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Abstract

In this master thesis, a bundle adjustment-based SLAM-with-ranging-aid algorithm
is presented. The underlying theory and implementation details are given. The
algorithm combines both visual cues and ranging measurements to a fixed reference
in order to reduce the drift in visual SLAM. A description of the whole workflow
from image acquisition and rectification to trajectory and map update is given. The
algorithm is tested on real scenes using a VI-sensor as well as on scenes extracted
from KITTI data set. We show that integrating range measurements into bundle
adjustment allows us to reduce the drift in the trajectory.
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Chapter 1

Introduction

The estimation of the movement of a camera and the construction of a map of
the environment are two main tasks in robotics and autonomous visual navigation.
These tasks are usually performed using Simultaneous Localization and Mapping
(SLAM), the process by which a mobile robot builds a map of its environment and
simultaneously localizes itself within the map. In this thesis, we focus on a particu-
lar category of SLAM which is visual SLAM (V-SLAM). Visual SLAM systems use
cameras as sensors for trajectory and map estimation and can be classified into two
main categories: monocular SLAM and stereo SLAM. Monocular SLAM systems
use a monocular camera and can therefore estimate the trajectory and map only
up to a scale. Stereo SLAM systems rely on stereo cameras which, unlike monoc-
ular cameras, do not introduce a scale ambiguity, but still result in a drift in the
trajectory estimation due to the dead reckoning process inherent to SLAM. Dead
Reckoning is the estimation of the robot’s current position based on a previously
determined position and on the relative estimated motion between the previous and
current positions. This process is subject to cumulative error [SS10] which increases
the drift. Therefore, drift correction is still a core topic in SLAM and many ap-
proaches have been proposed to deal with it. Some of the navigational aid methods
for drift reduction combine V-SLAM with other sensors such as GPS or IMU or use
loop closure detection, which relies on recognizing revisited places and previously
observed landmarks for trajectory and map update. In this work, another approach
for drift reduction is proposed, which allows us to update the trajectory and map
even in absence of loop closure. The approach combines visual cues with rang-
ing measurements that give the distance over discrete intervals of time to a fixed
reference which has a known position. Ranging measurements are usually taken
using a ranging equipment: an antenna placed at a known reference point in the
environment to be explored emits signals that can be converted to ranging measure-
ments by a robot placed at an arbitrary distance from the reference antenna and
equipped with a wireless radio receiver. These ranging measurements are combined
with the V-SLAM algorithm to update both the trajectory and map. This approach
can work even in GPS denied environments and does not require expensive high-



accuracy IMUs or laser scanners.

In visual SLAM, there are two main approaches that are used to update the trajec-
tory: filtering methods and non-filtering methods [SF11]. Filtering methods such as
the Extended Kalman Filter (EKF) use all images and update the trajectory at each
frame using a probabilistic framework. On the other side, non filtering-methods are
optimization methods that check either the local or global consistency of the map
and trajectory. In this thesis, we use a non-filtering method which is bundle ad-
justment. Our bundle adjustment algorithm uses visual cues as well as ranging
measurements and performs a non-linear optimization that aims at minimizing the
error between the predicted and measured parameters. This work gives the theory
and implementation details of a bundle adjustment based V-SLAM algorithm that
combines visual information with ranging measurements for drift mitigation. The
report is organized as follows: Some related work in the field of drift reduction in
SLAM is given in Chapter 2. The underlying theory of this thesis is given in Chapter
3. Chapter 4 describes the method of bundle adjustment with ranging aid used to
reduce the drift. In Chapter 5, we present the workflow and give some implemen-
tation details. Experimental results using VI-sensor as well as scenes from KITTI
data set are presented in chapter 6. Finally, the work is concluded in Chapter 7.
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Chapter 2

Related Work

Different approaches have been proposed in the literature to deal with the drift is-
sue in SLAM. One of the most known approaches is loop closure detection. This
approach is based on recognizing that the autonomous agent has returned to a previ-
ously visited location. This is be usually achieved using a combination of visual and
spatial appearance of local scenes [HN06]. Once a loop closure is correctly detected,
the map and trajectory can be both updated based on the correlation of errors that
charachterizes the SLAM problem. However, the method of loop closing constraints
the movement of the robot by assuming that previously seen places are revisited,
which should not always be the case. Furthermore, loop closing detection requires a
good data association process to ensure a robust detection. Data association is how-
ever a computationally heavy operation that consumes a lot of memory and time.
In [KSC13], additionally to loop closing detection, RGB-D cameras are used for a
dense feature matching over all pixels by exploiting both photometric and depth
information. Furthermore, a graph optimization method using g2o framework is
suggested for drift reduction in the trajectory. However, the problem with RGB-D
sensors such as Kinect is that they can not operate outdoors due to their infrared
(IR) based ranging. Another commonly used approach is to integrate additional
navigational aid into the SLAM algorithm. For example, integrating GPS [BAC13]
or IMUs [Pet14] information into the visual SLAM system can help reduce the drift
in the trajectory estimation. GPS provides an additional absolute localization which
can reduce the impact of the drift for large scale motions. However, GPS can not be
used in some environments such as indoor environments or on Mars. It also requires
an additional sensor fusion process in order to be included with visual SLAM. On
the other hand, due to noise, the errors in the IMU accumulate with time and in-
ertial measurements are thus also subject to drift. Moreover, high-accuracy IMUs
which have small errors in the trajectory estimation are very expensive.

Recently, in [SZM+13] a swarm system of autonomous platforms was proposed for
navigation on Mars. Apart from using inertial sensors, cameras and laser scanners,
the swarm navigation system uses relative radio positioning systems. The radio
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positioning system is exploited to get measurements of the distance between the
swarm elements, which allows them to avoid collisions. In [ESZ14], a swarm system
that exploits wireless signals as well as a hybrid time division (TDMA) and fre-
quency division (FDMA) access scheme with ranging measurements was proposed.
The ranging measurements are processed online using a particle filter and calculated
using round-trip delay (RTD) approach. Round-trip delay measures the distance be-
tween two cooperative autonomous agents : a master and a slave. The master emits
an OFDM modulated data packet to the slave which returns this packet. Based on
time stamps of the transmission and reception of the packet, the master estimates
the round-trip delay and deduces the range value between the two agents. In such
a swarm system, the master clock must be stable in order to accurately estimate
the ranging. In this thesis, we only rely on one fixed reference for range estimation.
Therefore, this approach can work with only one agent but also with multiple agents
as long as they can all receive the range information from the fixed reference. Fur-
thermore, our approach does not rely on loop closure or RGB-D images and does not
require the integration of IMU or GPS. Therefore, it can be used in both outdoor
and indoor environments.
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Chapter 3

Relevant Theory

In this Chapter the theory that underlies our work is presented. First, the required
frames and notations are defined and the problem of this thesis is formulated. More-
over, some theoretical background which is useful for understanding the coming
chapters is given. In the following, vectors and matrices appear in bold and vT

denotes the transpose of v.

3.1 Problem Definition and Notations

3.1.1 Navigation Frame and World Frame

In this section, we examine a two dimensional simplification of the problem of a
robot navigating autonomously in an unknown environment. This two-dimensional
hypothesis is also accurate for cases in which the robot moves without a signifi-
cant change in attitude, i.e. when the robot motion can be considered as planar.
The problem considered in this work may be formulated as follows: a static base
station emits ranging measurements that are captured by a moving robot. These
measurements are used in addition to the V-SLAM algorithm which is based on the
images provided at discrete time instants i.e. discrete frames by a calibrated camera
(monocular or stereo camera) attached to the robot. For simplicity, we also assume
that the position of the robot and the position of the camera are identical i.e. the
camera coordinate frame is the same as the robot’s coordinate frame. In case of
using a stereo camera, we assume that the camera coordinate system is that of the
left camera.
The V-SLAM algorithm uses visual odometry to give an initial estimation of the
robot trajectory. This trajectory is calculated in the navigation frame denoted by
(N). The Navigation frame is a fixed 2D orthonormal direct frame which has as ori-
gin the initial position of the robot and as horizontal axis the initial heading of the
robot. We denote by x′ and y′ respectively the horizontal and vertical axis of (N).
The trajectory of the robot obtained by visual odometry is therefore estimated with
respect to the initial position of the robot. In case of a planar motion, the position



of the robot at the ith frame is described by 3 variables in (N): two Cartesian coor-
dinates x′

i and y′i and an angle θ′i which describes the relative heading of the robot
with respect to (N). In these notations, the index i varies between 0 and m − 1,
where m represents the total number of image frames.Thus, the initial position of
the robot is expressed in (N) by the triplet (x′

