the following form:

Hn =

(
H∆g̃ 0 HĨ 0 H ˜̃̃

βR
H ˜̃̃
βK

HÑ

H∆g̃ ∆tH∆g̃ HĨ ∆tHĨ H ˜̃̃
βR

H ˜̃̃
βK

HÑ

)
, (4.57)

where H∆g̃, HβR , HβK , HI and HÑ matrices are defined like in the previous
model.

In this work, the standard deviation of the measurement noises are chosen
according to [14][15], i.e.

σφ = 5 mm : phase noise
σρE1

= 11.14 cm : E1 code noise
σρE5

= 1.93 cm : E5 code noise.

Since the geometry term ∆g̃ consists of different parameters, its process
noise matrix Q∆g̃ is derived from the process noise matrix of those parameters,
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i.e.

Q∆g̃ = H∆~rKQ∆~rKH
T
∆~rK +HcδτRQcδτRH

T
cδτR , (4.58)

with H∆~rK , HcδτR , Q∆~rK and QcδτR being respectively the state transition
matrix and process noise covariance matrix of the satellite position error ∆~rK

and the receiver clock offset cδτR. The satellite code bias bgk is assumed to be
constant over time and thus does not appear in the above equation.

4.3.2 Computation of the Time-Correlation

The main idea is to use the Bryson method with the second stage Kalman filter,
while the standard Kalman filter is used for the first stage. The measurements

z
(2)
n of the second stage are then equal to the a posteriori state estimate x̂

+(1)
n

of the first stage. To perform the filtering of the second stage, the matrix Γn
representing the time correlation of the measurement noise has to be computed.
It can be performed by calculating the correlation matrix between the a poste-
riori state estimate of the first Kalman filter at epoch n and n+ 1. To simplify
notations all the matrices except Γn are referring to the first Kalman filter in
this section.

The temporal correlation of the posteriori state estimates of the first Kalman
filter, which also equals the temporal correlation of the measurements of the
second Kalman filter, is calculated as

E{
(
x̂+(1)
n − E{x̂+(1)

n }
)(

x̂
+(1)
n+1 − E{x̂

+(1)
n+1 }

)T

}

= E{(z(2)
n − E{z(2)

n })(z
(2)
n+1 − E{z

(2)
n+1})T}

= E{v(2)
n v

(2)T
n+1 }. (4.59)

According to Eq. (4.23), the temporal correlation of measurement noise of
the second Kalman filter is obtained by

E{v(2)
n v

(2)T
n+1 } = E{v(2)

n (Γnv
(2)
n + ζ(2)

n )T}
= E{v(2)

n v(2)T
n }ΓT

n , (4.60)

where the noise covariance is defined as

E{v(2)
n v(2)T

n } = E{(z(2)
n − E{z(2)

n })(z(2)
n − E{z(2)

n })T}
= E{(x̂+(1)

n − x(1)
n )(x̂+(1)

n − x(1)
n )T}

= Px̂+
n
. (4.61)

Since

x̂
+(1)
n+1 − x

(1)
n+1 = x̂

−(1)
n+1 +Kn+1(z

(1)
n+1 −Hn+1x̂

−(1)
n+1 )− x(1)

n+1

= (I −Kn+1Hn+1)x̂
−(1)
n+1 +Kn+1(Hn+1x

(1)
n+1 + ζ

(1)
n+1)− x(1)

n+1

= (I −Kn+1Hn+1)(x̂
−(1)
n+1 − x

(1)
n+1) +Kn+1ζ

(1)
n+1, (4.62)
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another way to calculate the cross-correlation of the state estimates is given by

