e Institute for
o Communications
L and Navigation

Evaluation of

Synchronization Algorithms
with USRP

Martin Lulf

A Thesis submitted for the Degree of
Bachelor of Science

Institute for Communications and Navigation

Prof. Dr. Christoph Giinther

Supervised by Dipl.-Ing. Ronald Bohnke

Miinchen, May 2012

Institute for Communications and Navigation Technische Universitat Miinchen
Theresienstrasse 90
80333 Munich

Abstract

An interface between the Universal Software Defined Radio Peripheral (USRP)
and MATLAB has to be developed, as well as a scheme for frequency, delay and
phase synchronization to detect received M-PSK symbols after transmission over
the USRPs.

Different methods for the interface implementation are considered and the
final implementation is done as a shared Mex C++ library that can be accessed
from within MATLAB like usual functions. The synchronization is done by a
feedforward estimator using a BPSK pilot sequence proposed by [1] followed by
a delay tracking loop using Gardner’s timing error detector [2 [3] and a phase
tracking loop using the Viterbi&Viterbi algorithm [4, B] for M-PSK signals.
Frame synchronization and resolution of the phase ambiguity is done by a Barker
code as start of frame sequence.

It is shown that the feedforward estimator achieves the Cramér-Rao bounds
and the following tracking is able to keep the received samples synchronized.
Using the MATLAB interface, a set of random data is transmitted over the
USRPs, synchronized and detected at the receiver and compared to the original
data sequence to validate the single components of this work.

Contents

2 Universal Software Defined Radio Peripheral|

[3.1.1 Single Thread|.
[3.1.2 Approaches| L oo
8.2 Interface Structurel Lo

3.3 Usage
[3.3.1 Send and Receive Samples|.

[3.3.2 Spectrum Analyzer|.

4 Synchronization|
4.1 System Modello oo

4.3 acking|
[4.3.1 Delay Trackingl
[4.3.2 Phase Tracking|
[4.3.3 Simulation Results]

13
13
13
13
16
18
18
19

43

A Appendix 45
|[A.1 Send and Receive Multiple Data Streams from a Single Thread| . 45
[A:2 Send and Receive Samples to a File]. 47

[A21 Sending Samples| 47
|A.2.2 Receiving Samples|o 51
IA.3 Send and Receive Samples from MATLAB|. 54
[A.4 Spectrum Analyzer[. L. 55
[A.5 Available Inferface Commandd 57
IA.6 Derivation of the Maximum Likelihood Estimatorl. 60

Chapter 1

Introduction

When investigating new signal processing schemes the simulation of all relevant
parameters is a useful tool to get a better understanding of the investigated
system. Programmable numerical math software like MATLAB or Octave are
well suited for these simulations as they already have functions for most of
the mathematical problems as well as for graphical visualization of data, so
the implementation of the simulation can focus on the signals and processing
algorithms themselves.

After successful simulations it is often desirable to test the algorithms in a
real world scenario in order to ensure that there have been no wrong assump-
tions in the simulations and the algorithms work in a complete communication
system. Software defined radios (SDRs) allow the transmission of a wide vari-
ety of signals and can thus be easily adopted to such tests. In Chapter [2] the
Universal Software Defined Radio Peripherals (USRP), a software defined radio
product family by Ettus Research and National Instruments, are described to
use them for testing.

If the SDRs can be accessed from the same software that was used for the
simulations, another advantage over specialized RF hardware is that signal pro-
cessing code from the simulations can be reused. In Chapter[3] an interface from
MATLAB to the USRPs is developed so MATLAB code can directly access the
USRP devices for testing.

While simulations can simulate special aspects of the communication system,
when using SDRs, all aspects of a communication system have to be considered.
The often made assumption of coherent detection is not directly possible for
real measurement data. The received samples have to be synchronized first to
continue with a coherent detection. In Chapter] a synchronization scheme is
discussed which removes carrier frequency and phase offsets as well as timing
errors after transmission over USRPs based on a maximum likelihood feedfor-
ward estimation for an acquisition, followed by a feedback tracking loop using
a Gardner timing error detector and the Viterbi& Viterbi phase error detector
to follow further changes of the timing and phase for arbitrary M-PSK modu-
lated data. These synchronization schemes allow the test of the work from the
previous chapters both in simulation and with real measured data from USRPs.
Additionally they can be used for future works to transmit data symbols over
the USRP and focus on the received coherent samples without worrying about
synchronization.

Chapter 2

Universal Software Defined
Radio Peripheral

The Universal Software Defined Radio Peripheral (USRP) family are software
defined radios that allow transmission and reception of arbitrary baseband sig-
nals. Due to the modularization into a mother- and daughterboard they can be
adopted to a wide range of operating frequencies. The USRP daughterboards
are responsible for modulation and antialiasing filtering and the motherboards
are dealing with amplification, up- and down converting, decimating and in-
terpolating operations that require high processing power but little knowledge
about the signal itself in a Field Programmable Gate Array (FPGA). All wave-
form dependent operations and signal processing focused part are done on a PC
which enables a high variety of transmission systems with the same hardware.

The USRPs can either sample a signal mixed to an intermediate frequency
with one sinusoidal signal which results in a one dimensional real valued discrete
signal or use the orthonormal property of a sine and a cosine wave to sample
the Inphase and Quadrature component individually on two channels to get a
complex! two dimensional discrete signal.

2.1 Overview

Initially Ettus started with one SDR, the USRP1 device. After its success newer
USRP devices with more features were developed. The next two subsections will
give an overview about the different devices in the USRP family.

2.1.1 USRP1

The first generation, the USRP1 has four input and four output channels and
is connected via USB2. The USRP1 can contain two daughterboards and all
streams together can share a data rate of 8 complex mega samples per second
[B]. With a few hardware modifications an external 10MHz oscillator can be

1Where the real part corresponds to the Inphase component and the imaginary part to the
quadrature component
2Universal Serial Bus 2.0 with a maximum data rate of 32 MByte per second [5]

S8CHAPTER 2. UNIVERSAL SOFTWARE DEFINED RADIO PERIPHERAL

CLK /0

4e2611ca

jversal Software Radio Peripheral

Figure 2.1: USRP1 device equipped with one daughterboard connected to two
RF antennas and no external clock connected.

connected to the USRP to provide a more stable oscillator. Figure shows a
USRP1 device with no external clock and one daughterboard.

2.1.2 Next Generation USRPs

The second generation of USRPs consists of a few different devices with similar
properties. These new USRP devices can hold only one daughterboard and have
two input and two output channels. Their FPGAs can be reprogrammed for
more control of the data processing before decimation and transmission to the
PC. Beside the USRP2, each model comes with two versions (e.g. USRP N200
& N210) where a tailing 10 in the model number indicates a larger FPGA than
in the tailing 00 models which gives more space for custom preprocessing code.
The next generation USRP devices can be connected with an external os-
cillator for a more stable frequency and an external pulse generator for a more
precise timing reference. These USRP devices can switch between the differ-
ent oscillation references and the different timing references (internal, external,
MIMO?) via software. The new USRP devices can tag incoming and outgoing
samples to know when exactly they have been received or have to be send. This
leads to much higher accuracy in runtime measurements or Time Division Mul-
tiple Access (TDMA) systems as the delay introduced by USB or Ethernet does
no longer affect the delay of transmission or measurement of reception time.

USRP2

This model was an improvement of the original USRP1. This USRP model is
MIMO capable which means multiple USRPs can be connected and operate as
a single USRP with more channels. It is no longer sold in favour of the newer
N2x0 devices.

e connected by Gigabit Ethernet

e external frequency reference possible

e external one pulse per second (pps) timing reference possible
e reprogrammable FPGA

e MIMO capable

3Multiple Input Multiple Output using a special MIMO cable to synchronize the USRPs

2.1.

OVERVIEW 9

USRP B100 & B110

The B1x0 is an improved version of the USRP1 targeted as low-cost USRP.

connected by USB 2.0
external frequency reference possible
external pps timing reference possible

reprogrammable FPGA

USRP E100 & E110

This USRP model has a small embedded Linux system onboard to allow signal
processing independent of an additional PC.

internally connected by general purpose input/output (GPIO)
externally connected by USB 2.0 and Fast Ethernet

external frequency reference possible if additional connector soldered to
the board

reprogrammable FPGA

USRP N200 & N210
Figure [2.2] shows a USRP N210, the successor of the USRP2 model.

connected by Gigabit Ethernet
external frequency reference possible
external pps timing reference possible
reprogrammable FPGA

auxiliary analog and digital I/O signals
MIMO capable

Figure 2.2: USRP N210 device without external references equipped with one
daughterboard connected to two RF antennas.

10CHAPTER 2. UNIVERSAL SOFTWARE DEFINED RADIO PERIPHERAL

2.1.3 Motherboards

The heart of a USRP is it’s motherboard which handles the communication with
the PC and the signal processing at an intermediate frequency (IF). Daughter-
boards described in Section 2.1.4] handle the modulation from the intermediate
to the operating frequency.

The input signal that was filtered and modulated to the IF by the daughter-
board is first sampled and multiplied with a time discrete cosine wave or a sine
and cosine wave for complex samples as shown in Figure Afterwards the
signal is again filtered and decimated to cancel out the double frequency parts
and reduce the number of samples. The resulting baseband samples are stored
in a buffer and transmitted to the PC over the USB or Ethernet interface.

Receive Part

IF signal 1
snalt ,® i Decimation¢ -1,
A
IF signal I
ghatz — — Decimation* =2,
NCO

(a) real samples

IF signal
shalL -~ Decimation* —

- . Decimation¢ >

(b) complex samples

Figure 2.3: Reception path in the motherboard for real and complex samples

Transmit Part

At the transmission side the data is received over Ethernet or USB and stored
in a buffer. Out of this buffer the samples are upsampled, interpolated and
modulated to the intermediate frequency by a cosine for real samples or a sine
and a cosine for complex samples. Then the samples are converted into analog
signals and are send to the daughterboard.

2.1.4 Daughterboards

The operating frequency band of the USRP can be controlled by exchanging the
daughter board. Each daughterboard has access to two RX and two TX channels

2.2. INTERFACES 11

for either one complex or two real valued streams in RX and TX direction with
full duplex capabilities. An oscillator with a fixed frequency of 10MHz on the
motherboard is used to generate an oscillator on the daughterboard’s target
frequency. This oscillator modulates the signal from the operating RX frequency
to the IF and the TX streams from the IF into the operating TX frequency. For
real valued streams the two streams can be connected to different antennas on
the same operating frequency. Most daughterboards are also capable of filtering
the received signal to suppress aliasing effects.

2.2 Interfaces

Depending on the USRP device there are different ways to access it from several
software distributions.

2.2.1 USRP1

The USRP1 device can be interfaced with a driver provided by Ettus [6]. It is a
C++ Interface which can be used to switch between real and complex samples,
set the operating frequencies, amplification and send or receive the samples from

the device’s buffer. There are several software that utilize this interface to allow
the use of USRPs:

GnuRadio
A block based open source radio software. A USRP can be used like any
other signal source/sink from within this software. All necessary configu-
rations of the USRP are accessible from the USRP block.

GnuRadio companion
A graphical user interface to GnuRadio that utilizes the GnuRadio inter-
face to the USRP.

MATLAB
A programmable numerical math software by MathWorks. An inter-
face between MATLAB and the USRP1 was developed by Institute for
Communications Engineering (LNT) at Technische Universitat Miinchen
(TUM). It can set the basic configuration options of the USRP and send
and receive samples to and from a vector.

SimuLink
A MATLAB powered block based signal processing environment. An in-
terface to access the USRP as Simulink block is available by the Com-

munications Engineering Lab (CEL) at Karlsruhe Institute of Technology
(KIT) [1].

2.2.2 Next Generation USRPs

To support the various improvements of the new USRP generation Ettus pro-
vided a new driver, the USRP Hardware Driver (UHD) [6]. The UHD is a C++
interface and offers the same functionality as the old USRP1 driver with the
additional functionality to

12CHAPTER 2. UNIVERSAL SOFTWARE DEFINED RADIO PERIPHERAL

Switch between oscillation and timing reference sources

Configure time tagged transmission

Read out time tags from received samples

Configure channel and antenna assignment in MIMO configuration

Transmit and receive a specific number of samples by start and end of
burst flags

o Detection and notification on stream interruptions*

The UHD can also access USRP1 devices where the features from above are
emulated in the UHD driver on the PC, except for the start and end of burst
capability which is ignored by the driver if a USRP1 device is accessed. This
way all USRP devices can be accessed by the UHD with the maximum possible
functionality for each device.