0, y
′
0, θ

′
0)

The trajectory estimated by the V-SLAM algorithm and expressed in (N) is how-
ever subject to drift which is due to the error propagation and to the accumulated
errors in the estimation of the relative rotation and translation between each two
successive camera frames. To reduce the drift and update the trajectory and map,
we introduce ranging measurements that are estimations over discrete time inter-
vals of the distance that separates the robot to a fixed reference that has a known
position. The reference can for example be a base station antenna that emits the
range measurements in form of radio signals. In order to be able to integrate the
ranging information, the definition of another global reference frame called World
Frame (W ) is needed. The World Frame is also an orthonormal direct fixed frame
and has as origin the base station antenna. The orientation of its axes is arbitrary.
The distance between the origin of (W ) and the robot at frame i is given by the
ranging measurement ρi. The aim of our work is, given an initial trajectory estima-
tion of the robot (x′

i, y
′
i, θ

′
i) obtained by a V-SLAM algorithm and a set of ranging

measurements ρi, to be able to reduce the drift in the initial trajectory estimation
and update both the trajectory and map. The trajectory and map update is done
using the bundle adjustment method which will be detailed in section 3 of this chap-
ter. Fig.3.1 shows both Navigation Frame and World Frame. The trajectory of the
robot is depicted over 3 successive positions and the ranging measurements ρ0, ρ1
and ρ2 corresponding to the three initial positions are also depicted in this figure.

Figure 3.1: Navigation and World Frames



3.1.2 Initial Position Ambiguity

Let (xi, yi, θi), be the triplet that describes the ith position of the robot in (W ). If
the initial position of the robot (x0, y0, θ0) is known, then the trajectory of the robot
in (W ) can be deduced from the estimated trajectory in (N) (x′

i, y
′
i, θ

′
i) by applying

a rigid-body transformation. However, we are usually only given the estimated
trajectory in (N), which is provided by the visual odometry algorithm. The initial
position of the robot in (W ) (x0, y0, θ0) is thus usually unknown. This uncertainty
in the initial position of the robot in (W ) can be reduced if we are given the initial
ranging measurement ρ0, which restricts the initial position of the robot to the circle
ϕ of origin the origin of (W ) and of radius ρ0. However, given only the ranging
measurements ρi and the estimated trajectory in (N) (x′

i, y
′
i, θ

′
i), it is impossible to

know the exact initial position of the robot within the circle ϕ. Fig.3.2 visualizes
the ambiguity in the initial position of the robot: given an estimated trajectory in
(N) and a set of ranging measurements ρi, the whole trajectory of the robot in (W )
can be rotated along the circle ϕ without any change in the ranging measurements
ρi nor in the expressed trajectory in (N). In order to avoid this ambiguity in the
initial position of the robot in (W ), we assume that the robot is initially situated
within the right half of the x-axis of (W ). Therefore, the initial position of the robot
in (W ) is given by (1, 0, θ0), where θ0 expresses the initial heading of the robot with
respect to (W ) i.e. the angle between the x-axis and the x′-axis. This angle is
not ambiguous and can be determined using the ranging measurements ρi and the
estimated trajectory (x′

i, y
′
i, θ

′
i) in (N).

3.2 Projection of World Coordinates into Image

Coordinates

3.2.1 Camera Model

In this section, we describe the model of the camera attached to the navigating robot.
The model used is the perspective camera model which assumes a pinhole projection
system. In a pinhole projection model, the image is formed by the intersection of
the focal plane with the light rays coming from the objects and traversing the center
of the lens [HZ03]. Furthermore, we assume that we have a calibrated camera, i.e.
that the intrinsic parameters of the camera are known. Camera intrinsic parameters
can be encapsulated in the camera matrix K. For image planes with square pixels,
the camera matrix K is given by:

K =







f 0 Px

0 f Py

0 0 1









Figure 3.2: Position Ambiguity

where f is the focal length of the camera, Px and Py are the image coordinates of
the principal point. The principal point is the point at the intersection of the optical
axis of the camera with the image plane and is usually situated at the image center.

3.2.2 Projection of World Coordinates into Image Coordi-
nates

As the rover moves in the Navigation Frame (N), the camera is subject to a rotation
R and to a translation t. R is a 3 × 3 rotation matrix describing the orientation
of the camera frame wrt. (N) and t is a vector in IR3 representing the location
of the camera with respect to the origin of (N). These rotation and translation
transformations form the camera extrinsic parameters and are used to define the
camera projection matrix P. The projection matrix P is obtained by multiplying
the camera matrix K with the extrinsic parameters as follows:

P = K [R|t]

where P and [R|t] are 3 × 4 matrices and K is a 3 × 3 matrix. The real-world
3D coordinates of the landmarks observed by the camera are projected onto the
2D image plane of the camera following the principle of projective geometry. The
projection is given in homogeneous coordinates by:
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where (u v 1)T are the homogeneous image coordinates, P is the projection matrix
and (X Y Z 1)T are the homogeneous coordinates of the 3D point.
Apart from matrix representation, a three-dimensional rotation can also be repre-
sented using quaternions. A quaternion q is generally represented in the form:

q = qw + qxi+ qyj + qzk

where qw, qx, qy and qz are real numbers and i, j and k are the fundamental quater-
nion units. Quaternion representation of rotations is more compact, more numer-
ically stable and faster to interpolate than matrix representation. It also avoids
the problem of gimbal lock related to the representation of rotations by Euler an-
gles. Relations between matrix representation and quaternion representation can be
found in appendix B.

3.3 Rigid Body Transformation

3.3.1 From Camera Frame to Navigation Frame

As mentioned in the previous sections, the trajectory of the robot and the map of
the environment are both estimated in the Navigation Frame (N). If we denote by

(k) the kth camera frame, and by C
(N)
k the three dimensional vector representing the

position of the camera at the kth frame in (N), the extrinsic parameters (Rk, tk) of
the camera at frame k are given by:

Rk = R(N)→(k) (3.1)

tk = −RkC
(N)
k (3.2)

where R(N)→(k) is the rotation matrix representing the rotation from (N) to (k).
Furthermore, if we denote by X(k) the coordinates of a 3D point in the kth camera
frame and by X(N) the coordinates of this point in (N), then we have the following
rigid body transformation between X(k) and X(N):

X(N) = RT
k .X

(k) +C
(N)
k (3.3)

In homogeneous coordinates, this relation is given by:
(

X(N)

1

)

=

[

RT
k C

(N)
k

0 1

]

(

X(k)

1

)

= Πk

(

X(k)

1

)

(3.4)

where Πk is a 4 × 4 matrix that represents the pose of the camera at frame k i.e.
the position and orientation of the camera relative to (N).



3.3.2 From Navigation Frame to World Frame

Let’s denote by C
(W)
k the position of the robot at the kth frame in (W ). In section

3.1.2, we mentioned that in case the initial position of the robot in (W ) i.e. C
(W)
1

is known, the trajectory of the robot in (W ) can be deduced from the estimated
trajectory in (N) by applying a rigid-body transformation. In case of a planar

motion and assuming that C
(W)
1 =[1 0]T , this rigid body transformation is given by:

C
(W)
k = C

(N)
k R(α) +C

(W)
1 (3.5)

where R(α) is the rotation matrix representing the initial relative heading of the
robot w.r.t. (W ). This relative orientation can be described using a single angle α

in case of a two-dimensional motion.