E{
(
x̂+(1)
n − E{x̂+(1)

n }
)(

x̂
+(1)
n+1 − E{x̂

+(1)
n+1 }

)T

}

= E{
(
x̂+(1)
n − x(1)

n

)(
x̂

+(1)
n+1 − x

(1)
n+1

)T

}

= E{(x̂+(1)
n − x(1)

n )(x̂
−(1)
n+1 − x

(1)
n+1)T}(I −Kn+1Hn+1)T

= E{(x̂+(1)
n − x(1)

n )(Φn(x̂+(1)
n − x(1)

n )− w(1)
n )T}(I −Kn+1Hn+1)T

= (Px̂+
n

ΦT
n − E{(x̂+(1)

n − x(1)
n )w(1)T

n })(I −Kn+1Hn+1)T

= Px̂+
n

ΦT
n (I −Kn+1Hn+1)T. (4.63)

By setting Eq.(4.59) and Eq.(4.63) equal, one can obtain

E{v(2)
n v

(2)T
n+1 } = Px̂+

n
ΦT
n (I −Kn+1Hn+1)T. (4.64)

Combining Eq.(4.60) ,Eq.(4.61) and Eq.(4.64), Γn can be computed as

Γn = (E{v(2)
n v

(2)T
n+1 })T((E{v(2)

n v(2)T
n })T)−1

= (I −Kn+1Hn+1)ΦnP
T
x̂+
n

(PT
x̂+
n

)−1

= (I −Kn+1Hn+1)Φn. (4.65)

This last equation shows the existence of a time-correlation between state
estimates at the output of a Kalman Filter. If there was no correlation, the Γn
would be equal to zero to match the standard Kalman filter model. However,
it would mean that the matrix product KnHn is equal to the identity matrix,
which is very unlikely considering the form of Kn. This validate the need of
the Bryson method in the second stage in order to take this correlation into
account.

4.3.3 Second Stage

The second stage Kalman Filter focuses on computing an estimate of ∆g̃ defined
as in (4.49). The second state vector is defined as follows:

x(2) =
[
∆~rK,T,∆~̇rK,T, cδτT

R , b
T
gK

]T
. (4.66)

It is noted that the receiver clock offset term cδτR also contains the receiver
code bias, which cannot be distinguished from the clock offset.

The orbital error ∆~rK has a linear state model:

∆~rK(tn) = ∆~rK(tn−1) + ∆t∆~̇rK(tn−1) + w∆~rK (tn). (4.67)

The estimate ∆ˆ̃g from the first Kalman filter serves as the measurement
input for the second one.

z(2) = ∆ˆ̃g. (4.68)
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Similar with the first stage, the state transition matrix can be derived from
the dynamical model of (4.67):

Φn =


1 ∆t1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (4.69)

Equation (4.49) gives directly the form of the Hn matrix:

Hn =
(
H∆~r 0 HcδτR HbgK

)
, (4.70)

with

HcδτR =


1K1×1

1K2×1

. . .

1KR×1

 . (4.71)

The matrix H∆~r contains the ~e-vectors for each satellite/receiver pair. Since
the radial component of the orbital error is the most difficult term to be esti-
mated during a short time, it is necessary to separate the radial direction from
the normal e-vector. In this work, the RIC (Radial, In-track, and Cross-track)
frame is used to describe the orbital error, and the transformation matrix into
ECEF (Earth Centered Earth Fixed) frame [16] is explained in the following.

Consider a coordinate (X, Y, Z) in the ECI (Earth-Centered Inertial) frame,
the radius, velocity and angular momentum are then obtained as

~r = X~ex,I + Y ~ey,I + Z~ez,I (4.72)

~̇r = Ẋ~ex,I + Ẏ ~ey,I + Ż~ez,I (4.73)

~L = ~r ∧ ~̇r, (4.74)

with

~r : position vector
(~ex,I, ~ey,I, ~ez,I) : triplet of the ECI frame

~̇r : velocity vector
~L : angular momentum vector

The three base axis of the RIC frame are ~R lies along the instantaneous
radius vector, ~C lies along the angular momentum vector, and ~I completes the
right hand system, i.e.