Similar to the USRP1 driver there are software distributions that use the
UHD to access the USRP devices.

GnuRadio
Very similar to the implementation of the old USRP1 driver. Most of the
new functionality has been adopted

GnuRadio companion
Uses the same interface as GnuRadio. There is no time tagging available
in GnuRadio companion.

MATLAB /SimuLink
MathWorks provides the Support Package for USRP® Hardware to access
the USRP from within MATLAB/SimuLink [§]. Although this package
uses the UHD it can only be used for the two network based USRP2 and
USRP N2x0 devices with limited functionality

2.2.3 Conclusion

Although there are two existing Interfaces to access the USRP devices from
within MATLAB both of them lack some key features. The USRP1 interface
from the LNT can only access USRP1 devices and cannot benefit from the new
functionality of the UHD, while the MathWorks driver is artificially limited
to network based devices and is also lacking time tagging of samples. Due
to the closed source nature of the support package it is impossible to change
this. At the Institute we have both USRP1 and USRP N210 devices and it
is very desirable to use both types of devices with the same codebase. Also
the possibility of doing accurate range measurements by time tagging is very
appealing. These considerations led to the development of a new MATLAB
interface which is described in the following Chapter.

4Such as under- or overflow of buffers and impossible time tags at reception or transmission

13

Chapter 3

MATLAB Interface
Implementation

As motivated in the previous Chapters, this work will implement an interface
between MATLAB and the UHD, which should be able to

e access all types of USRP devices with the same MATLAB code
e receive and transmit simultaneously from the same MATLAB code

e tag the time of incoming and outgoing samples

in a way that the full potential of the UHD can be used.

3.1 General Considerations

3.1.1 Single Thread

MATLAB programs run in a single thread, which means that all operations are
done in sequence and no parallel operations are possible. Therefore it is not
possible to directly interact with the channel as this would lead to interruptions
in the data stream as shown in Figure [(3.1a on the next pagel Instead the
interaction with the channel needs to be buffered in a memory that is faster
than the channel data rate. For two data streams the memory needs to be at
least twice as fast as the channel. If the memory is even faster there is some
additional time in the thread to do calculations with the received data and
generate the transmission samples as shown in Figure [3.1b

The UHD has an internal buffer for USB/Ethernet operations that is suf-
ficient for operating two data streams into a single thread. The C++ code in

Appendix demonstrates the parallel reception and transmission

from a single thread.

3.1.2 Approaches

It is not possible to access the UHD library directly in MATLAB as there is no
way of using C++ libraries and data structures from within MATLAB. However
there are a few different approaches that have been taken and are discussed in
the following.

14 CHAPTER 3. MATLAB INTERFACE IMPLEMENTATION

samples send / >
received from channel 5/0 samples 5/5 samples 10/5 samples

transmission channe1| ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ H

reception channel | [N

v et i }

teror ot i
(a) single thread without buffer

samples send / -

>

received from channel 5/3 samples 10/8 samples 15/13 samples

transmission channel| ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

reception channel

reception buffer 4 ! !

4
Matlab thread ‘ ‘ h
t t t

(b) single thread with buffer

Figure 3.1: Channel access with and without buffering in between. Without
buffering each channel is empty for half of the time for a single thread.

C/MEX Wrapper

MATLAB can call plain C libraries which can handle C++ code and it is pos-
sible to write special C++ code that can be executed from MATLAB!. Both
the C library as well as the MEX code would then work with the C++4 library
internally and wrap the data into C/MATLAB data structures for further pro-
cessing.

This approach is the most direct one compared to the two following ap-
proaches, as it directly interacts with the MATLAB data. In the beginning this
close interaction led to errors with incompatibilities between the Boost library?
used by the system and the ones used within MATLABS3. If these versions do not
match, the attempt to call the UHD library from MATLAB either by a MEX
file or by calling a wrapping C library loads the Boost version deployed with
MATLAB instead of the system’s one which results in a segmentation violation.

IMATLAB Executables (MEX) code that has to be compiled with special compiler options
and only returns MATLAB compatible data structures

2A C++ library for standard operations in C-++-.

SMATLAB R2011b is linked to Boost version 1.44.0

3.1. GENERAL CONSIDERATIONS 15

Because of this problem the two approaches explained below have been con-
sidered. After MathWorks’s technical support pointed us to the use of an in-
compatible boost version inside MATLAB* we were able to compile the UHD
against the same Boost version as MATLAB which resolved the segmentation
violations. After these issues are solved this approach is the most promising and
thus is used for the implementation described in Section [3.2 on the next pagel

Server/Client Separation

To have a clear separation between the MATLAB and the USRP side to work
around segmentation violation problems, all UHD related tasks can be run as a
stand alone program which exchanges configuration and samples with MATLAB
over a local network®.

As MATLAB has no own network access the fact that MATLAB can naively
run Java code is exploited. Java has Remote Procedure Calls® (RPC) that
enable the network separation with almost no implementation effort. Another
advantage of Java code is that it is object oriented. This way multiple USRP
devices can be easily addressed with multiple objects. Figure [3.2] shows the
basic principle of this approach.

Network
Server RPC : rpc Client
UHD 1
1
USB / 1
Ethernet I Java
1
1 usrp.send (vector)
USRP : Matlab
1
Standalone Programm | Matlab

Figure 3.2: Separation of UHD and MATLAB address spaces by a server /client
model.

The intended clear separation of MATLAB and UHD in this approach also
has the drawback, that there is no common memory. All data between the
two instances has to be copied before it can be used. This lead to very strong
performance issues. Receiving data with a rate of up to one Megasample per
second was possible without any transmission at the same time, but any higher
data-rates or parallel transmission led to buffer overruns, because the data was
not transferred fast enough over the interface.

4The use of Boost inside MATLAB is not documented at a prominent place

5Preferably over the loopback device that is a pure virtual network that has no data-rate
limit through a physical connection

6That allow access from one Java program to data and Methods of another Java Program
over the network without having to specify the interface first

16 CHAPTER 3. MATLAB INTERFACE IMPLEMENTATION

Files

When it is not necessary to react to the received samples, e.g. no acknowledge-
ments in the communication, the interface can be relaxed to sending from, and
receiving into a file. Beside the much lower complexity this approach is repro-
ducible by just reimporting the received samples. The sample C++ code in
listing [A-4] in Appendix[A:2:2 on page 51| receives samples and writes them into
a file as a sequence of double values while the sample code listing [A2) reads a
file of subsequent complex double values and transmits them over the USRP.
The MATLAB code in listing shows how to import this data into MATLAB
and listing shows how to export it.

3.2 Interface Structure

The whole interface is implemented in a single mex function. This way all
necessary data is available to all functions and only has to be kept persistent
between subsequent calls of the same Mex function. To tell the Mex function
what it should do during a specific call, a command has to be passed to the
function. To access multiple USRPs in a non object orientated manner each
USRP object is assigned with an unique integer index at initialization which
is returned to MATLAB. By passing this index together with a command, the
Mex function can search the right USRP object corresponding to the index and
call the desired function of that object. Listing [3.1] shows the general structure
of this function.

The entry point of the Mex function is at line 22. As MATLAB can clear
Mex function out of memory at any time to ensure that the data is persistent
between two calls a Mex function can lock itself. A locked Mex function is not
cleared from memory unless it is unlocked again, or MATLAB exits. If the Mex
function is not locked in line 25 it initializes itself by locking and registering a
message handler, which is called by the UHD library to exchange messages. As
the UHD uses multiple threads it has to be ensured that the message exchange
between UHD and the single threaded Mex function is Thread safe. At each
call to the message handler, in line four, a message is appended to a buffer. A
mutex” ensures that either the Mex function or the UHD is accessing the buffer,
but not both at the same time. At each call to the Mex function the message
buffer is read and the messages are printed to the MATLAB console in line
32. Afterwards the input parameters are checked for existence and sanity. The
interface expects at least one input string with the command to call. If there is
at least one USRP object initialized, but no USRP index given the first USRP
object (index 0) is used by default, otherwise the USRP index is expected before
the command string. After the command string an optional third parameter
can be given as parameter to the command, e.g. the frequency when setting
the centre frequency of a USRP. In lines 43 to 67 all possible commands are
checked in sequence and executed if all conditions for a command are fulfilled.
After a command is executed the Mex function returns to MATLAB. When the
program reaches line 69, no command has been executed and an according error
message is printed out before returning to MATLAB.

7A programming concept which ensures mutual exclusion

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

44

45

46

47

48

49

3.2. INTERFACE STRUCTURE 17

Listing 3.1: Structure of the Mex file to achieve access to all functions on mul-
tiple USRPs from one Mex function.

static uhd::usrp::multi_usrp::sptr[] usrp;
static boost::mutex messages_mutex;

void message_handler (uhd::msg::type_t type, const std::
string &msg){
// ensure messages are not read out during this run
boost::mutex::scoped_lock lock(messages_mutex);

//
// store message
//

}

void process_messages (void) {
// ensure messages are not stored during this run
boost::mutex::scoped_lock lock(messages_mutex);

//
// print out stored messages
//
}
extern "C" void mexFunction(int nlhs, mxArray *plhs[], int

nrhs, const mxArray *prhs[]) {

// make sure we do not get cleared without our permission
if (!mexIsLocked ()) {
// lock the file
mexLock () ;
// register message handler so errors can be printed out
uhd::msg::register_handler (&message_handler) ;
}
// read out messages, that arrived during time in Matlab
process_messages () ;

//
// check inputs
//

int uhd = getUInt (prhs[0]);
std::string command = getString(prhs[1]);
const mxArray *arg = prhs[2];

// check individual commands
if (command.compare("init") == 0) {
std::string devarg = getString(arg);
uhd::usrp::multi_usrp::sptr usrp_local = uhd::usrp::
multi_usrp::make (devarg) ;
//
// store usrp_local at i-th position in usrp[]
//
plhs[0] = retInt(i);

51
52

53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

70

71

18 CHAPTER 3. MATLAB INTERFACE IMPLEMENTATION

return;
}
// only possible if the given USRP is initialized
if (command.compare ("set_rx_frequency") == 0 and usrp[uhd])
{
usrp [uhd] ->set_rx_freq(getDouble (arg));
return;
}
//
if (command . compare ("exit") == 0) {

// unlock Mex function so it can be cleared
mexUnlock () ;
return;

}

if (command . compare ("flush") == 0) {
// do nothing, just print out new messages
// from the UHD, which has been done above
return;

}

// nothing to do yet :(

mexErrMsgIdAndTxt ("MATLAB:uhdInterface:noCommand", "
Please specify a command") ;

return;

3.3 Usage

To use the interface, the compiled mex code needs to be accessible to MATLAB.
On a new system it might be necessary to compile the code with the make.m
MATLAB script. Afterwards the binary file uhdinterface.mex***® needs to
be added to MATLAB’s path. The interface can then be used by a call to
uhdinterface from within MATLAB. Section lists every possible

command of the interface.

3.3.1 Send and Receive Samples
The sample code in listing in Appendix shows how to send

and receive samples over the interface and demonstrates the usage of the most
common commands of the interface. In lines two and three the two used USRPs
are initialized and their index values are stored in the two variables uhdsend and
uhdrecv. Instead of sending from one USRP to another one it is also possible
to transmit and receive from the same USRP. In this case only one USRP
object has to be initialized and both the transmission as well as the reception
commands need the index of the same USRP object as argument. In lines six
to eleven the parameters of the transmission are set. The frequencies are given
in Hertz, the data rates in samples per second and the gains in the range from
zero to 30 dB. Whenever parameters which are not possible with the USRPs are

8The exact file suffix depends on the used operating system and the computer’s architec-
ture.