3.4 Visual Odometry

Visual Odometry (VO) allows a robot to estimate its ego-motion using only im-
age frames as input. The image frames can be obtained using either a monocular
or a stereo camera. In VO, the camera pose is incrementally estimated at each
new position of the camera by computing the relative motion between the previous
and current camera frame [SF11]. The relative motion between each two successive
frames is estimated by detecting and matching features between images and then by
examining the changes in the matched features. Therefore, the frequency of image
frames should be high enough to ensure sufficient features overlaps between each
two successive frames.
In monocular VO, the use of a single camera results in estimating the map and
trajectory only up to a scale. Despite this drawback, a main advantage of using
monocular cameras is that they have a significant less weight and cost. Moreover,
stereo-cameras are ”short-sighted”: stereo VO degenerates to the monocular case
when the distance to the scene is much larger than the camera baseline [HZ03]. On
the other side, the interest in stereo VO is not only due to the absence of scale ambi-
guity, but also to the fact that, in stereo VO, coordinates of the 3D features can be
easily obtained at each frame and for every stereo pair by triangulation. However,
in monocular VO, the 3D point triangulation can be only obtained based on 2D
point correspondences between two successive frames [HZ03]. Triangulation in the
stereo case is further detailed in Chapter 5. For the monocular case, more details
about point triangulation are given in Appendix C.
There are several methods in VO to compute the relative motion between the previ-
ous and current image. Based on the kind of feature correspondences, we distinguish
three main methods [HN94]:

• 2D to 2D correspondences: where features in both the previous and
current images are taken in 2D coordinates.

• 3D to 3D correspondences: where features in both the previous and



current images are specified in 3D coordinates.
• 3D to 2D correspondences: where features of the previous image are

specified in 3D coordinates, while features of the current image are given in 2D and
correspond the reprojection of the 3D features of the previous image.
In this work, we use the method of 3D to 2D correspondences for relative motion
estimation. This method is usually preferred over 3D to 3D correspondences be-
cause it was proven that 3D to 2D correspondences is more accurate especially for
the stereo case [DNB04]. Moreover, this method is much faster than using 2D to 2D
correspondences because it uses a lower number of point correspondences for motion
estimation [SF12].
The method of 3D to 2D correspondences aims at finding the relative translation and
rotation that minimize the sum of reprojection errors between the current and the
previous image. This is equivalent to solving the following minimization problem:

argmin
tk−1,k,Rk−1,k

n
∑

i=1

||uk
i −Pk.X

k−1
i ||2 (3.6)

where ||.|| denotes the euclidean norm, n is the total number of triangulated 3D
points at frame k − 1, Xk−1

i is a triangulated 3D point whose coordinates are ex-
pressed at the camera frame k−1. These coordinates can be obtained directly using
equation 5.3 for the stereo case. In case of using a monocular camera, the point
Xk−1

i is triangulated based on feature matching between frames k−2 and k−1 (see
Appendix C). Pk is the projection matrix at frame k given by:

Pk = K[Rk−1,k|tk−1,k]

where K is the camera matrix, tk−1,k and Rk−1,k are respectively the relative trans-
lation and rotation from camera frame k−1 to camera frame k. uk

i is the 2D feature
at frame k corresponding to the point Xk−1

i , obtained by feature matching between
frames k− 1 and k. In case of stereo VO, equation 3.6 considers only the left image
projections and the relative motion parameters are estimated between the left cam-
era frames. However, it is also possible to take into account the image projections
in the right image frames by solving the following problem:

argmin
tk−1,k,Rk−1,k

n
∑

i=1

||uk,l
i −Pk,l.X

k−1
i ||2 + ||uk,r

i −Pk,r.X
k−1
i ||2 (3.7)

where uk,r
i and uk,l

i denote respectively the image projections in the right and left
image frames, and Pk,r and Pk,l are respectively the projection matrices of the right
and left cameras. Therefore, 3.7 aims at minimizing the sum of reprojection errors
for both the right and left camera frames in the stereo case.

Solving the least square minimization problem of equation 3.6 or equation 3.7 refers
to minimizing the error between the predicted image projections of the 3D points



Xk−1
i into the current frame and the measured image projections. As we will see

in the next chapter, this least square problem, known as perspective from n points
(PnP), is similar to the one solved in bundle adjustment. There are different pos-
sible ways to solve it in the literature. The standard method is called perspective
from three points (P3P). It uses 3 3D to 2D point correspondences and is described
in [LKS11].

The result of the relative motion estimation i.e. the estimated translation and
rotation between each two successive frames are incrementally concatenated to get
the pose at the current frame w.r.t. (N). Let Πk−1 and Πk be respectively the pose
of the camera at frames k − 1 and k, and let tk−1,k and Rk−1,k be respectively the
relative translation and rotation between frames k − 1 and k, obtained by VO. We
have then the following relation between Πk and Πk−1:

Πk = Πk−1

[

Rk−1,k tk−1,k

0 1

]−1

(3.8)

Through this recursive relation, it is possible to get all camera poses Π1:m, where m
is the total number of frames and where Π1 = I4, I4 being the 4×4 identity matrix.

3.5 Outlier Rejection

The estimation of relative motion through visual odometry requires matching fea-
tures between successive frames. This matching is however subject to outliers mainly
due to noise, occlusions and change in illumination or viewpoint. An important
number of outliers can have a significant impact by making the motion estimation
erronous. Therefore, we need to integrate an outlier rejection step into the motion
estimation process in order to make it more accurate and robust against wrong cor-
respondences. Random Sample Consensus (RANSAC) [AB81] is considered as the
standard method for outlier removal. Using this method, it is possible to estimate
the motion parameters accurately even in presence of outliers. RANSAC is based on
the idea of taking a subset of random samples at each iteration and on computing
the parameters of the model to be estimated based on these samples. Then, the
accuracy of the model is verified using the other data points. The model that shows
the highest consensus with the other data is taken as solution and data points that
are outside a certain “acceptance region” of the subgroup with largest consensus are
eliminated as outliers. In our case, in order to compute the relative motion between
two camera positions, RANSAC selects at each iteration some subsets of 3 random
3D to 2D correspondences [BKL10]. Based on these correspondences, the motion
parameters (relative rotation and translation) are computed. The number N of used
subsets is given by:

N =
log(1− p)

log(1− (1− ǫ)s)
(3.9)



where s is the minimum number of data points needed for motion estimation (here
s = 3), p is the probability that at least one sample has no outliers and ǫ is the as-
sumed percentage of outliers in the data set. For each estimated motion parameters,
the number of inliers using the Euclidean reprojection error. A feature is considered
as an inlier, if the Euclidean reprojection error (introduced in the previous section)
is lower than a certain threshold δ. The motion parameters that give the highest
number of inliers is retained and a final estimation step with all inliers of the best
sample is performed to give the final egomotion estimation.
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Chapter 4

Bundle Adjustment with Ranging
Measurements

In this chapter, the original version of bundle adjustment as known in the state-
of-the-art is presented as well as our extension of this method to include ranging
measurements. We focus particularly on solving the BA problem using Levenberg
Marquardt algorithm and give some details of this algorithm.

4.1 Bundle Adjustment

4.1.1 Problem and Notations

Bundle adjustment (BA) is a non-linear optimization method that aims at refining
both the map and camera poses by minimizing the sum of reprojection errors for a
subset of frames [LA04]:

argmin
{X

(N)
i

}i∈[1:n],{Pj}j∈[1:m]

m
∑

j=1

n
∑

i=1

||uj

i −Pj.X
(N)
i ||2 (4.1)

add that we assume that all points are visible at all frames but its also
applicable if not replace the whole difference by 0
where ||.|| denotes the euclidean norm, m is the total number of frames considered

in the optimization, n is the total number of 3D points, X
(N)
i is the ith triangulated

3D point whose coordinates are expressed in (N). Pj is the projection matrix at
frame j which contains the camera extrinsic parameters expressed w.r.t. (N):

Pj = K[Rj|tj]

where K is the camera matrix, tj and Rj are respectively the translation and rota-
tion of camera frame j w.r.t.(N). Their definitions were given in 3.1 and 3.2. In this
thesis, we assume that we have a calibrated camera i.e. that the intrinsic camera



matrix K is known. Thus, only the extrinsic motion parameters tj and Rj need
to be estimated. However, it is possible to apply BA to optimize over the camera
intrinsic parameters in addition to the structure and extrinsic parameters. uj

i is the

image point of the 3D point X
(N)
i measured at the jth frame. The error function (or

cost function) to be minimized in 4.1 is the reprojection error and is similar to the
cost function considered in 3.6. However, there are three main differences between
the problem of BA and the minimization problem solved at each step of the VO al-
gorithm and expressed in 3.6. The first difference is that BA does not only optimize
over the motion parameters but also over the structure i.e. over the 3D points of the
map. The second difference is that the cost function is minimized over the structure
and poses w.r.t. the Navigation Frame (N), while the motion parameters in 3.6 were
estimated at each frame w.r.t. the previous camera frame. The last difference is
that the optimization in BA is not done for only two successive images but for more
than two images. This results in a better drift reduction because the consistency
with the measurements is checked over more than two image frames [SF12]. Based
on the number of images considered in the BA problem, we distinguish two main
categories of BA [EL09]:

• Global BA: where the optimization is done considering all camera im-
ages. Global BA is usually performed offline as a post processing step after the
V-SLAM algorithm in order to refine the whole trajectory and map at the same
time.