~R =
~r

‖~r‖
=

X

‖~r‖
~ex,I +

Y

‖~r‖
~ey,I +

Z

‖~r‖
~ez,I (4.75)

~C =
~L∥∥∥~L∥∥∥ =

~r ∧ ~̇r∥∥∥~r ∧ ~̇r∥∥∥ (4.76)

~I = ~C ∧ ~R. (4.77)
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Therefore the rotation matrix from ECI to RIC is defined as ~R
~I
~C

 =

 Rx Ry Rz
Ix Iy Iz
Cx Cy Cz

 ~ex,I
~ey,I
~ez,I


= RRIC

 ~ex,I
~ey,I
~ez,I

 . (4.78)

To perform the change of coordinates from ECI to ECEF, the rotation of
the earth of an angle θ between the two frames must be taken into account. The
rotation matrix Rz(θ) along the z axis is given by ~ex

~ey
~ez

 =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 ·
 ~ex,I

~ey,I
~ez,I


= Rz(θ) ·

 ~ex,I
~ey,I
~ez,I

 . (4.79)

The final transformation from RIC to ECEF can be described as: ∆rx
∆ry
∆rz

 = Rz(θ) ·RT
RIC

 ∆rR

∆rI

∆rC

 . (4.80)

4.4 Results

Figure 4.1: IGS global network of stations used in the simulation

In this work, a simulation based on a network of receivers worldwide [6]
is performed to estimate the satellite orbital errors and satellite code biases
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along with other terms. In the simulation step, the state including the satellite
orbital errors, the receiver clock offsets, the satellite code biases, the ionospheric
slant delays, the integer ambiguities, the receiver and satellite phase biases is
generated in one step, which is further estimated using the cascaded Kalman
filter. The geometry term is estimated in the first Kalman filter, and then used
as measurement in the second Kalman filter. The Bryson method is applied to
decouple the time-correlated measurements.

The generated satellite orbital error consists of the in-track and along-track
components, where the radial component is assumed to be perfectly known.
Signals were generated without multipath and the ambiguities are fixed. Fig.4.2
shows the difference between the true orbital errors and the estimates. The error
in the estimates converges to under 2 cm after 700 epochs. Fig.4.3 shows the
error in the satellite code bias estimates. After 500 epochs the error converges
to under 1 cm.
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Figure 4.2: Difference between true orbital errors and estimates for in-track and
along-track
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Figure 4.3: Difference between true geometry satellite code biases and estimates
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Chapter 5

Multipath Correction

5.1 Presentation of the SAPOS Network

This chapter focuses on the reduction of code multipath. Real GPS data
were obtained from the Satellitenpositionierungsdienst der deutschen Landesver-
messung (SAPOS), which operates a network of geodetic reference stations in
Bavaria.

Figure 5.1: SAPOS network in Bavaria

Fig.5.1 shows a map of the whole Bavarian network of SAPOS stations [17].
The stations used in the simulation are marked green and use common Trimble
receivers. The data were taken over 7 days from Mai 30, 2011 to June 5, 2011
during the period 8:00 - 11:00 local time (UTC+2). A subset of 10 stations were
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chosen, with the following computation parameters for the process noises:

σwgi = 1 m

σwI = 1 cm

σwβi = σw
βk

= σwN = 0,

with σwgi , σwI , σwβi , σwβk , σwN being respectively the process noise standard
deviation for the geometry term, the ionospheric delay, the receiver and satellite
biases and the ambiguities. The satellites considered are those seen by all sta-
tions during the 3 hour time period and are the following: PRN2, PRN5, PRN7,
PRN8, PRN10 and PRN13. The stations presenting the most interesting results
is the 0274 in Günzburg marked with a blue triangle on the map 5.1.
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Figure 5.2: Skyplot of the station 0274

The Figure 5.2 shows the skyplot of the station 0274 and the 6 chosen satel-
lites during the observation period. It is a polar representation of the satellite
position seen by a receiver. The angle is equal to the azimuth and the radius is
equal to the satellite elevation in the sky. Most of the patterns studied in the
following come from the PRN5 represented with the blue curve located in the
upper left corner.