3.3. USAGE 19

given the UHD notifies the user. To show the output of the last command in
line eleven the output of the UHD is flushed to the MATLAB console in line 14.
Afterwards the number of received and transmitted samples is set and the send
and receive buffers are initialized. In line 27 the reception of samples is started
and in line 28 the transmission of samples is started. Unless otherwise configured
the transmission from the internal sample buffer starts 100ms after the call of
this function. As the USRP needs some time during its transient state the first
received samples are useless and are thrown away in line 32. If it is important to
receive even the first transmitted bit it is possible to send zero symbols before
the actual message to give the USRPs some time to tune in. The main reception
loop starts at line 35. In this example a constant symbol is transmitted so it
is not necessary to recalculate the send buffer. The previous send buffer is
retransmitted in line 36. In line 37 the next set of samples is received and
stored into the reception buffer. In line 45 and 46 the two initialized USRPs
are closed again and if no other USRP device is initialized the interface unlocks
itself. When using the same USRP device for transmission and reception this
device has to be closed only once.

3.3.2 Spectrum Analyzer

The USRP interface can also be used to display the spectrum of the received
samples. Figure [3.3 on the next page| shows the spectrum of an ECSS? com-
patible ranging and telecomand signal generated by [9]. The according code is
shown in listing [A7] on page [55|in the Appendix. While permanently receiving
samples, their discrete Fourier transform is computed and averaged over a short
time period. The resulting spectrum is plotted and updated in a configured
interval. By using MATLAB for this task it is possible to view the spectrum
through the same hardware as a sample code would do and it is possible to
zoom and pan the spectrum like any other plot in MATLAB while it is still
being updated.

9European Cooperation for Space Standardization

20 CHAPTER 3. MATLAB INTERFACE IMPLEMENTATION

Eile Edit View |Insert Tools Desktop Window Help E
N de | A0 DEL- 2|08 amD
i T T T T T T T T T
B0 4
=100 B

_150 1 1 1 1 1 1 1 1
1000 -800 -E00 -400 -200 1] 200 400 BOO 200
Frequency [kHz] - 2,000 GHz

(a) Overall spectrum of an ECSS compatible ranging and telecom-
mand signal.

File Edit View Insert Tools Deskiop Window Help L]

NEde|h|[HRUDEL- 2|08 0O

-0 I
140 150 160 170 180 190 200
Frequency [kHz] - 2,000 GHz

(b) Zoomed in detail of a side peak of an ECSS compatible ranging
and telecommand signal.

Figure 3.3: Screenshots of a spectrum analyzer implemented in MATLAB using
the USRP interface

21

Chapter 4

Synchronization

When transmitting a signal it is in general modified by the channel before
reception. This work will assume an additive white Gaussian noise (AWGN)
channel. Beside the additive noise whose effect is shown in Figure
[the following pagel the signal also needs its time to propagate through this
channel which is seen as a delay at the receiver side and can lead to sampling
at suboptimal time instances as shown in Figure Because of the Doppler
shift due to relative movements between sender and receiver and because of
imperfections in their local oscillators the signal is also rotated in the signal
space by a constant frequency offset as shown in Figure as well as by a
constant rotation because of a phase offset in the local oscillators and the signal
propagation as shown in Figure

All these effects lead to a modification of the send signal at the receiver side.
Synchronization aims at estimating the frequency offset and channel delay, as
well as the phase offset in a coherent receiver to remove or at least reduce the
modifications before the detection of the sent data symbols.

4.1 System Model

Starting with the N data symbols d[i] € D C C the baseband transmission
signal s is formed by the root-raised cosine transmit filter g7

N
s(t) =Y _dfi]- gr (t —iT). (4.1)
i=1

The baseband signal s is then modulated to the carrier frequency fs with an
arbitrary phase of the local oscillator ¢, resulting in the analytic representation
of the real valued send passband signal sgpp at radio frequency

srr(t) = s(t) - eI fottos) (4.2)

After transmission over the AWGN channel the signal at the receiver is
modelled with a transmission delay ¢’ and a noise term wgrp with one-sided
power spectral density Ny

TRF(t) = SRF(t — t/) + ’LURF(t)
= s(t—t') - @ F () 400) L ppr(t). (4.3)

22 CHAPTER 4. SYNCHRONIZATION

Signal constellation with different noise variances Signal constellation with constant delays 7

1r B 1r 4

0.8f B 0.8 4

0.61 B 0.6 4

§ 04f 4 $ 04f]
c c
8 =

g 02p g 02f 4
g9 . <]

:: ol 1 : of .o . . .) 4
E E

© -0.21 1 © -0.21 1
k] k]

S -0.4r 1 s -0.4r q

o o
-0.61 1 -0.61 q
-0.81 R -0.81 4
N e 7=0
-1F . -1 ° 7=0.137]4
. . . n N
-1 -0.5 0 0.5 1 -1 -05 0 0.5 1
Inphase component Inphase component

(a) Additive white Gaussian noise offsets the samples (b) Propagation delay leads to sampling at suboptimal

around the send data symbol time intervals
Signal constellation with constant frequency offset v = 0.0413 Signal constellation with constant phase offsets ¢
. .
'\ 0.8¢]
g
g 05f — 0.6- i
s %
=3 €
£ . g o04f 4
<] s < .
o o
e O . 1 S o2f 1
g . e
© L 3 o
é ‘3 or . . —
_osk .] 5
3 0.5 B -02F 4
. =]
: S 04 : 1
Lot &
-1t * e o 4
. _0.6- i
-15 -1 -05 0 05 1 15
Inphase component -0.8F 1
5 10 15 20 25 30 35 40 45 50 -1 -05 0 0.5 1
Inphase component
(c) Frequency offset continuously rotates the received sam- (d) Phase offset rotates the samples by a constant angle
ples

Figure 4.1: Influences of the delayed AWGN channel on a BPSK signal

This received signal is then downmodulated with a frequency f, similar to
fs. Because of differences in the local oscillators at sender and receiver side
and because of the Doppler shift due to relative movement between sender and
receiver fg and f,. are in general not identical. ¢, is an arbitrary phase of the
local oscillator at the receiver

r(t) = rrp(t) - e I@TIriren), (4.4)
With _
w(t) = wrp(t) - e ICTIrtter) (4.5)
equation (4.4)) becomes
r(t) = s(t — t/) ced2m(fs=fr)t ej(¢s+¢r,~72ﬂ'fst/) + w(t). (4.6)

The received signal is filtered with a root raised cosine low pass filter with
a one-sided bandwidth of ﬁ that limits the noise, but keeps the signal undis-

4.2. FEEDFORWARD ESTIMATOR 23

torted. Sampling the filtered signal with a frequency of % leads to

T[k] = r(KT,) = s(kT} — tl) . ed2m(fs=Fr)RTs ej(¢s+¢7'*277fst’) +@(KT,) (4.7

with N
w(kTs) o< No (0,02 = TO) . (4.8)
To come to a simpler notation and eliminate the units the following normal-
ization is applied. The oversampling factor N, is defined as the ratio between

the symbol interval T" and the sampling interval T

T
Nos = i (49)
The normalized delay D is defined as
t,
D= T (4.10)

which is divided into the integral delay n and the fractional delay 7. In this
work, only the fractional delay is considered and the integral delay is assumed
to be zero, as the integral delay has no impact on synchronization and only
introduces a delay in the received symbols

D=n+r7 ,7€[-0505)AneN. (4.11)

The frequency offset is normalized by the symbol interval and is considered
to be limited
v=_(fs—f)T ,ve[-05,05). (4.12)

The phase offset is collected in a single variable ¢q

$o = ¢s + ¢ = 2nf DI, 9o € [*71—7 7T)' (413)
Applying the normalizations from (4.9) to (4.13)), equation (4.7]) becomes
rlk] = s((k — Npo) TS> 2T eI G(KT). (4.14)

4.2 Feedforward Estimator

In [I] a feedforward synchronization scheme is presented that will be used in
this work. It is designed for burst mode transmission where the time between
the reception of the first sample and the time of correct detection of the data
plays an important role. Therefore a synchronization sequence of known data
symbols is transmitted first, followed by a short, known start of frame (SoF)
sequence and the message’s data symbols as shown in Figure [4.2 on the next
[P3ge}

The synchronization sequence consists of alternating +1 BPSK symbols.
This sequence optimizes the Cramér-Rao lower bound for timing estimation,
because the corresponding spectrum has only two peaks at the maximum fre-
quencies. This sequence also decomposes the estimation of the three parameters
timing 7, carrier frequency offset v and the carrier phase ¢ into a one dimensional

24 CHAPTER 4. SYNCHRONIZATION

Synchronization sequence |Start of Frame| Frame data oo

Figure 4.2: Organization of synchronization sequence, start of frame sequence
and the message’s data symbols.

frequency search as shown in the next Section. While following the derivations
from [I] instead of estimating the phase at the beginning of the synchroniza-
tion sequence, this work will estimate the phase at the middle of the sequence
which leads to a lower overall variance of the phase estimation. The algorithm
operates on the received samples with an oversampling factor of two.

4.2.1 Joint Maximum Likelihood Estimation

The probability for a received sample r[k] from equation (4.14) conditioned
on fixed synchronization parameters 7,7 and the phase at the middle of the
synchronization sequence ¢ = ¢y + mL can be expressed as

2

p(rlk] | 5,5,7,3) = —5 exp (—Wl ‘r[k] — s((k — Nyyr) To) eﬂ'(%ﬁiw)’

mo2 o?
(4.15)
When transmitting the synchronization sequence of alternating +1 the re-
sulting filtered spectrum consists of two peaks at :l:% which corresponds to a
cosine. Thus, the bandlimited continuous form of the send signal s(t) can also

be written as
t
S(t) =V Ny cos (Z-,) (416)

Because of the independence of the individual samples, the likelihood func-
tion for the synchronization sequence of length L given the synchronization
parameters 7, 7 and ¢ can be expressed as the product of all 2L samples

2)

p(rlk] | s,0,7,0) =
(4.17)

zﬁl 1 1
= exp | ———
To? P To2

k=0

r[k] — /Now cos (mh w%) i (2 +0)

To fulfil the maximum likelihood principle, the parameters 7,7 and (;3 are
chosen such that the likelihood function (4.17)) is maximized

(0,7, $) = arg max {p(r[kj] | s,0,7, q})}) (4.18)

Instead of maximizing p directly the logarithmic likelihood function A =
In(p) is maximized

A(r[k] | #,7,¢) = — 2L1n (10?)

T[k] — ej(‘n'ﬂ(k—[,)_;,_ql) v/ Nys cOS (;k — 7T7~')

0S8

4.2. FEEDFORWARD ESTIMATOR 25

When leaving out constant parts, equation (4.19) transforms to

2L—1 2
e _ i(mo(k=L)+d) | mk =~
V(0,7 0) = kzzo r[k] eI) v/ N,s cos <Nos 7TT>
2L—1 &
;) (- ﬂ'V(k L)+¢) v N, cos (Nos — 777~')>
. <T* [k] - eij(ﬂg(kiL)Jr(z;) 1/ Nos cos <]7\rfk a 7r7~_>)
2L—1 -
=~ > |r[]|* + Nos cos® < - 7r%>
k:() NOS

—2y/ OSER{ 3P (k=L)40) . cog <;\T]k - w%> } (4.20)

Using the two times oversampled signal (N,s; = 2), equation (A on page
shows, that the sum over the squared cosine term is mdependent of o, T

and ¢. Therefore, again omitting constant terms, the maximization of (4.20) - is
simplified as

i 201 ok
U (0, 7,0) = { i(@=mL) Z e IR L cos (2 —w%)}.