• Local (or windowed) BA: where the optimization is performed only
over a window of the last m frames. Therefore, only a part of the trajectory and 3D
map is refined.

In the rest of our work, we will consider global BA i.e. all images, but the un-
derlying theory that will be presented in this chapter is also applicable for local
BA. To simplify the notations and to avoid matrix representations, we will denote
in the coming sections by aj the vector representing the camera motion parame-
ters at frame j, estimated using BA. If we use quaternions instead of matrices to
represent rotations, we can see that only 4 parameters are needed to represent a
three-dimensional rotation. Moreover, a translation in space is represented using
three parameters. In sum, aj has a size of 7: 4 rotation parameters and 3 trans-
lation parameters. we will denote by bi the vector representing the ith 3D point.
bi has a size of 3 and contains the three coordinates Xi, Yi and Zi of the ith point
w.r.t.(N). Let p be the vector containing all the motion and structure parameters
to be estimated by BA:

p = (aT
1 , a

T
2 , ..., a

T
m,bT

1 ,b
T
2 , ...,b

T
n )

T

where m is the total number of frames and n is the total number of 3D points.
Therefore, the total number of unknowns i.e. the size of p is 7m+3n. Let Q be the
projection function which projects the ith 3D point into the jth frame as follows:

Q(aj,bi) = Pj.X
(N)
i



. We will also substitute the notation uj

i by ui,j and we will denote by U the vector
containing all measurements {ui,j}i∈[1,n],j∈[1,m], defined as follows:

U = (uT
1,1, ...,u

T
1,m,uT

2,1, ...,u
T
2,m, ...,uT

n,1, ...,u
T
n,m)

T

where ui,j is the image projection of the ith 3D point into the jth frame. If a point i
is not seen at frame j , the element ui,j is simply replaced by the null vector. Since
ui,j is expressed in pixel coordinates, it has a size of 2. Therefore, the maximum
number of measurements i.e the size of U is 2 ×m × n. The problem to be solved
in 4.1 can then be reformulated as follows using the new notations:

argmin
aj,bi

m
∑

j=1

n
∑

i=1

||ui,j −Q(aj,bi)||2 (4.2)

Given an initial motion and structure parameters estimation, the aim of BA is to
refine the values of the parameters aj and bi. In other terms, BA aims at finding
the vector p that minimizes the reprojection error i.e. the difference between the
predicted image projections Q(aj,bi) and the measurements ui,j. This is a non-
linear optimization problem because the projection functionQ is non-linear in aj and
bi. In order to solve this problem, BA uses Levenberg-Marquardt (LM) algorithm,
which is the standard technique for non-linear least-squares problems [LA04]. In
the following section, some elements of the solution using LM algorithms are given.

4.1.2 Levenberg-Marquardt Algorithm

Levenberg-Marquardt Algorithm is an iterative minimization technique that aims at
finding a parameter vector p that minimizes the squared error between an observed
measurement vectorU and the output of an objective function f , where the objective
function is a non-linear function in p that returns the predicted measurement vector
[W.M63]. In our case, the objective function f returns the predicted projections of
the n 3D points into the m image frames and is defined by:

f(p) = (Q(a1,b1)
T
, ...,Q(am,b1)

T
,Q(a1,b2)

T
, ...,Q(am,b2)

T
, ...,Q(a1,bn)

T
, ...,Q(am,bn)

T)T

(4.3)

where p, ai and bj are the parameter vectors defined in the previous section. There-
fore, LM algorithm aims at solving the following problem:

argmin
p

||U− f(p)||2 (4.4)

which is equivalent to solving the problem 4.2 of BA.

Given an initial estimate p0 of p and a measurement vector U, LM algorithm uses
a combination of steepest descent and of Gauss Newton methods: at each iteration,



if the solution is far from the correct one (i.e if the reprojection error is relatively
high), LM behaves as the steepest descent algorithm. The steepest descent is slower
than Gauss Newton method but its convergence is guaranteed. On the other side,
if the current solution is close to the correct one, LM becomes equivalent to Gauss
Newton method which is characterized by a fast convergence. In order to find the
optimal p, LM looks at each iteration in the neighborhood of p and finds a vector
δp that minimizes the reprojection error ||U − f(p+ δp)||. This expression can be
simplified usings the Taylor series expansion:

f(p+ δp) = f(p) + Jδp (4.5)

where J is the Jacobian matrix ∂f(p)
∂p

and where δp is a vector with an infinites-
imal norm. Therefore, this equation gives us a linear approximation of f in the
neighborhood of p. Using the equality in 4.5, we have:

||U− f(p+ δp)|| = ||U− f(p)− Jδp|| (4.6)

Let’s denote by ǫ the error U − f(p). Therefore, at each iteration step of the LM
algorithm, the optimal δp that minimizes the quantity ||ǫ − Jδp|| is found and the
vector p is substituted by p+ δp. It was proven that the solution δp is the same
solution to the so-called augmented normal equation [LA04]:

Nδp = JTǫ (4.7)

with the matrix N defined as follows:

Nij =

{

[JTJ]ii + α if i = j

[JTJ]ij else
.

where α is a damping parameter adjusted at each iteration by the LM algorithm
in a way that reduces the error ǫ [Lam97]: if ǫ is high, the value of α is increased
and LM behaves as the steepest descent algorithm. Otherwise, the damping value
is kept small and in this case LM algorithm is equivalent to Gauss-Newton method.
LM algorithm terminates in case one of these three conditions is fulfilled [LA04]:

• The norm of JTǫ drops below a certain threshold.
• The relative change in ||δp|| drops below a threshold.
• A fixed maximum number of iterations is reached.

We will not go into more details of solving the augmented normal equation us-
ing LM algorithm. The interested reader can find more details in Appendix 6 of
[HZ03]. However, it is worth mentioning that, in order for the LM algorithm to
be able to converge fast to the global minimum, good initial motion and structure
estimates should be provided as input. If the initial trajectory or map estimation
is very poor i.e. if they are very far from the global minimum, the algorithm could
converge to a local minimum and the trajectory and map estimation will not be



necessarily improved. In order to avoid this case, a good visual odometry algorithm
with an outlier rejection scheme need to be used and only triangulated points with
low uncertainty should be included into the map.

Since the number of unknowns in the case of BA increases linearly with the number
of frames and with the number of 3D points, the computational cost of using LM
algorithm can rapidly increase in case of a large map or a relatively important num-
ber of frames. Indeed, solving the augmented normal equation 4.7 in one iteration
of LM algorithm has an O(M3) complexity, with M being the total number of pa-
rameters, i.e. 7m + 3n in the case of bundle adjustment for motion and structure.
However, thanks to the lack interaction between the different motion and structure
parameters, a sparse version of the LM algorithm can be used, which significantly
reduces the computational time [HZ03]. In the following section, we give a simplified
example with a reduced number of frames m and 3D points n in order to explain
the sparseness characteristic in the BA problem which makes it possible to use a
sparse LM algorithm.