5.2 Multipath Analysis

In a perfectly modeled system the residual of the code and phase should be
almost equivalent to a white gaussian noise. However, the residual (Fig.5.3)
over time shows that there exists a strong periodic pattern, which is most likely
to be the code multipath.
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Figure 5.3: Residual of pseudorange measurements at station 0274 from PRN5
on days 150 from 8:00 to 9:40.

The pattern also repeats itself after a GPS period as seen on Fig.5.4 and the
magnitude of the oscillation seems directly correlated to the current satellite
elevation and thus position toward the station and its environment, being almost
nonexistent for high elevation.

Using the cross-correlation function ∗, this phenomenon can be understood
easily. The cross-correlation between two signal f and g is a measure of simi-
larity of the two waveforms. It allows pattern recognition by making the con-
volution between the two signals without reversing and is defined as

(f ∗ g) [m] =

∞∑
n=−∞

f∗[m]g[n+m]. (5.1)

Fig.5.5 represents the cross-correlation figure of two stations between 2 days.
On Figure 5.5(a), the normalized cross-correlation result shows a characteris-
tical sinc looking aspect with a maximum at time tn = 3 min 56 s (difference
between the time period between the two sample, which is a calendar day, and
a sidereal day, which is equal to 2 periods of GPS). Furthermore, the side lobes
have a constant spacing corresponding to the time period of the oscillating pat-
tern. On Figure 5.5(b), there is no clear maximum that can be sorted out and
the normalized cross-correlation result includes significant noise, proving that
there is no real pattern to be matched between the two samples. Moreover,
the maximum in the second case is ten times lower than the maximum in the
first case. This can be explained by multipath occurring at low elevation: the
signal from the satellite is bouncing on the surrounding environment of the base
antenna, creating destructive and constructive interferences and thus produc-
ing the same pattern each time the satellite is in sight. It means that every
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Figure 5.4: Residual of pseudorange measurements at station 0274 from PRN5
on days 150 to 156 from 8:00 to 9:40.

11h58m02s (1 GPS revolution period) the residual has the same aspect in case
of strong multipath/shadowing. The residual res can be described as

res = z −Hx̂+ = m+ η, (5.2)

with z being the measurement, x̂+ the state estimate, H the measurement
matrix, m the multipath term and η a white gaussian noise. In order to get
the multipath pattern, a simple method consists in averaging n samples of the
residual in order to obtain the estimate as

m̂ = m+
1

n
η. (5.3)

If the noise η has a variance σ2, the ’new’ noise component of m̂ has a

variance of σ2

n (The family of normal distributions is closed under linear trans-
formations and the linear combination of independent normal random variables
is also normally distributed). It means that the more samples are used, the less
noisy the estimated pattern will be as seen on Fig.5.6, where the residuals from
Fig.5.4 have been averaged in respect to their elevation.

5.3 Multipath Correction on the Residuals

To apply the correction, the multipath amplitude of the average is subtracted to
the code and phase measurement elevation-wise with respect to the rising and
setting of the satellite (see (5.4)). The effect on the residual is the disappearance
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Figure 5.5: Cross-correlation figure of two samples from different days at the
same daily hour

of the multipath pattern which can be seen on Fig.5.7.

znew = z − m̂. (5.4)
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Figure 5.6: Averaging over one week
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Figure 5.7: Code residual for station 0274 PRN 5 on day 150 after the applica-
tion of the multipath filtering
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res =
n+ 1

n
η. (5.5)