Regrouping the samples into odd and even ones leads to

L-1
~ T 5) % 2
(0,7,) :?R{e_ﬂ(d’—”’:l’) : <Z r[2k] - eI . cos (7T2k - 7T7~')
k=0
L1
+ Z r[2k + 1] ceIT@EDD g <7T(2k2+1) — 7T7~'> >}
k=0
L-1 o
—?R{ J(@—mLp) (Z r[2k] - eIk | oog (mk — 77T)
k=0
L—1 .
2 1] . —jm2kv | —jmiD | . _ gF
+kZ:0T[k+]-e e cos(ﬂk;+2 71'7'))}

L—1
_m{ J(o— wLy) < Z 7"[2]45] . e*jﬂ’2k:17 . (71)16 . cos (71'71)

+Z [2k + 1] - e~ I72k7 . _j”D-(—l)k~sin(7T%))}. (4.21)

Naming the splitted received samples in (4.21)) as

Ye(@) = (=1)F - e 72 L p[2k] (4.22)

Yo (o)=Y (=1)F - e 2 2k + 1] (4.23)

26 CHAPTER 4. SYNCHRONIZATION

reveals that these quantities can be computed very efficiently using the fast
Fourier transformation (FFT). Also this leads to a simpler notation of ¥

(0, 7,4) =R {e*j@*””) [Yo () - cos(n7) + €977 - Y () - sin(r7)] } . (4.24)
Defining the inner part as Z(,7)
Z(7,7) = Ye(D) - cos(mF) + e 9™ - Y, (i) - sin(n7) (4.25)
equation can be rewritten as
(5, 7,8) = |2(5,7)]| - cos (12(&, F) -+ 7rL17) . (4.26)

From equation the optimum ¢ for a fixed 7 and 7 can be observed
when the cosine term becomes one, which leads to
b =4LZ(0,7) + L. (4.27)
Inserting the optimal phase estimate from above, equation leads to
(0, 7,¢) = |Z(5,7)| (4.28)
which has the same maximum as

F(ﬁvi—) =2- \112(577:a(£)

=2|Z(p,7)]%.
Equation on page [61] shows the equality to
D(5,7) =Y (@) + Yo (0)]° + R {727 AD)} (4.29)
with
A@) = Ye@)* = Yo ()] + j2R {/™ Yo (2) Y (9)} (4.30)

Equation (A.6.3]) on page [62| shows the argument phase notation of A as
A@) =|Y2(D) + e 7Y 2 ()] e<AP). (4.31)
Inserting (4.31) into (4.29) leads to

D(0,7) = Yo(@)]* + [Yo(7)] + |A(P
= Yo (@) + Yo ()] + |Y2(

)| cos (LA(D) — 27T)
) + e 2TV 2 ()] cos (LA(D) — 27F)

(4.32)
which is maximized for fixed 7 when the cos term equals to one, which leads to
1
7= —4LA®D). (4.33)
27
When inserting (4.33)), equation (4.32)) becomes

P(7) =I'(#, #)
=Y. (0)* + [Yo (@) + [Y2(D) + e 2"V 2 ()] . (4.34)

4.2. FEEDFORWARD ESTIMATOR 27

Finally the maximum of the likelihood function can be obtained by a one
dimensional search over the frequency offset, which is described in the next
Section, with

V= arg;nax {P(D)}. (4.35)

With the result of the frequency offset search the other two synchronization

parameters can be calculated from (4.33)) with A(#) from (4.30))

1,
F= o LAWD) (4.36)

and from (4.27) with Z(¥,7) from (4.25]) with

b= 4Z(0,7)+ L. (4.37)

4.2.2 Frequency Search

As showed in the previous Section the frequency estimation is achieved by a
maximum search over P(7) which is a combination of the two spectra Y, (7)
and Y,(7), which can be computed using the FFT algorithm. The spectral res-
olution of P is given by the spectral resolution of Y, and Y,, which is given
by the length of the FFT input y. and y,. To increase the spectral resolution
these input sequences can be enlarged by adding additional zeros at the end.
This technique is called zero padding, where a pruning factor K is defined as

FFT based frequency search for » = 0.315 at 0dB SNR

—— FFT bins
151 =3¢ FFT bins maximum

0 2, L Y Y
-05 -04 -03 -02 -01 0 0.1 0.2 0.3 0.4 0.5

normalized frequency offset
DFT based refinement for frequency search

6k
—— DFT bins
~—>¢ DFT bins maximum
A4V —— FFT bins
Et/ —>¢ FFT bins maximum
zk

0.3146 0.3148 0.315 0.3152 0.3154 0.3156 0.3158 0.316 0.3162 0.3164
normalized frequency offset

Figure 4.3: Frequency Search principle with a coarse search using the FFT
algorithm and a refinement using the DFT in a second step.

the ratio between the length of the zero padded and the original sequence. By

28 CHAPTER 4. SYNCHRONIZATION

doubleing the amount of input samples the resolution is doubled, however the
computational complexity is also more than doubled. The drawback of zero
padding in this work is that the frequency resolution over the whole spectrum
is increased while only a high spectral resolution around the maximum is ben-
eficial for the maximum frequency search. Thus a lot of computational power
to compute large FFTs is needed as well as the memory to store the refined
FFT for the small benefit of having the frequency refinement also around the
maximum.

To overcome this drawback the frequency search is done in more than one
step. First the spectrum of P is computed using the FFT without zero padding.
From this spectrum a coarse frequency estimation 7, is determined. With knowl-
edge of the rough position of the maximum and the assumption that the spec-
trum is locally concave around the maximum, the spectrum can be refined
around the maximum using the discrete Fourier transform (DFT). The fre-
quency range around the maximum is divided into 1000 equidistant frequency
bins and the DFT of y. and y, for these frequency bins is computed using a
DFT matrix. The fine frequency estimate 7y can be found by recomputing P
with the new spectra and taking the maximum as shown in Figure
To further increase the spectral resolution the computed oy
can be considered as another coarse estimation and the previous step can be
repeated.

For a productive implementation of the frequency search, instead of comput-
ing a DFT matrix and performing the matrix multiplication on every repetition,
more performant methods like the golden section search with the Goertzel al-
gorithm to compute the single spectral points should be used.

4.2.3 Simulation Results

To evaluate the performance of the synchronization scheme from above, the
mean squared error (MSE) between uniformly distributed random synchroniza-
tion parameters and their estimates is computed for different signal to noise
ratios (SNRs). These MSEs are compared to the Cramér-Rao bounds (CRBs)
for frequency, phase and timing estimation. The CRB is the theoretical lower
bound of the variance of an unbiased estimator and serves as a reference for a
perfect synchronization scheme. The CRBs are computed as [1]:

1 12
CRB, = : 4.38
SNR w2L [AL? — 4 + 3sin®(277)] (4.38)

11
CRB; = <= " =57 (4.39)
CRB, — 1 2(2L—-1)[4L — 1 —3cos(7)] (4.40)

SNR L [4L? — 4 + 3sin’(277)]

The simulated results of the joint MLE are plotted in Figure [£.:4 on the nexi]
For each SNR value the MSE is computed for 1000 frequency, timing and
phase offsets with an observation length of 1024. The frequency search is done
in two different ways. In Figure [f.4a]a FFT with a zero padding pruning factor
of 64 is used for coarse frequency estimation. In Figure[£.4D|the DFT refinement
described in the previous Section is used with one repetition. In Figure
the MSEs hit the CRBs for SNRs up to 8dB. For higher SNRs the frequency

4.2. FEEDFORWARD ESTIMATOR

10 T T

0 Variance/MSE of the estimated parameters, L=1024, n=1000

10°

-4 —— -

10 T o

Variance/MSE

-14

———— MSE,
- MSE,
. MSE,
-CRB,
- CRB,
- CRB,

30

10 | | | | |
-10 -5 0 5 10 15 20 25
SNR [dB]
(a) zero padded FFT with pruning factor of 64
0 Variance/MSE of the estimated parameters, L=1024, n=1000
10 T T T T T T T
——— MSE,
2 —— MSE,
10" ——— MSE; |
T — — -CRB,
T - - -CRB
~— \\\ T
10 “t \\ Tt - = CRB¢ a

Variance/MSE

10 I I I I

-10 -5 0 5 10
SNR [dB]

(b) DFT refinement repeated once

30

29

Figure 4.4: Mean squared errors of the joint maximum likelihood estimator
compared to the CRBs for different frequency search methods

30 CHAPTER 4. SYNCHRONIZATION

estimation hits an error floor because of the coarse frequency search. As the
phase estimation is strongly dependent on the correct frequency estimation it
also exhibits an error floor, while even the very inaccurate frequency estimations
for high SNRs are good enough to compute an accurate timing estimation. Thus
the MSE for the timing estimation hits the corresponding CRB over the whole
simulated SNR, range. In Figure the frequency estimation is computed
with a higher accuracy. In this case the MSEs of all three parameters hit the
CRBs in the complete simulated SNR range, which means that with the same
parameters any other estimator can only be as good as the discussed joint MLE
estimator in terms of estimation accuracy.

4.2.4 Synchronization Sequence Detection

Before starting the maximum likelihood estimation described above on mea-
sured data, the receiver first has to detect that the synchronization sequence
is received. Therefore the receiver iterates over small blocks of the received
samples (e.g. 64 samples) and checks this sequence for the presence of the syn-
chronization data. Equation seems suitable for the detection as a syn-
chronization sequence creates one distinct peak in P(7) while noise just raises
the average value of P(¥). A signal to noise ratio can be calculated by comput-
ing the quotient of max; {P(7)} as a measure of signal and noise energy and
& [P(D)] as a measure for the noise energy. Once the SNR raises over a threshold
value the presence of the synchronization sequence is assumed and the joint ML
estimation is started on the following samples.

Unfortunately the USRP devices transmit a strong carrier signal even when
transmitting zero symbols. This carrier signal also creates a distinct peak in
P(7) and thus mimics the presence of a synchronization sequence even when
the transmission of this sequence has not yet been started. Although from a
subsequent view of the SNR estimates an increased SNR is observed when the
synchronization sequence is transmitted due to the higher energy of the synchro-
nization data over the carrier, there is no absolute value at which the presence
of a synchronization sequence can be assumed, when not knowing the attenu-
ation of the channel. To reliably decide between the presence or absence of a
synchronization sequence without knowing the channel attenuation, hypothesis
testing instead of SNR estimation is used. The following three hypotheses are
made:

H1 A synchronization sequence is present
H2 A carrier signal, but no synchronization sequence is present

H3 The received samples do not contain a signal, but only noise

The probability of each of these hypotheses under the condition of the re-
ceived samples is evaluated and compared to the other ones. Instead of directly
calculating the probability p of each hypothesis a monotonic function ¥ is used

4.2. FEEDFORWARD ESTIMATOR 31

instead, with
. 1 201
¥(p) =5 <¢(p) +L+ > IT[kHQ)
k=0
1 201
=ro?1In(p) + 2oL 1n (271'02) + 3 (L + Z |7“[k]|2> (4.41)
k=0

This definition of U comes from the derivation of the maximum likelihood esti-
mator with ¥ = ¥ — % from equations (4.17)) to (4.21]) with ¢ being the negative
sum of the Euclidean distances between the received samples and the expected
data symbols in the signal space. The likelihood of hypothesis one can be taken

from (4.28) as

L L L
Vi (0,7) =[2(0,7)| = 5 (4.42)
Uys is computed in (A.7.1) on page
20—1 g
Uy (D) = kz_o rlk] - e ImR| — 5 (4.43)

For hypothesis three no data symbols are expected, so — is just the norm of
the received samples and thus

2L—1 2L—1
Wy :% (SR+ D |rik] 2) =0 (4.44)
k=0

To avoid false detection during transitions between two hypotheses the pres-
ence of a synchronization sequence is only assumed when the likelihood of hy-
pothesis one is larger than the likelihood of the two other hypotheses plus certain
thresholds k= = 0.05 and x* = 1.05, which lead to the following decision criteria

Uy >k >0=Uyz A Uy > kT Uho. (445)

Figure [4.5 on the following page| shows the calculated likelihoods for two
measured USRP signals which start transmitting the synchronization sequence
at block number 25. It can be observed that the detection criteria of equation
will always lead to a clear and correct detection in the plotted cases.

4.2.5 Measured Results

To test the performance of the synchronization scheme over a real channel the
synchronization sequence is transmitted from one USRP device to another. For
high SNR cases the data is transmitted over a cable, for lower SNR it is trans-
mitted over antennas with low transmit power. As the estimation errors of the
synchronization parameters are hard to measure, the received and corrected
signal constellation is inspected instead, to see if a clear detection is possible.
Figure shows the signal constellation for two data sequences,
once after reception and once after synchronization and decimation. It can be

32 CHAPTER 4. SYNCHRONIZATION

likelihood of H1 and H2 with a search length of 64

0-87\\/\/\/”'\/\,/\,\/\“ T
I
I
0.61 | i
I
|
0.41 |
AV T M
|
0.2 | q
|
|
0 77777777777777 \7‘A\777,7—\7/7\1T,:;7\ = =7
—— H1 with 10dB amplification|, | '
— — - H2 with 10dB amplification), |
-0.2f H1 with 10dB attenuation | |/ g
H2 with 10dB attenuation || '
— — -H3 [l
_04 1 1 1 1 il I I I I

0 5 10 15 20 25 30 35 40 45 50
block number

Figure 4.5: Hypothesis testing over subsequent blocks of samples, while switch-
ing from transmitting only a carrier to the synchronization symbols at block
number 25.

observed that the received samples in Figures [{.6a] and [£.6b] are not suited for
detection of the transmitted BPSK symbols, while the synchronized samples in
Figure allow a clear separation of the transmitted symbols. In Figure
and especially in Figure it can be observed that there is still an error in
the frequency estimation which leads to slightly rotating symbols in the signal
space. While this rotation can be neglected for the small number of samples
in Figure [1.6a] the large amount of samples in Figure [£.6H] leads to an overall
rotation that will make it impossible to detect the correct symbols. In the next
Section, tracking of the received samples is discussed which will correct these
remaining rotations and keep track of the timing estimation.