4.1.3 A Sparse Levenberg-Marquardt Algorithm

Let’s consider a smplified case of BA with only 3 frames (the minimum number of
frames in a BA problem) and 4 3D points. Furthermore, we assume that all points
are observed in all frames. Normally, in order to be able to solve a BA problem, the
number of measurements should be bigger than the number of unkowns. In case of
3 frames and 4 3D points, the number of unkowns is 7 × 3 + 3 × 4 = 33 and the
number of measurements is 2 × 4 × 3 = 24. It is clear then that 4 points is not
enough to solve this BA problem because the number of measurements is less than
that of unknowns. Indeed, if we assume that all points are seen in all frames, the
minimum required number of 3D points is 7. In this case the number of unkonwns
and measurements are both equal to 42 and thus, it is possible to find the unknown
motion and structure parameters using LM algorithm. However, in order to avoid
big matrices and for simplification, we will consider only 3 frames and 4 points but
the coming reasoning can be applied for a bigger number of frames and 3D points.
Thus, the parameter vector p is given by:

p = (aT
1 , a

T
2 , a

T
3 ,b

T
1 ,b

T
2 ,b

T
3 ,b

T
4 )

T

and the measuerement vector U is given by:

U = (uT
1,1,u

T
1,2,u

T
1,3,u

T
2,1,u

T
2,2,u

T
2,3,u

T
3,1,u

T
3,2,u

T
3,3,u

T
4,1,u

T
4,2,u

T
4,3)

T

Solving the augmented normal equation 4.7 by LM algorithm requires the compu-
tation of the Jacobian matrix J of the objective function f . The Jacobian can be
either computed analytically or approximated using the finite-differences method.
The analytical estimation of the Jacobian requires to know the partial derivatives of



the objective funtion f which is possible since we know the analytical expression of f .
On the other hand, finite-differences is a numerical method used to approximate the
elements of the Jacobian matrix without needing to compute the analytical deriva-
tives of f . This method consumes less computation time but is not as acccurate as
the analytical method. It uses the Forward Difference Approximation [BD71]. Let’s

denote by Aij the 2× 7 matrix
∂Q(aj,bi)

∂aj
and by Bij the 2× 3 matrix

∂Q(aj,bi)

∂bi
. Using

these notations the Jacobian matrix J in block representation is given by:

J =
∂f(p)

∂p
=









































A11 0 0 B11 0 0 0
0 A12 0 B12 0 0 0
0 0 A13 B13 0 0 0

A21 0 0 0 B21 0 0
0 A22 0 0 B22 0 0
0 0 A22 0 B23 0 0

A31 0 0 0 0 B31 0
0 A32 0 0 0 B32 0
0 0 A33 0 0 B33 0

A41 0 0 0 0 0 B41

0 A42 0 0 0 0 B42

0 0 A43 0 0 0 B43









































(4.8)

It is clear that the Jacobian matrix J has a sparse structure since there are a lot of
zero blocks. This is due to the fact that the projection of a 3D point i onto a frame j
depends only on the position of the camera at the jth frame and not on its positions
at other frames. Moreover, the projection of the of a 3D point i onto a frame j is
independent of the positions of other 3D points. Mathematically, this means that
∂Q(aj,bi)

∂ak
= 0 for k 6= j and that

∂Q(aj,bi)

∂bk
= 0 for k 6= i. We remind that J in 4.8 is

expressed in case all points are seen in all images. If, additionally, some 3D points
are not visible in some images, some of the Aij and Bij may be equal to null matrix
and the the Jacobian matrix J will have a sparser structure. For example, if the
first 3D point b1 is not visible at the third frame then Q(a3,b1) = 0. Therefore,

A13 = ∂Q(a3,b1)
∂a3

= 0 and B13 = ∂Q(a3,b1)
∂b1

= 0. This sparseness in the Jacobian
matrix enables the BA problem to use a sparse version of LM algorithm which saves
a lot of computational power. Details about the sparse LM algorithm can be found
in [LA04].

4.2 Bundle Adjustment with Ranging Measure-

ments

As seen in the previous section, the original version of BA is meant to find the
optimal motion and structure parameters that minimize the reprojection error. In
this section, we extend the original version of the BA problem in order to consider
not only the reprojection error but also ranging information.



4.2.1 Problem and Notations

Compared to the original BA problem expressed in equation 4.1, our extended ver-
sion of BA integrates ranging measurements into the BA cost function and aims
at simultaneously minimizing the reprojection error and the difference between the
predicted ranging and the the measured ones:

argmin
{X

(N)
i

}i∈[1:n],{Pj}j∈[1:m]

m
∑

j=1

n
∑

i=1

||ui,j −Pj.X
(N)
i ||2 + ||ρj − ρ̂j ||2 (4.9)

where ρj denotes the ranging measurement and where ρ̂j = ||C(W)
j || is the predicted

ranging at frame j with C
(W)
j being the camera position in World Frame (W ) at

frame j. This optimiation problem is also a non-linear least squares problem that
adds to the sum of squared reprojection errors the sum of the squared errors between
the predicted and measured ranging data. The number of unknowns to be found in
this problem is still the same i.e 7m+3n but measurements now also include ranging
measurements and the maximum number of measurements is therefore 2×m×n+m.
This additional ranging information has the advantage of ensuring less trajectory
drift even in absence of loop closure because it only requires the distance information
to a fixed reference and does not rely on revisiting previously seen landmarks for the
trajectory and map update. To solve the non-linear optimization problem in 4.9,
LM algorithm is used. In the following, the projection function Q is substituted by
the function Q′ defined as follows:

Q′(aj,bi) = (Q(aj,bi)
T, ρ̂j)

T

Notice that ρ̂j depends only on the extrinsic camera parameters i.e. on aj and is
independent of the 3D point bi of the map. The measurement vectorU is substituted
by the vector U′ defined as follows:

U′ = (u′T1,1, ...,u′T1,m,u′T2,1, ...,u′T2,m, ...,u′Tn,1, ...,u′Tn,m)
T

where u′
i,j is the vector containing the measurements for the the jth frame and ith

point defined as:

u′
i,j = (uT

i,j, ρj)
T

Using these new notations, the ”BA with ranging measurements” problem expressed
in 4.9 cab be reformulated as follows:

argmin
aj,bi

m
∑

j=1

n
∑

i=1

||u′
i,j −Q′(aj,bi)||2 (4.10)

In the following section, some elements of the solution using LM algorithms for our
extended version of BA are given.
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4.2.2 Solution using LM Algorithm

The parameter vector p searched by the LM algorithm in case we add ranging
information remains the same as defined before:

p = (aT
1 , a

T
2 , ..., a

T
m,bT

1 ,b
T
2 , ...,b

T
n )

T

The objective function f however is now defined as follows:

f(p) = (Q′(a1,b1)
T, ...,Q′(am,b1)

T,Q′(a1,b2)
T, ...,Q′(am,b2)

T, ...,Q′(a1,bn)
T, ...,Q′(am,bn)

T)T

(4.11)
In this section, we also consider the simplified example of 3 frames and 4 points.

Furthermore, we denote by A′
ij the 3×7 matrix

∂Q′(aj,bi)

∂aj
and by B′

ij the 3×3 matrix
∂Q′(aj,bi)

∂bi
. Using Aij and Bij notations of section 4.1.3, we have:

A′
ij =

[

Aij

∂ρ̂j
∂aj

]

and

B′
ij =

[

Bij

0

]

where
∂ρ̂j
∂aj

is a 1 × 7 matrix. Notice that the last row of B′
ij is all zeros due to the

fact that
∂ρ̂j
∂bi

= 0, ∀i. The Jacobian matrix J in block representation is then given
by:

J =
∂f(p)

∂p
=









































A′
11 0 0 B′

11 0 0 0
0 A′

12 0 B′
12 0 0 0

0 0 A′
13 B′

13 0 0 0
A′

21 0 0 0 B′
21 0 0

0 A′
22 0 0 B′

22 0 0
0 0 A′

22 0 B′
23 0 0

A′
31 0 0 0 0 B′

31 0
0 A′

32 0 0 0 B′
32 0

0 0 A′
33 0 0 B′

33 0
A′

41 0 0 0 0 0 B′
41

0 A′
42 0 0 0 0 B′

42

0 0 A′
43 0 0 0 B′

43









































(4.12)

Therefore, the Jacobian matrix of the BA with ranging measurements problem has
also a very sparse structure which can be exploited using the sparse version of LM
algorithm.