Spectral analysis can also bring some information about the nature of the
residual. One way of obtaining the spectral density of a signal is the use of
a periodogram which provide an estimate of it. In a time-discrete model, the
FFT (fast Fourier transform) is used to allow the access of such a periodogram.
Let x0, . . . , xN−1 be complex number defining the time-discrete signal, with N
being a power of 2. The DFT (discrete Fourier Transform) which serves as a
base for the FFT is described as

Xk =

N−1∑
n=0

xne
i2πk nN , (5.6)

with k = 0, . . . , N − 1
The power of the FFT, i.e. the periodogram is then computed as

Periodogramk =
1

N
Xk ∗X∗k , (5.7)

with X∗k being the conjugate of Xk.
Applied to the residual, a rough estimate of the spectral density is obtain

on Fig.5.8.
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Figure 5.8: Periodogram of 0274 PRN 5

In the case of an ideal white Gaussian noise, the power shall remain constant
in respect to the frequency. Peaks are to be noted at the frequencies correspond-
ing on the oscillations of the pattern in case of multipath (blue curve). Those
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peaks get completely discarded when the multipath correction is applied (red
curve) giving the residual a closer aspect to white noise. On Fig.5.9, the his-
togram of the residual before and after correction has been plotted. It has a
typical bell-shape of a Gaussian noise in both cases.
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Figure 5.9: Distribution of the residual for station 0274 PRN 5

It can be seen that the blue curve is much wider aspect than the red curve,
which translates by a greater variance of the signal. After measurement, the
corrected residual presents a variance reduced by a factor 2 compared to the
original uncorrected residual.

5.4 Results

The direct effect of multipath correction on the satellite phase bias estimation is
the improved stability as seen on Fig.5.10. The erratic oscillations are discarded
and the curves converge smoothly to their final values.

The vertical black bars of Fig.5.10 denote ambiguities fixing. Before the
multipath correction, only 2 out of 90 ambiguities were fixed over a period of
6000 s. With multipath correction, this number is raised to 40 out of 90 for this
particular set of data. Moreover the fixing of the first ambiguity happens earlier:
without multipath correction the first fixing occurs at t = 3668 s, whereas the
first fixing with multipath correction occurs at t = 2219 s.
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Figure 5.10: Phase bias estimate on the L1 frequency
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Chapter 6

Conclusion

In this work, a cascaded Kalman filter was developed to estimate satellite phase
and code biases in a GNSS network. First, a set of mappings has been per-
formed on the most general measurement model to prevent singularities. A first
stage Kalman filter has then been applied to this model in order to retrieve an
estimate of the geometry term containing all non-dispersive parameters. After
this step, a second Kalman filter has been used to refine this geometry term
or, more precisely, to determine satellite orbit corrections and satellite code bi-
ases. As the a posteriori state estimates of the first Kalman filter correspond to
the measurements of the second Kalman filter, the time-correlation introduced
by the first Kalman filter has been taken into account by Bryson’s generalized
Kalman filter for coloured measurement noises. A decoupling has been per-
formed in two steps - the first one being a time-differencing and the second one
being a decorrelation of the transformed measurement and process noises.

A simulation based on a network of receivers from IGS has been performed
to estimate the satellite cross-track and in-track orbital errors as well as satellite
code biases along with other terms. The difference between the estimated orbital
errors and their true values converges to less than 2 cm within 1400 s. For the
satellite code biases estimate, this difference reaches 1 cm after 1000 s.

The second part of the thesis focused on the mitigation of code multipath.
Given a network of ground station from SAPOS split across Bavaria, a daily
multipath pattern has been observed in the code measurements. A sidereal
filtering has been applied to the samples gathered over one week, such that the
multipath pattern could be isolated and removed from the measurements. The
effect on real data was an almost complete mitigation of the pattern, resulting
in an almost white measurement noise and in an increase of the ambiguity
fixing from 2.22 % to 44.44 % of the total ambiguities for the observed time
period. The fixing of the ambiguities also happens earlier when the multipath
is corrected, thus providing a faster estimation of the phase biases.
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