4.3 Tracking

As discussed in the previous Section, even small errors in the initial synchroniza-
tion can lead to detection problems when receiving over longer time instances.
But also the parameters themselves can vary over time due to movements as
well as clock drifts between sender and receiver. To compensate for this changes
the receiver does not only estimates the synchronization parameters once, but
keeps track of them and continuously corrects them during further reception. In
this work the delay and the phase is tracked with two closed loops. Both loops
work with the samples after the matched filter y, while the initial estimation of
the phase and frequency offset is corrected before the matched filter, the timing
error is preserved and initializes the timing error loop.

4.3. TRACKING

Quadrature component [100]

Quadrature component [100]

Signal constellation of initially synchronized and decimated samples
o8l . . .

0.6} .
0.4} .
0.2 |

of . ° e §]

-0.2 1

-0.4 .
-0.6

received samples
-0.8f ° initially synchronized sampleg 1

-1 -0.5 0 0.5 1
Inphase component [10°]

0.2 0.4 0.6 0.8 1 1.2 1.4
Samples [107]

(a) Short sequence of samples

Signal constellation of initially synchronized and decimated samples
1 T T T T —

received samples
* initially synchronized sampleg

o
&l
T

L

o

1t \
-15 -1 -0.5 0 0.5 1 1.5
Inphase component [10°]

0.2 0.4 0.6 0.8 1 1.2
Samples [109]

(b) Large sequence of samples

33

Figure 4.6: Measured synchronization results compared to the received samples

34 CHAPTER 4. SYNCHRONIZATION

4.3.1 Delay Tracking

Timing Error Detector

For tracking the delay the Gardner timing error detector (TED) [3, 2] is used.
In the Gardner TED the difference between the two interpolated sample values
7 at the estimated maximum is multiplied with the value at the estimated zero
crossing using the samples y as input for the interpolation:

er (k) = [g([k ST+) — (kT + +k)] (k= 05T + #_1) (4.46)

Figure[4.7 on the facing page| shows the position of the interpolated samples
for various situations. In the upper plot of Figure at k = 3 the estimated
7 is too small. The difference of the two outer samples is a large positive
number, multiplied by the positive value of the middle sample. This results
in a positive error signal which will increase the delay estimate. If the delay
is already correctly estimated the middle sample will be located at the zero
crossing and so the error signal will be zero as at k = 5. If a raising instead
of a falling zero crossing is considered the difference of the two outer samples
will be negative and thus inverse the sign of the middle sample, as shown at
k = 6. When there are no symbol transitions it is not possible to do timing
estimations, but as shown in the lower plot of Figure [£.7] the difference of the
two outer samples is very small in this case and thus the resulting error signal
is very small or even zero for an arbitrary delay.

Filter

The generated error signal is filtered by a first order filter to generate the timing
estimate 7
T = Th—1+7- 67—(]6) (4.47)

The choice of the proportional constant v affects both the settling time as well
as the bandwidth of the loop. While a higher v results to a lower settling time,
the higher loop bandwidth collects more noise and thus the accuracy of the loop
decreases. The relation between the loop bandwidth By, and v is [3 p. 214]
YA A

~ (4.48)

Bl =554~ 1

The constant A is the slope of the S-curve' at the origin and is two for the
Gardner timing error detector. The loop bandwidth can be related to an equal
observation length of a feedforward estimator with [3} p. 216]

1
Leg =
¢ 2B,T

(4.49)

To achieve a similar tracking performance as the feedforward estimator of sec-
tion 4.2.1 on page 24|it’s observation length L is used to compute 7.

2 1

1The S-curve describes the expectation of the error signal given a certain error.

4.3. TRACKING 35

Gardner TED samples with 7 = 0.125

I T e T %]
05F - % ° .
07‘ ’ Lz . |
05k 3 o " 0 1
1L ‘ ‘ >§3 L ‘ ‘ oy X ‘ i

15 2 25 3 3.5 4 4.5 5 55 6 6.5

k
Gardner TED samples with 7 = 0.125

17 T T T T T T T T 7]
SO e O o o © o Q0
05F b
0 Il Il Il Il Il Il Il Il Il
15 2 25 3 35 4 45 5 55 6 6.5
k
original signal
o y(k)
X g(k=3,7=-0.082)
g(k=>5,7=0.125)
X glk=6,7=0.273)

Figure 4.7: Interpolated samples for the Gardner timing error detector for al-
ternating (top) and constant (bottom) symbols.

4.3.2 Phase Tracking
Phase Error Detector

The phase of an M-PSK modulated signal is dependant on the send symbols
which are unknown during synchronization. Therefore, the modulation has to
be removed from the received signal to get an estimate of the unmodulated
carrier phase. In this work the modulation is removed by a modified M-power
algorithm, the Viterbi & Viterbi phase error detector [3| [4].

The idea behind the M-power algorithm is that having a modulation alpha-
bet of M-PSK symbols, the M*" powers of these symbols will all lie at the same
place in the signal space. The phase of the carrier can then be estimated from
the interpolated received sample g by

£ {a

Pk % (4.51)

The received sample with the removed modulation ¢, can then be calculated

r = lgx|-e77? (4.52)

Figure shows this effect for a QPSK (M=4) modulation. The estimated
phase is affected by noise. To generate an error signal for a tracking loop the
estimated phase is usually weighted with a factor depending on the quality of

36 CHAPTER 4. SYNCHRONIZATION

Modulation removal for Phase error detection

* . .
1r HEE . i
S

0.8} ..
0.6 sl o 1
0.4} iR

02l & © |

Quadrature component
o

-0.2} ce .

-0.4f LUANTP L . -

-0.6} e 1

-0.8f - <‘ :)

_4l| - Signal with modulation . v\.’ i
Removed modulation -

-1 -0.5 0 0.5 1 1.5

Inphase component

Figure 4.8: Basic principle of modulation removal using the M-power algorithm.

the sample. In the M-power algorithm the phase is weighted by the M power
of the samples absolute value, thus samples with a higher absolute value, which
have a higher energy and are thus less affected by noise, are weighted stronger.
Taking the M'" power as weighting means that stronger signals are much more
weighted than weaker signals. The Viterbi & Viterbi algorithm uses a smaller
power as weighting to preserve the higher weighting of stronger samples, but
does not degrade the weaker samples that strong.

Filter

Again a loop filter is used to smooth out the noise impact on the phase esti-
mate. As the phase can change in a linear manner due to a frequency offset, a
proportional regulator will produce a residual error when following such a linear
input. To also compensate the frequency offset an additional integral part is
used to form a second order loop. The filtered phase estimate is controlled by
the two constants p and 7.

br = dr1 + E(k) (4.53)
§(k) =&k =1) +7- (1 +p) - eg(k) —ep(k — 1)) (4.54)
The relation between the two parameters and the loop bandwidth is [3, p. 223]

By~ 2P EACD)

= 2R+ /) e

and a damping factor can be defined as

= (1+p)Vr4 (4.56)

2/p

4.3. TRACKING 37

The slope of the S-curve at the origin is one and a damping factor { = %
is chosen. Choosing ByT from the observation length L of the feedforward
estimator and using equation (4.49)) the two equations can be solved for the two

unknown parameters v and p.

4.3.3 Simulation Results

To ensure the proper function of the tracking a generated sample sequence with
known phase offset and delay is generated and tracked. The resulting error
between estimated and real parameter as well as the corresponding error signals

from Sections and [£:3:2] for a noise free case are plotted in Figure
[the Tollowing page] and with noise in Figure [£.90]

4.3.4 Measured Results

The results from tracking the initially synchronized samples from Section [4.2.5
are shown in Figure It can be seen that the already
well synchronized samples from Figure are rotated even a bit more to the
original BPSK symbols, but are almost untouched. In comparison the initially
synchronized samples from Figure [I.1I0b] are as well concentrated around the
two BPSK symbols by the tracking loop and a detection is now possible. As the
tracking operates on single samples the number of samples does not affect the
accuracy of the estimation and even for much longer sequences the separation
between the M-PSK samples will be possible.

38 CHAPTER 4. SYNCHRONIZATION

x 10
5
a0 r
-5 I I I I I
500 1000 1500 2000 2500 3000
0.5 T T T T T
s 0
-0.5 | | | | |
500 1000 1500 2000 2500 3000
0-01 T T T T T
g
&
i oF
<
3 \/\
-0.01 I I I I I
500 1000 1500 2000 2500 3000
001 T T T T T
£ of
Ny
_0.01 L L L L L
500 1000 1500 2000 2500 3000
(a) without noise
0.05
3 0
-0.05 : ‘ : ‘
500 1000 1500 2000 2500 3000
2 T T T T
s 0
-2 I I I I
500 1000 1500 2000 2500 3000
0.02 \ \ \ \ \
=
£ 0 MW\,WMW
<
-0.02 ! ! ! ! !
500 1000 1500 2000 2500 3000
0-2 T T T T T
El
£ 0
Q’){'}
_0'2 L L L L L
500 1000 1500 2000 2500 3000

(b) with noise (o2 = 0.0316 < SNR = 15dB)

Figure 4.9: Simulated tracking results

4.3. TRACKING 39

Signal constellation of tracked and decimated samples

o e o
) ~ o)
. : 7

L L L

o
T

Quadrature component [10°]

-0.2¢ 4

-0.4} 1
initially synchronized sampleg

—06t ° tracked samples _

-1 -08 -06 -04 -02 0 02 04 06 08 1

Inphase component [10°]

1 2 3 4 5 6
Samples [10]

(a) Short sequence of samples

Signal constellation of tracked and decimated samples

0.6} 4
1)
= 0.4f g
c
2
5 0.2 g
Qo
£
s o) -
g
g -0.2} ;
S
S
o ~0.4f g

initially synchronized sampleg
-0.6r « fracked samples 1

-1 -0.8 -0.6 -0.4 -0.2

0

02 04 06 0.8

1

Inphase component [10°]

1 2 3 4 5 6
Samples [107]

(b) Large sequence of Samples

Figure 4.10: Measured tracking results compared to the initially synchronized

samples

40 CHAPTER 4. SYNCHRONIZATION

4.4 Start of Frame Detection

After the successful bit synchronization of the previous sections there are still
two open points. Because of the m-ambiguity of the phase of the BPSK syn-
chronization sequence it is unclear whether a received +1 corresponds to a one
or a zero and it has to be detected which bit is the first bit that belongs to
the send data. These two issues can be resolved by sending a known start of
frame sequence and correlate the received bits with this sequence. A Barker
sequence of length 13 is used as start of frame sequence either directly or the
Kronecker product of two barker sequences to get a sequence of length 132 for
higher robustness. Barker sequences have an autocorrelation function with a
off-peak autocorrelation of at most one. The maximum crosscorrelation of the
synchronization sequence with the 13 bit Barker code is five, while the autocor-
relation of two aligned Barker sequences is 13. The received samples are BPSK

Start of Frame detection for SNR=5dB
1 ‘ ‘ ‘ ‘ ‘

0.6 B

0.4f R

Normalized Correlation

-1 L L L L L 1 1 1
0 50 100 150 200 250 300 350 400 450

Offset

Figure 4.11: Simulated correlation between the demodulated samples and the
start of frame sequence

demodulated by taking the real value of them and are then correlated with a
zero padded start of frame sequence. Figure shows the normalized corre-
lation of such a sequence. A clear and distinctive peak can be observed at an
offset of 250. In this case the correlation at the detected maximum is negative,
so the received samples have to be rotated by 7 before detection, otherwise the
samples are already aligned.