4.3 Keyframe Selection

In the previous sections, the bundle adjustment method was assumed to be per-
formed considering all image frames. However, in case of very small relative camera
motion between adjacent frames, the uncertainty in the estimation of the triangu-
lated 3D points increases [SF12]. Moreover, we have seen that the computation
cost of bundle adjustment grows fast with the number of images. Thus, it is usu-
ally more robust and more computationally efficient in BA to skip some frames for
which there is no important relative change in the camera position. This process is
called keyframe selection. The first keyframe is generally chosen as the first frame
[TBW04]. The next selected keyframe is the most recent frame such that the num-
ber of matches between this frame and the previous keyframe does not drop below a
certain threshold. This means that the relative motion between the newly selected
keyframe and the previous one is neither very small nor very big and thus difficult to
be accurateley estimated. The procedure of keyframe selection allows the BA prob-
lem to have a fewer number of unknowns and thus can save a significant amount
of time and memory for the LM algorithm while keeping the trajectory and map
estimation accurate and robust.

4.4 Error Modeling

So far in this chapter, we have assumed that the measurements recorded in the
vector U or U′ are not prone to error. However, in real case scenarios, this assump-
tion is not correct. In fact, pixel measurements as well as ranging measurments
have usually some uncertainty which is due to noise or to a lack of precision in
the measurement method. To model this uncertainty, we need to know the covari-
ance matrices associated to the measurements. The covariance matrices are then
taken into consideration in the BA problem by replacing the euclidean norm with a
weighted norm. For example the BA with ranging aid problem stated in 4.9 becomes
after modeling the uncertainties:

argmin
{X

(N)
i

}i∈[1:n],{Pj}j∈[1:m]

m
∑

j=1

n
∑

i=1

||ui,j −Pj.X
(N)
i ||2Σu

+ ||ρj − ρ̂j ||2Σρ
(4.13)

where Σu is the covariance matrix corresponding to the image projections measure-
ments in pixele coordinates, Σρ is the covariance matrix of the ranging measurements
and ||.||Σ is the Mahalanobis distance defined as follows:

||x||Σ =
√
xTΣ−1x

where x is a vector and Σ is a covariance matrix (a symmetric positive semi-definite
matrix). The LM algorithm solves the non-linear least squares problem 4.13 by



substituting the augmented normal equation 4.7 with a weighted augmented normal
equation [LA04]:

N′δp = JTΣ−1
U′ ǫ (4.14)

where ΣU′ is the covariance matrix of the measurements vector U′ (including both
image projections and range measurements noise) and where the matrixN′ is defined
as follows:

N′
ij =

{

[JTΣ−1
U′ J]ii + α if i = j

[JTΣ−1
U′ J]ij else

.

In absence of any further knowledge, we assume that Σu is the identity matrix (no
noise in the image projections measurements). For the range measurements, if the
covariance matrix is unknown, the Cramér-Rao lower bound [Cra99] can be used as
an approximation. Furthermore, if we assume that the ranging noises are uncorre-
lated, Σρ becomes a diagonal matrix which significantly simplifies the computations
for the LM algorithm.
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Chapter 5

Workflow and Implementation
Details

In this chapter, our general work pipeline for the trajectory and map estimation is
described. Here, we consider a calibrated stereo set-up but the same pipeline is also
valid for the monocular case.

The pipeline of V-SLAM with ranging aid for trajectory and map estimation is
presented in Fig. 5.1. The workflow is composed of two main parts: The first part
is a V-SLAM part where the initial trajectory and map estimations are obtained.
The second part is a post-processing part which consists in applying BA with ranging
measurements on all image frames to reduce the drift in the trajectory and update
the map estimation. The pipeline begins with the left and right image acquisition
at each frame for the stereo case. In case of using a monocular camera, only one
image is provided at each acquisition step. For our experiments with VI-sensor, we
used Robot Operating System (ROS) to interface the sensor and divide the recorded
videos into pairs of stereo images. Then, the image pairs are subject to undistortion
and rectification operations also using ROS. After that, feature detection, extraction
and matching as well as 3D points triangulation are performed using the rectified and
undistorted image pairs. The triangulated points which form the map are used along
with their corresponding image projections by the visual odometry algorithm to
provide an initial egomotion estimation. The initial trajectory and map estimations
are then provided with the recorded range measurements as input to the bundle
adjustment algorithm. Finally, the BA adjustment with ranging aid algorithm gives
us the updated trajectory and map. The coming sections will explain and give
implementation details of the main steps in our workflow.



Figure 5.1: Pipeline of V-SLAM with ranging aid for trajectory and map estimation

5.1 Image Undistortion and Rectification

5.1.1 Image Undistortion

In the pinhole camera model that we have adopted in this thesis, it is assumed
that lenses are perfectly linear. However, this assumption does not hold with real
lenses. In fact, real lenses introduce some distortions to the images, mainly a radial
distortion. Under this distortion, parallel lines in 3D world are no longer parallel in
image plane. Let’s denote by ud and vd the image coordiantes distorted by radial
distortion and by û and v̂ the ideal image coordiantes without distortion. We have
then the following relation [HZ03]

(

ud

vd

)

= L(r)

(

û

v̂

)

(5.1)

where r is the radial distance from the center of radial distortion and (uc, vc)
T and

L is a non-linear function of r which has the following truncated Taylor expansion:

L(r) = 1 + k1r + k2r
2 + k3r

3 + k4r
4

where k1, k2, k3 and k4 are the radial distortion coefficients. These coefficients are
usually given as part of the camera internal calibration parameters. The correction
of radial distortion is given in pixel coordinates by:

(

u′

v′

)

=

(

uc

vc

)

+ L(r)

(

u− uc

v − vc

)

(5.2)

where (u, v)T are the measured coordinates and (u′, v′)T are the corrected coordi-
nates.



5.1.2 Rectification

Rectification is an important pre-processing step for stereo-images. In fact, in the
stereo case, image planes of the right and left cameras are usually not coplanar.
Therefore, the search of matches between left and right images must be performed on
non parallel epipolar lines which results in a higher computational load. Performing
rectification consists in applying an homography to the two images in order to
restore parallelism of epipolar lines [LZ99].In this way, matching points in right and
left images have the same x-coordinate, which facilitates the feature matching and
the points triangulation for stereo pairs.

5.2 Feature Detection and Extraction

We used Harris corner detector for feature detection. This method has the disad-
vantage of giving us the location of keypoints without subpixel accuracy (i.e. the
pixel coordinates of the keypoints are integers). However, it is computationally effi-
cient and suitable for real-time processing. The feature descriptor was made using
responses to an 11× 11 Sobel filter [AGS11]. Here, we assume a smooth movement
of the camera (no sudden rotation or scale change) which makes it unnecessary to
use computationally expensive feature descriptors such as SIFT [G.L04] or SURF
[HBG08]. To reduce the number of features per image and thus reduce the computa-
tional cost of the feature extraction and matching steps, bucketing method [BKL10]
is used. Bucketing consists in dividing an image into rectangular subregions called
buckets. Then, only a certain number of features is retained per bucket. This have
the advantage of reducing the total number of features per image while keeping
the distribution of features uniform over the whole image. Therefore, the computa-
tion load of the feature matching process is significantly reduced while keeping the
egomotion estimation accurate.

5.3 Feature Matching and Tracking

5.3.1 Feature Matching

Feature matching is performed on each stereo pair for points triangulation and on
each pair of successive images for egomotion estimation. Given the Sobel filter
responses of two feature points, the feature matching is performed using the sum
of absolute differences (SAD) metric. When matching between the left and right
images, the epipolar constraint (matching points have nearly the same x-coordinates)
is additionally used with an error tolerance of 1 pixel.



5.3.2 Feature Tracking

In order to be able perform BA, features need to be tracked along the images.
Unlike in VO, features are not tracked along only two images but over the maximum
possible number of images. To achieve this aim, we used a table structure for feature
tracking, where the first column represents the indexed 3D points which form the
map. Each row of the first column contains the 3D coordinates of the corresponding
point. The other columns contain the corresponding tracked 2D features (image
projections) for each 3D point. At each new coming image, we first look for every
detected 2D feature for an eventual feature match in the previous image. Once the
corresponding 2D feature coordinates in the previous image are found, we search
for these 2D feature coordinates in the table at the column corresponding to the
previous image. If they are found, it means that the relative 3D point has been seen
before and is still trackable at the current frame. Thus, we only need to add the
2D feature coordinates to the table at the column representing the current frame
and at the row corresponding to the relative 3D point. If we do not find the 2D
coordiantes in the table, it means that we are dealing with a new 3D point that
has not been saved into the map yet. Therefore, we need to add a new row to the
table corresponding to this new 3D point and fill the columns of the current and the
previous image with the relative measured image projections. The other columns
corresponding to previous images are filled with zeros since the 3D point has not
been seen in old images.

5.4 Triangulation

For a stereo setup, the 3D points are triangulated as follows:

X = (ul − Px).
b

d

Y = (vl − Py).
b

d

Z = f.
b

d

(5.3)

where X ,Y and Z are the 3D coordinates of the triangulated point, (ul, vl) are the
2D feature coordinates of the left image, (Px, Py) the coordinates of the principal
point, b is the camera baseline and d is the disparity defined by:

d = ul − ur (5.4)

where (ur, vr) are the corresponding feature coordinates at the right image. For a
rectified image, we have vr = vl. Using the formula in 5.3 and the stereo image pairs,
we first express the triangulated points in the current camera local frame. Then,
using the rigid body transformation formula in 3.3, the 3D points are expressed in
the Navigation Frame (N) and saved into the map. Triangulated points with very
small disparities are not considered in the map since have high uncertainty.



5.5 Egomotion Estimation

This step was explained in Chapter 3 (section 3.4.). Here, we give more implemen-
tation details. We implemented the egomotion estimation using the C++ library
LIBVISO2 (Library for Visual Odometry 2) [AGS11]. At each new frame, RANSAC
is used to find the best 3 3D to 2D correspondences between the previous and cur-
rent frame. The relative rotation and translation is then estimated by minimizing
the reprojection error 3.7 for all inliers using Gauss-Newton iterative optimization
method. For the monocular case, the problem 3.6 is solved instead. The relative
motions estimated between successive images are then concatenated iteratively to
get the estimation of the current camera pose w.r.t. the Navigation Frame (N) as in
3.8. The coordinate systems definitions adopted by LIBVISO2 are depicted in Fig.
5.2. A left-handed camera coordinate system is assumed. The z-axis is aligned with
the camera optical axis. For the image plane, the axes u and v of pixel coordinates
are also depicted in Fig. 5.2.

Figure 5.2: Camera coordinate systems definitions for the visual odometry algorithm

5.6 Range Measurements

As explained in Chapter 3, range measurements are estimations of the distance that
separates the camera to a fixed reference at a certain time. In KITTI data set, the
ground truth of the camera pose at each time frame k is provided. To get the range
estimations, we only need to consider a fixed point and calculate the distance of
the ground truth positions to this point. For simplification, the fixed reference was
chosen as the initial postion of the camera provided by the ground truth. In this
case, the World Frame (W ) and the Navigation Frame (N) defined in Chapter 3 are

identical. If we denote by C
(W)
k the ground truth position of the camera at the kth

frame expressed in (W ), the ground truth range value ρk at frame k is given by:

ρk = ||C(W)
k || (5.5)

where ||.|| denotes the euclidean norm. In order to simulate real case scenarios some
noise can be added to the ground truth range values. The range measurements with



noise can then be modeled using the covariance matrix Σρ. As explained in Chapter
4, this noisy range measurements are then given as input to the BA problem along
with the other measurements and the weighted minimization problem 4.13 is solved.

When it comes to our experiments using the VI-Sensor, we do not have the ground
truth position of the sensor at each time frame k, but only a ground truth trajec-
tory which s independent of time. Therefore, the method used to get the range
measurements for the KITTI data set can not be used in this case. Instead, we try
to simulate the range measurements using the sensor itself since we do not have a
ranging device in the laboratory. In order to simulate the range measurements, we
use a checkerboard as the fixed reference. In our experiments, we fix the checker-
board at a certain position in a way that it remains visible by the VI-Sensor during
its motion. At each time frame, the VI-Sensor measures takes an image of the scene
which includes the checkerborad. We then use OpenCV routines to detect the cor-
ners in the checkerboard (see Fig.5.3). Once the corners are detected, we estimate
the distance to the checkerboard using the following triangle similarity formula:

d =
f.L

l
(5.6)

where d is the estimated distance from the VI-Sensor to the checkerboard in m, f
is the focal length of the sensor in pixels, L is the real length of a grid edge of the
checkerboard in m and l is the measured length of a grid edge in the image plane
of the sensor in pixels. This formula assumes that the image plane and the checker-
board plane are parallel which is difficult to perfectly ensure in real scenarios. In
order to evaluate the accuracy of this method, we measured the real distance be-
tween the camera and the checkerboard at different cameras positions and compared
the real range values to the estimated values obtained using 5.6. Fig.5.4 shows the
variation of the range measurements error in m in function of the distance between
the VI-Sensor and the checkerboard. It can be seen that error increases with the
distance to the checkerboard. This is due to the fact that the accuracy of corner
detection in the image decreases with the size if the checkerboard. Therefore, when
the camera gets further to the checkerboard, its size in the image plane decreases
and thus the error in the range estimation increases.

5.7 Bundle Adjustment

The BA method and its extended version using ranging aid were both detailed in
Chapter 4. In this section, we give rather implementation details of the BA with
ranging aid algorithm. For implementation, we used the Sparse Bundle Adjustment
(sba) C++ package [LA09]. sba is composed of a set of drivers that allow the user
a certain flexibility in defining the parameters of BA and LM algorithm. We used
sba to update both the motion and structure and we provided as input a certain
number of parameters. As parameters, we provide the total number of frames m,



Figure 5.3: Corner Detection of a checkerboard for range estimation using a VI-
Sensor

the total number of points n, the initial estimations of the 3D points in (N) and
the size of a measurement ui,j, which is 2 for BA without ranging aid and 3 if we
include the range information. Additionally, a visibility matrix V that specifies for
each 3D point i whether it is visible at the jth frame is provided as follows:

Vij =

{

1 if point i is visible at frame j
0 else

.

If Vij = 1, we also provide as input the measured image projection of the ith point at
the jth frame in pixel coordiantes. Furthermore, we provide at each frame j the initial
estimation of the pose of the camera (orientation and position). We also provide
the objective function f 4.11, which includes both the projection function and the
predicted range value. For the Jacobian matrix estimation, we used the approximate
method of finite-differences because we found that it was more computationally
efficient than the analytical approach while giving similar accuracy in the trajectory
and map estimation. Finally, we provide as input the range measurements which
are estimated as explained in the previous section.



Figure 5.4: Error in range measurements (cm) in function of the distance (cm)
between the VI-Sensor and the checkerboard
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Chapter 6

Experimental results

6.1 Experimental Results on KITTI Data set

6.1.1 KITTI Data set

KITTI data set [GLSU13] is a set of stereo sequences recorded from a moving vehicle
in Karlsruhe and captured using Pointgrey Flea2 firewire cameras. Fig.6.1 shows
some examples of scenes taken from KITTI data set. The stereo sequences are saved
as images and the calibration parameters as well as the baseline of the cameras
are given . Additionally, the ground truth of the camera position at each frame is
provided using an OXTS RT 3000 GPS/IMU system. The ground truth trajectory is
given in a coordinate system which is rotated and translated w.r.t. (N). Therefore,
in order to compare our estimated trajectory to the ground truth trajectory, we
perform a rotation and translation transformation on the ground truth coordinate
system to align it with the coordinate system (N).