4.5 Data Transmission over the USRPs

Finally all the thoughts from this Chapter should be used to transmit data over
the USRPs. First the vector of transmission symbols is generated starting with

4.5. DATA TRANSMISSION OVER THE USRPS 41

the synchronization sequence from Section followed by the start of frame
sequence of Section [£.4] and a M-PSK modulated random data sequence. These
symbols are filtered with a root-raised cosine filter and are transmitted over an
USRP.

The received samples are checked for the presence of a synchronization se-
quence as described in Section and the frequency and phase offsets as
well as the delay of the received samples from the synchronization sequence are
estimated by the feedforward estimator of Section at the middle of the
synchronization sequence.

The samples starting at the middle of the synchronization sequence are
rotated by the estimated phase and frequency offset and are filtered with a
matched root raised cosine filter. These filtered samples are then tracked and
decimated.

A fixed number of the corrected and decimated samples of the tracking loop
are then send to the BPSK detector to search for the start of frame and resolve
the phase ambiguity, as described in Section All symbols that belong to
the data sequence are then M-PSK demodulated taking the detected phase
ambiguity into account. The demodulated data sequence is then compared to
the generated data sequence to see if any bit errors have occurred.

43

Chapter 5

Summary

In the first part of this work a fully functional interface between MATLAB
and the USRPs has been developed. With this interface it is now possible to
access the USRP devices, set all necessary parameters and transmit and receive
samples with or without time tagging even from multiple USRPs as long as the
MATLAB Thread is fast enough to catch up with the data rates.

In the second part a synchronization scheme was investigated to be used
for frequency, timing and phase synchronization of USRP transmissions. It has
been shown in simulations that the used feedforward estimator achieves the
Cramér-Rao bounds. It has also been shown that the used tracking algorithms
are capable of keeping the M-PSK symbols separable over long durations of
random transmitted data. Afterwards the start of frame sequence has been
used to align the bit synchronized data stream and resolve the phase ambiguity
of the received samples. Finally the received samples have been demodulated
and detected both in simulations as well as with measured data from the USRPs,
using the interface of the first part of this work.

Based on these two parts it is now possible to use a coherent USRP chan-
nel in MATLAB for further testing of communication schemes where existing
simulation MATLAB code can be reused and without having to worry about
synchronization.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

45

Appendix A

A.1 Send and Receive Multiple Data Streams
from a Single Thread

Listing A.1: Sample code to send and transmit from one single Thread

#include
#include
#include
#include
#include

<uhd/usrp/multi_usrp.hpp>
<stdio.h>

<string>

<complex>

<unistd.h>

int main(void){
// desired data rate in samples per seconds

double

datarate = 2000000.0; // 2 Msamples per second

// desired center frequency

double

frequency = 1490000000.0; // 1.49 GHz

// maximum time for read our buffer, before return

double

timeout = 0.008; // 8 ms

// how many samples should be read out at once
const size_t max_samps_per_packet = 25000;

// number of read/write cycles that should be done
const int num_packets = 10000;

// counting variables

size_t
size_t

i g
rx_num, tx_num;

// default device

std::string args("");

uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::
make (args) ;

// set

datarates

usrp->set_rx_rate(datarate) ;
usrp->set_tx_rate (datarate);

// set

center frequencys

usrp->set_rx_freq(frequency) ;

34

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

72

73

74

APPENDIX A. APPENDIX

usrp->set_tx_freq(frequency) ;

// no amplification needed
usrp->set_rx_gain (0.0);
usrp->set_tx_gain(0.0) ;

// space to store metadata
uhd::rx_metadata_t rx_md;
uhd::tx_metadata_t tx_md;
uhd::async_metadata_t async_md;

// send as soon as possible (no time tagging)
tx_md.has_time_spec = false;

// buffers for sending and receiving

std::vector<std::complex<double> > rx_buff (
max_samps_per_packet);

std::vector<std::complex<double> > tx_buff (
max_samps_per_packet);

// create send signal inside the buffer

for(i=0;i<max_samps_per_packet;i++) {

// create complex cosine (alternating +/-1+01i)

tx_buff[i] = std::complex<double>(((i%2 == 0) 7 -1 : 1),
0);

}

// start streaming

printf ("start streaming\n");

usrp—>issue_stream_cmd(uhd::stream_cmd_t::
STREAM_MODE_START_CONTINUOQOUS) ;

for (i=num_packets ;i>0 ;i--) {

// send out the whole buffer

tx_num = usrp->get_device()->send (&tx_buff.front(),
tx_buff.size(), tx_md, uhd::io_type_t::COMPLEX_FLOAT64,
uhd::device:: SEND_MODE_FULL_BUFF) ;

// receive until the buffer is full, or timeout seconds
went by

rx_num = usrp->get_device()->recv (&rx_buff.front(),
rx_buff.size(), rx_md, uhd::io_type_t::COMPLEX_FLOAT64,
uhd::device::RECV_MODE_FULL_BUFF, timeout) ;

// receive asynchronous messages (errors during
transmission) with 1ms timeout
if (usrp->get_device()->recv_async_msg(async_md, 0.001) &&
async_md.event_code != uhd::async_metadata_t::
EVENT_CODE_BURST_ACK) {
// metadata was not an acknowledgement, every other
metadata packet signals transmission problems
printf ("tx error\n");

}

75

76

77

78

79

80

81

82
83

84

86

87

88

89

90

91

92

93

94

10

11

12

13

14

A.2. SEND AND RECEIVE SAMPLES TO A FILE

// if received less samples than transmitted, print out
the numbers
if (rx_num < max_samps_per_packet) {

47

printf("send: %d, recv: %d, max:%d\n",(int)tx_num, (int)

rx_num, (int)max_samps_per_packet);

}
// when there are receive errors, print them out
if(rx_md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE
) {
printf ("rx error\n");
}

// sleep some time to simulate data processing in MATLAB
usleep (5000) ;

}

// signal the USRP to stop transmitting
tx_md.end_of_burst = true;

usrp->get_device()->send("", O, tx_md, uhd::io_type_t::

COMPLEX_FLOAT64, uhd::device::SEND_MODE_FULL_BUFF) ;

// stop receiving
usrp—>issue_stream_cmd(uhd::stream_cmd_t::
STREAM_MODE_STOP_CONTINUQUS) ;

printf ("finished\n");
return O;

A.2 Send and Receive Samples to a File

A.2.1 Sending Samples

Listing A.2: Sample code to read out samples from a file and transmit them

over the USRP

// The following code is based on the rx_samples_to_file
example from the UHD library code

#include <uhd/utils/thread_priority.hpp>

#include <uhd/utils/safe_main.hpp>

#include <uhd/usrp/multi_usrp.hpp>

#include <iostream>

#include <fstream>

#include <csignal>

#include <complex>

// prepare the function to abort reception later on
static bool stop_signal_called = false;

void sig_int_handler (int){stop_signal_called = true;}

// programm entry point

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

48

int UHD_SAFE_MAIN (int argc,
// print help message when lacking parameters
if (not (argc == 7 || argc

printf ("usage:
[numsamps]\n",

return 1;

}

APPENDIX A. APPENDIX

char *argv[]){

== 6)) {

%s usrpargs filename frequency rate gain
argv [0]) ;

// give the uhd threads their desired priorities
uhd::set_thread_priority_safe();

// parse input parameters
std::string args (argv [1]) ;
std::string file(argv[2]);
double freq = atof (argv[3]);
double rate = atof (argv[4]);
double gain = atof (argv[5]);

const
const
const
const
const
const

size_t samps_total

NULL, 10) : O;

(argc == 7) ? strtoul (argvl[6],

// number of samples to receive before writing them into a
file

const size_t samps_per_buff = samps_total; // first
receive all samples and then write the file

// number of samples to read from the UHD in each loop
cycle

const size_t samps_per_loop = 10000; // 10 thousand

// give the uhd threads their desired priorities
uhd::set_thread_priority_safe();

// create the USRP device
uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::
make (args) ;

// set transmission rate,
usrp->set_rx_rate(rate);
usrp->set_rx_freq(freq);
usrp->set_rx_gain(gain);

// if no fixed number of
abbort the reception
if (samps_total == 0){
std::signal (SIGINT, &sig_int_handler);
printf ("Press Ctrl + C to stop streaming...\n");

¥

S

frequency and gain

amples is given, let the user

//create a receive streamer

uhd::stream_args_t stream_args(std::string("fc64"));

uhd::rx_streamer::sptr rx_stream = usrp—>get_rx_stream(
stream_args) ;

// store metadata
uhd::rx_metadata_t md;

61

62

63

64

66

67

68

69

70

71

72

73

T4

75

76

7

78

79

80

81

82

83

84

88

89

90

91

92

93

94

95

96

97

98

99

100

101

103

104

105

107

108

A.2. SEND AND RECEIVE SAMPLES TO A FILE 49

// allocate the buffer
std::vector<std::complex<double> > buff (samps_per_buff);

// create the file stream
std::ofstream outfile((file.c_str()), std::ofstream::
binary) ;

// counter of the overall received samples
size_t rx_total=0;

printf ("Start recording:\n");

//setup streaming
uhd::stream_cmd_t stream_cmd(

(samps_total == 0) 7

uhd::stream_cmd_t:: STREAM_MODE_START_CONTINUOQUS

uhd::stream_cmd_t:: STREAM_MODE_NUM_SAMPS_AND_DONE
) 8
stream_cmd.num_samps = samps_total;
stream_cmd.stream_now = true;
usrp->issue_stream_cmd(stream_cmd) ;

// mail loop
while (not stop_signal_called && rx_total<samps_total){
// counter of received samples in this loop
size_t i = 0;
while (i<samps_per_buff) {
size_t num_rx_samps = rx_stream->recv(&buff.at(i),
samps_per_loop, md);
i += num_rx_samps;

// show progress
std::cout << ".";
flush(std::cout);

if (md.error_code == uhd::rx_metadata_t::
ERROR_CODE_TIMEOQOUT) A{
printf ("rx timeout\n");
¥
if (md.error_code == uhd::rx_metadata_t::
ERROR_CODE_OVERFLOW) {
printf ("rx_error\n");

}
if (md.error_code != uhd::rx_metadata_t::
ERROR_CODE_NONE) {
printf ("Unexpected error code Ox%x", md.error_code);
}

}

// write buffer to file

outfile.write((const char*)&buff.front(), ixsizeof (std::
complex<double>)) ;

// increase the overall counter

111

112

113

115

116

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

50 APPENDIX A. APPENDIX

rx_total += i;

}
// close file
outfile.close();

printf ("\n\nDone!\n");
return O;

Listing A.3: Sample code to write sample data into a file

function writesamples(data, filename, varargin)

% writesamples - Write samples into a file and transmit them
over the USRP

7 Syntax: writesamples (data, filename, [usrp_arg, freq,
rate, gain])

7 Input: data - Vector of 1xN samples

7 filename - The name and path of the file to
store the samples

7 usrp_arg - The device argument for the USRP

7 freq - Center frequency of the USRP

v rate - Sampling rate of the USRP

7 gain - Receive gain of the USRP

if ("(isempty (varargin) || length(varargin) == 4))
% wrong number of input variables
error (’usage: writesamples(data, filename, [usrp_arg,

freq, rate, gainl])’);
end

% write sequential double values as alternating real and
imaginary part

tmp = zeros(2*length(data(:)), 1);

tmp (1:2:end) = real(data(:));

tmp (2:2:end) imag (data(:));

% clear original data sequence

clear data;

% open the samples file

fid = fopen(filename, ’w’);

%write data

fwrite(fid, tmp, ’double’);

%close file and clean up temporary variables

fclose (fid) ;

clear tmp fid;

if (length(varargin) == 4)
% all parameters are given, receive befor reading the
file
usrp_arg = varargin{1l};
freq = varargin{2};
rate = varargin{3};
gain = varargin{4};

% execute the transmit script from within matlab
command = sprintf (’./tx_samples_from_file ¥%s Y%s %f %f %f
> ,usrp_arg ,filename, freq, rate, gain);

37

38

39

o

© ®w N o

10

11

12

13

14

15

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

A.2. SEND AND RECEIVE SAMPLES TO A FILE 51

system (command) ;
end
end

A.2.2 Receiving Samples

Listing A.4: Sample code to receive samples from the USRP and store them in
a file

// The following code is based on the rx_samples_to_file
example from the UHD library code

#include <uhd/utils/thread_priority.hpp>

#include <uhd/utils/safe_main.hpp>

#include <uhd/usrp/multi_usrp.hpp>

#include <iostream>

#include <fstream>

#include <csignal>

#include <complex>

// prepare the function to abort reception later on
static bool stop_signal_called = false;
void sig_int_handler (int){stop_signal_called = true;}

// programm entry point
int UHD_SAFE_MAIN(int argc, char *argv[]){
// print help message when lacking parameters

if (not (argc == 7 || argc == 6)) {
printf ("usage: ’%s usrpargs filename frequency rate gain
[numsamps]\n", argv[0]);
return 1;
}

// give the uhd threads their desired priorities
uhd::set_thread_priority_safe();

// parse input parameters

const std::string args (argv [1]) ;

const std::string file (argv[2]);

const double freq atof (argv [3]) ;

const double rate atof (argv [4]) ;

const double gain atof (argv [5]) ;

const size_t samps_total = (argc == 7) ? strtoul(argvl[6],

NULL, 10) : O;

// number of samples to receive before writing them into a
file
const size_t samps_per_buff = samps_total; // first
receive all samples and then write the file
// number of samples to read from the UHD in each loop
cycle
const size_t samps_per_loop = 10000; // 10 thousand

// give the uhd threads their desired priorities

39

40

41

42

43

44

46

47

48

49

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

86

87

APPENDIX A. APPENDIX

uhd::set_thread_priority_safe();

// create the USRP device
uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::
make (args) ;

// set transmission rate, frequency and gain
usrp->set_rx_rate (rate);
usrp->set_rx_freq(freq);
usrp->set_rx_gain(gain);

// if no fixed number of samples is given, let the user
abbort the reception
if (samps_total == 0){
std::signal (SIGINT, &sig_int_handler);
printf ("Press Ctrl + C to stop streaming...\n");
}

//create a receive streamer

uhd::stream_args_t stream_args(std::string("fc64"));

uhd::rx_streamer::sptr rx_stream = usrp—>get_rx_stream(
stream_args) ;

// store metadata
uhd::rx_metadata_t md;

// allocate the buffer
std::vector<std::complex<double> > buff (samps_per_buff);

// create the file stream
std::ofstream outfile((file.c_str()), std::ofstream::
binary) ;

// counter of the overall received samples
size_t rx_total=0;

printf ("Start recording:\n");

//setup streaming
uhd::stream_cmd_t stream_cmd (

(samps_total == 0) ?

uhd::stream_cmd_t:: STREAM_MODE_START_CONTINUOUS

uhd::stream_cmd_t:: STREAM_MODE_NUM_SAMPS_AND_DONE
D g
stream_cmd.num_samps = samps_total;
stream_cmd.stream_now = true;
usrp->issue_stream_cmd (stream_cmd) ;

// mail loop

while (not stop_signal_called && rx_total<samps_total){
// counter of received samples in this loop
size_t i = 0;
while (i<samps_per_buff) {

88

89

90

91

92

93

94

95

96

97
98

99

100

101

102

103

104

105

106

108

109

112

113

114

116

A.2. SEND AND RECEIVE SAMPLES TO A FILE 53

size_t num_rx_samps = rx_stream->recv(&buff.at(i),
samps_per_loop, md);
i += num_rx_samps;

// show progress
std::cout << ".";
flush(std::cout);

if (md.error_code == uhd::rx_metadata_t::
ERROR_CODE_TIMEOUT) {
printf ("rx timeout\n");
¥
if (md.error_code == uhd::rx_metadata_t::
ERROR_CODE_OVERFLOW) {
printf ("rx_error\n");

}
if (md.error_code != uhd::rx_metadata_t::
ERROR_CODE_NONE) {
printf ("Unexpected error code Ox%x", md.error_code);
T

}
// uwrite buffer to file
outfile.write ((const char*)&buff.front(), i*sizeof (std::
complex<double>)) ;
// increase the overall counter
rx_total += i;
}
// close file
outfile.close();

printf ("\n\nDone!\n") ;
return O;

}
Listing A.5: Sample code to read out a file with raw sample data

function data = readsamples(filename, offset, varargin)

% readsamples - Receive samples from the USRP into a file
and read them out

% Syntax: data = readsamples(filename, offset, [usrp_arg
, freq, rate, gain, numsamps])

% Input: filename - The name and path of the file to
store the samples

A offset - Number of samples at the beginning
to ignore

1 usrp_arg - The device argument for the USRP

v freq - Center frequency of the USRP

YA rate - Sampling rate of the USRP

A gain - Receive gain of the USRP

YA numsamps - Number of samples to receive

% Output: data - Vector or 1xN samples with

pA N = numsamps if provided

23

24

25

26

27

28

29

30

31

32

33

34

35

36

54

if

APPENDIX A. APPENDIX
(length(varargin) == 5)
% all parameters are given, receive befor reading the
file
usrp_arg = varargin{1l};
freq = varargin{2};
rate = varargin{3};
gain = varargin{4};

numsamps varargin{5};

% execute the receive script from within matlab

command = sprintf(’./rx_samples_to_file Y%s %s %f %f %f %
d’ ,usrp_arg,filename, freq, rate, gain, numsamps+
offset) ;

system (command) ;

elseif ("isempty(varargin))

% wrong number of input variables
error (’usage: data = readsamples(filename, [usrp_arg,
freq, rate, gain, numsamps])’);

end

h

open the samples file

fid = fopen(filename) ;

A

read sequential double values and store them as doubles

tmp=fread (fid, ’*double’);

b

odd data are the real values and even data the imaginary
values of the samples

data=complex (tmp ((2*xoffset+1) :2:1length(tmp)) ,tmp ((2*xoffset

+2) :2:1length(tmp)));

%close file
fclose (fid) ;
end

A.3 Send and Receive Samples from MATLAB

Listing A.6: Sample code to send and receive samples over the Mex interface
from within MATLAB.

h

choose USRP devices

uhdsend = uhdinterface(’init’,’serial=4e2610f4°);
uhdrecv = uhdinterface(’init’,’addr=192.168.10.2");

h

set parameters

uhdinterface (uhdsend, ’set_tx_freq’,1.5e9)
uhdinterface (uhdsend,’set_tx_rate’,1e6)
uhdinterface (uhdsend,’set_tx_gain’,10)
uhdinterface (uhdrecv,’set_rx_freq’,1.5e9)
uhdinterface (uhdrecv,’set_rx_rate’,l1e6)
uhdinterface (uhdrecv,’set_rx_gain’ ,30)

A

get messages from the UHD 1lib

uhdinterface (’flush’);

h

number of samples to receive/transmitt per loop

buf_len = 50000;

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32
33

34

36

37

38

39

40

41

42

43

44

45

46

10

11

12

13

14

A.4. SPECTRUM ANALYZER

% number of loop cycles

n = 50;

% generate send signal (constant carrier) and preassign

receive buffer
send_buf = ones(buf_len,1)*(1+0j);
= zeros(buf_lenx*n,1);

recvvec

% start receiving and streaming

uhdinterface (uhdrecv, ’rx_stream_start’)
uhdinterface (uhdsend,’tx_stream_start’)
uhdinterface (uhdsend,’>send’,send_buf) ;

% throw away the first samples

transmit signal)

recvvec

(:,1) = uhdinterface (uhdrecv,’receiven’,buf_len);

% send and rceive loop

for i=1

uhdinterface (uhdsend, ’send’,send_buf) ;
recvvec ((i-1)*buf_len+1:ix*xbuf_len)
uhdrecv, ’receiven’ ,buf_len) ;

end

% stop

uhdinterface (uhdsend,’tx_stream_stop’);
uhdinterface (uhdrecv,’rx_stream_stop’);

n

streaming

% close USRP and unlock mexfile
uhdinterface (uhdsend,’>close’)
uhdinterface (uhdrecv,’>close’)

A.4 Spectrum Analyzer

Listing A.7: Sample code to use the USRP interface as a spectrum analyzer in

MATLAB.

clear all;
close all;

% choose USRP device

% uhd =
% uhd =

% data
rate =
% freq
% freq
freq =
gain

uhdinterface(’init’,’serial=4e2610f4) ;
uhd = uhdinterface(’init’,’serial=4e2611ca’);
uhdinterface(’init’,’addr=192.168.10.27) ;

rate in samples per second

0.5e6;

= 1541 .6¢€6;
= 1878.5¢e6;
2e9;

20;

P2
b

Inmarsat 4F2
Meteosat 9

(which already include the

uhdinterface (

%USRP N210

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

56

update_t
avrg_len

ime

= 0.1;

= 10;

% setparameters
uhdinterface (uhd,’set_rx_freq’,freq)
uhdinterface (uhd,’set_rx_rate’,rate)
uhdinterface (uhd,’set_rx_gain’,gain)

APPENDIX A. APPENDIX

% get messages from the UHD 1lib
uhdinterface (’flush’);

%length of buffer

N = 10e3

>

% number of loop cycles to skip before recomputing the fft
n = ceil(update_time/N*rate);

% frequency vector
f = (((0:N-1) - ceil
% generate axis label

figureha

ndle

= figur

% set(figurehandle,

plot (£,

(N/2)) / N * rate) + freq;

e(1);
’>Windowstyle’, ’modal’);
zeros (size (f)));

xlabel (’Frequency [Hz]’);

£);
£);

plothandle =
y_max = 0;
y_min -150;
x_max = max(
x_min = min(
axis ([x_min

x_max y_min y_max]);

% start receiving
uhdinterface (uhd,’rx_stream_start’);

% throw away the first N samples

vec = uhdinterface(uhd,’receiven’,N);
i=1;
reset_avrg = true;
% receive wave form
while true
vec = uhdinterface(uhd, ’receiven’,N);

if not(ishandle(plothandle))
break;

end

if (i >= n)

i =
newf

1
ftvec =

20*1og10 (abs (fftshift (£ft(vec))/N));

if reset_avrg

else

end

fftvec = newfftvec;

reset_avrg = false;

fftvec = (avrg_len*fftvec + newfftvec)/(avrg_len
+1)

68

69

70

71

T2

73

74

75

76

T

78

79

80

81

82

83

84

85

A.5. AVAILABLE INTERFACE COMMANDS

set (plothandle,’YData’,fftvec); 7 Update the plot

line
drawnow;
end
% pressedKey = get(figurehandle, ’CurrentCharacter’);
h if pressedKey == ’q’
% break;
7 end
i = i+1;

end

% stop streaming
uhdinterface (uhd, ’rx_stream_stop’);

% close USRP and unlock mexfile
uhdinterface (uhd, ’close’);

% set(figurehandle, ’Windowstyle’, ’normal’);
g y

57

A.5 Available Interface Commands

The interface calls have the following form

[return] = uhdinterface([index], command, [parameter]);

where a value enclosed in brackets [] is an optional value. If an index is possible

but none is supplied the default USRP with index 0 is used. The possible

commands are:

init returns USRP index, no index, optional string parameter

Initializes a USRP object with the given device argument, or an empty
string if no argument is supplied. The USRP object is created and stored.
The index to this USRP object is returned as positive (or zero) integer
value. If the returned value is negative there has been an error and no

USRP object has been created.

flush returns nothing, no index, no parameter

Prints out new messages from the UHD on the MATLAB console, does

nothing if there are no new messages.

set_rx_freq_offset returns nothing, optional index, scalar double parameter
Changes the receiving centre frequency offset of the selected USRP object
to the provided frequency offset in Hz. This option offsets the operational
frequency of the A/D converters and is afterwards compensated by the
USRP’s DSP. This offset is useful when transmitting and receiving at the
same frequency on the same daughterboard to prevent crosstalk of the RX

and TX path.

set_rx_freq returns nothing, optional index, scalar double parameter

Changes the receiving centre frequency of the selected USRP object to the

provided frequency in Hz.