6.1.2 Results

For the egomotion estimation in KITTI Data set, we used 200 RANSAC iterations
with an inlier threshold δ of 2 pixels. For the feature matching, we used buckets of
size 50 × 50 pixels with a maximum number of 2 features per bucket. To simulate
the range measurements, we also added white Gaussian noise to the range values
calculated from the ground truth trajectory. Fig.6.2 shows experimental results
obtained on a stereo sequence from KITTI data set. The blue trajectory is the
ground truth trajectory after being rotated and translated to align with (N). The
red trajectory is the trajectory obtained without BA (using only visual odometry)
and the yellow trajectory was obtained using BA but without ranging aid. The
green trajectory is the trajectory obtained using BA with ranging aid. The range
measurements in this sequence were obtained by adding noise to the true range values
such that the signal-to-noise-ratio is 20 dB. For this sequence, bundle adjustment
was performed on 250 frames, 35827 3D points and 71809 image projections. LM



Figure 6.1: Examples of scenes from KITTI data set

algorithm converged after 128 iterations and the total computation time of the
bundle adjustment with ranging aid algorithm was 92.46 seconds. To evaluate the
accuracy of our algorithm, we calculated the error in the trajectory estimation using
the root mean square error (RMSE) as measure. Table 6.1 shows the average errors
in centimeters corresponding to the trajectories represented in Fig.6.2. The results
show that BA even without ranging aid allows us to significantly reduce the drift. By
adding ranging measurements to the BA algorithm, the average drift was further
reduced by 2.5 centimeters. Therefore, we notice that BA gives us satisfactory
results in drift reduction and that by adding the range values, the trajectory is
further refined without a significant change in the computation time w.r.t. the BA
algorithm without ranging aid.



Figure 6.2: Ground truth trajectory of a sequence from KITTI dataset (blue) and
estimated trajectories without BA (red), with BA but without ranging aid (yellow)
and with BA and ranging aid (green)

Method Average error (drift) in cm
VO without BA 41.33
BA without ranging aid 18.82
BA with ranging aid 16.32

Table 6.1: Average errors in centimeters corresponding to the trajectories repre-
sented in Fig.6.2

6.2 Experimental Results using VI-Sensor

6.2.1 VI-Sensor

The VI-Sensor (Visual-Inertial Sensor) shown in Fig.6.3 is a sensor developed by
Skybotix AG and which incorporates a calibrated stereo camera, an FPGA system as
well as a time synchronized and calibrated inertial measurement system [NRB+14].
In our experiments, we only use the stereo camera which provides us with stereo
images at a rate of 20 fps. The images have a resolution of 752× 480 and are taken
using an Aptina MT9V034 sensor. We interface the sensor using ROS and perform
rectification on the images.



Figure 6.3: VI-Sensor (front view)

6.2.2 Experimental Setup

Fig.6.4 shows a typical experimental setup using the VI-Sensor. We move the camera
along a known path which is predefined using markers on a table as shown in Fig.6.4.
The markers are used for the ground truth estimation of the trajectory. Furthermore,
we hang a checkerboard at a board in front of the VI-Sensor in a way that it can
be seen by the sensor during its trajectory. This checkernoard is used for the range
estimation as explained in section 5.6.. Some features (pen, cisor...) are also placed
near the sensor to facilitate the relative motion estimation. At each time frame, a
stereo image pair as well as a range value using the left image are obtained. Fig.6.5
shows an example of an image captured using the left camera of the VI-Sensor while
following a predifined path.

6.2.3 Results

For the egomotion estimation using the VI-Sensor, we used 200 RANSAC iterations
with an inlier threshold δ of 5 pixels. For the feature matching, we used buckets
of size 50 × 50 pixels with a maximum number of 20 features per bucket. Since
the ranging measurments estimated using the checkerboard are already noisy as
shown in section 5.6, we did not add noise to the measurements. Fig.6.6 shows an
example of a predifined trajectory using markers (Fig.6.6a) as well as the estimated
trajectory using the VI-Sensor after applying our algorithm (Fig.6.6b). The ground
truth trajectory in Fig.6.6a was generated by drawing a straight line between each
two consecutive ground truth positions of two markers. However, while following the
desired trajectory with the VI-Sensor, it is difficult to follow a perfectly straight line
between each two consecutive markers. In addition to that, the noise in the images
captured by the VI-Sensor, which is mainly due to illumination changes, as well as
the errors in the range estimation using the checkerboard has made our estimated
trajectory shown in Fig.6.6b relatively noisy compared to the predifined trajectory
(Fig.6.6a). For this predefined trajectory, bundle adjustment was performed on 172
frames, 21034 3D points and 68551 image projections. LM algorithm converged



Figure 6.4: Experimental Setup using the VI-Sensor

after 67 iterations and the total computation time of the bundle adjustment with
ranging aid algorithm was 38.07 seconds. In order to evaluate the accuracy of our
estimated trajectory w.r.t. the predefined trajectory, we also calculated the error
in the trajectory estimation using the root mean square error (RMSE) as measure.
Table 6.2 shows the average errors in centimeters. These results also confirm the fact
that the BA algorithm by itself allows us to significantly reduce the drift and that
by adding ranging measurements to the BA algorithm, the average drift is further
reduced without increasing the computation time.



Figure 6.5: Example of a scene captured using the left camera of the VI-Sensor

(a) Predifined trajectory (b) Estimated trajectory

Figure 6.6: (a) A predifined trajectory for the VI-Sensor using markers (b) Estimated
trajectory using the VI-Sensor after applying our BA with ranging aid algorithm

Method Average error (drift) in cm
VO without BA 7.05
BA without ranging aid 3.35
BA with ranging aid 2.83

Table 6.2: Average errors in centimeters for the estimated trajectories using the
VI-Sensor
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Chapter 7

Conclusion and Future Work

In this thesis, a bundle adjustment-based V-SLAM algorithm with ranging aid for
drift reduction was presented, implemented and tested on real scenarios. Our ap-
proach is based on integrating the range w.r.t. to a fixed reference with known
position into the cost function of bundle adjustment. We showed that the bundle
adjustment with ranging aid problem has a sparse structure which allowed us to use
a sparse version of the Levenberg-Marquardt algorithm. Furthermore, the objec-
tive function, the projection function, the Jacobian matrix and the measurements
vector of the original bundle adjustment problem were all adapted to include the
ranging information. To test our bundle adjustment with ranging aid algorithm, we
implemented a pipeline composed of a V-SLAM part and of a post-processing part,
which is the bundle adjustment with ranging aid algorithm for trajectory and map
update. The tests were performed on sequences from KITTI data set as well as
on real data obtained from a VI-Sensor in the laboratory. It was also compared to
the pure V-SLAM algorithm and to the bundle adjustment-based approach without
ranging aid. For the KITTI data set, the range values were simulated by adding
white Gaussian noise to the range values calculated using the provided ground truth
trajectory. For the experiments with the VI-Sensor, range measurements were ob-
tained using the images captured by the VI-Sensor by detecting a checkerboard as
a fixed reference in the scene and by estimating the range based on the proportion
between the measured length of a grid edge in the image plane and its real length.
Experimental results show that bundle adjustment is able to significantly reduce
the drift in the trajectory even without range measurements. Moreover, the drift
is further reduced in case we integrate the ranging information. The decrease in
the drift by adding ranging aid is though not as significant as the decrease in error
using bundle adjustment w.r.t to the error obtained without bundle adjustment.
However, we noticed that the computational time practically does not increase if
we add the ranging measurements to the original global BA algorithm. Thus, com-
bining ranging aid with bundle adjustment allows us to reduce the drift without
increasing the computation load, which makes it a useful step for drift reduction in
V-SLAM algorithms. Since we did not have a ground truth estimation of the map,



we were not able to evaluate the accuracy of the updated map. However, since bun-
dle adjustment aims at minimizing the reprojection error w.r.t. both the trajectory
and the 3D points, reducing the drift in the trajectory estimation should normally
correspond to reducing the error in the map as well.

Since we used a checkerboard and the images provided by the VI-Sensor and KIITI
data set to obtain the range measurements, there was no need for time synchroniza-
tion between the ranging values and the image frames. However, in our experiments
using the VI-Sensor, the noise in our ranging measurements increased significantly
with the distance to the checkerboard. This noise in addition to the noise in the
images made our estimated trajectory relatively noisy w.r.t. the ground truth trajec-
tory. Using a ranging device will require more effort for synchronisation but should
allow us to have more accuracy in the range estimation and therefore a better per-
formance of the bundle adjustment with ranging aid algorithm.
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Appendices
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Appendix A

Quaternions

Here give additional material on quaternions.
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Appendix B

Triangulation in monocular SLAM

Here give additional material on triangulation in monocular case.
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