58 APPENDIX A. APPENDIX

set_rx_rate returns nothing, optional index, scalar double parameter
Changes the receiving sampling rate of the selected USRP object to the
provided sampling rate in samples per second.

set_rx_bw returns nothing, optional index, scalar double parameter
Changes the receiving channel filter of the selected USRP object to the
provided bandwidth in Hz if this operation is supported by the daughter-
board.

set_rx_gain returns nothing, optional index, scalar double parameter
Changes the receiving amplification gain of the selected USRP object to
the provided gain in the range from 0 to 30.

set_rx_subdev returns nothing, optional indez, string parameter
Changes the RX subdevice to the specified one.

set_rx_antenna returns nothing, optional index, string parameter
Changes the RX antenna to the specified one.

receiven returns vector of complex samples, optional index, scalar integer pa-
rameter
Tries to receive the provided amount of samples from the selected USRP.
All received samples are returned in an Nx1 vector where N is either the
number of requested samples or less, if a timeout occurred during recep-
tion.

set_tx_freq returns nothing, optional indezx, scalar double parameter
Changes the sending centre frequency of the selected USRP object to the
provided frequency in Hz.

set_tx_rate returns nothing, optional index, scalar double parameter
Changes the sending sampling rate of the selected USRP object to the
provided sampling rate in samples per second.

set_tx_bw returns nothing, optional index, scalar double parameter
Changes the sending channel filter of the selected USRP object to the
provided bandwidth in Hz if this operation is supported by the daughter-
board.

set_tx_gain returns nothing, optional index, scalar double parameter
Changes the sending amplification gain of the selected USRP object to
the provided gain in the range from 0 to 30.

set_tx_subdev returns nothing, optional index, string parameter
Changes the TX subdevice to the specified one.

set_tx_antenna returns nothing, optional index, string parameter
Changes the TX antenna to the specified one.

set_tx_timespec returns nothing, optional index, scalar double parameter
Sets the absolute time of transmission of the next data package (initialized
by the next send command) in seconds.

A.5. AVAILABLE INTERFACE COMMANDS 59

send returns integer number, optional index, vector of complex doubles as pa-
rameter
Tries to send the provided samples from the selected USRP. Returns the
number of send samples which is either the number of provided samples
or less, if a timeout occurred during transmission.

get_rx_freq returns scalar double, optional index, no parameter
Returns the receiving centre frequency of the selected USRP in Hz.

get_rx_rate returns scalar double, optional index, no parameter
Returns the receiving sampling rate of the selected USRP in samples per
second.

get_rx_bw returns scalar double, optional index, no parameter
Returns the receiving channel filter bandwidth of the selected USRP in
Hz if this operation is supported by the daughterboard..

get_rx_gain returns scalar double, optional index, no parameter
Returns the receiving amplification gain of the selected USRP in the range
from 0 to 30.

get_rx_subdev returns string, optional index, no parameter
Returns the pretty print string of the RX subdevice.

get_rx_antenna returns string, optional index, no parameter
Returns the pretty print string of the RX antenna.

get_rx_timespec returns scalar double, optional index, no parameter
Returns the absolute timespec of the last received packet (initialized by
the previous receiveN command) in seconds.

rx_stream_start returns nothing, optional index, no parameter
Starts the reception of samples into the internal buffer of the selected
USRP.

rx_stream_stop returns nothing, optional index, no parameter
Stops the reception of samples into the internal buffer of the selected
USRP.

get_tx_freq returns scalar double, optional index, no parameter
Returns the sending centre frequency of the selected USRP in Hz.

get_tx_rate returns scalar double, optional index, no parameter
Returns the sending sampling rate of the selected USRP in samples per
second.

get_tx_bw returns scalar double, optional index, no parameter
Returns the sending channel filter bandwidth of the selected USRP in Hz
if this operation is supported by the daughterboard..

get_tx_gain returns scalar double, optional index, no parameter
Returns the sending amplification gain of the selected USRP in the range
from 0 to 30.

60 APPENDIX A. APPENDIX

get_tx_subdev returns string, optional index, no parameter
Returns the pretty print string of the TX subdevice.

get_tx_antenna returns string, optional index, no parameter
Returns the pretty print string of the TX antenna.

tx_stream_start returns nothing, optional index, no parameter
Starts the transmission of samples from the internal buffer of the selected
USRP with a delay of 1ms.

tx_stream _stop returns nothing, optional index, no parameter
Stops the transmission of samples from the internal buffer of the selected

USRP.

close returns nothing, optional index, no parameter
Closes the selected USRP object and if no other USRP object is left, the
Mex function is unlocked.

closeAll returns nothing, no index, no parameter
Closes all USRP objects and the Mex function is unlocked.

test returns optional scalar double, no index, optional scalar double parameter
If a parameter is given an internal test variable is assigned with the value
of the parameter. If a return value is requested the current value of the
test variable is returned.

A.6 Derivation of the Maximum Likelihood Es-
timator

The equality of

Qil cos? <7r E — TD =L (A.6.1)

k=0

should be shown, as used in Section [4.2.1] on page
201
k
()
— 2
—1
k
(1 + cos (27r [2 — %}))

(1 + (=1)* cos (271'7'))

Q
o
)

S -
o

Il
LS
Ny
(e}
DN =

[3v)
~
L

Il
e
Ny
(e}
DN | =

2L—1 1 2L—-1
= 5 + cos (277) - > (-1t

k=0 k=0
N————

=0

|
h
g

A.6. DERIVATION OF THE MAXIMUM LIKELIHOOD ESTIMATOR 61

The equality of
D(,7) = |Ye(@)* + [Yo(2)|* + R {777 A(9)} (A.6.2)
should be shown, as used in Section [4.2.1] on page
L(0,7) =2|2(0,7)"
=2|Y.(9) - cos(nF) + €7 - Y, () - sin(7r7~')|2

=2|Ye(9)|” - [eos(nT)|* + 2|V (7)]” - sin(mF)|*
+ AR {Yo(D) - Y (D) - €7 - cos(mF) - sin(r7) }

applying addition theorems leads to:

=2|Y.(7)]* - = (1 + cos (277)) + 2|Y, (2| - % (1 —cos (277))

DN =

+ 4R {Ye(ﬁ) YD) - eI %sin (27r%)}
= Ye(@)]” + Yo (2)?
+ (1%e(®) = Vo(@)]) cos (277) + 2R {Yo(2)Y; (7)™ sin (277) }

The already real valued second line can be enclosed with the 3 operator without
changing the result.

=Y .(0)? + Yo (2)] +

%{ (\Ye(ﬁ)|2 - |Yo(ﬂ)|2) cos (27) + 2R { Y. ()Y, (9)e?™ sin (277) } }

to replace the cos and sin terms by a single complex rotation
=|Y.(7)]* + [Yo(#)|*

+ éﬁ{ (V@) = Yo@)P + 2R (/Y. (7)Y, (7)}) }

The inner part is defined as A(7)
A@) = [Ye(0)]* = [Yo(@)* + 2R {7 Yo ()Y, (7)}
which leads to

D(7,7) = Yo (@) + [Yo(2)]” + R {727 A@®)} . O

62 APPENDIX A. APPENDIX

A should be described in argument/phase notation as used in Section m
on page [26] as

A®)| = [Y2(2) + e 2V (). (A.6.3)
The squared argument of A is calculated with

JA@) = Ye(@)]* = 2[Ye@)P [Yo(@)]” + Yo(D)]* + 4R {/™ Yo (0)Y (7))}
(A.6.4)

with R{z} = (2 + 2*) equation (A.6.4) becomes

JA@)* =Y @)[" = 2 [Ye(@)]* [Yo(@)|* + Yo (2)[*
4 (GO0 + T Y 0)
=V (0)|' = 2. ()P 1Y, (0)]* + [Yo(2)|* + Y2 (2)Y, (7)
+ 2V () Yy () + e Y S (0) V(D) (A.6.5)
with z 4+ z* = 2R{z} equation becomes
JA@)* =Y @)[" =2 [Ye(@)]* [Yo(@)|* + Yo (2)[*
+ 2|V (D) [Vo(0)F + 20 { V20" (7) |
—[¥.(0)" + Vo) + 20 {20, ()

— ‘}/;2(9) + e—jQﬂDYOZ(D)|2

which leads to
|A(D)| = Y2 (@) + e ™Y ()] O

A.7 Derivation of the Likelihood of Hypothesis
Two

The likelihood of hypothesis two, as used in Section [£:2.4] on page 3] is

2L—-1 o I
Yo :méa,x{ kz_o r[k] - e Ik _ 2} (A.7.1)

A.7. DERIVATION OF THE LIKELIHOOD OF HYPOTHESIS TWO 63

which can be calculated with

2L—1 o
ers = — Z ‘r[lc] _ i (riok-L)+d) | 1‘
k=0
2L—1
=— k]2 — 2R {r[k] - eI (P-4 1) _op,
> (irt> = 20 {1 H
E=y j(ri(k—L)+) L
Uy = Rrlk] - e I\TVET - =
H ;) { } 2
o 2rm o I
=R {e](””L_¢) . Z r[k] - e_J””k} -3 (A.7.2)
k=0

The optimal value for 7L — ¢ will rotate the sum onto the real-axis.

2L—1
b—mL=—4 { Z r[k] ~e_j”ﬁk}

k=0

2L—-1
p=—« { > k) ej”f’k} + 7L (A.7.3)

k=0

Inserting this optimal phase into (A.7.2))

2L-1

Z r[k] - e 9Tk

k=0

Vo =

B |t

The maximum likelihood of this hypothesis can then be achieved by taking the
maximum over all frequencies v
L
- = O
2 }

2L—-1

Z r[k] - eIk

@}Q ZZHKD({
v
k=0

BIBLIOGRAPHY 65

Bibliography

1]

M. Morelli and A. D’Amico, “Maximum Likelihood Timing and Carrier
Synchronization in Burst-Mode Satellite Transmissions,” EURASIP Journal
on Wireless Communications and Networking, 2007.

F. Gardner, “A BPSK/QPSK Timing-Error Detector for Sampled Re-
ceivers,” IEEE Transactions on Communications, May 1986.

U. Mengali and A. D’Andrea, Synchronization Techniques for Digital Re-
cetvers. Plenum Press, 1997.

A. J. Viterbi and A. Viterbi, “Nonlinear Estimation of PSK-Modulated Car-
rier Phase with Application to Burst Digital Transmission,” IEFFE Transac-
tions on Information Theory, July 1983.

F. A. Hamza. (2011) The USRP under 1.5X Magnifying Lens! [Online].
Available: http://gnuradio.org/redmine/attachments/download/129

Ettus Research. (2012) UHD Wiki. [Online]. Available: http://code.ettus.
com/redmine/ettus/projects/uhd /wiki

Karlsruhe Institute of Technology Communications Engineering Lab. (2011)
Simulink-USRP: Universal Software Radio Peripheral (USRP) Blockset.
[Online]. Available: http://www.cel.kit.edu/english /downloads.php

MathWorks. (2011) MATLAB and Simulink Support Package for USRP©
Hardware. [Online]. Available: |http://www.mathworks.de/discovery/sdr/
usrp.html

Q. Funke, “Implementation of an ECSS Compliant Ground Station Us-
ing Software Defined Radios,” Diploma Thesis, Technische Universitat
Miinchen, July 2012.

http://gnuradio.org/redmine/attachments/download/129
http://code.ettus.com/redmine/ettus/projects/uhd/wiki
http://code.ettus.com/redmine/ettus/projects/uhd/wiki
http://www.cel.kit.edu/english/downloads.php
http://www.mathworks.de/discovery/sdr/usrp.html
http://www.mathworks.de/discovery/sdr/usrp.html

	Introduction
	Universal Software Defined Radio Peripheral
	Overview
	USRP1
	Next Generation USRPs
	Motherboards
	Daughterboards

	Interfaces
	USRP1
	Next Generation USRPs
	Conclusion

	MATLAB Interface Implementation
	General Considerations
	Single Thread
	Approaches

	Interface Structure
	Usage
	Send and Receive Samples
	Spectrum Analyzer

	Synchronization
	System Model
	Feedforward Estimator
	Joint Maximum Likelihood Estimation
	Frequency Search
	Simulation Results
	Synchronization Sequence Detection
	Measured Results

	Tracking
	Delay Tracking
	Phase Tracking
	Simulation Results
	Measured Results

	Start of Frame Detection
	Data Transmission over the USRPs

	Summary
	Appendix
	Send and Receive Multiple Data Streams from a Single Thread
	Send and Receive Samples to a File
	Sending Samples
	Receiving Samples

	Send and Receive Samples from MATLAB
	Spectrum Analyzer
	Available Interface Commands
	Derivation of the Maximum Likelihood Estimator
	Derivation of the Likelihood of Hypothesis Two

